-
Notifications
You must be signed in to change notification settings - Fork 0
/
1074.go
72 lines (66 loc) · 2.03 KB
/
1074.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// Source: https://leetcode.com/problems/number-of-submatrices-that-sum-to-target
// Title: Number of Submatrices That Sum to Target
// Difficulty: Hard
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Given a matrix and a target, return the number of non-empty submatrices that sum to target.
//
// A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x <= x2 and y1 <= y <= y2.
//
// Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if they have some coordinate that is different: for example, if x1 != x1'.
//
// Example 1:
//
// Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
// Output: 4
// Explanation: The four 1x1 submatrices that only contain 0.
//
// Example 2:
//
// Input: matrix = [[1,-1],[-1,1]], target = 0
// Output: 5
// Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.
//
// Example 3:
//
// Input: matrix = [[904]], target = 0
// Output: 0
//
// Constraints:
//
// 1 <= matrix.length <= 100
// 1 <= matrix[0].length <= 100
// -1000 <= matrix[i] <= 1000
// -10^8 <= target <= 10^8
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
func numSubmatrixSumTarget(matrix [][]int, target int) int {
m := len(matrix)
n := len(matrix[0])
// Compute prefix sums
presum := make([][]int, m+1)
for i := 0; i < m+1; i++ {
presum[i] = make([]int, n+1)
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
presum[i+1][j+1] = matrix[i][j] + presum[i][j+1] + presum[i+1][j] - presum[i][j]
}
}
// Check submatrix sum
res := 0
for x1 := 0; x1 < m; x1++ {
for x2 := x1 + 1; x2 <= m; x2++ {
for y1 := 0; y1 < n; y1++ {
for y2 := y1 + 1; y2 <= n; y2++ {
subsum := presum[x2][y2] - presum[x2][y1] - presum[x1][y2] + presum[x1][y1]
if subsum == target {
res++
}
}
}
}
}
return res
}