title | summary |
---|---|
Explain Statements That Use Subqueries |
Learn about the execution plan information returned by the EXPLAIN statement in TiDB. |
TiDB performs several optimizations to improve the performance of subqueries. This document describes some of these optimizations for common subqueries and how to interpret the output of EXPLAIN
.
The examples in this document are based on the following sample data:
CREATE TABLE t1 (id BIGINT NOT NULL PRIMARY KEY auto_increment, pad1 BLOB, pad2 BLOB, pad3 BLOB, int_col INT NOT NULL DEFAULT 0);
CREATE TABLE t2 (id BIGINT NOT NULL PRIMARY KEY auto_increment, t1_id BIGINT NOT NULL, pad1 BLOB, pad2 BLOB, pad3 BLOB, INDEX(t1_id));
CREATE TABLE t3 (
id INT NOT NULL PRIMARY KEY auto_increment,
t1_id INT NOT NULL,
UNIQUE (t1_id)
);
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM dual;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t1 SELECT NULL, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024), 0 FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
INSERT INTO t2 SELECT NULL, a.id, RANDOM_BYTES(1024), RANDOM_BYTES(1024), RANDOM_BYTES(1024) FROM t1 a JOIN t1 b JOIN t1 c LIMIT 10000;
UPDATE t1 SET int_col = 1 WHERE pad1 = (SELECT pad1 FROM t1 ORDER BY RAND() LIMIT 1);
INSERT INTO t3 SELECT NULL, id FROM t1 WHERE id < 1000;
SELECT SLEEP(1);
ANALYZE TABLE t1, t2, t3;
In the following example, the IN
subquery searches for a list of IDs from the table t2
. For semantic correctness, TiDB needs to guarantee that the column t1_id
is unique. Using EXPLAIN
, you can see the execution plan used to remove duplicates and perform an INNER JOIN
operation:
EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t2);
+----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+
| IndexJoin_14 | 5.00 | root | | inner join, inner:IndexLookUp_13, outer key:test.t2.t1_id, inner key:test.t1.id, equal cond:eq(test.t2.t1_id, test.t1.id) |
| ├─StreamAgg_49(Build) | 5.00 | root | | group by:test.t2.t1_id, funcs:firstrow(test.t2.t1_id)->test.t2.t1_id |
| │ └─IndexReader_50 | 5.00 | root | | index:StreamAgg_39 |
| │ └─StreamAgg_39 | 5.00 | cop[tikv] | | group by:test.t2.t1_id, |
| │ └─IndexFullScan_31 | 50000.00 | cop[tikv] | table:t2, index:t1_id(t1_id) | keep order:true |
| └─IndexLookUp_13(Probe) | 1.00 | root | | |
| ├─IndexRangeScan_11(Build) | 1.00 | cop[tikv] | table:t1, index:PRIMARY(id) | range: decided by [eq(test.t1.id, test.t2.t1_id)], keep order:false |
| └─TableRowIDScan_12(Probe) | 1.00 | cop[tikv] | table:t1 | keep order:false |
+----------------------------------+----------+-----------+------------------------------+---------------------------------------------------------------------------------------------------------------------------+
8 rows in set (0.00 sec)
From the query results above, you can see that TiDB uses the index join operation | IndexJoin_14
to join and transform the subquery. In the execution plan, the execution process is as follows:
- The index scanning operator
└─IndexFullScan_31
at the TiKV side reads the values of thet2.t1_id
column. - Some tasks of the
└─StreamAgg_39
operator deduplicate the values oft1_id
in TiKV. - Some tasks of the
├─StreamAgg_49(Build)
operator deduplicate the values oft1_id
in TiDB. The deduplication is performed by the aggregate functionfirstrow(test.t2.t1_id)
. - The operation results are joined with the primary key of the
t1
table. The join condition iseq(test.t1.id, test.t2.t1_id)
.
In the previous example, aggregation is required to ensure that the values of t1_id
are unique before joining against the table t1
. But in the following example, t3.t1_id
is already guaranteed unique because of a UNIQUE
constraint:
EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t3);
+----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+
| IndexJoin_17 | 1978.13 | root | | inner join, inner:IndexLookUp_16, outer key:test.t3.t1_id, inner key:test.t1.id, equal cond:eq(test.t3.t1_id, test.t1.id) |
| ├─TableReader_44(Build) | 1978.00 | root | | data:TableFullScan_43 |
| │ └─TableFullScan_43 | 1978.00 | cop[tikv] | table:t3 | keep order:false |
| └─IndexLookUp_16(Probe) | 1.00 | root | | |
| ├─IndexRangeScan_14(Build) | 1.00 | cop[tikv] | table:t1, index:PRIMARY(id) | range: decided by [eq(test.t1.id, test.t3.t1_id)], keep order:false |
| └─TableRowIDScan_15(Probe) | 1.00 | cop[tikv] | table:t1 | keep order:false |
+----------------------------------+---------+-----------+-----------------------------+---------------------------------------------------------------------------------------------------------------------------+
6 rows in set (0.01 sec)
Semantically because t3.t1_id
is guaranteed unique, it can be executed directly as an INNER JOIN
.
In the previous two examples, TiDB is able to perform an INNER JOIN
operation after the data inside the subquery is made unique (via StreamAgg
) or guaranteed unique. Both joins are performed using an Index Join.
In this example, TiDB chooses a different execution plan:
EXPLAIN SELECT * FROM t1 WHERE id IN (SELECT t1_id FROM t2 WHERE t1_id != t1.int_col);
+-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+
| MergeJoin_9 | 45446.40 | root | | semi join, left key:test.t1.id, right key:test.t2.t1_id, other cond:ne(test.t2.t1_id, test.t1.int_col) |
| ├─IndexReader_24(Build) | 180000.00 | root | | index:IndexFullScan_23 |
| │ └─IndexFullScan_23 | 180000.00 | cop[tikv] | table:t2, index:t1_id(t1_id) | keep order:true |
| └─TableReader_22(Probe) | 56808.00 | root | | data:Selection_21 |
| └─Selection_21 | 56808.00 | cop[tikv] | | ne(test.t1.id, test.t1.int_col) |
| └─TableFullScan_20 | 71010.00 | cop[tikv] | table:t1 | keep order:true |
+-----------------------------+-----------+-----------+------------------------------+--------------------------------------------------------------------------------------------------------+
6 rows in set (0.00 sec)
From the result above, you can see that TiDB uses a Semi Join
algorithm. Semi-join differs from inner join: semi-join only permits the first value on the right key (t2.t1_id
), which means that the duplicates are eliminated as a part of the join operator task. The join algorithm is also Merge Join, which is like an efficient zipper-merge as the operator reads data from both the left and the right side in sorted order.
The original statement is considered a correlated subquery, because the subquery refers to a column (t1.int_col
) that exists outside of the subquery. However, the output of EXPLAIN
shows the execution plan after the subquery decorrelation optimization has been applied. The condition t1_id != t1.int_col
is rewritten to t1.id != t1.int_col
. TiDB can perform this in └─Selection_21
as it is reading data from the table t1
, so this decorrelation and rewriting make the execution a lot more efficient.
In the following example, the query semantically returns all rows from the table t3
unless t3.t1_id
is in the subquery:
EXPLAIN SELECT * FROM t3 WHERE t1_id NOT IN (SELECT id FROM t1 WHERE int_col < 100);
+-----------------------------+---------+-----------+---------------+-------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+-----------------------------+---------+-----------+---------------+-------------------------------------------------------------------------------------+
| IndexMergeJoin_20 | 1598.40 | root | | anti semi join, inner:TableReader_15, outer key:test.t3.t1_id, inner key:test.t1.id |
| ├─TableReader_28(Build) | 1998.00 | root | | data:TableFullScan_27 |
| │ └─TableFullScan_27 | 1998.00 | cop[tikv] | table:t3 | keep order:false |
| └─TableReader_15(Probe) | 1.00 | root | | data:Selection_14 |
| └─Selection_14 | 1.00 | cop[tikv] | | lt(test.t1.int_col, 100) |
| └─TableRangeScan_13 | 1.00 | cop[tikv] | table:t1 | range: decided by [test.t3.t1_id], keep order:true |
+-----------------------------+---------+-----------+---------------+-------------------------------------------------------------------------------------+
6 rows in set (0.00 sec)
This query starts by reading the table t3
and then probes the table t1
based on the PRIMARY KEY
. The join type is an anti semi join; anti because this example is for the non-existence of the value (NOT IN
) and semi-join because only the first row needs to match before the join is rejected.