forked from clarkkev/attention-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
78 lines (61 loc) · 2.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import pickle
import time
import tensorflow as tf
def load_json(path):
with tf.gfile.GFile(path, 'r') as f:
return json.load(f)
def write_json(o, path):
tf.gfile.MakeDirs(path.rsplit('/', 1)[0])
with tf.gfile.GFile(path, 'w') as f:
json.dump(o, f)
def load_pickle(path):
with tf.gfile.GFile(path, 'rb') as f:
return pickle.load(f)
def write_pickle(o, path):
if '/' in path:
tf.gfile.MakeDirs(path.rsplit('/', 1)[0])
with tf.gfile.GFile(path, 'wb') as f:
pickle.dump(o, f, -1)
def logged_loop(iterable, n=None, **kwargs):
if n is None:
n = len(iterable)
ll = LoopLogger(n, **kwargs)
for i, elem in enumerate(iterable):
ll.update(i + 1)
yield elem
class LoopLogger(object):
"""Class for printing out progress/ETA for a loop."""
def __init__(self, max_value=None, step_size=1, n_steps=25, print_time=True):
self.max_value = max_value
if n_steps is not None:
self.step_size = max(1, max_value // n_steps)
else:
self.step_size = step_size
self.print_time = print_time
self.n = 0
self.start_time = time.time()
def step(self, values=None):
self.update(self.n + 1, values)
def update(self, i, values=None):
self.n = i
if self.n % self.step_size == 0 or self.n == self.max_value:
if self.max_value is None:
msg = 'On item ' + str(self.n)
else:
msg = '{:}/{:} = {:.1f}%'.format(self.n, self.max_value,
100.0 * self.n / self.max_value)
if self.print_time:
time_elapsed = time.time() - self.start_time
time_per_step = time_elapsed / self.n
msg += ', ELAPSED: {:.1f}s'.format(time_elapsed)
msg += ', ETA: {:.1f}s'.format((self.max_value - self.n)
* time_per_step)
if values is not None:
for k, v in values:
msg += ' - ' + str(k) + ': ' + ('{:.4f}'.format(v)
if isinstance(v, float) else str(v))
print(msg)