This module contains Eager mode quantization APIs.
.. currentmodule:: torch.quantization
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst quantize quantize_dynamic quantize_qat prepare prepare_qat convert
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst fuse_modules QuantStub DeQuantStub QuantWrapper add_quant_dequant
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst add_observer_ swap_module propagate_qconfig_ default_eval_fn get_observer_dict
This module contains FX graph mode quantization APIs (prototype).
.. currentmodule:: torch.quantization.quantize_fx
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst prepare_fx prepare_qat_fx convert_fx fuse_fx
This describes the quantization related functions of the torch namespace.
.. currentmodule:: torch
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst quantize_per_tensor quantize_per_channel dequantize
Quantized Tensors support a limited subset of data manipulation methods of the regular full-precision tensor.
.. currentmodule:: torch.Tensor
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst view as_strided expand flatten select ne eq ge le gt lt copy_ clone dequantize equal int_repr max mean min q_scale q_zero_point q_per_channel_scales q_per_channel_zero_points q_per_channel_axis resize_ sort topk
This module contains observers which are used to collect statistics about the values observed during calibration (PTQ) or training (QAT).
.. currentmodule:: torch.quantization.observer
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst ObserverBase MinMaxObserver MovingAverageMinMaxObserver PerChannelMinMaxObserver MovingAveragePerChannelMinMaxObserver HistogramObserver PlaceholderObserver RecordingObserver NoopObserver get_observer_state_dict load_observer_state_dict default_observer default_placeholder_observer default_debug_observer default_weight_observer default_histogram_observer default_per_channel_weight_observer default_dynamic_quant_observer default_float_qparams_observer
This module implements modules which are used to perform fake quantization during QAT.
.. currentmodule:: torch.quantization.fake_quantize
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst FakeQuantizeBase FakeQuantize FixedQParamsFakeQuantize FusedMovingAvgObsFakeQuantize default_fake_quant default_weight_fake_quant default_per_channel_weight_fake_quant default_histogram_fake_quant default_fused_act_fake_quant default_fused_wt_fake_quant default_fused_per_channel_wt_fake_quant disable_fake_quant enable_fake_quant disable_observer enable_observer
This module defines QConfig objects which are used to configure quantization settings for individual ops.
.. currentmodule:: torch.quantization.qconfig
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst QConfig default_qconfig default_debug_qconfig default_per_channel_qconfig default_dynamic_qconfig float16_dynamic_qconfig float16_static_qconfig per_channel_dynamic_qconfig float_qparams_weight_only_qconfig default_qat_qconfig default_weight_only_qconfig default_activation_only_qconfig default_qat_qconfig_v2
.. automodule:: torch.nn.intrinsic
.. automodule:: torch.nn.intrinsic.modules
This module implements the combined (fused) modules conv + relu which can then be quantized.
.. currentmodule:: torch.nn.intrinsic
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst ConvReLU1d ConvReLU2d ConvReLU3d LinearReLU ConvBn1d ConvBn2d ConvBn3d ConvBnReLU1d ConvBnReLU2d ConvBnReLU3d BNReLU2d BNReLU3d
.. automodule:: torch.nn.intrinsic.qat
.. automodule:: torch.nn.intrinsic.qat.modules
This module implements the versions of those fused operations needed for quantization aware training.
.. currentmodule:: torch.nn.intrinsic.qat
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst LinearReLU ConvBn1d ConvBnReLU1d ConvBn2d ConvBnReLU2d ConvReLU2d ConvBn3d ConvBnReLU3d ConvReLU3d update_bn_stats freeze_bn_stats
.. automodule:: torch.nn.intrinsic.quantized
.. automodule:: torch.nn.intrinsic.quantized.modules
This module implements the quantized implementations of fused operations like conv + relu. No BatchNorm variants as it's usually folded into convolution for inference.
.. currentmodule:: torch.nn.intrinsic.quantized
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst BNReLU2d BNReLU3d ConvReLU1d ConvReLU2d ConvReLU3d LinearReLU
.. automodule:: torch.nn.intrinsic.quantized.dynamic
.. automodule:: torch.nn.intrinsic.quantized.dynamic.modules
This module implements the quantized dynamic implementations of fused operations like linear + relu.
.. currentmodule:: torch.nn.intrinsic.quantized.dynamic
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst LinearReLU
.. automodule:: torch.nn.qat
.. automodule:: torch.nn.qat.modules
This module implements versions of the key nn modules Conv2d() and Linear() which run in FP32 but with rounding applied to simulate the effect of INT8 quantization.
.. currentmodule:: torch.nn.qat
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst Conv2d Conv3d Linear
.. automodule:: torch.nn.qat.dynamic
.. automodule:: torch.nn.qat.dynamic.modules
This module implements versions of the key nn modules such as Linear() which run in FP32 but with rounding applied to simulate the effect of INT8 quantization and will be dynamically quantized during inference.
.. currentmodule:: torch.nn.qat.dynamic
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst Linear
.. automodule:: torch.nn.quantized
.. automodule:: torch.nn.quantized.modules
This module implements the quantized versions of the nn layers such as ~`torch.nn.Conv2d` and torch.nn.ReLU.
.. currentmodule:: torch.nn.quantized
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst ReLU6 Hardswish ELU LeakyReLU Sigmoid BatchNorm2d BatchNorm3d Conv1d Conv2d Conv3d ConvTranspose1d ConvTranspose2d ConvTranspose3d Embedding EmbeddingBag FloatFunctional FXFloatFunctional QFunctional Linear LayerNorm GroupNorm InstanceNorm1d InstanceNorm2d InstanceNorm3d
.. automodule:: torch.nn.quantized.functional
This module implements the quantized versions of the functional layers such as ~`torch.nn.functional.conv2d` and torch.nn.functional.relu. Note: :meth:`~torch.nn.functional.relu` supports quantized inputs.
.. currentmodule:: torch.nn.quantized.functional
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst avg_pool2d avg_pool3d adaptive_avg_pool2d adaptive_avg_pool3d conv1d conv2d conv3d interpolate linear max_pool1d max_pool2d celu leaky_relu hardtanh hardswish threshold elu hardsigmoid clamp upsample upsample_bilinear upsample_nearest
.. automodule:: torch.nn.quantized.dynamic
.. automodule:: torch.nn.quantized.dynamic.modules
Dynamically quantized :class:`~torch.nn.Linear`, :class:`~torch.nn.LSTM`, :class:`~torch.nn.LSTMCell`, :class:`~torch.nn.GRUCell`, and :class:`~torch.nn.RNNCell`.
.. currentmodule:: torch.nn.quantized.dynamic
.. autosummary:: :toctree: generated :nosignatures: :template: classtemplate.rst Linear LSTM GRU RNNCell LSTMCell GRUCell
Note that operator implementations currently only support per channel quantization for weights of the conv and linear operators. Furthermore, the input data is mapped linearly to the the quantized data and vice versa as follows:
\begin{aligned} \text{Quantization:}&\\ &Q_\text{out} = \text{clamp}(x_\text{input}/s+z, Q_\text{min}, Q_\text{max})\\ \text{Dequantization:}&\\ &x_\text{out} = (Q_\text{input}-z)*s \end{aligned}
where \text{clamp}(.) is the same as :func:`~torch.clamp` while the scale s and zero point z are then computed as decribed in :class:`~torch.ao.quantization.observer.MinMaxObserver`, specifically:
\begin{aligned} \text{if Symmetric:}&\\ &s = 2 \max(|x_\text{min}|, x_\text{max}) / \left( Q_\text{max} - Q_\text{min} \right) \\ &z = \begin{cases} 0 & \text{if dtype is qint8} \\ 128 & \text{otherwise} \end{cases}\\ \text{Otherwise:}&\\ &s = \left( x_\text{max} - x_\text{min} \right ) / \left( Q_\text{max} - Q_\text{min} \right ) \\ &z = Q_\text{min} - \text{round}(x_\text{min} / s) \end{aligned}
where [x_\text{min}, x_\text{max}] denotes the range of the input data while Q_\text{min} and Q_\text{max} are respectively the minimum and maximum values of the quantized dtype.
Note that the choice of s and z implies that zero is represented with no quantization error whenever zero is within the range of the input data or symmetric quantization is being used.
Additional data types and quantization schemes can be implemented through the custom operator mechanism.
- :attr:`torch.qscheme` — Type to describe the quantization scheme of a tensor.
Supported types:
- :attr:`torch.per_tensor_affine` — per tensor, asymmetric
- :attr:`torch.per_channel_affine` — per channel, asymmetric
- :attr:`torch.per_tensor_symmetric` — per tensor, symmetric
- :attr:`torch.per_channel_symmetric` — per channel, symmetric
torch.dtype
— Type to describe the data. Supported types:- :attr:`torch.quint8` — 8-bit unsigned integer
- :attr:`torch.qint8` — 8-bit signed integer
- :attr:`torch.qint32` — 32-bit signed integer
.. automodule:: torch.nn.quantizable
.. automodule:: torch.nn.quantizable.modules