-
Notifications
You must be signed in to change notification settings - Fork 0
/
0053.py
50 lines (48 loc) · 1.34 KB
/
0053.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Source: https://leetcode.com/problems/maximum-subarray
# Title: Maximum Subarray
# Difficulty: Easy
# Author: Mu Yang <http://muyang.pro>
################################################################################################################################
# Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
#
# Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
#
# Example 1:
#
# Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
# Output: 6
# Explanation: [4,-1,2,1] has the largest sum = 6.
#
# Example 2:
#
# Input: nums = [1]
# Output: 1
#
# Example 3:
#
# Input: nums = [0]
# Output: 0
#
# Example 4:
#
# Input: nums = [-1]
# Output: -1
#
# Example 5:
#
# Input: nums = [-2147483647]
# Output: -2147483647
#
# Constraints:
#
# 1 <= nums.length <= 2 * 10^4
# -2^31 <= nums[i] <= 2^31 - 1
#
################################################################################################################################
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
max_all = max_end = nums[0]
for n in nums[1:]:
max_end = max(max_end + n, n)
max_all = max(max_all, max_end)
return max_all