-
Notifications
You must be signed in to change notification settings - Fork 11
/
ploma.js
919 lines (802 loc) · 52.8 KB
/
ploma.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
/*
Ploma - High-fidelity ballpoint pen rendering for tablets with pressure-sensitive styluses
v0.4
Evelyn Eastmond
Dan Amelang
Viewpoints Research Institute
(c) 2014-2015
TODO: License
*/
"use strict"; // for strict mode
// ------------------------------------------
// Ploma
//
// Constructor for Ploma instances. Accepts
// an HTML <canvas> Element element to render
// strokes onto.
//
var Ploma = function(canvas) {
//////////////////////////////////////////////
// PUBLIC
//////////////////////////////////////////////
// ------------------------------------------
// clear
//
// Clears the canvas.
//
this.clear = function() {
// Clear canvas
ctx.clearRect(0, 0, w, h);
ctx.fillStyle = paperColor;
ctx.globalAlpha = 1;
ctx.fillRect(0, 0, w, h);
imageData = ctx.getImageData(0, 0, w, h);
imageDataData = imageData.data;
// Reset data
rawStrokes = [];
curRawStroke = [];
curRawSampledStroke = [];
filteredStrokes = [];
curFilteredStroke = [];
minx = 0.0;
maxx = 0.0;
miny = 0.0;
maxy = 0.0;
lastControlPoint = null;
stepOffset = 0.0;
pointCounter = 0;
};
// ------------------------------------------
// beginStroke
//
// Begins a new stroke containing the given
// point x, y and p (pressure ranging from
// 0-1) values.
//
this.beginStroke = function(x, y, p) {
var point = new Point(x,y,p);
pointCounter++;
curRawStroke = [point];
rawStrokes.push(curRawStroke);
curFilteredStroke = [point]
filteredStrokes.push(curFilteredStroke);
curRawSampledStroke = [point];
// Get the latest canvas pixels in case
// they've changed since the last stroke
imageData = ctx.getImageData(0, 0, w, h);
imageDataData = imageData.data;
// Reset step offset for new stroke
stepOffset = stepInterval;
}
// ------------------------------------------
// extendStroke
//
// Extends the current stroke with the given
// point and renders the new stroke segment
// to the canvas.
//
this.extendStroke = function(x, y, p) {
pointCounter++;
var point = new Point(x,y,p);
//
// Raw
//
//if(curRawStroke.last().equals(point)) {
//return; // ignore dupes TODO: ??
//}
curRawStroke.push(point);
//
// Sampled and filtered
//
if (pointCounter % sample === 0) {
// Push sampled point
//if(curRawSampledStroke.last().equals(point)) {
//return; // ignore dupes TODO: ??
//}
curRawSampledStroke.push(point);
// Filter next-to-last input point
var len = curRawSampledStroke.length;
if(len >= 3) {
var fpoint = calculateFilteredPoint(
curRawSampledStroke[len - 3],
curRawSampledStroke[len - 2],
curRawSampledStroke[len - 1]
);
//if(fpoint) {
// Push sampled, filtered, point
curFilteredStroke.push(fpoint);
//}
}
// Redraw sampled and filtered
redraw();
}
}
// ------------------------------------------
// endStroke
//
// Ends the current stroke with the given
// point and renders the final stroke segment
// to the canvas.
//
this.endStroke = function(x, y, p) {
var point = new Point(x,y,p);
// Keep the last point as is for now
// TODO: Try to address the "tapering on mouseup" issue
curRawStroke.push(point);
curRawSampledStroke.push(point);
curFilteredStroke.push(point);
redraw();
lastControlPoint = null;
}
// ------------------------------------------
// getStrokes
//
// Returns an array of all strokes that have
// been recorded, each stroke itself is an
// array of point JSON objects.
//
// [
// [{x, y, p}, {x, y, p}, ...],
// [{x, y, p}, {x, y, p}, ...],
// ...
// ]
//
this.getStrokes = function() {
var strokes = [];
for(var i = 0; i < rawStrokes.length; i++){
var stroke = [];
strokes.push(stroke);
for(var j = 0; j < rawStrokes[i].length; j++) {
stroke.push(rawStrokes[i][j].asObj());
}
}
return strokes;
};
// ------------------------------------------
// setStrokes
//
// Sets the strokes to the input array,
// expected as:
//
// [
// [{x, y, p}, {x, y, p}, ...],
// [{x, y, p}, {x, y, p}, ...],
// ...
// ]
//
this.setStrokes = function(strokes) {
// Clear and set rendering to false
this.clear();
//applyRendering = !applyRendering;
// Redraw all the strokes
for(var i = 0; i < strokes.length; i++) {
var stroke = strokes[i];
this.beginStroke(
stroke[0].x,
stroke[0].y,
stroke[0].p
);
for(var j = 1; j < stroke.length-1; j++) {
this.extendStroke(
stroke[j].x,
stroke[j].y,
stroke[j].p
);
}
this.endStroke(
stroke[stroke.length-1].x,
stroke[stroke.length-1].y,
stroke[stroke.length-1].p
);
}
}
// ------------------------------------------
// curStroke
//
// Returns the current stroke of points that
// have been stored since the last mouse down
// as an array of point JSON objects.
//
// [{x, y, p}, {x, y, p}, ...]
//
this.curStroke = function() {
var curStroke = [];
for(var i = 0; i < curRawStroke.length; i++) {
curStroke.push(curRawStroke[i].asObj());
}
return curStroke;
};
// ------------------------------------------
// setSample
//
// Sets the input sampling rate.
//
this.setSample = function(n) {
sample = n;
}
// ------------------------------------------
// resize
//
// Resize the Ploma instance to a new width
// and height.
//
this.resize = function(a, b) {
canvas.setAttribute('width', a);
canvas.setAttribute('height', b);
w = canvas.getAttribute('width');
h = canvas.getAttribute('height');
w_4 = w*4;
this.clear();
}
// ------------------------------------------
// toggleTexture
//
// Set texture on or off, and redraw all the
// strokes.
//
this.toggleTexture = function() {
// Deep copy the raw strokes
/*var originalStrokes = this.strokes();
var capturedRawStrokes = [];
for(var i = 0; i < originalStrokes.length; i++) {
capturedRawStrokes.push(originalStrokes[i]);
}*/
// Clear and set rendering to false
//this.clear();
applyRendering = !applyRendering;
// Redraw all the strokes
/*for(var i = 0; i < capturedRawStrokes.length; i++) {
var stroke = capturedRawStrokes[i];
this.beginStroke(
stroke[0].x,
stroke[0].y,
stroke[0].p
);
for(var j = 1; j < stroke.length-1; j++) {
this.extendStroke(
stroke[j].x,
stroke[j].y,
stroke[j].p
);
}
this.endStroke(
stroke[stroke.length-1].x,
stroke[stroke.length-1].y,
stroke[stroke.length-1].p
);
}*/
}
//////////////////////////////////////////////
// PRIVATE
//////////////////////////////////////////////
// DOM
var canvas = canvas;
var w = 0;
var h = 0;
var w_4 = 0;
var ctx = canvas.getContext('2d');
var imageData = null;
var imageDataData = new Uint8ClampedArray(w * h);
//var paperColor = 'rgb(240, 235, 219)';
var paperColor = 'rgb(255, 255, 246)'; // light
var paperColor = 'rgb(240, 235, 219)'; // dark
//var paperColor = 'rgb(250, 240, 230)';
//var paperColor = 'rgb(245, 230, 218)';
w = canvas.getAttribute('width');
h = canvas.getAttribute('height');
w_4 = w * 4;
ctx.imageSmoothingEnabled = false;
imageData = ctx.getImageData(0, 0, w, h);
imageDataData = imageData.data;
// State
var rawStrokes = [];
var curRawStroke = [];
var curRawSampledStroke = [];
var filteredStrokes = [];
var curFilteredStroke = [];
var minx = 0.0;
var maxx = 0.0;
var miny = 0.0;
var maxy = 0.0;
var textureSampleStep = 0;
var textureSamplesLength = 1e5;
var lastControlPoint = null;
var filterWeight = 0.5;
var filterWeightInverse = 1 - filterWeight;
var stepOffset = 0.0;
var stepInterval = 0.3;
var penR = 25;
var penG = 8;
var penB = 45;
var pointCounter = 0;
var sample = 2;
var applyRendering = true;
// Generate Texture Samples
var textureSampleLocations = [];
var inkTextureImageDataGrays = [];
var inkTextureImage = getImageFromBase64(inkTextureBase64(), "jpeg", function(img) {
window.inkTextureSamples = new Float32Array(textureSamplesLength);
getSamplesFromImage(img, inkTextureSamples);
});
// ------------------------------------------
// redraw
//
// Calls the curve drawing function if there
// are enough points for a bezier.
//
function redraw() {
// TODO:
// - Handle single point and double point strokes
// 3 points needed for a look-ahead bezier
var len = curFilteredStroke.length;
if(len >= 3) {
createAndDrawBezier(
curFilteredStroke[len - 3],
curFilteredStroke[len - 2],
curFilteredStroke[len - 1]
);
}
};
// ------------------------------------------
// createAndDrawBezier
//
// Draw a look-ahead cubic bezier based on 3
// input points.
//
function createAndDrawBezier(pt0, pt1, pt2) {
// Endpoints and control points
var p0 = pt0;
var p1 = 0.0;
var p2 = 0.0;
var p3 = pt1;
// Value access
var p0_x = p0.x;
var p0_y = p0.y;
var p0_p = p0.p;
var p3_x = p3.x;
var p3_y = p3.y;
var p3_p = p3.p;
// Calculate p1
if(!lastControlPoint) {
p1 = new Point(
p0_x + (p3_x - p0_x) * 0.33,
p0_y + (p3_y - p0_y) * 0.33,
p0_p + (p3_p - p0_p) * 0.33
);
} else {
p1 = lastControlPoint.getMirroredPt(p0);
}
// Calculate p2
if (pt2) {
p2 = new Point(
//p3_x - (((p3_x - p0_x) + (pt2.x - p3_x)) / 6),
//p3_y - (((p3_y - p0_y) + (pt2.y - p3_y)) / 6),
//p3_p - (((p3_p - p0_p) + (pt2.p - p3_p)) / 6)
p3_x - (((p3_x - p0_x) + (pt2.x - p3_x)) * 0.1666),
p3_y - (((p3_y - p0_y) + (pt2.y - p3_y)) * 0.1666),
p3_p - (((p3_p - p0_p) + (pt2.p - p3_p)) * 0.1666)
);
} else {
p2 = new Point(
p0_x + (p3_x - p0_x) * 0.66,
p0_y + (p3_y - p0_y) * 0.66,
p0_p + (p3_p - p0_p) * 0.66
);
}
// Set last control point
lastControlPoint = p2;
// Step along curve and draw step
var stepPoints = calculateStepPoints(p0, p1, p2, p3);
for(var i = 0; i < stepPoints.length; i++) {
drawStep(imageDataData, stepPoints[i]);
}
// Calculate redraw bounds
// TODO:
// - Math.min = x <= y ? x : y; INLINE
var p1_x = p1.x;
var p1_y = p1.y;
var p2_x = p2.x;
var p2_y = p2.y;
minx = Math.min(p0_x, p1_x, p2_x, p3_x);
miny = Math.min(p0_y, p1_y, p2_y, p3_y);
maxx = Math.max(p0_x, p1_x, p2_x, p3_x);
maxy = Math.max(p0_y, p1_y, p2_y, p3_y);
// Put image using a crude dirty rect
//elapsed = Date.now() - elapsed;
//console.log(elapsed);
ctx.putImageData(
imageData,
0,
0,
minx - 5,
miny - 5,
(maxx - minx) + 10,
(maxy - miny) + 10
);
}
// ------------------------------------------
// calculateStepPoints
//
// Calculates even steps along a bezier with
// control points (p0, p1, p2, p3).
//
function calculateStepPoints(p0, p1, p2, p3) {
var stepPoints = [];
var i = stepInterval;
// Value access
var p0_x = p0.x;
var p0_y = p0.y;
var p0_p = p0.p;
// Algebraic conveniences, not geometric
var A_x = p3.x - 3 * p2.x + 3 * p1.x - p0_x;
var A_y = p3.y - 3 * p2.y + 3 * p1.y - p0_y;
var A_p = p3.p - 3 * p2.p + 3 * p1.p - p0_p;
var B_x = 3 * p2.x - 6 * p1.x + 3 * p0_x;
var B_y = 3 * p2.y - 6 * p1.y + 3 * p0_y;
var B_p = 3 * p2.p - 6 * p1.p + 3 * p0_p;
var C_x = 3 * p1.x - 3 * p0_x;
var C_y = 3 * p1.y - 3 * p0_y;
var C_p = 3 * p1.p - 3 * p0_p;
var t = (i - stepOffset) / Math.sqrt(C_x * C_x + C_y * C_y);
while (t <= 1.0) {
// Point
var step_x = t * (t * (t * A_x + B_x) + C_x) + p0_x;
var step_y = t * (t * (t * A_y + B_y) + C_y) + p0_y;
var step_p = t * (t * (t * A_p + B_p) + C_p) + p0_p;
stepPoints.push(new Point(
step_x,
step_y,
step_p
));
// Step distance until next one
var s_x = t * (t * 3 * A_x + 2 * B_x) + C_x; // dx/dt
var s_y = t * (t * 3 * A_y + 2 * B_y) + C_y; // dy/dt
var s = Math.sqrt(s_x * s_x + s_y * s_y); // s = derivative in 2D space
var dt = i / s; // i = interval / derivative in 2D
t = t + dt;
}
// TODO: Maybe use a better approximation for distance along the bezier?
if (stepPoints.length == 0) // We didn't step at all along this Bezier
stepOffset = stepOffset + p0.getDistance(p3);
else
stepOffset = stepPoints.last().getDistance(p3);
return stepPoints;
}
// ------------------------------------------
// calculateFilteredPoint
//
// Returns a filtered, sanitized version of
// point p2 between points p1 and p3.
//
function calculateFilteredPoint(p1, p2, p3) {
//if (p1 == null || p2 == null || p3 == null)
// return null; // Not enough points yet to filter
var m = p1.getMidPt(p3);
return new Point(
filterWeight * p2.x + filterWeightInverse * m.x,
filterWeight * p2.y + filterWeightInverse * m.y,
filterWeight * p2.p + filterWeightInverse * m.p
);
}
// ------------------------------------------
// calculateWidth
//
// Calculates a non-linear width offset in
// the range [-2, 1] based on pressure.
//
function calculateWidth(p) {
var width = 0.0;
//console.log(p);
if(p < 0) { // Possible output from bezier
width = -3.50;
}
if(p < 0.2) {
width = map(p, 0, 0.2, -3.50, -3.20);
}
if((p >= 0.2) && (p < 0.45)) {
width = map(p, 0.2, 0.45, -3.20, -2.50);
}
if((p >= 0.45) && (p < 0.8)) {
width = map(p, 0.45, 0.8, -2.50, -1.70);
}
if((p >= 0.8) && (p < 0.95)) {
width = map(p, 0.8, 0.95, -1.70, -1.55);
}
if((p >= 0.95) && (p <= 1)) {
width = map(p, 0.95, 1, -1.55, -1.30);
}
if(p > 1) { // Possible output from bezier
width = -1.30;
}
return width;
}
// ------------------------------------------
// drawStep
//
// Draws a 5x5 pixel grid at a step point
// with proper antialiasing and texture.
//
function drawStep(id, point) {
/////////////////////
// PRE-LOOP
/////////////////////
var width = 0.0;
width = calculateWidth(point.p);
/////////////////////
// LOOP
/////////////////////
var p_x = 0.0;
var p_y = 0.0;
var p_p = 0.0;
var centerX = 0.0;
var centerY = 0.0;
var i = 0;
var j = 0;
var left = 0;
var right = 0;
var top = 0;
var bottom = 0;
var dx = 0.0;
var dy = 0.0;
var dist = 0.0;
var t = 0.0;
var a = 0.0;
var invA = 0.0;
var idx_0 = 0;
var idx_1 = 0;
var idx_2 = 0;
var idx_3 = 0;
var idx_0_i = 0;
var oldR = 0.0;
var oldG = 0.0;
var oldB = 0.0;
var oldA = 0.0;
var newR = 0.0;
var newG = 0.0;
var newB = 0.0;
var newA = 0.0;
p_x = point.x;
p_y = point.y;
p_p = point.p;
centerX = Math.round(p_x);
centerY = Math.round(p_y);
left = centerX - 2;
right = centerX + 3;
top = centerY - 2;
bottom = centerY + 3;
// Step around inside the texture before the loop
//textureSampleStep = (textureSampleStep === textureSampleLocations.length - 1) ? 0 : (textureSampleStep + 1);
//////////////
// Horizontal
//////////////
for(i = left; i < right; i++) {
// Distance
dx = p_x - i;
// Byte-index
idx_0_i = i * 4;
////////////
// Vertical
////////////
for(j = top; j < bottom; j++) {
// Distance
dy = p_y - j;
dist = Math.sqrt(dx * dx + dy * dy);
// Byte-index
idx_0 = idx_0_i + j * w_4;
// Antialiasing
//a = 5 * ((0.3 / (dist - width)) - 0.085);
a = (1.5 / (dist - width)) - 0.425;
// Spike
if(dist < width) {
a = 1;
}
// Clamp alpha
if (a < 0) a = 0;
if (a >= 1) a = 1;
// Get new texture sample offset at center
var t = inkTextureSamples[textureSampleStep];
textureSampleStep = (textureSampleStep === textureSampleLocations.length - 1) ? 0 : (textureSampleStep + 1);
// Apply texture
a *= t;
// Grain
var g = map(p_p, 0, 1, 0.8, 0.95);
var prob = 1-(p_p*p_p*p_p*p_p*p_p); // 1 - x^4
g = Math.floor(Math.random()*prob*2) === 1 ? 0 : g;
a *= g;
// Blending vars
invA = 1 - a;
idx_1 = idx_0 + 1;
idx_2 = idx_0 + 2;
idx_3 = idx_0 + 3;
oldR = id[idx_0];
oldG = id[idx_1];
oldB = id[idx_2];
oldA = id[idx_3] / 255;
// Transparent vs. opaque background
//if(oldA === 1) {
newR = penR * a + oldR * invA;
newG = penG * a + oldG * invA;
newB = penB * a + oldB * invA;
/*} else {
newA = a + oldA * invA;
newR = (penR * a + oldR * oldA * invA) / newA;
newG = (penG * a + oldG * oldA * invA) / newA;
newB = (penB * a + oldB * oldA * invA) / newA;
newA = newA * 255;
// Set new A
id[idx_3] = newA;
}*/
// Set new RGB
id[idx_0] = newR;
id[idx_1] = newG;
id[idx_2] = newB;
}
}
}
// ------------------------------------------
// POINT
//
function Point(x, y, p) {
this.x = x; // x-coordinate
this.y = y; // y-coordinate
this.p = p; // pressure
}
Point.prototype.equals = function(pt) {
return pt && this.x === pt.x && this.y === pt.y && this.p === pt.p;
}
Point.prototype.getMidPt = function(pt) {
return new Point(
(this.x + pt.x) / 2,
(this.y + pt.y) / 2,
(this.p + pt.p) / 2
);
}
Point.prototype.getMirroredPt = function(pt) {
return new Point(
this.x + 2 * (pt.x - this.x),
this.y + 2 * (pt.y - this.y),
this.p + 2 * (pt.p - this.p)
);
}
Point.prototype.getDistance = function(pt) {
// TODO: use Manhattan distance?
var dx = this.x - pt.x;
var dy = this.y - pt.y;
return Math.sqrt(dx * dx + dy * dy);
}
Point.prototype.asArray = function() {
return [this.x, this.y, this.p];
}
Point.prototype.asObj = function() {
return {
x: this.x,
y: this.y,
p: this.p
};
}
// ------------------------------------------
// UTILS
//
Array.prototype.last = function(){
return this[this.length - 1];
}
function map(value, valueMin, valueMax, from, to) {
var ratio = (value - valueMin) / (valueMax - valueMin);
return from + ratio * (to - from);
}
// ------------------------------------------
// TEXTURE
//
function inkTextureBase64() {
// texturelight9
return "/9j/4Q41RXhpZgAATU0AKgAAAAgADAEAAAMAAAABACwAAAEBAAMAAAABAIsAAAECAAMAAAADAAAAngEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEVAAMAAAABAAMAAAEaAAUAAAABAAAApAEbAAUAAAABAAAArAEoAAMAAAABAAIAAAExAAIAAAAkAAAAtAEyAAIAAAAUAAAA2IdpAAQAAAABAAAA7AAAASQACAAIAAgACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhvdG9zaG9wIENDIDIwMTQgKE1hY2ludG9zaCkAMjAxNTowNDoxNiAxNTowMjoxNQAABJAAAAcAAAAEMDIyMaABAAMAAAABAAEAAKACAAQAAAABAAAALKADAAQAAAABAAAAiwAAAAAAAAAGAQMAAwAAAAEABgAAARoABQAAAAEAAAFyARsABQAAAAEAAAF6ASgAAwAAAAEAAgAAAgEABAAAAAEAAAGCAgIABAAAAAEAAAyrAAAAAAAAAEgAAAABAAAASAAAAAH/2P/tAAxBZG9iZV9DTQAB/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAiwAsAwEiAAIRAQMRAf/dAAQAA//EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8AvZjaW3+g2h2SHOl1jZsmP5qoH6TG/v8A5n/W1FuGKw/IxjVaHN99WSHbxO4usY0n/Na1is9R6llNx7RVU1zRs3WsaNrZEfn7bPU3fyf0Swi611ofkvl95JqcGhznnRvI2WN/N/0aSnTs9Cuoll/ps59CDW4f6Rw5d6TnfQ/Q701dDi6r7Mx77Xs91Z3sZun6O92781V8X18VzWXsqxRYZOVaA5xaD+ZW5zvT2O2/6REfdmO9zH220tfBa5+5lkH3X+rWP0f/ABVP82kptNfc2Ms47cd9bju2F1jpPxH6H6P5iu/tC37H6v2I/Zv9LuZMfS9XZH83/g/39/6P+b/SKpQ6+wbMb1fVG4CuyG1gfS2faLGuv2bvz9qv/Ysr7J6Hs+lu9P1H/Tnfs9f6e3d/ISU//9DZvu6lkh1DaRQLHEvdJc5wHtDqtw2O3e39GqH2PqG6xvr+iHEhka7wwAes2ydrP+3FqX13W1mnJyraBEgw0nTk7tjf/JrHJxBkfZ2ZbcjZHptDC0NH5ranN/RO+lu9Ntf6R6Skt3S8u2trWW15LaNsNcZ2kDdo5jWs2bXfzdjvp/4RALbQ4Hp5AY/cTDDyfokQx/s/4xOMnPYX0MxmWua/dYwMfSBBit+3c76bx6v0U76rrrtrWvGU4iyymuxzXOrI26Ord7a/6qSkuOKcmuz7bkeu3Hd+jvkBzD9L2+5v6Tf+Ytr7Xg/s/wC1fa3eh/pN3u/d2R+9uVUYmJfD8qhzrIaC8Q541O1suYyxu135jm/4RF+w0el626v1Jn1IMxP0d3738nZ/wSSn/9HbzcnHteyt3qVZIIAsqBsDRB22Od/N7Wuf9FUccVYl+2q8EXk7bi1rhr7nWbxsZ/1C0A3MyQxrLa7AAYEem5rToW7mbtznf9bUXudVuoYK22OEl0tdO0H2cfS9v0Nv/XElOa3qFnr1VWWMptdLfXLSyskfRH6Mu9Vrp2/pHI/p9X6rY5trvs3pyQKxAc0fRi0lr37nj2/zalYMbrVte9hb6G5rX1uBa9w97/Rb+/8AyLW+/wD4pI9PrptcxwyL643VEP2t3Dln6Lb7/wDgvoJKTHBFtPp5Nv2e1rQIDiXOAPsuLPb6bv5SF9gx/W/Z3r3ehu9SdztsbN+/f/M7Pz9n7/vRMeqv1RZdsL2kh13Lq/8AjrrPpNdLf0as+jj+t6H2h3oz6npyPTjn6e7+a3+zYkp//9K5dkPtvORVOJptbtDgffq97hYA1+z6P6NKuzFZWxoyrMpzQG3il23cTo61u52+mr3e5+9WMjqHU2Vi93pY9UENB/SFzW+73ubs9Hb/AIVUHdRF4bbk0uadzBW1jXMbudHufYPp+3/B7f0iSm39nwa3ueyuzEdYWgs2uNbdf9NSXU+6Nztr/wDg1YvxRisBzr/Vqe6K/Tca3Nn27Rt/wf8ALQD06PbXkuptcC70g4cfnvc251no1/4PYz00JvSX3U+pSMuuwmZc4uAIH0Xtuf6n8v6KSm3TRdcW5GNmA47DDKSQ7/2Iudv/AEntf+lV30cTb+bP856G4bd/0dvq/urBy+m2dPfZdVYbAC0vluhBI/SOFft21v8A5C3fXzd3pRTP0voO9LZt/wBL/XSU/wD/09DIoFcZOVfUymS4VCRtkbK9z3/2/Zs/tqFV19m+jYwncA6uw7XFhbDXfu/v7PzEZ4Btf7PTusaTUXg/pA1vqPtqLfUq3t/lt3+xVT1I5Lh+kr9N21os2epA3N/RWVs+j6tftr3v+mkpOKBj2H0X+nXcRIa31bGvA9P9NfLvpbfzP0aMzIsyjaMZ1lmNDWusreDY6wfSsL3H9FVX7foMfv8A0iq2HGyLn44wn5h+k+w1lroENe9u/bX/AK/o0WpmcCH11sax0Opxywsa1vu3eveXO30/R97Kq3/6VJSXFw6Md4cy4i9rhtfkNLnbSPfW59R9P07Gj2LS3ZPp+tuq2bojc709sbd07f8AS+3/AESy2t6abWYOUWYziAWMoe+kgj2uY5rXN9L+RUrvpZP2b0tx+zRs9T2/R+h9D6OzZ/waSn//1LD83p4sMiHtl3puJaA4N2ba/wDRu/0bWqn6zXWu9AOb6x3V2GQHNGroY4/vfvIpwc02OqbisxvUJeC+XuO08NfP0t5/m/z0OzAZc4j7RSwt0ea2uLAfpRcfo+p/I/MSU2sbrWXdvN7Wubt1eHw4N7/zh99W5Fdntvqps+1OxzWHemWaMln74I9tdn0P0rlmenkGmN1WTjsMkDaC3+UPU2bf5CQpxxYGDHsYLB9EWBxn/go/nG/8Ykp1mdRuuNjsfE32bWuD7HENaI2v3b5e7+QpfaXz632kev8AznpbW/Tj0/R9P93f+l/nP+u+mq+DT6d+/Y+rQip2kGY3MfTP0nNH836asellfZt+wfzk+pLY2TG/b9L0fU/wf+iSU//Vv22DIs214jrHtsJdue8OaNTva1u7c9r/AGoFm572Ciisj0/c290sH8l9W1v0P8G5H6hk5ttm3HyHNa32uLGNYbDO59ldnvY3bPp+nZs96G/MsyLgNj2CskWNIbqB9KtzwdrXfuW+rYkpqNGRS9wc6nHcBG2gNc8yWt2bTv8AZ/hP31KnLwq7HYVrH4bLS3fY5wL63ADdu3fRYnx3YotdW5zarLLCWhrA8wZeGy7YxrvU/f8A0SNZWcjY3Oa9z3S2tzg02GTo6z0trGfu7/5tJSRnTs1uS2+p78j2AOs3gvLPpObZuG+vfX9D+Wru3H27vs9Xq7YncZ3fQ3/u/wCv01Vx8XNooZ+ndjuDtvp7wS8NM+kf+tt2e3/jFb/Z+B+zI9O3bv3el6hndMx6v+v7iSn/1rr76bXNGIQ0naz07nPqaddGem5j9rH+5u9ANRbpmUg4hBgMa6w/9bdXt9Olrm/ufQ/4NW8nEpfc8Mc5lzRDyHbm7mfpA707/pVtd+6xVDX00scX220myCy5jnNY8vP0mVfzLnJKRi8NY3HZSyiWyLWxY9hb9J7q4Lf3W/SR8AussBda3HeWw8uhwJd7K2/msr3OGy6pv5/pqw451T3NFYyWD3bmaPcwj/QNAr+j/LU2XUOc71KbC25u21hj05dAc0Ntr2Nr9qSkGE2reWXGqyi0bbGWt2vOhA9oDvVYzZ+k2uWn9hs27Zb6foTPt+lu3+nH836H+u9U7bq9oe22plpHphrmuLCRDKf3d+76Oxr0b7Cfska7NkenuZ6Ux9Ldu+ht/wAF/wBcSU//19TPksezJ2vsLi+gvYZYT2du3P8Ab7f0mz9H/wAUh1dQvyntrqxNriNtr9g543MbuZ4O/mvoItvp7sr+anc7d6m+J2/4P83/AIz0v+ESt9P7M2Y27hPp7907R+5+k/8ARSSmnUy5t4cyx/rsJBoY4SXS4sLPWdsZubu/RKwMm91fLsezFBD9ZsMRuYxv6xvd+6z00DJ3b/8ACbIG/Zt893p/4X6P/cf/AK1+lVyn6Nezbt02T/O/S/P9b9J/28kpWGzIufdZWZrdtLd0bXmY9vqO3sexrf8Ai971pfZx6XpemPS/ej3x9D0v63+D3+p/NLJG33/zU7hP2zd6P0h/Y9T9zYtn37e/H8nw/wDbfd/r6aSn/9n/7RXIUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAA8cAVoAAxslRxwCAAACAAAAOEJJTQQlAAAAAAAQzc/6fajHvgkFcHaurwXDTjhCSU0EOgAAAAAA5QAAABAAAAABAAAAAAALcHJpbnRPdXRwdXQAAAAFAAAAAFBzdFNib29sAQAAAABJbnRlZW51bQAAAABJbnRlAAAAAENscm0AAAAPcHJpbnRTaXh0ZWVuQml0Ym9vbAAAAAALcHJpbnRlck5hbWVURVhUAAAAAQAAAAAAD3ByaW50UHJvb2ZTZXR1cE9iamMAAAAMAFAAcgBvAG8AZgAgAFMAZQB0AHUAcAAAAAAACnByb29mU2V0dXAAAAABAAAAAEJsdG5lbnVtAAAADGJ1aWx0aW5Qcm9vZgAAAAlwcm9vZkNNWUsAOEJJTQQ7AAAAAAItAAAAEAAAAAEAAAAAABJwcmludE91dHB1dE9wdGlvbnMAAAAXAAAAAENwdG5ib29sAAAAAABDbGJyYm9vbAAAAAAAUmdzTWJvb2wAAAAAAENybkNib29sAAAAAABDbnRDYm9vbAAAAAAATGJsc2Jvb2wAAAAAAE5ndHZib29sAAAAAABFbWxEYm9vbAAAAAAASW50cmJvb2wAAAAAAEJja2dPYmpjAAAAAQAAAAAAAFJHQkMAAAADAAAAAFJkICBkb3ViQG/gAAAAAAAAAAAAR3JuIGRvdWJAb+AAAAAAAAAAAABCbCAgZG91YkBv4AAAAAAAAAAAAEJyZFRVbnRGI1JsdAAAAAAAAAAAAAAAAEJsZCBVbnRGI1JsdAAAAAAAAAAAAAAAAFJzbHRVbnRGI1B4bEBSAAAAAAAAAAAACnZlY3RvckRhdGFib29sAQAAAABQZ1BzZW51bQAAAABQZ1BzAAAAAFBnUEMAAAAATGVmdFVudEYjUmx0AAAAAAAAAAAAAAAAVG9wIFVudEYjUmx0AAAAAAAAAAAAAAAAU2NsIFVudEYjUHJjQFkAAAAAAAAAAAAQY3JvcFdoZW5QcmludGluZ2Jvb2wAAAAADmNyb3BSZWN0Qm90dG9tbG9uZwAAAAAAAAAMY3JvcFJlY3RMZWZ0bG9uZwAAAAAAAAANY3JvcFJlY3RSaWdodGxvbmcAAAAAAAAAC2Nyb3BSZWN0VG9wbG9uZwAAAAAAOEJJTQPtAAAAAAAQAEgAAAABAAEASAAAAAEAAThCSU0EJgAAAAAADgAAAAAAAAAAAAA/gAAAOEJJTQQNAAAAAAAEAAAAHjhCSU0EGQAAAAAABAAAAB44QklNA/MAAAAAAAkAAAAAAAAAAAEAOEJJTScQAAAAAAAKAAEAAAAAAAAAAThCSU0D9QAAAAAASAAvZmYAAQBsZmYABgAAAAAAAQAvZmYAAQChmZoABgAAAAAAAQAyAAAAAQBaAAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAAAThCSU0D+AAAAAAAcAAA/////////////////////////////wPoAAAAAP////////////////////////////8D6AAAAAD/////////////////////////////A+gAAAAA/////////////////////////////wPoAAA4QklNBAgAAAAAABAAAAABAAACQAAAAkAAAAAAOEJJTQQeAAAAAAAEAAAAADhCSU0EGgAAAAADTwAAAAYAAAAAAAAAAAAAAIsAAAAsAAAADQB0AGUAeAB0AHUAcgBlAGwAaQBnAGgAdAA4AAAAAQAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAsAAAAiwAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAABAAAAABAAAAAAAAbnVsbAAAAAIAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3QxAAAABAAAAABUb3AgbG9uZwAAAAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAAAiwAAAABSZ2h0bG9uZwAAACwAAAAGc2xpY2VzVmxMcwAAAAFPYmpjAAAAAQAAAAAABXNsaWNlAAAAEgAAAAdzbGljZUlEbG9uZwAAAAAAAAAHZ3JvdXBJRGxvbmcAAAAAAAAABm9yaWdpbmVudW0AAAAMRVNsaWNlT3JpZ2luAAAADWF1dG9HZW5lcmF0ZWQAAAAAVHlwZWVudW0AAAAKRVNsaWNlVHlwZQAAAABJbWcgAAAABmJvdW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAAAExlZnRsb25nAAAAAAAAAABCdG9tbG9uZwAAAIsAAAAAUmdodGxvbmcAAAAsAAAAA3VybFRFWFQAAAABAAAAAAAAbnVsbFRFWFQAAAABAAAAAAAATXNnZVRFWFQAAAABAAAAAAAGYWx0VGFnVEVYVAAAAAEAAAAAAA5jZWxsVGV4dElzSFRNTGJvb2wBAAAACGNlbGxUZXh0VEVYVAAAAAEAAAAAAAlob3J6QWxpZ25lbnVtAAAAD0VTbGljZUhvcnpBbGlnbgAAAAdkZWZhdWx0AAAACXZlcnRBbGlnbmVudW0AAAAPRVNsaWNlVmVydEFsaWduAAAAB2RlZmF1bHQAAAALYmdDb2xvclR5cGVlbnVtAAAAEUVTbGljZUJHQ29sb3JUeXBlAAAAAE5vbmUAAAAJdG9wT3V0c2V0bG9uZwAAAAAAAAAKbGVmdE91dHNldGxvbmcAAAAAAAAADGJvdHRvbU91dHNldGxvbmcAAAAAAAAAC3JpZ2h0T3V0c2V0bG9uZwAAAAAAOEJJTQQoAAAAAAAMAAAAAj/wAAAAAAAAOEJJTQQUAAAAAAAEAAAAAThCSU0EDAAAAAAMxwAAAAEAAAAsAAAAiwAAAIQAAEesAAAMqwAYAAH/2P/tAAxBZG9iZV9DTQAB/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAiwAsAwEiAAIRAQMRAf/dAAQAA//EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8AvZjaW3+g2h2SHOl1jZsmP5qoH6TG/v8A5n/W1FuGKw/IxjVaHN99WSHbxO4usY0n/Na1is9R6llNx7RVU1zRs3WsaNrZEfn7bPU3fyf0Swi611ofkvl95JqcGhznnRvI2WN/N/0aSnTs9Cuoll/ps59CDW4f6Rw5d6TnfQ/Q701dDi6r7Mx77Xs91Z3sZun6O92781V8X18VzWXsqxRYZOVaA5xaD+ZW5zvT2O2/6REfdmO9zH220tfBa5+5lkH3X+rWP0f/ABVP82kptNfc2Ms47cd9bju2F1jpPxH6H6P5iu/tC37H6v2I/Zv9LuZMfS9XZH83/g/39/6P+b/SKpQ6+wbMb1fVG4CuyG1gfS2faLGuv2bvz9qv/Ysr7J6Hs+lu9P1H/Tnfs9f6e3d/ISU//9DZvu6lkh1DaRQLHEvdJc5wHtDqtw2O3e39GqH2PqG6xvr+iHEhka7wwAes2ydrP+3FqX13W1mnJyraBEgw0nTk7tjf/JrHJxBkfZ2ZbcjZHptDC0NH5ranN/RO+lu9Ntf6R6Skt3S8u2trWW15LaNsNcZ2kDdo5jWs2bXfzdjvp/4RALbQ4Hp5AY/cTDDyfokQx/s/4xOMnPYX0MxmWua/dYwMfSBBit+3c76bx6v0U76rrrtrWvGU4iyymuxzXOrI26Ord7a/6qSkuOKcmuz7bkeu3Hd+jvkBzD9L2+5v6Tf+Ytr7Xg/s/wC1fa3eh/pN3u/d2R+9uVUYmJfD8qhzrIaC8Q541O1suYyxu135jm/4RF+w0el626v1Jn1IMxP0d3738nZ/wSSn/9HbzcnHteyt3qVZIIAsqBsDRB22Od/N7Wuf9FUccVYl+2q8EXk7bi1rhr7nWbxsZ/1C0A3MyQxrLa7AAYEem5rToW7mbtznf9bUXudVuoYK22OEl0tdO0H2cfS9v0Nv/XElOa3qFnr1VWWMptdLfXLSyskfRH6Mu9Vrp2/pHI/p9X6rY5trvs3pyQKxAc0fRi0lr37nj2/zalYMbrVte9hb6G5rX1uBa9w97/Rb+/8AyLW+/wD4pI9PrptcxwyL643VEP2t3Dln6Lb7/wDgvoJKTHBFtPp5Nv2e1rQIDiXOAPsuLPb6bv5SF9gx/W/Z3r3ehu9SdztsbN+/f/M7Pz9n7/vRMeqv1RZdsL2kh13Lq/8AjrrPpNdLf0as+jj+t6H2h3oz6npyPTjn6e7+a3+zYkp//9K5dkPtvORVOJptbtDgffq97hYA1+z6P6NKuzFZWxoyrMpzQG3il23cTo61u52+mr3e5+9WMjqHU2Vi93pY9UENB/SFzW+73ubs9Hb/AIVUHdRF4bbk0uadzBW1jXMbudHufYPp+3/B7f0iSm39nwa3ueyuzEdYWgs2uNbdf9NSXU+6Nztr/wDg1YvxRisBzr/Vqe6K/Tca3Nn27Rt/wf8ALQD06PbXkuptcC70g4cfnvc251no1/4PYz00JvSX3U+pSMuuwmZc4uAIH0Xtuf6n8v6KSm3TRdcW5GNmA47DDKSQ7/2Iudv/AEntf+lV30cTb+bP856G4bd/0dvq/urBy+m2dPfZdVYbAC0vluhBI/SOFft21v8A5C3fXzd3pRTP0voO9LZt/wBL/XSU/wD/09DIoFcZOVfUymS4VCRtkbK9z3/2/Zs/tqFV19m+jYwncA6uw7XFhbDXfu/v7PzEZ4Btf7PTusaTUXg/pA1vqPtqLfUq3t/lt3+xVT1I5Lh+kr9N21os2epA3N/RWVs+j6tftr3v+mkpOKBj2H0X+nXcRIa31bGvA9P9NfLvpbfzP0aMzIsyjaMZ1lmNDWusreDY6wfSsL3H9FVX7foMfv8A0iq2HGyLn44wn5h+k+w1lroENe9u/bX/AK/o0WpmcCH11sax0Opxywsa1vu3eveXO30/R97Kq3/6VJSXFw6Md4cy4i9rhtfkNLnbSPfW59R9P07Gj2LS3ZPp+tuq2bojc709sbd07f8AS+3/AESy2t6abWYOUWYziAWMoe+kgj2uY5rXN9L+RUrvpZP2b0tx+zRs9T2/R+h9D6OzZ/waSn//1LD83p4sMiHtl3puJaA4N2ba/wDRu/0bWqn6zXWu9AOb6x3V2GQHNGroY4/vfvIpwc02OqbisxvUJeC+XuO08NfP0t5/m/z0OzAZc4j7RSwt0ea2uLAfpRcfo+p/I/MSU2sbrWXdvN7Wubt1eHw4N7/zh99W5Fdntvqps+1OxzWHemWaMln74I9tdn0P0rlmenkGmN1WTjsMkDaC3+UPU2bf5CQpxxYGDHsYLB9EWBxn/go/nG/8Ykp1mdRuuNjsfE32bWuD7HENaI2v3b5e7+QpfaXz632kev8AznpbW/Tj0/R9P93f+l/nP+u+mq+DT6d+/Y+rQip2kGY3MfTP0nNH836asellfZt+wfzk+pLY2TG/b9L0fU/wf+iSU//Vv22DIs214jrHtsJdue8OaNTva1u7c9r/AGoFm572Ciisj0/c290sH8l9W1v0P8G5H6hk5ttm3HyHNa32uLGNYbDO59ldnvY3bPp+nZs96G/MsyLgNj2CskWNIbqB9KtzwdrXfuW+rYkpqNGRS9wc6nHcBG2gNc8yWt2bTv8AZ/hP31KnLwq7HYVrH4bLS3fY5wL63ADdu3fRYnx3YotdW5zarLLCWhrA8wZeGy7YxrvU/f8A0SNZWcjY3Oa9z3S2tzg02GTo6z0trGfu7/5tJSRnTs1uS2+p78j2AOs3gvLPpObZuG+vfX9D+Wru3H27vs9Xq7YncZ3fQ3/u/wCv01Vx8XNooZ+ndjuDtvp7wS8NM+kf+tt2e3/jFb/Z+B+zI9O3bv3el6hndMx6v+v7iSn/1rr76bXNGIQ0naz07nPqaddGem5j9rH+5u9ANRbpmUg4hBgMa6w/9bdXt9Olrm/ufQ/4NW8nEpfc8Mc5lzRDyHbm7mfpA707/pVtd+6xVDX00scX220myCy5jnNY8vP0mVfzLnJKRi8NY3HZSyiWyLWxY9hb9J7q4Lf3W/SR8AussBda3HeWw8uhwJd7K2/msr3OGy6pv5/pqw451T3NFYyWD3bmaPcwj/QNAr+j/LU2XUOc71KbC25u21hj05dAc0Ntr2Nr9qSkGE2reWXGqyi0bbGWt2vOhA9oDvVYzZ+k2uWn9hs27Zb6foTPt+lu3+nH836H+u9U7bq9oe22plpHphrmuLCRDKf3d+76Oxr0b7Cfska7NkenuZ6Ux9Ldu+ht/wAF/wBcSU//19TPksezJ2vsLi+gvYZYT2du3P8Ab7f0mz9H/wAUh1dQvyntrqxNriNtr9g543MbuZ4O/mvoItvp7sr+anc7d6m+J2/4P83/AIz0v+ESt9P7M2Y27hPp7907R+5+k/8ARSSmnUy5t4cyx/rsJBoY4SXS4sLPWdsZubu/RKwMm91fLsezFBD9ZsMRuYxv6xvd+6z00DJ3b/8ACbIG/Zt893p/4X6P/cf/AK1+lVyn6Nezbt02T/O/S/P9b9J/28kpWGzIufdZWZrdtLd0bXmY9vqO3sexrf8Ai971pfZx6XpemPS/ej3x9D0v63+D3+p/NLJG33/zU7hP2zd6P0h/Y9T9zYtn37e/H8nw/wDbfd/r6aSn/9kAOEJJTQQhAAAAAABdAAAAAQEAAAAPAEEAZABvAGIAZQAgAFAAaABvAHQAbwBzAGgAbwBwAAAAFwBBAGQAbwBiAGUAIABQAGgAbwB0AG8AcwBoAG8AcAAgAEMAQwAgADIAMAAxADQAAAABADhCSU0EBgAAAAAABwAIAAAAAQEA/+EN2Gh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS42LWMwMTQgNzkuMTU2Nzk3LCAyMDE0LzA4LzIwLTA5OjUzOjAyICAgICAgICAiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RFdnQ9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZUV2ZW50IyIgeG1sbnM6ZGM9Imh0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvIiB4bWxuczpwaG90b3Nob3A9Imh0dHA6Ly9ucy5hZG9iZS5jb20vcGhvdG9zaG9wLzEuMC8iIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1wTU06RG9jdW1lbnRJRD0iYWRvYmU6ZG9jaWQ6cGhvdG9zaG9wOjY1YWEwNTI0LTI0YTEtMTE3OC1iMGQ2LWExMWNmNjE1OTFkOCIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDowODYzZGVkYy05M2ZhLTRmNmMtYWVmMC0wMmI1MWZkZWNlYjYiIHhtcE1NOk9yaWdpbmFsRG9jdW1lbnRJRD0iQ0U5N0M4QjFGQTkzQzYzQzcxRUNEN0VGODk1MjRBM0EiIGRjOmZvcm1hdD0iaW1hZ2UvanBlZyIgcGhvdG9zaG9wOkNvbG9yTW9kZT0iMyIgcGhvdG9zaG9wOklDQ1Byb2ZpbGU9InNSR0IgSUVDNjE5NjYtMi4xIiB4bXA6Q3JlYXRlRGF0ZT0iMjAxNS0wMy0yNlQxNToyMzoyNy0wNDowMCIgeG1wOk1vZGlmeURhdGU9IjIwMTUtMDQtMTZUMTU6MDI6MTUtMDQ6MDAiIHhtcDpNZXRhZGF0YURhdGU9IjIwMTUtMDQtMTZUMTU6MDI6MTUtMDQ6MDAiPiA8eG1wTU06SGlzdG9yeT4gPHJkZjpTZXE+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJzYXZlZCIgc3RFdnQ6aW5zdGFuY2VJRD0ieG1wLmlpZDo2ZjA0N2M2Yi0yOWU0LTRjODUtOWQ3Yi00OTI3ZDJkNjczNDQiIHN0RXZ0OndoZW49IjIwMTUtMDQtMTZUMTU6MDI6MTUtMDQ6MDAiIHN0RXZ0OnNvZnR3YXJlQWdlbnQ9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE0IChNYWNpbnRvc2gpIiBzdEV2dDpjaGFuZ2VkPSIvIi8+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJzYXZlZCIgc3RFdnQ6aW5zdGFuY2VJRD0ieG1wLmlpZDowODYzZGVkYy05M2ZhLTRmNmMtYWVmMC0wMmI1MWZkZWNlYjYiIHN0RXZ0OndoZW49IjIwMTUtMDQtMTZUMTU6MDI6MTUtMDQ6MDAiIHN0RXZ0OnNvZnR3YXJlQWdlbnQ9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE0IChNYWNpbnRvc2gpIiBzdEV2dDpjaGFuZ2VkPSIvIi8+IDwvcmRmOlNlcT4gPC94bXBNTTpIaXN0b3J5PiA8L3JkZjpEZXNjcmlwdGlvbj4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8P3hwYWNrZXQgZW5kPSJ3Ij8+/+IMWElDQ19QUk9GSUxFAAEBAAAMSExpbm8CEAAAbW50clJHQiBYWVogB84AAgAJAAYAMQAAYWNzcE1TRlQAAAAASUVDIHNSR0IAAAAAAAAAAAAAAAAAAPbWAAEAAAAA0y1IUCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARY3BydAAAAVAAAAAzZGVzYwAAAYQAAABsd3RwdAAAAfAAAAAUYmtwdAAAAgQAAAAUclhZWgAAAhgAAAAUZ1hZWgAAAiwAAAAUYlhZWgAAAkAAAAAUZG1uZAAAAlQAAABwZG1kZAAAAsQAAACIdnVlZAAAA0wAAACGdmlldwAAA9QAAAAkbHVtaQAAA/gAAAAUbWVhcwAABAwAAAAkdGVjaAAABDAAAAAMclRSQwAABDwAAAgMZ1RSQwAABDwAAAgMYlRSQwAABDwAAAgMdGV4dAAAAABDb3B5cmlnaHQgKGMpIDE5OTggSGV3bGV0dC1QYWNrYXJkIENvbXBhbnkAAGRlc2MAAAAAAAAAEnNSR0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAADzUQABAAAAARbMWFlaIAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9kZXNjAAAAAAAAABZJRUMgaHR0cDovL3d3dy5pZWMuY2gAAAAAAAAAAAAAABZJRUMgaHR0cDovL3d3dy5pZWMuY2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZhdWx0IFJHQiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZhdWx0IFJHQiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRlc2MAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAACxSZWZlcmVuY2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB2aWV3AAAAAAATpP4AFF8uABDPFAAD7cwABBMLAANcngAAAAFYWVogAAAAAABMCVYAUAAAAFcf521lYXMAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAKPAAAAAnNpZyAAAAAAQ1JUIGN1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANwA7AEAARQBKAE8AVABZAF4AYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCkAKkArgCyALcAvADBAMYAywDQANUA2wDgAOUA6wDwAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakBsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKsArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWGBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EHdAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmkCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoMQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8lD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQShBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYmFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioaURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+HukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5QjwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkGKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUTNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o76DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3QzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1KxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLHUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0VblVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSUZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJua27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhueMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSDV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45mjs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCszizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf///+4ADkFkb2JlAGRAAAAAAf/bAIQAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQICAgICAgICAgICAwMDAwMDAwMDAwEBAQEBAQEBAQEBAgIBAgIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD/8AAEQgAiwAsAwERAAIRAQMRAf/dAAQABv/EAaIAAAAGAgMBAAAAAAAAAAAAAAcIBgUECQMKAgEACwEAAAYDAQEBAAAAAAAAAAAABgUEAwcCCAEJAAoLEAACAQMEAQMDAgMDAwIGCXUBAgMEEQUSBiEHEyIACDEUQTIjFQlRQhZhJDMXUnGBGGKRJUOhsfAmNHIKGcHRNSfhUzaC8ZKiRFRzRUY3R2MoVVZXGrLC0uLyZIN0k4Rlo7PD0+MpOGbzdSo5OkhJSlhZWmdoaWp2d3h5eoWGh4iJipSVlpeYmZqkpaanqKmqtLW2t7i5usTFxsfIycrU1dbX2Nna5OXm5+jp6vT19vf4+foRAAIBAwIEBAMFBAQEBgYFbQECAxEEIRIFMQYAIhNBUQcyYRRxCEKBI5EVUqFiFjMJsSTB0UNy8BfhgjQlklMYY0TxorImNRlUNkVkJwpzg5NGdMLS4vJVZXVWN4SFo7PD0+PzKRqUpLTE1OT0laW1xdXl9ShHV2Y4doaWprbG1ub2Z3eHl6e3x9fn90hYaHiImKi4yNjo+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8ANP3Di9n47fTbEoesN09wU+UzkeSyu7tuff8AYdPkjQUYpNibHosjUClze1cRR1cK1GRpYXpsVX/eRKHNDNPr917pqxfT1LteLcnY3VeS6s3tQ5fbsQ3Dsj5BUG74d+0Yqhmshl917cwdbk6iKklrq+aI0NFRY9KcxxMaeeCEKT7r3ULca7J29trITYbtCTaeBQVVTL1ZFgK7rbd+PMZhp93ZLHQ0dRkcx/cjK5KKZccw21UZTzLLEz0qk2917qDgNk5CoyOwE6t27uzcW89w7K1ZLaVZJ2PszZke4KavFJDg6vc2epcxRk0mGkE1PPB/D62nTyVGmnDJF7917oSaLL7sxUlL3DUdPbX6ozm1c3kIM7LtnI767HzpyWUT7aRkkrcSlH15javI4WSm8eMrKqKo1VE1SPK8sPv3XujLf7MDuX/RH/e3/ZZMr/om1af7/wD98tg/dfa/bfxP+/f8A+w+x/ud9p/uJ8Ov+J/xL/IPsvsf8v8Afuvdf//QPz8i/kl2fitgb5i2jsjb2UxsL7Hizu/tqbao5trbLiy+Peio3pU3BX4HemR3l/E6WF6iGKhyK4OClandnqFKj3XuqpKyu3VldzQ57tPcctbmuzMtV1Oxs7S7Uxu78/2DkRJi8NRQ0+QoZdr7ww1BWyVVFDAHqcQsUk8DtTFNRb3Xuh96tffHVNfhcLvvb/V/ScW8K+qqanvfs/DY3cG5crtLFZ9YpP7ubPzmaytHsuo25nVo40qaSPK0+tUqqqBkjd3917pT5ndncGVZa/Abp7S31sPE7wp8XXYTMb9qNw7H7RTE56V8p2eu+tn4qDIbSo6yT7gSYHbtTR0eGo6FUhiSn84k917oy+yclvncUbYPq2Ts2TelBNuKgodl74iw+0+s6GihNXl6na1H3Ju/a+b7QTbwys8LUeQSirqh46lzCq6Xih917o2X+hjtT/RJ/cPw7I8X94/7y/3R/wBLvZnk/vx/FP7z/wB1f9Knk/vP/Av47+5b+H/dfb+j/Nfte/de6//Rsq3vvD5IdmwZzYOO6yw3WNJunO5HJ7jzk9Znc7ndwUWGnp8bQZjYrZXF1u3spS5qrlo5kxCuWhVZqWUwGoWp9+690U//AEQd+vkN14pu0f8AR3T5GsyVBtuOigpcxDv7EbKocVRL2HjN4PkZMRt54oqmdaykbMU01ZUU8n2+mSEiT3Xusm7Pi52xu7buMxmH3/113Lius5ttfb4PcOSkrxs/K0OJnzUdXQZTAbfwe26zbFVhM5U+TD5WtIkycq08eQkl8Rg917oMJsfuaGvxtb8bqukgwW5pNw19U9FsTcCEVVfSrU4yvoKLH7Sz7QbaaD7mKnGWSSlMdAFimT9tl917oUNhwbM7SwW8E747gTs3G9Rbgml2X2nJkaLEbh2Rmo6aHKRnEUUG4cJDQbxo9ywQNS46dK4iD7WeF4VWpX37r3VnH+lfo/8A0B/6Vv8AZgdz/wCj6/h/vd/e+b+8Xk838C/u/wDY+HX/ABf+Meu3g8/k9Xl+09+691//0rZN8YDdu7sDNsrtLvfs/q2kGGkyuOr5sJs6vzlVTUC1Mdfkoc1TbOxRqVglrFjpI4kbKvAyvURR1iU88XuvdVw1E/VNPvyXrvA/IfBduLgzgYNp4zG7Azm18NtrEoYYcJh9iZnEVn9x89XSz5OmrWxFBhp4sxlESkJLxyTRe691gp+yu9cDV7n2DiOltjb0yWI3ZJn967exfX/YfSmLpIaXK09BtHdNRhf7x5mhrJdwbmx0mbaqjopamjkRYKr7kOs7e691OzW2d4763ecZjMXvah7fzNXi9/bs652H2XvTau6NydZZPHVeMUUWT2juCWow+0Zq2qjqo56Gshq5ZIampp6VFkliPuvdH7g6j6p320Oa7Z6p3Fkd1yU22aGr3PRTUO7940gp81lDhMY+Ryu0dtbyxIxeUoJVmxddR/fPNlpKeNammLavde6X3+g/ZX91/wC+n8W2B/eT777/APvn/B9yfxX+Cf3k0fwT+N/e6f479h+z9h/D/udP+4z/AIC/ve/de6//07R+6ezNg7qzWB2xkIew9j9uU+UxNJjd5dbUNd2HiduYWChyVHid5Z3LU1Odm0OJwmcz1VPPQpIK8pCJIJL+Fh7r3RVuvKfanTG9mx+z+1sTWRdn5mumwnZeT25svPYiUZda7JZ3eLbgoqLb2ApYsijXq6aGDGxq1Z9ohglZ3b3XukVje/c8299gbQ3HuvaHXe8cjBW4Ru2MttbK7J6qyucoyq4PHCj2pksud/4HMRV70Mk+XroY0l0SPYrBG/uvdCsu3vlp8u9x5XFbsy46fba4raqiptg4Cno8Nu/bmNpKWDDVeP3xXZnCboz9Hm8/QPFQ1UU+IEcMwM8Pjk00/uvdC5P0jDu7ZrbY7O7Al6p3thcBRUMdHRbqy9duncNFSV8h2/2ZX7dirsPU7RzWNp6FI6itpjV1UlNAfuahpoIZx7r3SG/0E7B/vf8A7LJ/pT7o/wBH395v7+fcf3u33/AP4X/cD+8394P7yaP9G393b/5f/D/H5P4p/luq37nv3Xuv/9S1eDH9w9pw4HH4Lfuw9109Pi65KHHQ0f8Aos3BtHb2Sg+yyWHp8ntyqzNTmMvlsbRlVqKWLDoVUSIaTxyLJ7r3TfmMjXbUjy2wMNjth4bcmSpGra7MxZLZGdbINt2jyrybceAYqrx0OVrMji2h+wWikqqYU7zVWQDS08sXuvdApuCm65+dG6dnyZjb1ZjpOtP7x4HFbl2Pu/A1+0+xNxYumpdx7jm68xUBSGv3Hj6qCSaDH56goYcpEyzRmsxZlM3uvdRqnoDAbK3LnMFkKb5Fdo7aipf7x7Er6bslds7ci3LQ0dTBXYCqn2RW4qoyWextLTRD+ATRVGNaNJXcIqKnv3XuhA6723gF3Rj9yb0G1K7OYSrrKTM9hyJFlM/1TDB4qSiqOyey94NRwZPA5eryNHTxYelqZRkKd4bxqiVE8PuvdDh/c/r3+939w/8AS/ub+4H8S/v5/cz+L4n/AEdfY/efe/8AHz/xv7v/AEf/AN4P9xv8O1W8n+SadH7vv3Xuv//VMrvPsLM7w3rW9i7QOY6CjamGBw74fC75xtfLU71SmyG59057HbtxuPxG6qfAVUNVQ0cmFP2c/hnaKpjLLTy+691xwWd6xw2A2xjaPvnsTunIYqkxWB7Px/VO45tsxbsy1W9PQ5Te2COTzlRuXrbYLZLJ0qV+VbJmaKtp6iGoqpI/O8nuvdKt+vOi9uZrOZrA7N7F6CzO6qra1PNt59ub2yHV+1HhrYoI6er7F61yOU6ylkylXjqSvr5qHITVtRQzrQ6Xp6hz7917oX979WUnUeLo635A9npvvZmd3BDTbJGwNx1nV+4drvVy0eGosTQ0mFpzT1O1KE1gqqzIUtXQ1dJNLErRTxxI6e691j2bsTd296jE9i9X/I6gr+ssHWyUm2+ta2vxG5KaSppnWolqu3OycrPuWryO6qw4zJfb50U4yC089LFHVA1Mkvv3XujK/wB0Opf4dr17a+78v9+f9E3989ufwL++X2v8H/gf9+ftvD/BvD/k32Vvs/vPXfX7917r/9Y+O/8Avz5K4bAUG+8i/UnUmyGw+fx+KpshHP2dkdybbwFNNk6J9w5XG1u38f11k8NSJpzsVKlZRtUeKSKWaMqJfde6KNWfISn37FhN09p9Y5zE1q7l2LTbTw+1Nsb12Ftym3dnavGUtRmNybqoUq03BSx4Hxzth6ShmocvFDJTSw1RKn37r3Rlqn49R0YfF7Z7u3P11u/KY7O7gi2TR7ux5kmx9RLMm4d0Z3A9i5/eGO622hR1rw4mPHY5MLUK8oSlqKd1Ma+690hsd8Us3vbaMe5di03y12dueqzEmWjrs3ufM7hoMRlMNRvTS4jc2B7N3pUbvhqKKdEyMVTDR1tRUzMiU9WFLRe/de6Djtn44Z/435veG9tqbyqt0UlNX7Or9zR5Tb6SYPJ43IV+Pni3ZnMds1YMTS4TaO4JqionqTQGlx1Oss88yCJ2b3XurVv78dyfxL+6Pg6d8v8Ax8Pi/uVun/RN/cr+4v3Xg/v35Ptvtv70/wCU+X7f7i/7Xh+3/wAo9+691//XOJv3ZVPt+PH9q9s9sdXYLr+TL5DNUXXuJnyVG+03rKKLA7Knye6dwVSTJDEtLkqZMXV0CS0ddWpGlaRC7Te690mtqbw3xuEbn69k25sWuqBurGUmU2hv+rp8DnchsLI7bnx2MzsTCvqsLTVFJSrkJMfGJKbGV81OoeqjQNFF7r3T5TbGp+us9VybI3S2z9rdg5bFPkKTbm127d7G21vPF4Kl2VV03YvalTlMrDXRZOfGUhhpaAS4nH1EWuoMtIIQPde6EzCdhbh7cm33D1fk+w92dUxUe2cJkt27H7BxuY7S3H2PQRU0ea3VX7gymYgpNi7I2kzURR8fjspBlaCKukgpCJKcz+691n6u6b2P11mKLJYjsvMwdhYTNYyHDbm7x2xmN2Z/+7eWxpO4Np5Pc2x8zSbKq9nbswuPmfGUk7WqjTxVsaNohll917o638R7J/gH9+f491V/Af70/Y/Z/wB7N2/6OP7t/wAP/g/8a/iP8F+9/iP9+v8AIvtNP8E/h/8Ald/Jz7917r//0Dy5enp6zde55BtyHaO+dz7brsp1/WbspNwmbtTEYDbMe8tz7/2HX4xd47DqN0YlapYmFfQwZSuONrDR04gqIKtvde6Aup+RtX2lk6RY929fybZyb7T23Tb0j2NU9jVFHj03ZgqOfZG9dl7XoqOjwlfvnaFQlDhavKZCCCgySRVkgqICtIfde6fc9N1x2TvDP9bUvxh3n8hKqKWbNbo3nkOsM/tfckOEoGw+I3Rn8ZWblqcFtKhyU1RFFSUy09W9VUUxkkoYqiCL0e690vtr4ru+CWgze39p7LxWEy0GKzHW/TVTsjKbOwG1ttCmzlNmYO0u1cluXJ1G6OtvuKeimpsljsFhslTVDwQZOKeCokeD3Xun/GY/441W59tdB9t5DZHT2TnxVDkdq7d6V3tv/pbNUdXQtPicpgMng8XuDFRbAopqqhaLG4EvU66CKWsiqSEvH7r3Rnf7rdi/6Ov7pfxjK/6Jf4T/AHS/vf8AcbJ1/wB2Ptv7sfd/3a0/wX+7n93P3Lfwn737793waP3ffuvdf//RFvMd1/H2l3BUvW0s9Fm8W2ezy7Q3Llc1tikwG58TtCXb5w21IHqYI9lZ6gdZHxNFQmjqJiscTGZXkK+690XJ96UWU3NnY9hY3O4X/SFl5M9tTetU+48bjNzbXx9XQ5HMz4/b2ZyrzUuQOUpA0NVXeWqpVjCxmIzzRv7r3RgetfmZ2xvkbhn37hMJlMQ+3KmCfceP3uuL3RidsVEC0mQEVXvHKyUO5dk1OcEcr0s5nrUmnlWmlMZOj3XuhByXelDv7anXe5l773T1XPtih3WdpV21gcHs2ny+xYCzrunG1+OlbD7O3XAFx/jzle1PUvNE9IlPUyUs0fuvdKLFfInem8p91ZbrjoGHObkkwO1s9j9yb53TXYbAbPoXxkeI3FSZWs3DRZHdWZeWthp5ceoiqMfSlOaqBnZZfde6df8ASNl/N/fr/TPjv9JPi/v1/cj+7GyfN/fH+Af3V/0df3Q0/wAQ/hf94f8Ac99x/Fft/P8AufxT7D/Jvfuvdf/Sk1HRvdE+fzWz8f0Ts7pyXdtbXbpxuQ3ktZv/AHRlztTL0Lz0OC3FWV9VSnLybnyD0tLiaimTIZFY5IwHRJDP7r3SYznRGG3lk6imPcHTe25sbURUO5KrYu0N3ZzY+PzamqzFVjuxcj9zDi13dPRoaiooHTHjGqyUiRSeEF/de6RUeC7Aq9mNC+b6m7l6029k3yFTSU0u2cbXbPlMldH/ABeiqN2NtvIYpclGkwxxpZJ2r0V3gV4gxPuvdcKfZ3XsG4IcLF1J2Ztyl3ZjKWJMRT9rY/cdVU5ab7Kknm2H/D2pq/duKrSpkMWYqvtft5jKFIgijb3Xujf9G7Pk29vZM7JtvdmxJI8VlqTY+YD7dho6uPI0dBU5Xbm5us46+lqa3OZ3B4+rqa3CzYZqN44mmSSKURVJ917oYP7s9p/6N/4v/dql0/6Rv4t/fX+I7G/gn9wP7xfY/wB4P4Vq/jf+jT+9nr/hP3X3H8D9fk+5/wAm9+691//TNhuXO0/Yu448Xtj475/c+awnZGarMmm4+w+waLde3cWsGYr49x4nE4aDLVGW3LhtwRvQS1C1FFUyUMbTUjSAGeX3Xugxzv8AEs9m9vwbD6v69qoI9gVAzeI7p3HVVvXuPldJlpMTurr6fBYarpodvVksseHrqjxIklTUgiJSC3uvdA/jYewtj5vJ02TzfSPVeRpsa9JHhOk8Lsrcu/M6+RrcFhDtenw2Qpc/U1W2Z8hNDlpVpIhk5ato3pnVEMS+6907bM7Y6W2/uPL9E7q2zvn497e3llNuw7g3buXcmKq989Wbix1Bj4s4c0M3SiHCbXf7d6ijqapq4fxGrirEhpwj3917oxGE+PHdGJ7Hxe/9q7g3p2osmzMfi81u49hYfK78yGx4Z6vL5vE7uqc3iKLcm013RtWuK42GkkpZ8jktbCemUpVL7r3RkvsOv/sP4l/og6m/vl/A/s/v/wC8+Q/if95/F/d3+833P3f8C+28H+V6Puv+Af7n3urj37r3X//UNt3/ANkdybq3DHi+t+383jcdhJk25nclszYG1dgZLtrMmuhzm4917S3dNXZ/buMyOLGQbD0eFzFVja5cnS1E1WwpVqHb3Xukhle4Nxdjbuo6cbX3tt+n2nWVtLu7BZDAbPlGbo8dVQT5raWdz+OyL4PE5vInxvQZ+k3DlvsKlA80Bo3aD37r3QPbAr+q4N157beRzmB2TurdXY+YyuEo8DsWi31mJcNkp8huChwK5DNLtrbWMzj7wenkSsyaS4OdITV0ZjbSkPuvdCNuDblT2Ym3cT3/AIveWbz+WFdhNoZvMUGzc12pmYq+toqTHZbetFsWPD7Y29FNUpHRw5KlqpcVEsSyysZKuE+/de6FDYPWHdexNj7b1ds53qjIUG5Vwku0Rv7beSruxsdgs3X5GfYGQg8dfkqWuoto4ebGr9gtG9NS3rkeaIOV917owv8Asv3Q/wDstP239yu1v4b/AHs/vL/cX/S5kvv/AO8v8Q+8+w/0g/e/Y/wzR+xq817/AOQ21/s+/de6/9UzOY35s3dmSxNP03kcXh5qpNo7Tj2p2pu/sTp/b2cppctR1lDt1tp5zZu56DE7W3NNVV1AMhUfdCsrpZ1jcmFUT3Xugzl2vPQM9H3h1tR1HSVXh8y2Px2zNu757VzdV5KSpqaNtp5TacWMq9l9aYfO4145Kb+GrLBjKVEhenoSiJ7r3SKg3vTYnFYfrnDdcbJ61E+ENdBvrAtRdnby67zGChgjyW5M5tOpw1fiq6kqFjoqCCrqa1o6JKhmqjcxlfde6FXouav3LuCjly2+Nu9R7hrNsS4vPV+egot0UWUqtwz1u3dmYiipayowm29o47OZnHy0G5NvUUsP+5EY2eaWOZ2af3Xulp0vRbUGZrMLvSq6y3d15vyjnwO69rdjbPqsF2Bmo56DJUFDHLjKDGZObfe19uPtymOWFFWS0NZI/lp51g0QD3Xujvf6Etw/Z/Y+fCf3Z/0Efxb7vVtfwf3j/vj/AHh/uj/Db/3M/wBFv8O9P3H2v3/2vP33n/d9+691/9Y5XY/VW0M1vTcsGAzOb25vzDU0eM3JW4nei7lwUO6NjU1Tu7G5us2h2e8H8b2fh8zUtV1tLRY+XIJNUJIrzAPIPde6LzUYD431mIzFbnt/9ubCrN2PQVuB7C2xvPc23dl9kZPedd91PmNv7CXzde5nOVlFV1FLR0ssNVTzzwmNIGjeOFfde6MbXy93bSyuSxcG1KbuDb1In8ZGa2vVRYbfW59l1WLaqo6io6nxWGx2y4mmxNTI9S8WVx9JUlVEcKVALr7r3T/i93bHy2Rzybj6635VYbsHbEuF3xt7LLjajrt8vuClxePzeFosVv3YMW38ZsytnxMeq48888xq1SSLXKfde663TvPBrR0OfoN79V7e3dNjI9kUmK3Lt3eNVs/L1eOlxO2etolWo/g9NuOqydakNDRUFFkKClr6md5Ep/M7j37r3Qm/6DJv9FP2urJfwD+5X2n90v7zbB/0M/xj+H+D+KfxT+PfZ/3e/g3+R/wK/g1/5dq+4/d9+691/9c+Hfhnnwu5cH2fHtvc25KzOZPd3VtVubYuTnyPXecrIjSVGPy9JmJ8vuPI/wAFx9RRVX8apMbkJcLj65HmEmNR0h917pJbU783t2xmsDt/aHx+hxGVrsfNgt8bjbYtADT5CmpIqKlzu3MZNnNr0FbX1FLja0S1OAV6/GQQIHgd5aZYvde6CbamE3Zjd70uWwG8d6p2TgslmMZN1XtXd23Zs5mty0+VzVdtbJbco+ydx1m3sDPlMNUV1XPt6GSGp+1JiAmko1hl917oZafsXfeUwEsn3Wb6p3T0lSZmg3JJLkYs12hk/sHxNVlMBt/ES0PbVHuXMNRVNS9FjpcNRNkJWiVHjjce/de6XHTuI39vPL9ibm2/VSVG28xHtbJ4uPclTi02/wBhVoycWPqKPDR7y3NUbm23uPb2LxdL40gp6XENk8rJOzfcSzJ7917o7X+j6l/u1/dX+6NB/c/Rp/jX8Oq/9IP8Dt/d3+4X/AX7f+Nf8ub+Kfxb7f8AgXq1eP8Af9+691//0D77o/gX33emv/RN9x/efeP8Y/v9/pF/g/3X9yq3V/cr7f8A3F69fh/jX8C/yP8AiP8AEdPp+59+691n3T/d/wD0bYX73+Dfwr+8WH839wP9Jv8Aef8AjX92Md9p95/AP9/n9hr0ef7f/cB9jq+59Pk9+690X3sn+I/xqPyf6Qv4L/DaP+8v91f7rfc+S+U/i/8AdD7T/jIH3n8H8f3H90v29Wr+G/7k/N7917oxmzNf2Ozv4H/dj+G+Sk/gH8V+3/0v+P8AvJWfb/3o/wBIf+/r89v81/eX93z/AHfn5v7917pFQfw++5tP+iP7/wDvRiv4h/s2f96P9Cnj/vph/svtvL/v3P75/deX+Gfwz937+33f+T/b+/de6sx/3Lfw/wD5eXk/hX/Zk6/t/wCA/wDnL/oa/iv/AFU/ef8AVu9+691//9k=";
}
function getImageFromBase64(base64, type, cb) {
var img = new Image();
img.src = "data:image/" + type + ";base64, " + base64;
img.onload = function() {
cb(this);
};
}
function getImageDataFromImage(img) {
var canvas = document.createElement('canvas');
var ctx = canvas.getContext('2d');
canvas.width = img.width;
canvas.height = img.height;
ctx.drawImage(img, 0, 0);
imageData = ctx.getImageData(0, 0, img.width, img.height).data;
return imageData;
}
function getSamplesFromImage(img, samples) {
var imageData = getImageDataFromImage(img);
var imageDataGrays = [];
var textureOffsetX = 0;
var textureOffsetY = 0;
// Read grays from image
for(var i = 0; i < imageData.length; i+=4) {
imageDataGrays.push(1 - imageData[i]/255);
}
inkTextureImageDataGrays = imageDataGrays;
// Read samples from mirrored-and-tiled grays
for (var i = 0; i < textureSamplesLength; i++) {
// Get normalized pixel within texture
var T_s = textureOffsetX / (img.width - 1);
var T_t = textureOffsetY / (img.height - 1);
var s = Math.abs(Math.abs(T_s - 1) % 2 - 1);
var t = Math.abs(Math.abs(T_t - 1) % 2 - 1);
var x = Math.floor(s * (img.width - 1));
var y = Math.floor(t * (img.height - 1));
textureSampleLocations.push({x: x, y: y});
var d = imageDataGrays[x + y * img.width];
samples[i] = d;
//samples[i] = 100 + Math.random()*155;
// Step texture offset randomly [-1, 1]
textureOffsetX += (Math.random() * 2 | 0) === 1 ? -1 : 1;
textureOffsetY += (Math.random() * 2 | 0) === 1 ? -1 : 1;
}
}
} // Ploma
// ------------------------------------------
// Ploma.getStrokeImageData
//
// Returns image data for the input stroke,
// against a transparent canvas, clipped to
// the stroke's bounds. Input stroke is to
// be a an array of JSON objects of point
// data:
//
// [{x, y, p}, {x, y, p}, ...]
//
Ploma.getStrokeImageData = function(inputStroke) {
// Make a local copy
var stroke = [];
for(var i = 0; i < inputStroke.length; i++) {
stroke.push(inputStroke[i]);
}
// For drawing and getting image data later
var canvas = document.createElement('canvas');
// Precalculate necessary bounds
var minx = Infinity;
var miny = Infinity;
var maxx = 0;
var maxy = 0;
for(var i = 0; i < stroke.length; i++) {
var point = stroke[i];
minx = Math.min(minx, point.x);
miny = Math.min(miny, point.y);
maxx = Math.max(maxx, point.x);
maxy = Math.max(maxy, point.y);
}
var w = maxx - minx + 8;
var h = maxy - miny + 8;
canvas.setAttribute('width', Math.ceil(w));
canvas.setAttribute('height', Math.ceil(h));
// Shift points to new origin
for(var i = 0; i < stroke.length; i++) {
var point = stroke[i];
point.x = point.x - minx + 4;
point.y = point.y - miny + 4;
}
// Instantiate Ploma on this new canvas
var ploma = new Ploma(canvas);
// Draw stroke onto temp canvas
ploma.beginStroke(
stroke[0].x,
stroke[0].y,
stroke[0].p
);
for(var i = 1; i < stroke.length - 1; i++) {
ploma.extendStroke(
stroke[i].x,
stroke[i].y,
stroke[i].p
);
}
ploma.endStroke(
stroke[stroke.length - 1].x,
stroke[stroke.length - 1].y,
stroke[stroke.length - 1].p
);
// Return the image data
return canvas.getContext('2d').getImageData(0, 0, w, h);
};