Skip to content
This repository has been archived by the owner on Oct 31, 2023. It is now read-only.

how can I do the final hashtag prediction using the pretrained model? #14

Open
vyaslkv opened this issue Jul 30, 2020 · 0 comments
Open

Comments

@vyaslkv
Copy link

vyaslkv commented Jul 30, 2020

import torch
model = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x8d_wsl')
# sample execution (requires torchvision)
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
from PIL import Image
from torchvision import transforms
# filename='/home/lalit/notebooks/Lalit/image_caption/pytorch-tutorial/tutorials/03-advanced/image_captioning/png/5e96fea74a01a44750ff4d36.png'
input_image = Image.open(filename)
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

# move the input and model to GPU for speed if available
if torch.cuda.is_available():
    input_batch = input_batch.to('cuda')
    model.to('cuda')

with torch.no_grad():
    output = model(input_batch)
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
# print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
print(torch.nn.functional.softmax(output[0], dim=0))
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant