-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
test_ivflib.py
182 lines (139 loc) · 5.41 KB
/
test_ivflib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function
import unittest
import faiss
import numpy as np
class TestIVFlib(unittest.TestCase):
def test_methods_exported(self):
methods = ['check_compatible_for_merge', 'extract_index_ivf',
'merge_into', 'search_centroid',
'search_and_return_centroids', 'get_invlist_range',
'set_invlist_range', 'search_with_parameters']
for method in methods:
assert callable(getattr(faiss, method, None))
def search_single_scan(index, xq, k, bs=128):
"""performs a search so that the inverted lists are accessed
sequentially by blocks of size bs"""
# handle pretransform
if isinstance(index, faiss.IndexPreTransform):
xq = index.apply_py(xq)
index = faiss.downcast_index(index.index)
# coarse assignment
nprobe = min(index.nprobe, index.nlist)
coarse_dis, assign = index.quantizer.search(xq, nprobe)
nlist = index.nlist
assign_buckets = assign // bs
nq = len(xq)
rh = faiss.ResultHeap(nq, k)
index.parallel_mode |= index.PARALLEL_MODE_NO_HEAP_INIT
for l0 in range(0, nlist, bs):
bucket_no = l0 // bs
skip_rows, skip_cols = np.where(assign_buckets != bucket_no)
sub_assign = assign.copy()
sub_assign[skip_rows, skip_cols] = -1
index.search_preassigned(
xq, k, sub_assign, coarse_dis,
D=rh.D, I=rh.I
)
rh.finalize()
return rh.D, rh.I
class TestSequentialScan(unittest.TestCase):
def test_sequential_scan(self):
d = 20
index = faiss.index_factory(d, 'IVF100,SQ8')
rs = np.random.RandomState(123)
xt = rs.rand(5000, d).astype('float32')
xb = rs.rand(10000, d).astype('float32')
index.train(xt)
index.add(xb)
k = 15
xq = rs.rand(200, d).astype('float32')
ref_D, ref_I = index.search(xq, k)
D, I = search_single_scan(index, xq, k, bs=10)
assert np.all(D == ref_D)
assert np.all(I == ref_I)
class TestSearchWithParameters(unittest.TestCase):
def test_search_with_parameters(self):
d = 20
index = faiss.index_factory(d, 'IVF100,SQ8')
rs = np.random.RandomState(123)
xt = rs.rand(5000, d).astype('float32')
xb = rs.rand(10000, d).astype('float32')
index.train(xt)
index.nprobe = 3
index.add(xb)
k = 15
xq = rs.rand(200, d).astype('float32')
stats = faiss.cvar.indexIVF_stats
stats.reset()
Dref, Iref = index.search(xq, k)
ref_ndis = stats.ndis
# make sure the nprobe used is the one from params not the one
# set in the index
index.nprobe = 1
params = faiss.IVFSearchParameters()
params.nprobe = 3
Dnew, Inew, stats2 = faiss.search_with_parameters(
index, xq, k, params, output_stats=True)
np.testing.assert_array_equal(Inew, Iref)
np.testing.assert_array_equal(Dnew, Dref)
self.assertEqual(stats2["ndis"], ref_ndis)
def test_range_search_with_parameters(self):
d = 20
index = faiss.index_factory(d, 'IVF100,SQ8')
rs = np.random.RandomState(123)
xt = rs.rand(5000, d).astype('float32')
xb = rs.rand(10000, d).astype('float32')
index.train(xt)
index.nprobe = 3
index.add(xb)
xq = rs.rand(200, d).astype('float32')
Dpre, _ = index.search(xq, 15)
radius = float(np.median(Dpre[:, -1]))
stats = faiss.cvar.indexIVF_stats
stats.reset()
Lref, Dref, Iref = index.range_search(xq, radius)
ref_ndis = stats.ndis
# make sure the nprobe used is the one from params not the one
# set in the index
index.nprobe = 1
params = faiss.IVFSearchParameters()
params.nprobe = 3
Lnew, Dnew, Inew, stats2 = faiss.range_search_with_parameters(
index, xq, radius, params, output_stats=True)
np.testing.assert_array_equal(Lnew, Lref)
np.testing.assert_array_equal(Inew, Iref)
np.testing.assert_array_equal(Dnew, Dref)
self.assertEqual(stats2["ndis"], ref_ndis)
class TestSmallData(unittest.TestCase):
"""Test in case of nprobe > nlist."""
def test_small_data(self):
d = 20
# nlist = (2^4)^2 = 256
index = faiss.index_factory(d, 'IMI2x4,Flat')
# When nprobe >= nlist, it is equivalent to an IndexFlat.
rs = np.random.RandomState(123)
xt = rs.rand(100, d).astype('float32')
xb = rs.rand(1000, d).astype('float32')
index.train(xt)
index.add(xb)
index.nprobe = 2048
k = 5
xq = rs.rand(10, d).astype('float32')
# test kNN search
D, I = index.search(xq, k)
ref_D, ref_I = faiss.knn(xq, xb, k)
assert np.all(D == ref_D)
assert np.all(I == ref_I)
# test range search
thresh = 0.1 # *squared* distance
lims, D, I = index.range_search(xq, thresh)
ref_index = faiss.IndexFlat(d)
ref_index.add(xb)
ref_lims, ref_D, ref_I = ref_index.range_search(xq, thresh)
assert np.all(lims == ref_lims)
assert np.all(D == ref_D)
assert np.all(I == ref_I)