forked from AudioGroupCologne/SUpDEq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
supdeq_interpHRTF.m
executable file
·914 lines (722 loc) · 40.2 KB
/
supdeq_interpHRTF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
%% SUpDEq - Spatial Upsampling by Directional Equalization
%
% function [interpHRTFset, HRTF_interp_L, HRTF_interp_R] = supdeq_interpHRTF(HRTFset, ipSamplingGrid, ppMethod, ipMethod, mc, headRadius, tikhEps, limitMC, mcKnee, mcMinPhase, limFade)
%
% This function performs HRTF interpolation of the input HRTFset according
% to the passed interpolation sampling grid. Various interpolation and
% time-alignment (pre-processing) methods can be applied. Furthermore,
% post-interpolation magnitude correction for time-aligned interpolation
% (MCA) can be applied to further improve the interpolation results. See
% also supdeq_demo_MCA for some examples of how to use the function.
%
% Output:
% interpHRTFset - Struct with the interpolated HRTF for the
% left (HRTF_L) and right (HRTF_R) ear, absolute
% frequency scale f, various interpolation parameters
% according to the applied method, and FFToversize
% HRTF_L/R_ip - Interpolated complex HRTFs (single-sided spectrum)
%
% Input:
% HRTFset - Struct with (sparse) HRTF dataset in frequency
% domain (single-sided complex spectra). Struct needs to
% provide HRTF_L/HRTF_R, the samplingGrid, Nmax,
% absolute frequency scale f, and FFToversize
% ipSamplingGrid - Spatial sampling grid (Q x 2 or Q x 3 matrix),
% defining the interpolation points, where the first
% column holds the azimuth, the second the elevation
% (both in degree), and optionally the third the
% sampling weights.
% Azimuth in degree
% (0=front, 90=left, 180=back, 270=right)
% (0 points to positive x-axis, 90 to positive y-axis)
% Elevation in degree
% (0=North Pole, 90=front, 180=South Pole)
% (0 points to positive z-axis, 180 to negative z-axis)
% ppMethod - String defining the pre/post-processing applied
% to the HRTFs before/after interpolation. Besides
% 'MagPhase', all of the pre-processing methods are
% time-alignment approaches.
% 'SUpDEq' - SUpDEq method [3][5]
% 'SUpDEq_Lim' - Modified SUpDeq method where the eqDataset is limited to frequencies above the spatial aliasing frequency fA [5]
% 'SUpDEq_AP' - Modified SUpDEq method applying rigid sphere allpass filter (only the phase components of the rigid sphere transfer functions)
% 'SUpDEq_Lim_AP' - Modified SUpDeq method where the eqDataset is limited as above (SUpDEq_Lim) and only the phase components are used (SUpDEq_AP)
% 'PC' - Phase-Correction (open sphere transfer functions) [4][5]
% 'OBTA' - Onset-Based Time-Alignment [1][2][5]
% 'MagPhase' - Split HRTF to magnitude and unwrapped phase - No time-alignment
% 'None' - Perform interpolation without any pre/post-processing
% Default: 'SUpDEq'
% ipMethod - String defining the ipMethod
% 'SH' - Spherical Harmonics interpolation [1-5]
% 'NN' - Natural Neighbor interpolation with Voronoi weights [6]
% 'Bary' - Barycentric interpolation [7]
% 'SARITA' - Spherical Array Interpolation by Time Alignment [8]; employs Natural Neighbor interpolation with Voronoi weights
% Default: 'SH'
% mc - Define maximum boost in dB if magnitude correction according to [9] should be applied to interpolated HRTFs in a further postprocessing step
% Set to nan if magnitude correction should not be applied
% Set to inf if no limiting should be applied, i.e., unlimited boost
% Default: inf
% headRadius - Head radius in m. Required for time-alignment methods SUpDEq [3][5] and PC [4][5]
% Default: 0.0875
% tikhEps - Define epsilon of Tikhonov regularization if regularization should be applied
% Applying the Tikhonov regularization will always result in a least-square fit
% solution for the SH transform. Only relevant if ipMethod is 'SH'.
% Default: 0 (no Tikhonov regularization)
% limitMC - Boolean to set magnitude correction filters to 0 dB below spatial aliasing frequency fA,
% assuming that (SH) interpolation below fA is physically correct.
% Default: true (correction filter operate only above fA)
% Only applies if 'mc' is not nan
% mcKnee - Knee in dB of the soft-limiting applied to the correction filters. Soft-limiting is applied according to maximum boost 'mc'
% Only applies if 'mc' is not nan or inf
% Default: 0 dB (no knee)
% mcMinPhase - Boolean to design correction filters as minimum-phase filters. If set to false, correction filters are zero-phase filters
% Default: true (minimum-phase filters) as this provides a better performance in terms of ITD errors in combination with classical SUpDEq processing
% When applying other preprocessing methods, using zero-phase filters can be more appropriate.
% limFade - String to define whether to apply a linear fade upwards from aliasing frequency fA to fAt = fA + 1/3 Oct, or downwards, i.e., from fA to fAt = fA - 1/3 Oct
% 'fadeUp' - upwards
% 'fadeDown' - downwards
% Default: 'fadeDown'
%
% Dependencies: SUpDEq toolbox, AKtools, SOFiA toolbox, SFS toolbox, TriangleRayIntersection
%
% References: (Pre-Processing methods)
% Onset-Based Time-Alignment (OBTA)
% [1] M. J. Evans, J. A. S. Angus, and A. I. Tew, "Analyzing head-related transfer function measurements
% using surface spherical harmonics,"
% J. Acoust. Soc. Am., vol. 104, no. 4, pp. 2400-2411, 1998,
% doi: https://doi.org/10.1121/1.423749.
% [2] F. Brinkmann and S. Weinzierl, "Comparison of head-related transfer functions pre-processing
% techniques for spherical harmonics decomposition,"
% in Proceedings of the AES Conference on Audio for Virtual and Augmented Reality, 2018, pp. 1-10.
%
% Spatial Upsampling by Directional Equalization (SUpDEq)
% [3] C. Pörschmann, J. M. Arend, and F. Brinkmann,
% "Directional Equalization of Sparse Head-Related Transfer Function Sets for Spatial Upsampling,"
% IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 27, no. 6, pp. 1060-1071, 2019,
% doi: https://doi.org/10.1109/TASLP.2019.2908057.
%
% Phase-Correction (PC)
% [4] Z. Ben-Hur, D. Lou Alon, R. Mehra, and B. Rafaely,
% "Efficient Representation and Sparse Sampling of Head-Related Transfer Functions
% Using Phase-Correction Based on Ear Alignment,"
% IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 27, no. 12, pp. 2249-2262, 2019,
% doi: https://doi.org/10.1109/TASLP.2019.2945479.
%
% Comparison of time-alignment methods & perceptual evaluation
% [5] J. M. Arend, F. Brinkmann, and C. Pörschmann, “Assessing Spherical
% Harmonics Interpolation of Time-Aligned Head-Related Transfer Functions,”
% J. Audio Eng. Soc., vol. 69, no. 1/2, pp. 104–117, 2021,
% doi: https://doi.org/10.17743/jaes.2020.0070.
%
% Spherical harmonics interpolation
% [1-5]
%
% Natural-Neighbor Interpolation
% [6] R. Sibson, “A brief description of natural neighbor interpolation,”
% in Interpreting Multivariate Data, V. Barnett, Chichester, England: John Wiley & Sons, 1981, pp. 21–36.
% Good read about NN interpolation: https://github.com/gwlucastrig/Tinfour/wiki/Introduction-to-Natural-Neighbor-Interpolation
%
% Barycentric Coordinates / Interpolation
% [7] P. Shirley and S. Marschner, Fundamentals of Computer Graphics, 3rd ed. Boca Raton, FL: Taylor & Francis, 2009.
% Good read about Barycentric interpolation: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates
%
% [8] Spherical Array Interpolation by Time Alignment (SARITA)
% T. Lübeck, J. M. Arend, and C. Pörschmann, “Spatial Upsampling of Sparse Spherical Microphone Array Signals,”
% IEEE/ACM Trans. Audio Speech Lang. Proc., vol. 31, pp. 1163–1174, 2023,
% doi: https://doi.org/10.1109/TASLP.2023.3250841.
%
% Magnitude-Corrected and Time-Aligned Interpolation (MCA)
% [9] J. M. Arend, C. Pörschmann, S. Weinzierl, and F. Brinkmann,
% "Magnitude-Corrected and Time-Aligned Interpolation of Head-Related Transfer Functions,”
% IEEE/ACM Trans. Audio Speech Lang. Proc., vol. 31, pp. 3783–3799, 2023,
% doi: https://doi.org/10.1109/TASLP.2023.3313908.
%
%
% (C) 2020-2023 by JMA, Johannes M. Arend
% TU Berlin, Audio Communication Group
% TH Köln, Institute of Communications Engineering
function [interpHRTFset, HRTF_L_ip, HRTF_R_ip] = supdeq_interpHRTF(HRTFset, ipSamplingGrid, ppMethod, ipMethod, mc, headRadius, tikhEps, limitMC, mcKnee, mcMinPhase, limFade)
if nargin < 3 || isempty(ppMethod)
ppMethod = 'SUpDEq';
end
if nargin < 4 || isempty(ipMethod)
ipMethod = 'SH';
end
if nargin < 5 || isempty(mc)
mc = inf;
end
if nargin < 6 || isempty(headRadius)
headRadius = 0.0875;
end
if nargin < 7 || isempty(tikhEps)
tikhEps = 0;
end
if nargin < 8 || isempty(limitMC)
limitMC = true;
end
if nargin < 9 || isempty(mcKnee)
mcKnee = 0;
end
if nargin < 10 || isempty(mcMinPhase)
mcMinPhase = true;
end
if nargin < 11 || isempty(limFade)
limFade = 'fadeDown';
end
%% Get some required variables
fs = HRTFset.f(end)*2;
f = HRTFset.f;
NFFT = length(HRTFset.f)*2-2;
samplingGrid = HRTFset.samplingGrid;
HRTF_L = HRTFset.HRTF_L;
HRTF_R = HRTFset.HRTF_R;
c = 343;
%Get HRIRs - Required for threshold detection and mc
%Get mirror spectrum
HRIR_L = AKsingle2bothSidedSpectrum(HRTF_L.');
HRIR_R = AKsingle2bothSidedSpectrum(HRTF_R.');
%Transform back to time domain
HRIR_L = real(ifft(HRIR_L));
HRIR_R = real(ifft(HRIR_R));
hrirLength = size(HRIR_L,1)/HRTFset.FFToversize;
%% Perform preprocessing
switch ppMethod
case 'SUpDEq'
disp('Preprocessing: SUpDEq')
%Apply SUpDEq - Equalize HRTFs
%Get eqDataset at N = 44
eqDataset = supdeq_getEqDataset(44,2*headRadius,NFFT,fs);
%Equalization
[eqTF_L,eqTF_R] = supdeq_getEqTF(eqDataset,samplingGrid,'DEG',2,'ak',false);
pHRTF_L = HRTF_L./eqTF_L;
pHRTF_R = HRTF_R./eqTF_R;
case 'SUpDEq_Lim'
disp('Preprocessing: SUpDEq_Lim')
%Apply SUpDEq - Equalize HRTFs
%Get eqDataset at N = 44
eqDataset = supdeq_getEqDataset(44,2*headRadius,NFFT,fs);
%Limit eqDataset (Small improvement explained in [5] leading to better
%results below the spatial aliasing frequency fA)
eqDataset = supdeq_limitEqDataset(eqDataset,HRTFset.Nmax,headRadius);
%Equalization
[eqTF_L,eqTF_R] = supdeq_getEqTF(eqDataset,samplingGrid,'DEG',2,'ak',false);
pHRTF_L = HRTF_L./eqTF_L;
pHRTF_R = HRTF_R./eqTF_R;
case 'SUpDEq_AP'
disp('Preprocessing: SUpDEq_AP')
%Apply SUpDEq_AP - Equalize HRTFs with rigid sphere allpass functions
%Get eqDataset at N = 44
eqDataset = supdeq_getEqDataset(44,2*headRadius,NFFT,fs);
%Equalization
[eqTF_L,eqTF_R] = supdeq_getEqTF(eqDataset,samplingGrid,'DEG',2,'ak',true);
pHRTF_L = HRTF_L./eqTF_L;
pHRTF_R = HRTF_R./eqTF_R;
case 'SUpDEq_Lim_AP'
disp('Preprocessing: SUpDEq_Lim_AP')
%Apply SUpDEq_AP - Equalize HRTFs with limited rigid sphere allpass functions
%Get eqDataset at N = 44
eqDataset = supdeq_getEqDataset(44,2*headRadius,NFFT,fs);
%Limit eqDataset (Small improvement explained in [5] leading to better
%results below the spatial aliasing frequency fA)
eqDataset = supdeq_limitEqDataset(eqDataset,HRTFset.Nmax,headRadius);
%Equalization
[eqTF_L,eqTF_R] = supdeq_getEqTF(eqDataset,samplingGrid,'DEG',2,'ak',true);
pHRTF_L = HRTF_L./eqTF_L;
pHRTF_R = HRTF_R./eqTF_R;
case 'PC'
disp('Preprocessing: PC')
%Apply Phase-Correction - Equalize HRTFs with open sphere allpass functions
%Get wavenumber k
k = 2*pi*f/c; k = k.';
%Transform sampling grid to radiant
sg = samplingGrid * pi / 180;
%Get phase correction term for left/right ear according to Eq. 13 in [4]
cosThetaL = cos(sg(:,2)')*cos(pi/2) + sin(sg(:,2)')*sin(pi/2) .* cos(sg(:,1)'-pi/2); %Left ear with -pi/2
phaseCorL = exp(-1j*headRadius * k .* cosThetaL);
cosThetaR = cos(sg(:,2)')*cos(pi/2) + sin(sg(:,2)')*sin(pi/2) .* cos(sg(:,1)'+pi/2); %Right ear with +pi/2
phaseCorR = exp(-1j*headRadius * k .* cosThetaR);
%Apply to HRTFs
pHRTF_L = HRTF_L .* phaseCorL.'; %Just transpose, no conjugate complex
pHRTF_R = HRTF_R .* phaseCorR.';
case 'OBTA'
disp('Preprocessing: OBTA')
%Apply Onset-Based Time-Alignment with fractional delay filters
%Not compatible with SARITA interpolation. Intercepted here.
if strcmp(ipMethod,'SARITA')
warning('OBTA not compatible with SARITA interpolation. Set to ''None'' for preprocessing')
ppMethod = 'None';
disp('Preprocessing: None')
%Copy HRTF to pHRTF_L as in case 'None'
pHRTF_L = HRTF_L;
pHRTF_R = HRTF_R;
else
%Estimate TOA on low-passed and 10 times upsampled HRIRs according to [2]
toa_L = AKonsetDetect(HRIR_L, 10, -20, 'rel', [3e3 fs]);
toa_R = AKonsetDetect(HRIR_R, 10, -20, 'rel', [3e3 fs]);
%Time-Align HRIRs (remove TOAs) with fractional delay
pHRIR_L = AKfractionalDelayCyclic(HRIR_L, -toa_L);
pHRIR_R = AKfractionalDelayCyclic(HRIR_R, -toa_R);
%Transform to Fourier domain with same FFToversize as defined in struct
pHRTF_L = AKboth2singleSidedSpectrum (fft(pHRIR_L)).';
pHRTF_R = AKboth2singleSidedSpectrum (fft(pHRIR_R)).';
end
case 'MagPhase'
disp('Preprocessing: MagPhase')
%Not compatible with SARITA interpolation. Intercepted here.
if strcmp(ipMethod,'SARITA')
warning('MagPhase not compatible with SARITA interpolation. Set to ''None'' for preprocessing')
ppMethod = 'None';
disp('Preprocessing: None')
%Copy HRTF to pHRTF_L as in case 'None'
pHRTF_L = HRTF_L;
pHRTF_R = HRTF_R;
else
pHRTF_L = abs(HRTF_L);
pHRTF_R = abs(HRTF_R);
pHRTF_L_ph = unwrap(angle(HRTF_L).').';
pHRTF_R_ph = unwrap(angle(HRTF_R).').';
end
case 'None'
disp('Preprocessing: None')
%Simply copy HRTF to pHRTF_L - Easier for further processing
pHRTF_L = HRTF_L;
pHRTF_R = HRTF_R;
end
%Save intermediate result (pre-processed HRTFs) in output struct
interpHRTFset.p.pHRTF_L = pHRTF_L;
interpHRTFset.p.pHRTF_R = pHRTF_R;
if strcmp(ppMethod,'OBTA')
interpHRTFset.p.toa_L = toa_L;
interpHRTFset.p.toa_R = toa_R;
end
if strcmp(ppMethod,'MagPhase')
interpHRTFset.p.pHRTF_L_ph = pHRTF_L_ph;
interpHRTFset.p.pHRTF_R_ph = pHRTF_R_ph;
end
%% Perform interpolation
switch ipMethod
case 'SH'
disp('HRTF Interpolation: SH')
%Transform preprocessed HRTFs to SH domain
%Tikhonov regularization can be applied if weights in sampling grid are erased and tikhEps ~= 0
pHRTF_L_nm = AKsht(pHRTF_L.',false,samplingGrid,HRTFset.Nmax,'complex',fs,false,'complex',tikhEps);
pHRTF_R_nm = AKsht(pHRTF_R.',false,samplingGrid,HRTFset.Nmax,'complex',fs,false,'complex',tikhEps);
%Apply SH interpolation to ipSamplingGrid
pHRTF_L_ip = AKisht(pHRTF_L_nm,false,ipSamplingGrid(:,1:2),'complex').';
pHRTF_R_ip = AKisht(pHRTF_R_nm,false,ipSamplingGrid(:,1:2),'complex').';
%Also interpolate TOAs if ppMethod = 'OBTA'
if strcmp(ppMethod,'OBTA')
%Transform TOAs to SH domain
%Tikhonov regularization can be applied if weights in sampling grid are erased and tikhEps ~= 0
toa_L_nm = AKsht(toa_L,false,samplingGrid,HRTFset.Nmax,'complex',fs,false,'real',tikhEps);
toa_R_nm = AKsht(toa_R,false,samplingGrid,HRTFset.Nmax,'complex',fs,false,'real',tikhEps);
%Apply SH interpolation to ipSamplingGrid
toa_L_ip = AKisht(toa_L_nm, false, ipSamplingGrid(:,1:2), 'complex', false, false, 'real');
toa_R_ip = AKisht(toa_R_nm, false, ipSamplingGrid(:,1:2), 'complex', false, false, 'real');
end
%Also interpolate Phase if ppMethod = 'MagPhase'
if strcmp(ppMethod,'MagPhase')
%Transform Phase to SH domain
%Tikhonov regularization can be applied if weights in sampling grid are erased and tikhEps ~= 0
pHRTF_L_ph_nm = AKsht(pHRTF_L_ph.',false,samplingGrid,HRTFset.Nmax,'complex',fs,false,'complex',tikhEps);
pHRTF_R_ph_nm = AKsht(pHRTF_R_ph.',false,samplingGrid,HRTFset.Nmax,'complex',fs,false,'complex',tikhEps);
%Apply SH interpolation to ipSamplingGrid
pHRTF_L_ph_ip = AKisht(pHRTF_L_ph_nm,false,ipSamplingGrid(:,1:2),'complex').';
pHRTF_R_ph_ip = AKisht(pHRTF_R_ph_nm,false,ipSamplingGrid(:,1:2),'complex').';
end
case 'NN'
disp('HRTF Interpolation: NN')
%Transform grids to cartesian coordinates
[samplingGrid_cart(:,1), samplingGrid_cart(:,2), samplingGrid_cart(:,3)] = sph2cart(samplingGrid(:,1)/360*2*pi, pi/2-samplingGrid(:,2)/360*2*pi,1);
[ipSamplingGrid_cart(:,1), ipSamplingGrid_cart(:,2), ipSamplingGrid_cart(:,3)] = sph2cart(ipSamplingGrid(:,1)/360*2*pi, pi/2-ipSamplingGrid(:,2)/360*2*pi,1);
%NN interpolate preprocessed HRTFs to ipSamplingGrid
pHRTF_L_ip = zeros(size(ipSamplingGrid,1),length(f));
pHRTF_R_ip = zeros(size(ipSamplingGrid,1),length(f));
for nPoint = 1:size(ipSamplingGrid,1)
[idx_voronoi,w_voronoi] = findvoronoi(samplingGrid_cart,ipSamplingGrid_cart(nPoint,:));
for n = 1:length(idx_voronoi)
pHRTF_L_ip(nPoint,:) = pHRTF_L_ip(nPoint,:) + w_voronoi(n)*pHRTF_L(idx_voronoi(n),:);
pHRTF_R_ip(nPoint,:) = pHRTF_R_ip(nPoint,:) + w_voronoi(n)*pHRTF_R(idx_voronoi(n),:);
end
end
%Also interpolate TOAs if ppMethod = 'OBTA'
if strcmp(ppMethod,'OBTA')
toa_L_ip = zeros(1,size(ipSamplingGrid,1));
toa_R_ip = zeros(1,size(ipSamplingGrid,1));
for nPoint = 1:size(ipSamplingGrid,1)
[idx_voronoi,w_voronoi] = findvoronoi(samplingGrid_cart,ipSamplingGrid_cart(nPoint,:));
for n = 1:length(idx_voronoi)
toa_L_ip(1,nPoint) = toa_L_ip(1,nPoint) + w_voronoi(n)*toa_L(1,idx_voronoi(n));
toa_R_ip(1,nPoint) = toa_R_ip(1,nPoint) + w_voronoi(n)*toa_R(1,idx_voronoi(n));
end
end
end
%Also interpolate Phase if ppMethod = 'MagPhase'
if strcmp(ppMethod,'MagPhase')
pHRTF_L_ph_ip = zeros(size(ipSamplingGrid,1),length(f));
pHRTF_R_ph_ip = zeros(size(ipSamplingGrid,1),length(f));
for nPoint = 1:size(ipSamplingGrid,1)
[idx_voronoi,w_voronoi] = findvoronoi(samplingGrid_cart,ipSamplingGrid_cart(nPoint,:));
for n = 1:length(idx_voronoi)
pHRTF_L_ph_ip(nPoint,:) = pHRTF_L_ph_ip(nPoint,:) + w_voronoi(n)*pHRTF_L_ph(idx_voronoi(n),:);
pHRTF_R_ph_ip(nPoint,:) = pHRTF_R_ph_ip(nPoint,:) + w_voronoi(n)*pHRTF_R_ph(idx_voronoi(n),:);
end
end
end
case 'Bary'
disp('HRTF Interpolation: Bary')
%Transform grids to cartesian coordinates
[samplingGrid_cart(:,1), samplingGrid_cart(:,2), samplingGrid_cart(:,3)] = sph2cart(samplingGrid(:,1)/360*2*pi, pi/2-samplingGrid(:,2)/360*2*pi,1);
[ipSamplingGrid_cart(:,1), ipSamplingGrid_cart(:,2), ipSamplingGrid_cart(:,3)] = sph2cart(ipSamplingGrid(:,1)/360*2*pi, pi/2-ipSamplingGrid(:,2)/360*2*pi,1);
%Get simplified convex hull (could also be done after delaunay-triangulation)
convHullIdx = convhull(samplingGrid_cart(:,1), samplingGrid_cart(:,2), samplingGrid_cart(:,3), 'simplify', true);
%Get HRTFs / directions assigned to convex hull triangles
convHullHRTF_A = samplingGrid_cart(convHullIdx(:,1),:);
convHullHRTF_B = samplingGrid_cart(convHullIdx(:,2),:);
convHullHRTF_C = samplingGrid_cart(convHullIdx(:,3),:);
%Interpolate with barycentric weights
%Right triangle of convex hull picked by ray-triangle intersection test (intersectLinePolygon3d from geom3D toolbox should work too)
%Function returns barycentric weights / coordinates u and v of the intersection point -> w = 1-u-v
%P = w*A + u*B + v*C
orig = [0 0 0];
pHRTF_L_ip = zeros(size(ipSamplingGrid,1),length(f));
pHRTF_R_ip = zeros(size(ipSamplingGrid,1),length(f));
for nPoint = 1:size(ipSamplingGrid,1)
[intersect, ~, u, v, ~] = TriangleRayIntersection(orig, ipSamplingGrid_cart(nPoint,:), convHullHRTF_A, convHullHRTF_B, convHullHRTF_C, 'border', 'inclusive');
intersectIdx = find(intersect, 1, 'first'); %Evaluate first intersection point
u = u(intersectIdx); v = v(intersectIdx); w = 1-u-v;
bw = [w u v]; %Barycentric weights
idx_bw = convHullIdx(intersectIdx,:); %Indizes of HRTFs of convex hull / triangles
for n = 1:3 %Always 3 because of triangulization
pHRTF_L_ip(nPoint,:) = pHRTF_L_ip(nPoint,:) + bw(n)*pHRTF_L(idx_bw(n),:);
pHRTF_R_ip(nPoint,:) = pHRTF_R_ip(nPoint,:) + bw(n)*pHRTF_R(idx_bw(n),:);
end
end
%Also interpolate TOAs if ppMethod = 'OBTA'
if strcmp(ppMethod,'OBTA')
toa_L_ip = zeros(1,size(ipSamplingGrid,1));
toa_R_ip = zeros(1,size(ipSamplingGrid,1));
for nPoint = 1:size(ipSamplingGrid,1)
[intersect, ~, u, v, ~] = TriangleRayIntersection(orig, ipSamplingGrid_cart(nPoint,:), convHullHRTF_A, convHullHRTF_B, convHullHRTF_C, 'border', 'inclusive');
intersectIdx = find(intersect, 1, 'first'); %Evaluate first intersection point
u = u(intersectIdx); v = v(intersectIdx); w = 1-u-v;
bw = [w u v]; %Barycentric weights
idx_bw = convHullIdx(intersectIdx,:); %Indizes of HRTFs of convex hull / triangles
for n = 1:3 %Always 3 because of triangulization
toa_L_ip(1,nPoint) = toa_L_ip(1,nPoint) + bw(n)*toa_L(1,idx_bw(n));
toa_R_ip(1,nPoint) = toa_R_ip(1,nPoint) + bw(n)*toa_R(1,idx_bw(n));
end
end
end
%Also interpolate Phase if ppMethod = 'MagPhase'
if strcmp(ppMethod,'MagPhase')
pHRTF_L_ph_ip = zeros(size(ipSamplingGrid,1),length(f));
pHRTF_R_ph_ip = zeros(size(ipSamplingGrid,1),length(f));
for nPoint = 1:size(ipSamplingGrid,1)
[intersect, ~, u, v, ~] = TriangleRayIntersection(orig, ipSamplingGrid_cart(nPoint,:), convHullHRTF_A, convHullHRTF_B, convHullHRTF_C, 'border', 'inclusive');
intersectIdx = find(intersect, 1, 'first'); %Evaluate first intersection point
u = u(intersectIdx); v = v(intersectIdx); w = 1-u-v;
bw = [w u v]; %Barycentric weights
idx_bw = convHullIdx(intersectIdx,:); %Indizes of HRTFs of convex hull / triangles
for n = 1:3 %Always 3 because of triangulization
pHRTF_L_ph_ip(nPoint,:) = pHRTF_L_ph_ip(nPoint,:) + bw(n)*pHRTF_L_ph(idx_bw(n),:);
pHRTF_R_ph_ip(nPoint,:) = pHRTF_R_ph_ip(nPoint,:) + bw(n)*pHRTF_R_ph(idx_bw(n),:);
end
end
end
case 'SARITA'
disp('HRTF Interpolation: SARITA')
%SARITA works in time domain - Get pHRIRs from pHRTFs
%Get mirror spectrum
pHRIR_L = AKsingle2bothSidedSpectrum(pHRTF_L.');
pHRIR_R = AKsingle2bothSidedSpectrum(pHRTF_R.');
%Transform to time domain
pHRIR_L = real(ifft(pHRIR_L));
pHRIR_R = real(ifft(pHRIR_R));
%Zero padding so that the output of SARITA is for sure containing all relevant samples
pHRIR_L_tmp=[pHRIR_L.', zeros(size(pHRIR_L.'))];
pHRIR_R_tmp=[pHRIR_R.', zeros(size(pHRIR_R.'))];
%Perform interpolation using SARITA function
[pHRIR_L_ip_tmp, ~] = Sarita_upsampling(pHRIR_L_tmp, samplingGrid(:,1:2)/(360/2/pi), ipSamplingGrid(:,1:2)/(360/2/pi), headRadius*1.2, 'frame_length', floor(size(pHRIR_L,1)/2), 'frame_overlap', 1);
[pHRIR_R_ip_tmp, ~] = Sarita_upsampling(pHRIR_R_tmp, samplingGrid(:,1:2)/(360/2/pi), ipSamplingGrid(:,1:2)/(360/2/pi), headRadius*1.2, 'frame_length', floor(size(pHRIR_R,1)/2), 'frame_overlap', 1);
%Remove zeros again
pHRIR_L_ip=pHRIR_L_ip_tmp(:,1:size(pHRIR_L,1)).';
pHRIR_R_ip=pHRIR_R_ip_tmp(:,1:size(pHRIR_L,1)).';
%Transform to frequency domain
pHRTF_L_ip=fft(pHRIR_L_ip, [], 1);
pHRTF_L_ip=pHRTF_L_ip(1:round(end/2)+1,:).';
pHRTF_R_ip=fft(pHRIR_R_ip, [], 1);
pHRTF_R_ip=pHRTF_R_ip(1:round(end/2)+1,:).';
clear pHRIR_L_tmp pHRIR_R_tmp pHRIR_L_ip_tmp pHRIR_R_ip_tmp
end
%Save intermediate result (interpolated pre-processed HRTFs) in output struct
interpHRTFset.p.pHRTF_L_ip = pHRTF_L_ip;
interpHRTFset.p.pHRTF_R_ip = pHRTF_R_ip;
if strcmp(ppMethod,'OBTA')
interpHRTFset.p.toa_L_ip = toa_L_ip;
interpHRTFset.p.toa_R_ip = toa_R_ip;
end
if strcmp(ppMethod,'MagPhase')
interpHRTFset.p.pHRTF_L_ph_ip = pHRTF_L_ph_ip;
interpHRTFset.p.pHRTF_R_ph_ip = pHRTF_R_ph_ip;
end
%% Perform postprocessing
switch ppMethod
case 'SUpDEq'
disp('Postprocessing: SUpDEq')
%Apply SUpDEq - De-Equalize interpolated HRTFs
%Get De-Equalization functions
[deqTF_L,deqTF_R] = supdeq_getEqTF(eqDataset,ipSamplingGrid,'DEG',2,'ak',false);
%De-Equalize
HRTF_L_ip = pHRTF_L_ip.*deqTF_L;
HRTF_R_ip = pHRTF_R_ip.*deqTF_R;
case 'SUpDEq_Lim'
disp('Postprocessing: SUpDEq_Lim')
%Apply SUpDEq - De-Equalize interpolated HRTFs
%Get De-Equalization functions of limited eqDataset
[deqTF_L,deqTF_R] = supdeq_getEqTF(eqDataset,ipSamplingGrid,'DEG',2,'ak',false);
%De-Equalize
HRTF_L_ip = pHRTF_L_ip.*deqTF_L;
HRTF_R_ip = pHRTF_R_ip.*deqTF_R;
case 'SUpDEq_AP'
disp('Postprocessing: SUpDEq_AP')
%Apply SUpDEq_AP - De-Equalize interpolated HRTFs with rigid sphere allpass functions
%Get De-Equalization functions
[deqTF_L,deqTF_R] = supdeq_getEqTF(eqDataset,ipSamplingGrid,'DEG',2,'ak',true);
%De-Equalize
HRTF_L_ip = pHRTF_L_ip.*deqTF_L;
HRTF_R_ip = pHRTF_R_ip.*deqTF_R;
case 'SUpDEq_Lim_AP'
disp('Postprocessing: SUpDEq_Lim_AP')
%Apply SUpDEq_Lim_AP - De-Equalize interpolated HRTFs with limited rigid sphere allpass functions
%Get De-Equalization functions of limited eqDataset
[deqTF_L,deqTF_R] = supdeq_getEqTF(eqDataset,ipSamplingGrid,'DEG',2,'ak',true);
%De-Equalize
HRTF_L_ip = pHRTF_L_ip.*deqTF_L;
HRTF_R_ip = pHRTF_R_ip.*deqTF_R;
case 'PC'
disp('Postprocessing: PC')
%Apply Inverse Phase-Correction
%Transform interpolation sampling grid to radiant
sg = ipSamplingGrid * pi / 180;
%Get inverse phase correction term for left/right ear according to Eq. 13 in [4]
cosThetaL = cos(sg(:,2)')*cos(pi/2) + sin(sg(:,2)')*sin(pi/2) .* cos(sg(:,1)'-pi/2);
%No minus before 1j to get inverse phase term. Could also be achieved by division instead of multiplication
phaseCorL = exp(1j*headRadius * k .* cosThetaL);
cosThetaR = cos(sg(:,2)')*cos(pi/2) + sin(sg(:,2)')*sin(pi/2) .* cos(sg(:,1)'+pi/2);
%No minus before 1j to get inverse phase term. Could also be achieved by division instead of multiplication
phaseCorR = exp(1j*headRadius * k .* cosThetaR);
%Apply to interpolated HRTFs
HRTF_L_ip = pHRTF_L_ip .* phaseCorL.'; %Just transpose, no conjugate complex
HRTF_R_ip = pHRTF_R_ip .* phaseCorR.';
case 'OBTA'
disp('Postprocessing: OBTA')
%Re-Insert interpolated TOAs with fractional delays
%Get interpolated HRIRs
pHRIR_L_ip = AKsingle2bothSidedSpectrum(pHRTF_L_ip.');
pHRIR_R_ip = AKsingle2bothSidedSpectrum(pHRTF_R_ip.');
pHRIR_L_ip = real(ifft(pHRIR_L_ip));
pHRIR_R_ip = real(ifft(pHRIR_R_ip));
%Re-Insert TOAs with fractional delays
HRIR_L_ip = AKfractionalDelayCyclic(pHRIR_L_ip, toa_L_ip);
HRIR_R_ip = AKfractionalDelayCyclic(pHRIR_R_ip, toa_R_ip);
%Transform back to frequency domain
HRTF_L_ip = AKboth2singleSidedSpectrum(fft(HRIR_L_ip)).';
HRTF_R_ip = AKboth2singleSidedSpectrum(fft(HRIR_R_ip)).';
case 'MagPhase'
disp('Postprocessing: MagPhase')
%Combine magnitude and phase of interpolated HRTFs again
HRTF_L_ip = pHRTF_L_ip.*exp(1i*pHRTF_L_ph_ip);
HRTF_R_ip = pHRTF_R_ip.*exp(1i*pHRTF_R_ph_ip);
case 'None'
disp('Postprocessing: None')
%Simply copy pHRTF_L_ip to HRTF_L_ip - Easier for further processing
HRTF_L_ip = pHRTF_L_ip;
HRTF_R_ip = pHRTF_R_ip;
end
%% Correct magnitude if mc ~= nan
if ~isnan(mc)
disp('MC postprocessing');
%Save intermediate result (interpolated HRTFs without mc) in output struct
interpHRTFset.p.HRTF_L_ip_noMC = HRTF_L_ip;
interpHRTFset.p.HRTF_R_ip_noMC = HRTF_R_ip;
%Get input HRTFs in auditory bands (ERB filter)
fLowErb = 50;
[cl,ferb] = AKerbErrorPersistent(HRIR_L(1:hrirLength,:),AKdirac(hrirLength),[fLowErb fs/2],fs);
[cr] = AKerbErrorPersistent(HRIR_R(1:hrirLength,:),AKdirac(hrirLength),[fLowErb fs/2],fs);
%Interpolate ERB filters to ipSamplingGrid with respective ipMethod
switch ipMethod
case 'SH'
%Transform ERB filters to SH domain
%Tikhonov regularization can be applied if weights in sampling grid are erased and tikhEps ~= 0
cl_nm = AKsht(cl, false, samplingGrid, HRTFset.Nmax, 'complex', fs, false, 'real',tikhEps);
cr_nm = AKsht(cr, false, samplingGrid, HRTFset.Nmax, 'complex', fs, false, 'real',tikhEps);
%Apply SH interpolation to ipSamplingGrid
cl_ip = AKisht(cl_nm, false, ipSamplingGrid(:,1:2), 'complex', false, false, 'real');
cr_ip = AKisht(cr_nm, false, ipSamplingGrid(:,1:2), 'complex', false, false, 'real');
case {'NN','SARITA'} %NN and SARITA handled the same, as SARITA uses NN interpolation
%Transform grids to cartesian coordinates
[samplingGrid_cart(:,1), samplingGrid_cart(:,2), samplingGrid_cart(:,3)] = sph2cart(samplingGrid(:,1)/360*2*pi, pi/2-samplingGrid(:,2)/360*2*pi,1);
[ipSamplingGrid_cart(:,1), ipSamplingGrid_cart(:,2), ipSamplingGrid_cart(:,3)] = sph2cart(ipSamplingGrid(:,1)/360*2*pi, pi/2-ipSamplingGrid(:,2)/360*2*pi,1);
%NN interpolate ERB filters to ipSamplingGrid
cl_ip = zeros(length(ferb),size(ipSamplingGrid,1));
cr_ip = zeros(length(ferb),size(ipSamplingGrid,1));
for nPoint = 1:size(ipSamplingGrid,1)
[idx_voronoi,w_voronoi] = findvoronoi(samplingGrid_cart,ipSamplingGrid_cart(nPoint,:));
for n = 1:length(idx_voronoi)
cl_ip(:,nPoint) = cl_ip(:,nPoint) + w_voronoi(n)*cl(:,idx_voronoi(n));
cr_ip(:,nPoint) = cr_ip(:,nPoint) + w_voronoi(n)*cr(:,idx_voronoi(n));
end
end
case 'Bary'
%Transform grids to cartesian coordinates
[samplingGrid_cart(:,1), samplingGrid_cart(:,2), samplingGrid_cart(:,3)] = sph2cart(samplingGrid(:,1)/360*2*pi, pi/2-samplingGrid(:,2)/360*2*pi,1);
[ipSamplingGrid_cart(:,1), ipSamplingGrid_cart(:,2), ipSamplingGrid_cart(:,3)] = sph2cart(ipSamplingGrid(:,1)/360*2*pi, pi/2-ipSamplingGrid(:,2)/360*2*pi,1);
%Get simplified convex hull (could also be done after delaunay-triangulation)
convHullIdx = convhull(samplingGrid_cart(:,1), samplingGrid_cart(:,2), samplingGrid_cart(:,3), 'simplify', true);
%Get HRTFs / directions assigned to convex hull triangles
convHullHRTF_A = samplingGrid_cart(convHullIdx(:,1),:);
convHullHRTF_B = samplingGrid_cart(convHullIdx(:,2),:);
convHullHRTF_C = samplingGrid_cart(convHullIdx(:,3),:);
%Interpolate with barycentric weights
%Right triangle of convex hull picked by ray-triangle intersection test (intersectLinePolygon3d from geom3D toolbox should work too)
%Function returns barycentric weights / coordinates u and v of the intersection point -> w = 1-u-v
%P = w*A + u*B + v*C
orig = [0 0 0];
cl_ip = zeros(length(ferb),size(ipSamplingGrid,1));
cr_ip = zeros(length(ferb),size(ipSamplingGrid,1));
for nPoint = 1:size(ipSamplingGrid,1)
[intersect, ~, u, v, ~] = TriangleRayIntersection(orig, ipSamplingGrid_cart(nPoint,:), convHullHRTF_A, convHullHRTF_B, convHullHRTF_C, 'border', 'inclusive');
intersectIdx = find(intersect, 1, 'first'); %Evaluate first intersection point
u = u(intersectIdx); v = v(intersectIdx); w = 1-u-v;
bw = [w u v]; %Barycentric weights
idx_bw = convHullIdx(intersectIdx,:); %Indizes of HRTFs of convex hull / triangles
for n = 1:3 %Always 3 because of triangulization
cl_ip(:,nPoint) = cl_ip(:,nPoint) + bw(n)*cl(:,idx_bw(n));
cr_ip(:,nPoint) = cr_ip(:,nPoint) + bw(n)*cr(:,idx_bw(n));
end
end
end
%Save interpolated ERBs in 3D-array for further processing
c_ip(:,:,1) = cl_ip;
c_ip(:,:,2) = cr_ip;
%Get interpolated HRTFs in auditory bands (ERB filter)
HRIR_L_ip = AKsingle2bothSidedSpectrum(HRTF_L_ip.');
HRIR_R_ip = AKsingle2bothSidedSpectrum(HRTF_R_ip.');
HRIR_ip(:,:,1) = real(ifft(HRIR_L_ip));
HRIR_ip(:,:,2) = real(ifft(HRIR_R_ip));
HRIR_ip = HRIR_ip(1:hrirLength,:,:);
%Save in 3D-array for further processing
c_hrir_ip = AKerbErrorPersistent(HRIR_ip,AKdirac(size(HRIR_ip,1)),[fLowErb fs/2],fs);
%Get correction filters for all HRTFs
corrFilt = c_ip-c_hrir_ip;
%Spline interpolate correction filters to 0-fs/2
corrFilt_l = AKinterpolateSpectrum( squeeze(corrFilt(:,:,1)), ferb, NFFT, {'nearest' 'spline' 'nearest'}, fs);
corrFilt_r = AKinterpolateSpectrum( squeeze(corrFilt(:,:,2)), ferb, NFFT, {'nearest' 'spline' 'nearest'}, fs);
%Limit to f > fA (set to 0 below fA) if desired
if limitMC
%Get spatial alasing frequency
fA = HRTFset.Nmax*c/2/pi/headRadius;
disp(['MC postprocessing limited to f > fA, with fA = ',num2str(round(fA,2)),'Hz']);
if strcmp(limFade,'fadeDown')
disp('MC fade downwards');
%Get third-octave below fA
fAt = fA/2^(1/3);
%Set to 0 (logarithmic) below fAt and apply linear fade from fAt to fA
[~,fA_bin] = min(abs(HRTFset.f-fA));
[~,fAt_bin] = min(abs(HRTFset.f-fAt));
ramp = linspace(0,1,abs(fA_bin-fAt_bin)+1);
corrFilt_l(1:fAt_bin-1,:) = 0;
corrFilt_l(fAt_bin:fA_bin,:) = corrFilt_l(fAt_bin:fA_bin,:).*ramp.';
corrFilt_r(1:fAt_bin-1,:) = 0;
corrFilt_r(fAt_bin:fA_bin,:) = corrFilt_r(fAt_bin:fA_bin,:).*ramp.';
end
if strcmp(limFade,'fadeUp')
disp('MC fade upwards');
%Get third-octave above fA
fAt = fA*2^(1/3);
%Set to 0 (logarithmic) below fA and apply linear fade from fA to fAt
[~,fA_bin] = min(abs(HRTFset.f-fA));
[~,fAt_bin] = min(abs(HRTFset.f-fAt));
ramp = linspace(0,1,abs(fAt_bin-fA_bin)+1);
corrFilt_l(1:fA_bin-1,:) = 0;
corrFilt_l(fA_bin:fAt_bin,:) = corrFilt_l(fA_bin:fAt_bin,:).*ramp.';
corrFilt_r(1:fA_bin-1,:) = 0;
corrFilt_r(fA_bin:fAt_bin,:) = corrFilt_r(fA_bin:fAt_bin,:).*ramp.';
end
end
%Transform to linear values
corrFilt_l = 10.^(corrFilt_l/20);
corrFilt_r = 10.^(corrFilt_r/20);
if ~isinf(mc)
%Apply soft-limiting to correction filters according to mc if not inf
disp(['MC maximum boost: ',num2str(mc),'dB'])
disp(['MC soft-limiting knee: ',num2str(mcKnee),'dB'])
corrFilt_l_lim = AKsoftLimit(corrFilt_l, mc, mcKnee,[0 fs/2], fs, true);
corrFilt_r_lim = AKsoftLimit(corrFilt_r, mc, mcKnee,[0 fs/2], fs, true);
else %No soft-limiting / Unlimited gain
disp('MC maximum boost: inf')
corrFilt_l_lim = corrFilt_l;
corrFilt_r_lim = corrFilt_r;
end
%Design minimum phase filters and use for correction instead of zero
%phase filters (if mcMinPhase = false)
if mcMinPhase
disp('MC phase: minimum');
corrFilt_l_lim = AKsingle2bothSidedSpectrum(corrFilt_l_lim);
corrFilt_r_lim = AKsingle2bothSidedSpectrum(corrFilt_r_lim);
corrFilt_l_lim = real(ifft(corrFilt_l_lim));
corrFilt_r_lim = real(ifft(corrFilt_r_lim));
corrFilt_l_lim = AKphaseManipulation(corrFilt_l_lim,fs,'min',1,0);
corrFilt_r_lim = AKphaseManipulation(corrFilt_r_lim,fs,'min',1,0);
%Go back to frequency domain
corrFilt_l_lim = AKboth2singleSidedSpectrum(fft(corrFilt_l_lim));
corrFilt_r_lim = AKboth2singleSidedSpectrum(fft(corrFilt_r_lim));
else
disp('MC phase: zero');
end
%Write in 3D array
corrFilt_lim(:,:,1) = corrFilt_l_lim;
corrFilt_lim(:,:,2) = corrFilt_r_lim;
%Save intermediate results (correction filter) in output struct
interpHRTFset.p.corrFilt_lim = corrFilt_lim;
%Apply magnitude correction filters to HRTFs
HRTF_L_ip = HRTF_L_ip.*corrFilt_lim(:,:,1).';
HRTF_R_ip = HRTF_R_ip.*corrFilt_lim(:,:,2).';
end
%% Write result in struct
%Get final HRIRs
HRIR_L_ip = AKsingle2bothSidedSpectrum(HRTF_L_ip.');
HRIR_R_ip = AKsingle2bothSidedSpectrum(HRTF_R_ip.');
HRIR_L_ip = real(ifft(HRIR_L_ip));
HRIR_R_ip = real(ifft(HRIR_R_ip));
%Cut zeros depending on FFToversize
HRIR_L_ip = HRIR_L_ip(1:hrirLength,:);
HRIR_R_ip = HRIR_R_ip(1:hrirLength,:);
interpHRTFset.HRTF_L = HRTF_L_ip;
interpHRTFset.HRTF_R = HRTF_R_ip;
interpHRTFset.HRIR_L = HRIR_L_ip;
interpHRTFset.HRIR_R = HRIR_R_ip;
interpHRTFset.f = HRTFset.f;
interpHRTFset.fs = fs;
interpHRTFset.FFToversize = HRTFset.FFToversize;
interpHRTFset.samplingGrid = ipSamplingGrid;
interpHRTFset.headRadius = headRadius;
interpHRTFset.ppMethod = ppMethod;
interpHRTFset.ipMethod = ipMethod;
interpHRTFset.headRadius = headRadius;
if tikhEps ~= 0
interpHRTFset.tikhEps = tikhEps;
end
if ~isnan(mc)
interpHRTFset.mc = mc;
interpHRTFset.mcKnee = mcKnee;
interpHRTFset.mcMinPhase = mcMinPhase;
if limitMC
interpHRTFset.limitMC = 1;
interpHRTFset.limitMC_fA = fA;
interpHRTFset.limitMC_fAt = fAt;
interpHRTFset.limitMC_fade = limFade;
end
end
disp('Done...');
end