-
Notifications
You must be signed in to change notification settings - Fork 0
/
CodeLines.txt
325 lines (278 loc) · 11.5 KB
/
CodeLines.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
def Delta(lista,B):
res=B(1)
l=copy(lista)[:-1]
while len(l)>0:
res=res*B(l)
l=l[:-1]
return res
def clean_conj(lista,F):
n=len(lista)
if n%2==0:
print "Not conjugate to a generator"
return None
m=ZZ((n-1)/2)
a=lista[m]
b=lista[m+1:]
if F(b)*F(lista[:m])!=F(1):
print "Not conjugate to a generator"
return None
return [a,b]
def list_of_relations_2(orden0,wiring0):
wiring=[[B(_[0]),_[1]]for _ in wiring0]
res1=[]
trenza=B(1)
orden=copy(orden0)
for cruce in wiring:
u,v=cruce
orden=(u^-1).permutation()*orden
trenza=trenza*u
w=[orden.inverse()(_) for _ in v]
res1.append([trenza,v,w,orden])
trw=Delta(w,B)
trenza=trenza*trw
orden=trw.permutation().inverse()*orden
final=[]
for aa in res1:
lis=[]
for i in aa[2]:
accion=[_.sign()*orden0(_.abs()) for _ in (F([i])*aa[0]^-1).Tietze()]
listas=clean_conj(accion,F)
if listas==None:
print 'Problems'
return None
else:
lis+=[listas]
datos1=[[_[0] for _ in lis],[_[1] for _ in lis]]
final+=[datos1]
return final
def CommProd1(a,l1,F,LR,XX):
ll1=list(F(l1).Tietze())
if len(ll1)==0:
return M(0)
return XX[a,ll1[0]]+tt([ll1[0]],LR)*CommProd1(a,ll1[1:],F,LR,XX)
def CommCyclic1(L,F,LR,XX,dir='RL'):
res=[]
r=len(L[0])
comb=L[0]
mn=comb.index(min(comb))
L1=[v[mn:]+v[:mn] for v in L]
LF=[F([-u for u in reversed(L1[1][j])]+[L1[0][j]]+L1[1][j]) for j in range(r)]
for j in range(1,r):
u=F(L1[1][j])
if dir=='RL':
LFp=[_ for _ in reversed(LF[j+1:]+LF[:j])]
elif dir=='LR':
LFp=LF[j+1:]+LF[:j]
w=u*prod(LFp)*u^-1
res+=[CommProd1(L1[0][j],list(w.Tietze()),F,LR,XX)]
return res
def tt(i,ring):
return prod([LR.gen(ZZ(j).abs()-1)^(ZZ(j).sign()) for j in i])
def MatTrunc(mat):
A=mat
m=A.nrows()
return Matrix(m,[v.truncate(2) for v in A.list()])
def EscalonarM2(matriz,n):
U=matriz
U0=Matrix(U.nrows(),[v.constant_coefficient() for v in U.list()])
A,B=U0.echelon_form(transformation=True)
U1=B*U
Apivot=[]
j=0
for i in range(A.rank()):
while A[i,j]==0:
j=j+1
Apivot.append(j)
for i in range(A.rank()):
j=Apivot[i]
U1.rescale_row(i,U1[i,j]^-1)
for k in range(i)+range(i+1,A.nrows()):
U1.add_multiple_of_row(k,i,-U1[k,j])
SustNeg=identity_matrix(T0,n*(n-1)/2)
for i in range(A.rank()):
for j in range(n*(n-1)/2):
SustNeg[j,Apivot[i]]=-U1[i,j].truncate(2).polynomial()
SustNeg=SustNeg.delete_rows(Apivot)
return SustNeg
def ImagenMorfismo(L,XX,YY,S,LRv,dicv,inc):
i,j=L
res=XX[L].change_ring(S)
ai=tt([i],LRv).subs(dicv)
aj=tt([j],LRv).subs(dicv)
aij=(ai*aj).truncate(2)
bij=(ai-aij)
cij=(aj-aij)
res+=sum([(bij*YY[i,u,v]-cij*YY[j,u,v])*XX[u,v].change_ring(S) for (u,v) in inc])
return res
ordenPos=Permutation([1, 4, 9, 5, 10, 11, 2, 7, 8, 6, 3])
wiringPos=[[(), [7, 8]], [(), [5, 10]], [(), [5, 11, 2, 8]], [(), [5, 7]], [(),
[5, 6]], [(), [5, 3]], [(-7, -8), [9, 10]], [(), [9, 8]], [(), [9, 2]],
[(), [9, 7, 6]], [(), [9, 11, 3]], [(-8, -4, 7), [6, 11]], [(-7, -5, -6,
-4, 8), [4, 10, 11]], [(), [4, 2]], [(), [4, 7]], [(), [4, 8, 3, 6]],
[(3,), [10, 7]], [(4, 5, 2, 3, 4, -2), [1, 10, 2, 6]], [(), [1, 11, 7]],
[(), [1, 3]], [(), [1, 8]], [(-3, -4), [10, 3]]]
ordenNeg=Permutation([1, 9, 5, 4, 2, 7, 11, 10, 3, 6, 8])
wiringNeg=[[(), [4, 2]], [(), [4, 7]], [(), [4, 11, 10]], [(), [4, 3, 6, 8]],
[(-5, -6, -7, -4, -5), [5, 10]], [(), [5, 11, 2, 8]], [(), [5, 7]], [(),
[5, 6]], [(), [5, 3]], [(-4, 3, 6), [11, 6]], [(-6, -5), [8, 7]], [(4,
5, 4, 8, -7, 6), [3, 10]], [(7,), [9, 2]], [(), [9, 7, 6]], [(), [9,
10]], [(), [9, 8]], [(), [9, 3, 11]], [(-4, 5, -6, -3), [1, 2, 10, 6]],
[(), [1, 8]], [(), [1, 11, 7]], [(), [1, 3]], [(-2, -4), [10, 7]]]
n=11
B=BraidGroup(n)
F=FreeGroup(n)
GrupoListaPos=list_of_relations_2(ordenPos,wiringPos)
GrupoListaNeg=list_of_relations_2(ordenNeg,wiringNeg)
combPos=[sorted(v[0]) for v in GrupoListaPos]
combNeg=[sorted(v[0]) for v in GrupoListaNeg]
print "Do combinatorics coincide? ",sorted(combPos)==sorted(combNeg)
# Construct the list inc as a basis of commutators in G_1/G_2
comb=[]
for v in combPos:
for j in v[1:]:
comb.append([v[0],j])
tot=[tuple(sorted(_.list())) for _ in Subsets([1..n],2)]
inc=[_ for _ in tot if list(_) not in comb]
# The variables of the ring S are the unknowns of the final integral equation
xx=var(['v%da%db%d'% (k,i,j) for k in [1..n] for (i,j) in inc])
S=PolynomialRing(ZZ,xx)
# The dictionnary YY relates the index of the unknowns with the morphism of groups.
YY={}
for k in [1..n]:
for l in range(len(inc)):
YY[k,inc[l][0],inc[l][1]]=S.gen((k-1)*len(inc)+l)
LR=LaurentPolynomialRing(ZZ,'t',n)
LRv=LR.change_ring(S)
R=LR.polynomial_ring()
T=PowerSeriesRing(S,'s',num_gens=n,default_prec=2)
T0=T.change_ring(ZZ)
HomLRT0=R.hom([1+v for v in T0.gens()],codomain=T0,check=True)
dic={v:HomLRT0(v) for v in LR.gens()}
dicv={v:HomLRT0(v).change_ring(S) for v in LRv.gens()}
#We work with several modules, with basis the set of commutators. The elements XX[i,j] gives the commutator (any sign and order) with respect to the ring of Laurent polynomials
M=FreeModule(LR,n*(n-1)/2)
#MT=M.change_ring(T0)
#Mv=M.change_ring(T)
#XX={(i,j):M.gen(n*(i-1)-i*(i+1)/2+j-1) for i in range(1,n) for j in range(i+1,n+1)}
XX={tot[i]:M.gen(i) for i in range(n*(n-1)/2)}
for i in range(1,n+1):
XX[i,i]=M(0)
XX[-i,-i]=M(0)
XX[i,-i]=M(0)
XX[-i,i]=M(0)
for j in range(i+1,n+1):
XX[-i,j]=-tt([i],LR)^-1*XX[i,j]
XX[i,-j]=-tt([j],LR)^-1*XX[i,j]
XX[-i,-j]=tt([i],LR)^-1*tt([j],LR)^-1*XX[i,j]
XX[j,i]=-XX[i,j]
XX[-j,i]=-XX[i,-j]
XX[j,-i]=-XX[-i,j]
XX[-j,-i]=-XX[-i,-j]
# Translate the relations in the groups as relations for the Alexander invariants
relAlexPos=[]
for v in GrupoListaPos:
relAlexPos+=CommCyclic1(v,F,LR,XX,dir='LR')
print "Alexander invariant for first group"
relAlexNeg=[]
for v in GrupoListaNeg:
relAlexNeg+=CommCyclic1(v,F,LR,XX,dir='LR')
nrels=len(relAlexNeg)
print "Alexander invariant for the second group"
# The above relations are written in the power series ring truncated at level 2
relAlexSeriePos=Matrix([vector(w.subs(dic) for w in v.list()) for v in relAlexPos])
relAlexSerieNeg=Matrix([vector(w.subs(dic) for w in v.list()) for v in relAlexNeg])
#This matrix codifies each commutator in terms of the basis inc
SustNeg=EscalonarM2(relAlexSerieNeg,n)
print "The relations are used to write every one in terms of the basis inc"
# Image of each commutator of the first group in the second group
TotImagenMorfismo=[]
for u in tot:
v=ImagenMorfismo(u,XX,YY,S,LRv,dicv,inc)
TotImagenMorfismo.append(v)
if u[-1]==n:
print "Finished pairs with line ", u[0]
relAlexVarPos=[]
for ser in relAlexSeriePos:
vct=0
for j in range(n*(n-1)/2):
vct+=ser[j].change_ring(S)*TotImagenMorfismo[j]
relAlexVarPos.append(vct)
relAlexVarPos=MatTrunc(Matrix(relAlexVarPos))
relAlexVarPos=MatTrunc(relAlexVarPos*SustNeg.change_ring(T).transpose())
print "Images of relations of first group in terms of the basis inc in the second group, done"
relZPos=[]
for prueba in relAlexVarPos:
relZPos.append(vector(flatten([[pr1.derivative(v).constant_coefficient() for v in T.gens()] for pr1 in prueba])))
relZPos=Matrix(nrels,relZPos)
print "Integral matrix from relations"
#Adding Jacobi relations in the base inc and in the associated one in the next level
JCB=[]
for i in range(1,n-1):
for j in range(i+1,n):
for k in range(j+1,n+1):
JCB+=[T0.gen(i-1)*XX[j,k].change_ring(T0)+T0.gen(j-1)*XX[k,i].change_ring(T0)+T0.gen(k-1)*XX[i,j].change_ring(T0)]
JCB=Matrix(JCB)
JCB1=MatTrunc(JCB*SustNeg.transpose())
JCB2=Matrix(JCB.nrows(),flatten([[v.derivative(w).constant_coefficient() for w in T0.gens()] for v in JCB1.list()]))
print "Simplified Jacobi relations as integral matrix done"
#Eliminating generators from Jacobi relations (if no torsion)
SF,U,V=JCB2.smith_form()
Jdiag=[SF[v,v] for v in range(SF.rank())]
if Set(Jdiag)!=Set([1]):
print "Torsion at level 2"
print "Smith form of Jacobi relations, done", SF.ncols()-SF.rank()," generators left"
# Reduce the relations taking into account Jacobi relations (no torsion!)
eqs=(relZPos*V).matrix_from_columns([SF.rank()..JCB2.ncols()-1])
eqs1=[_ for _ in list(Set(eqs.list())) if _!=0]
print len(eqs1)," equations in ",len(inc)*n," unknowns."
# Put the system in matrix for, print the diagonal of the Smith form and a particular solution
Aeq=Matrix([vector(eq.monomial_coefficient(v) for v in S.gens()) for eq in eqs1])
Beq=vector(-eq.constant_coefficient() for eq in eqs1)
print "Ranks: ", Aeq.rank(),Aeq.augment(Beq).rank()
U1,U2,U3=Aeq.smith_form()
diageq=[U1[v,v] for v in range(U1.rank())]
diageq1=[_ for _ in diageq if _!=1]
print "Ones in the diagonal of the smith form: ",diageq.count(1)
print "Rest of the diagonal of the smith form: ",diageq1
print "Non integers in the Particular Solution:", [_ for _ in U1.solve_right(U2*Beq) if _ not in ZZ]
ordenPos1=copy(ordenPos)
wiringPos1=[[tuple(-i for i in _[0]),_[1]] for _ in wiringPos]
GrupoListaPos1=list_of_relations_2(ordenPos1,wiringPos1)
combPos1=[sorted(v[0]) for v in GrupoListaPos1]
print "Do combinatorics coincide? ",sorted(combPos1)==sorted(combNeg)
# Construct the list inc as a basis of commutators in G_1/G_2
# Translate the relations in the groups as relations for the Alexander invariants
relAlexPos1=[]
for v in GrupoListaPos1:
relAlexPos1+=CommCyclic1(v,F,LR,XX,dir='LR')
print "Alexander invariant for first group"
# The above relations are written in the power series ring truncated at level 2
relAlexSeriePos1=Matrix([vector(w.subs(dic) for w in v.list()) for v in relAlexPos1])
relAlexVarPos1=[]
for ser in relAlexSeriePos1:
vct=0
for j in range(n*(n-1)/2):
vct+=ser[j].change_ring(S)*TotImagenMorfismo[j]
relAlexVarPos1.append(vct)
relAlexVarPos1=MatTrunc(Matrix(relAlexVarPos1))
relAlexVarPos1=MatTrunc(relAlexVarPos1*SustNeg.change_ring(T).transpose())
print "Images of relations of first group in terms of the basis inc in the second group, done"
relZPos1=[]
for prueba in relAlexVarPos1:
relZPos1.append(vector(flatten([[pr1.derivative(v).constant_coefficient() for v in T.gens()] for pr1 in prueba])))
relZPos1=Matrix(nrels,relZPos1)
print "Integral matrix from relations"
# Reduce the relations taking into account Jacobi relations (no torsion!)
eqs_1=(relZPos1*V).matrix_from_columns([SF.rank()..JCB2.ncols()-1])
eqs1_1=[_ for _ in list(Set(eqs_1.list())) if _!=0]
print len(eqs1_1)," equations in ",len(inc)*n," unknowns."
# Put the system in matrix for, print the diagonal of the Smith form and a particular solution
Aeq1=Matrix([vector(eq.monomial_coefficient(v) for v in S.gens()) for eq in eqs1_1])
Beq1=vector(-eq.constant_coefficient() for eq in eqs1_1)
print "Ranks: ", Aeq1.rank(),Aeq1.augment(Beq1).rank()
U1_1,U2_1,U3_1=Aeq1.smith_form()
diageq_1=[U1_1[v,v] for v in range(U1_1.rank())]
diageq1_1=[_ for _ in diageq_1 if _!=1]
print "Ones in the diagonal of the smith form: ",diageq_1.count(1)
print "Rest of the diagonal of the smith form: ",diageq1_1
print "Non integers in the Particular Solution:", [_ for _ in U1_1.solve_right(U2_1*Beq1) if _ not in ZZ]