-
Notifications
You must be signed in to change notification settings - Fork 86
/
exe_forecasting.py
68 lines (57 loc) · 1.93 KB
/
exe_forecasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
import torch
import datetime
import json
import yaml
import os
from main_model import CSDI_Forecasting
from dataset_forecasting import get_dataloader
from utils import train, evaluate
parser = argparse.ArgumentParser(description="CSDI")
parser.add_argument("--config", type=str, default="base_forecasting.yaml")
parser.add_argument("--datatype", type=str, default="electricity")
parser.add_argument('--device', default='cuda:0', help='Device for Attack')
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--unconditional", action="store_true")
parser.add_argument("--modelfolder", type=str, default="")
parser.add_argument("--nsample", type=int, default=100)
args = parser.parse_args()
print(args)
path = "config/" + args.config
with open(path, "r") as f:
config = yaml.safe_load(f)
if args.datatype == 'electricity':
target_dim = 370
config["model"]["is_unconditional"] = args.unconditional
print(json.dumps(config, indent=4))
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
foldername = "./save/forecasting_" + args.datatype + '_' + current_time + "/"
print('model folder:', foldername)
os.makedirs(foldername, exist_ok=True)
with open(foldername + "config.json", "w") as f:
json.dump(config, f, indent=4)
train_loader, valid_loader, test_loader, scaler, mean_scaler = get_dataloader(
datatype=args.datatype,
device= args.device,
batch_size=config["train"]["batch_size"],
)
model = CSDI_Forecasting(config, args.device, target_dim).to(args.device)
if args.modelfolder == "":
train(
model,
config["train"],
train_loader,
valid_loader=valid_loader,
foldername=foldername,
)
else:
model.load_state_dict(torch.load("./save/" + args.modelfolder + "/model.pth"))
model.target_dim = target_dim
evaluate(
model,
test_loader,
nsample=args.nsample,
scaler=scaler,
mean_scaler=mean_scaler,
foldername=foldername,
)