-
Notifications
You must be signed in to change notification settings - Fork 18
/
formating.py
executable file
·303 lines (258 loc) · 13 KB
/
formating.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import numpy as np
from mmcv.parallel import DataContainer as DC
from mmdet3d.core.bbox import BaseInstance3DBoxes
from mmdet3d.core.points import BasePoints
from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines import to_tensor
PIPELINES._module_dict.pop('DefaultFormatBundle')
@PIPELINES.register_module()
class DefaultFormatBundle(object):
"""Default formatting bundle.
It simplifies the pipeline of formatting common fields, including "img",
"proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg".
These fields are formatted as follows.
- img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
- proposals: (1)to tensor, (2)to DataContainer
- gt_bboxes: (1)to tensor, (2)to DataContainer
- gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
- gt_labels: (1)to tensor, (2)to DataContainer
- gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True)
- gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \
(3)to DataContainer (stack=True)
"""
def __init__(self, ):
return
def __call__(self, results):
"""Call function to transform and format common fields in results.
Args:
results (dict): Result dict contains the data to convert.
Returns:
dict: The result dict contains the data that is formatted with
default bundle.
"""
if 'img' in results:
if isinstance(results['img'], list):
# process multiple imgs in single frame
imgs = [img.transpose(2, 0, 1) for img in results['img']]
imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
results['img'] = DC(to_tensor(imgs), stack=True)
else:
img = np.ascontiguousarray(results['img'].transpose(2, 0, 1))
results['img'] = DC(to_tensor(img), stack=True)
if 'depth' in results:
if isinstance(results['depth'], list):
# process multiple imgs in single frame
imgs = [img for img in results['depth']]
imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
results['depth'] = DC(to_tensor(imgs), stack=True)
else:
img = np.ascontiguousarray(results['depth'])
results['depth'] = DC(to_tensor(img), stack=True)
if 'ray_info' in results:
if isinstance(results['raydirs'], list):
raydirs = [raydir for raydir in results['raydirs']]
raydirs = np.ascontiguousarray(np.stack(raydirs, axis=0))
results['raydirs'] = DC(to_tensor(raydirs), stack=True)
if isinstance(results['lightpos'], list):
lightposes = [lightpos for lightpos in results['lightpos']]
lightposes = np.ascontiguousarray(np.stack(lightposes, axis=0))
lightposes = to_tensor(lightposes)
lightposes = lightposes.unsqueeze(1).repeat(1, raydirs.shape[1], 1)
results['lightpos'] = DC(lightposes, stack=True)
if isinstance(results['gt_images'], list):
gt_images = [gt_image for gt_image in results['gt_images']]
gt_images = np.ascontiguousarray(np.stack(gt_images, axis=0))
results['gt_images'] = DC(to_tensor(gt_images), stack=True)
if isinstance(results['gt_depths'], list) and len(results['gt_depths'])!=0:
gt_depths = [gt_depth for gt_depth in results['gt_depths']]
gt_depths = np.ascontiguousarray(np.stack(gt_depths, axis=0))
results['gt_depths'] = DC(to_tensor(gt_depths), stack=True)
if isinstance(results['denorm_images'], list):
# process multiple imgs in single frame
imgs = [img.transpose(2, 0, 1) for img in results['denorm_images']]
imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
results['denorm_images'] = DC(to_tensor(imgs).float(), stack=True)
for key in [
'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels',
'gt_labels_3d', 'pts_instance_mask', 'pts_semantic_mask'
]:
if key not in results:
continue
if isinstance(results[key], list):
results[key] = DC([to_tensor(res) for res in results[key]])
else:
results[key] = DC(to_tensor(results[key]))
if 'gt_bboxes_3d' in results:
if isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes):
results['gt_bboxes_3d'] = DC(
results['gt_bboxes_3d'], cpu_only=True)
else:
results['gt_bboxes_3d'] = DC(
to_tensor(results['gt_bboxes_3d']))
if 'gt_masks' in results:
results['gt_masks'] = DC(results['gt_masks'], cpu_only=True)
if 'gt_semantic_seg' in results:
results['gt_semantic_seg'] = DC(
to_tensor(results['gt_semantic_seg'][None, ...]), stack=True)
return results
def __repr__(self):
return self.__class__.__name__
@PIPELINES.register_module()
class Collect3D(object):
"""Collect data from the loader relevant to the specific task.
This is usually the last stage of the data loader pipeline. Typically keys
is set to some subset of "img", "proposals", "gt_bboxes",
"gt_bboxes_ignore", "gt_labels", and/or "gt_masks".
The "img_meta" item is always populated. The contents of the "img_meta"
dictionary depends on "meta_keys". By default this includes:
- 'img_shape': shape of the image input to the network as a tuple \
(h, w, c). Note that images may be zero padded on the \
bottom/right if the batch tensor is larger than this shape.
- 'scale_factor': a float indicating the preprocessing scale
- 'flip': a boolean indicating if image flip transform was used
- 'filename': path to the image file
- 'ori_shape': original shape of the image as a tuple (h, w, c)
- 'pad_shape': image shape after padding
- 'lidar2img': transform from lidar to image
- 'pcd_horizontal_flip': a boolean indicating if point cloud is \
flipped horizontally
- 'pcd_vertical_flip': a boolean indicating if point cloud is \
flipped vertically
- 'box_mode_3d': 3D box mode
- 'box_type_3d': 3D box type
- 'img_norm_cfg': a dict of normalization information:
- mean: per channel mean subtraction
- std: per channel std divisor
- to_rgb: bool indicating if bgr was converted to rgb
- 'rect': rectification matrix
- 'Trv2c': transformation from velodyne to camera coordinate
- 'P2': transformation betweeen cameras
- 'pcd_trans': point cloud transformations
- 'sample_idx': sample index
- 'pcd_scale_factor': point cloud scale factor
- 'pcd_rotation': rotation applied to point cloud
- 'pts_filename': path to point cloud file.
Args:
keys (Sequence[str]): Keys of results to be collected in ``data``.
meta_keys (Sequence[str], optional): Meta keys to be converted to
``mmcv.DataContainer`` and collected in ``data[img_metas]``.
Default: ('filename', 'ori_shape', 'img_shape', 'lidar2img', \
'pad_shape', 'scale_factor', 'flip', 'pcd_horizontal_flip', \
'pcd_vertical_flip', 'box_mode_3d', 'box_type_3d', \
'img_norm_cfg', 'rect', 'Trv2c', 'P2', 'pcd_trans', \
'sample_idx', 'pcd_scale_factor', 'pcd_rotation', 'pts_filename')
"""
def __init__(self,
keys,
meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img',
'pad_shape', 'scale_factor', 'flip',
'pcd_horizontal_flip', 'pcd_vertical_flip',
'box_mode_3d', 'box_type_3d', 'img_norm_cfg',
'rect', 'Trv2c', 'P2', 'pcd_trans', 'sample_idx',
'pcd_scale_factor', 'pcd_rotation',
'pts_filename')):
self.keys = keys
self.meta_keys = meta_keys
def __call__(self, results):
"""Call function to collect keys in results. The keys in ``meta_keys``
will be converted to :obj:`mmcv.DataContainer`.
Args:
results (dict): Result dict contains the data to collect.
Returns:
dict: The result dict contains the following keys
- keys in ``self.keys``
- ``img_metas``
"""
data = {}
img_metas = {}
for key in self.meta_keys:
if key in results:
img_metas[key] = results[key]
data['img_metas'] = DC(img_metas, cpu_only=True)
for key in self.keys:
data[key] = results[key]
return data
def __repr__(self):
"""str: Return a string that describes the module."""
return self.__class__.__name__ + '(keys={}, meta_keys={})'.format(
self.keys, self.meta_keys)
@PIPELINES.register_module()
class DefaultFormatBundle3D(DefaultFormatBundle):
"""Default formatting bundle.
It simplifies the pipeline of formatting common fields for voxels,
including "proposals", "gt_bboxes", "gt_labels", "gt_masks" and
"gt_semantic_seg".
These fields are formatted as follows.
- img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True)
- proposals: (1)to tensor, (2)to DataContainer
- gt_bboxes: (1)to tensor, (2)to DataContainer
- gt_bboxes_ignore: (1)to tensor, (2)to DataContainer
- gt_labels: (1)to tensor, (2)to DataContainer
"""
def __init__(self, class_names, with_gt=True, with_label=True):
super(DefaultFormatBundle3D, self).__init__()
self.class_names = class_names
self.with_gt = with_gt
self.with_label = with_label
def __call__(self, results):
"""Call function to transform and format common fields in results.
Args:
results (dict): Result dict contains the data to convert.
Returns:
dict: The result dict contains the data that is formatted with
default bundle.
"""
# Format 3D data
if 'points' in results:
assert isinstance(results['points'], BasePoints)
results['points'] = DC(results['points'].tensor)
for key in ['voxels', 'coors', 'voxel_centers', 'num_points']:
if key not in results:
continue
results[key] = DC(to_tensor(results[key]), stack=False)
if self.with_gt:
# Clean GT bboxes in the final
if 'gt_bboxes_3d_mask' in results:
gt_bboxes_3d_mask = results['gt_bboxes_3d_mask']
results['gt_bboxes_3d'] = results['gt_bboxes_3d'][
gt_bboxes_3d_mask]
if 'gt_names_3d' in results:
results['gt_names_3d'] = results['gt_names_3d'][
gt_bboxes_3d_mask]
if 'gt_bboxes_mask' in results:
gt_bboxes_mask = results['gt_bboxes_mask']
if 'gt_bboxes' in results:
results['gt_bboxes'] = results['gt_bboxes'][gt_bboxes_mask]
results['gt_names'] = results['gt_names'][gt_bboxes_mask]
if self.with_label:
if 'gt_names' in results and len(results['gt_names']) == 0:
results['gt_labels'] = np.array([], dtype=np.int64)
elif 'gt_names' in results and isinstance(
results['gt_names'][0], list):
# gt_labels might be a list of list in multi-view setting
results['gt_labels'] = [
np.array([self.class_names.index(n) for n in res],
dtype=np.int64) for res in results['gt_names']
]
elif 'gt_names' in results:
results['gt_labels'] = np.array([
self.class_names.index(n) for n in results['gt_names']
],
dtype=np.int64)
# we still assume one pipeline for one frame LiDAR
# thus, the 3D name is list[string]
if 'gt_names_3d' in results:
results['gt_labels_3d'] = np.array([
self.class_names.index(n)
for n in results['gt_names_3d']
],
dtype=np.int64)
results = super(DefaultFormatBundle3D, self).__call__(results)
return results
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += '(class_names={}, '.format(self.class_names)
repr_str += 'with_gt={}, with_label={})'.format(
self.with_gt, self.with_label)
return repr_str