Modify from pytorch-caffe-darknet-convert,object_detetction_tools
- yolov3 output layer
- when pooling layer stide =1 , size =2 , assign size = 1
- upsample layer
- Download weights from original darknet web
- Unmark custom_class in examples\ssd\ssd_detect.cpp
- Remake project
> python darknet2caffe.py yolov3.cfg yolov3.weights yolov3.prototxt yolov3.caffemodel
> cd $caffe_root
> sh demo_darknet_yolov3.sh
You can try retrain models to approach original darknet mAP , below was my test
Network | mAP | Resolution | iters |
---|---|---|---|
yolov3-spp | 58.7 | 608 | 100 |
yolov3-spp | 59.0 | 608 | 200 |
yolov3-spp | 59.8 | 608 | 1000 |