Multi-Level Quickening

Stefan Brunthaler
HUCSRL - Munich Computer Systems Research Laboratory
CODE - National Cyber Defense Research Institute
UniBwM - Universitat der Bundeswehr Minchen

brunthaler@unibw.de

Science progresses through paradigm shift

Kuhn's Structure of Scientific Revolutions

Science progresses through paradigm shifts

Kuhn's Structure of Scientific Revolutions

« Progress in normal science reveals anomalies.

Science progresses through paradigm shifts

Kuhn's Structure of Scientific Revolutions

« Progress in normal science reveals anomalies.

 Anomalies cannot be explained satisfactorily by
existing paradigm.

Science progresses through paradigm shifts

Kuhn's Structure of Scientific Revolutions

« Progress in normal science reveals anomalies.

 Anomalies cannot be explained satisfactorily by
existing paradigm.

« Paradigm shift: reexamine foundations to devise
new paradigm.

Anatomy of Interpreters

void interpret(code_t *c, object_t =*+*sp) Nomenclature

code_t *1ip= c;
for (;;) { .
opcode_t opcode= xip++; ¢ |ﬂterpretel’ routine

switch (opcode) {

case ADD: * Instruction decoding

object_t u= #*sp--;

object_t v= xsp--; e Instruction dispatch

*SP++= U+V;
break; . .

case LOAD: e Interpreter instruction
object_t o= ...; . .
xspr+= 0] Implementation
break;

default:
printf("error");

}

}
t

Progress in Interpreter Optimization 2008 - 2012

Multi-level Quickening merely the end-product of a
sequence of smaller steps

Progress in Interpreter Optimization 2008 - 2012

Multi-level Quickening merely the end-product of a
sequence of smaller steps

« 2006 — 2008 Existing models of interpreters do
not explain varying optimization potential

Progress in Interpreter Optimization 2008 - 2012

Multi-level Quickening merely the end-product of a
sequence of smaller steps

« 2006 — 2008 Existing models of interpreters do
not explain varying optimization potential

« 2008 - 2010 Efficient Inline Caching in CPython

Progress in Interpreter Optimization 2008 - 2012

Multi-level Quickening merely the end-product of a
sequence of smaller steps

« 2006 — 2008 Existing models of interpreters do
not explain varying optimization potential

« 2008 - 2010 Efficient Inline Caching in CPython
* 2011 = 2012 Multi-Level Quickening

2008: Existing models of interpreter optimizations are
Inadequate

Until 2008 existing models of interpreter
optimizations as follows:

« Efficient Interpreters
* Slow Interpreters

This model is insufficiently powerful to describe
the varying optimization potential of instruction

dispatch based optimizations.

Conflicting evidence: Varying optimization potential
of threaded code.

Threaded code the predominant interpreter
optimization.

Reported speedups vary substantially:

2.0 Efficient interpreters
1.2 Python et al.
0.8 Tcl (sometimes)

Conflicting evidence: Varying optimization potential
of threaded code.

Instruction dispatch couldn’t possibly be the only
source of slowdowns.

2X Inefficient dispatch slowdown
100x = 1000x Inefficient interpreter slowdown

® Instruction dispatch should reduce this to a 50x
slowdown.

Existing paradigm met conflicting evidence, presenting
a classical instance of a Kuhnian scientific progress.

 Conflicting evidence revealed through progress in
Interpreter optimization.

* Single model of efficient interpreters could not
explain the evidence.

« Paradigm shift needed.

Formulation of new model: High vs Low Abstraction
Level Interpreters

Reexamining interpreter foundations led to:

 High Abstraction-Level Interpreters Perl, Python,
JavaScript.

 Low Abstraction-Level Interpreters Java, Forth,
OCaml.

= Crucial step to consider interpreter instruction
Implementation complexity.

Formulation of new model: High vs Low Abstraction
Level Interpreters

Reexamining interpreter foundations led to:

Virtual-
Machine
Abstraction
and
Optimization
Techniques

Stefan
Brunthaler

Slowdown

Comp
Example
Abstraction
Levels
Optimization
Techniques

Abstraction
Level

Low Abstraction
Level VMs

High Abstraction
Level VMs

Virtual-
Machine
Abstraction
and
Optimization
Techniques

Stefan
Brunthaler 1000

Slowdown
Comparative
Example

Abstraction
Levels

Optimization
Techniques

10

Slowdown

Java, OCaml,
Forth

Python, Lua
(Perl, Ruby, etc.)

1 2 3 4 5 6 78910 20 30 40 50 60 70 100 Number of native 1 2 3 4 5 6 78910 20 30 40 50 60 70 100 Number of native
80 machine instructions 80 machine instructions
90 (log scale) 90 (log scale)

Formulation of new model: High vs Low Abstraction
Level Interpreters

Reexamining interpreter foundations led to:

Virtual- Virtual-

Machine Machine
Abstraction Abstraction

'ar.1d . Abstraction ‘ar?d a Slowdown
Optimization Level Optimization
Techniques Techniques

Stefan Stefan

; ; 1000

Buiedlr High Abstraction Brunthaler Python, Lua
Slowdown Level VMs Slowdown (Perl, Ruby, etc.)
Comparative Comparative
Example Example
Abstraction Abstraction
Levels Levels 100
Optimization Optimization
Techniques Techniques

Low Abstraction ol (Java, OCaml,
Level VMs Forth
1 2 3 4 5 678910 20 30 40 50 60 70_ 100 Number of native 1 2 3 4 5 678910 20 30 40 50 60 70 100 Number of native
80 machine instructions 80 machine instructions
90 (log scale) 90 (log scale)

Low Abstraction Level Interpreters Dominated
by Instruction Dispatch Costs

Interpreter instructions closely resemble native
machine semantics and can, therefore, be
Implemented by few machine instructions.

8 — 9 Inefficient instruction dispatch
3 -4 Efficient instruction dispatch

=® Halving dispatch instructions + better utilization of
branch prediction hardware.

High Abstraction Level Interpreters Dominated
by Instruction Implementation Complexity

Interpreter instructions abstract native machine
semantics and cannot be implemented by few
machine instructions.

Overheads due to

* Dynamic typing

« Complex data types (unbounded range integers)
« Reference counting

» Boxed objects

Python Bytecode Interpretation and Threaded Code
Performance

def add(a, b):
return a + b LOAD LOAD BINARY | RETURN

FAST FAST ADD VALUE

case BINARY_ADD:
PyObject =*right= POP();
PyObject =left= TOP();
PyObject *sum= PyNumber_Add(left, right);
SET_TOP(sum);
Py DECREF(left);
Py_DECREF(right);
DISPATCH();

Python Bytecode Interpretation and Threaded Code
Performance

def add(a, b):
return a + b LOAD LOAD BINARY | RETURN

FAST FAST ADD VALUE

§
\\\\\\\\\\\

BBBBBBBBBB

Inline Caching meetings Quickening, 2009 — 2010
ldea & Performance

def add(a, b):
return a + b LOAD LOAD

FAST FAST

RETURN
VALUE

case LONG_ADD:
PyObject *right= POP();
PyObject *left= TOP();
if (!'(Py_CheckExact(left, PyLong_Type)
§5 Py_CheckExact(right, PyLong_Type)))
goto BINARY_ADD_GENERAL;
PyObject *sum= PyLong_Type->long_add(left, right);
SET_TOP(sum);
Py_DECREF(left);
Py_DECREF(right);
DISPATCH();

Inline Caching meetings Quickening, 2009 — 2010
ldea & Performance

def add(a, b):
return a + b LOAD LOAD LONG RETURN

FAST FAST ADD VALUE

BBBBBBBBBB

Multi-Level Quickening, 2010 - 2012, pt. |
ldea & Performance

def add(a, b):
return a + b LONG LONG NAMA LONG

LOAD LOAD ADD RETURN

case LONG_LOAD:
PyObject *x= ...;
if (!'(Py_CheckExact(x, PyLong_Type))
deopt();
uint64_t nm_x= unbox(x)
PUSH(nm_x);
DISPATCH();

Multi-Level Quickening, 2010 - 2012, pt. |
ldea & Performance

def add(a, b):
return a + b LONG LONG NAMA LONG

LOAD LOAD ADD RETURN

case NAMA_ADD:
uint64_t x= (uint64_t) POP();
uint64_t y= (uint64_t) TOP();
SET_TOP((uint64_t) x+y);
DISPATCH();

Multi-Level Quickening, 2010 - 2012, pt. |
ldea & Performance

def add(a, b):
return a + b LONG LONG NAMA LONG

LOAD LOAD ADD RETURN

case LONG_RETURN:
uint64_t x= (uint64_t) POP();
ret_val= box(x, PyLong_Type)
goto exiting;

Multi-Level Quickening, 2010 - 2012, pt. |
ldea & Performance

def add(a, b):
return a + b LONG LONG NAMA LONG

LOAD LOAD ADD RETURN

BBBBBBBBBB

Multi-Level Quickening, 2010 - 2012, pt. |
ldea & Performance

def add(a, b):
return a + b LONG LONG NAMA LONG

LOAD LOAD ADD RETURN

Now, instruction dispatch becomes important

again!

» Concatenate sequences delimited by
native-machine types

* Rewrite first member of superinstructions.

Multi-Level Quickening, 2010 - 2012, pt. I
ldea & Performance

def add(a, b):
return a + b SI LONG NAMA LONG

123 LOAD ADD RETURN

4
vvvvvvvvvvv

BBBBBBBBBB

Performance Increase by up

Speedup

Speedup

a
S
=]
@
&
%2}
1
TN AR IR \05“’3?55‘\3‘65‘\0‘@ \@O\“oé\i AN O\ ,\(e'?(’\(\,bgé(’“o‘((\ \\0\0‘006*
Y N @A e N WY A @ (3t W
NG x &3\4\?’“ e A C\‘a‘w‘\
o o
Benchmarks Benchmarks
4
35
3
o
S
25 §
=3
v

1
Al \ K Al \ K
AR ARSI \05,Ge?s‘(@éi‘\osﬁ\e\@%\ooéﬁ LA A LIRS NI v 0&5&\3‘6?00‘“\9\“‘0$30&
‘6\&(\5 Q\\L(‘\S&“_b(\ﬁ @\(\aﬂ AC (}‘a“\,&\d
o o
Benchmarks

Benchmarks

A word of advice on benchmarking

MLQ performance evaluation analyzed benchmarks
to understand their performance potential.

Often, programs are not constrained by the
Interpreter, so no amount of optimization will turn
out beneficial.

A word of advice on benchmarking

Analyze how much time was spent in the
interpreter (7,+) and use the corollary to Amdahl’s
law:

1
1_ir‘int

Max. Speedup =

MLQ is not only limited to numbers
and scalar operations

Besides supporting all numbers, MLQ also
considered:

e attribute reads/writes for dictionaries and lists

e subscript reads/writes for dictionaries and lists
with numeric and unicode types.

ox[0] or x[10]= ...

Where to go from here?

Future directions for MLQ-style interpreters

Hybrid ISA interpreters

Unite the space-efficiency of stack-based ISAs with
reduced dispatch costs of register-based ISAs.

» Additional speedup about 30pct

Future directions for MLQ-style interpreters

Feature Adaptive Interpreters

At present, most interpreters analyze programs and
build in the most frequently occurring case.

Allows interpreters to specialize for all special
cases.

= relevant for functional and logic PLs

Future directions for MLQ-style interpreters

Cross native-machine library MLQ

Optimization boundary usually single
native-machine object

MLQ could provide optimization API that crosses
object boundary:

 Generic abstract interpreter over abstract types.

e Library, such as numpy, registers optimized code
with the MLQ-API

Future directions for MLQ-style interpreters

Generic Hidden Classes via MLQ

Well-known optimization in JIT compilers. To the
best of my knowledge not used in interpreters right
NOW.

MLQ-style interpretation:
« Adjacent memory with n slots for each field.

« Additional MLQ Instructions for direct
manipulation.

Future directions for MLQ-style interpreters

Generation of MLQ-style interpreters

vmgen and tiger interpreter generators
developed at TU Wien.

MLQ relies heavily on the idea of derivatives, which
lend themselves well to generation. To drive
generation, one would need to specify:

« Numerical tower with conversions and
operations.

« Mapping operations to enable boxing/unboxing.

How to think about MLQ?

Interesting Philosophical Observations of
Interpreters and their Optimization

Information Theoretical Perspective of Interpreter
Optimizations.

Thoughts concerning the limits of interpreters vs
JIT compilers.

Thoughts on MLQ for virtual machines.

Information Theory for Regular Interpreters

. next

P25

Instruction dispatch transitions from instruction 2
to 7. The next relation merely indicates the
sequence of instructions in the interpreted

program £F.

Information Theory for Interpreters with
Inline Caching

. nextr

§ 2

Instruction dispatch transitions from instruction 2
to 7. The next relation merely indicates the
sequence of instructions, and expected types 7.

Information Theory for Interpreters with MLQ

. nextr , |
N

1)

Instruction dispatch transitions from instruction 2
to 7. The next relation merely indicates the
sequence of instructions, expected types 7, and
expected data representation p.

Information Theoretical Perspective

Limits for interpreters compared to JIT compilers

;}—«L\.__;_.__n_______g\,,, 7__7"__________________;—‘

TSaaaaacos‘s‘s‘s‘s‘eu00ooooeuuuuuuuuuuuuuuuuuuuduuuuew

. 4. J0do 15Z

% (TR I”Sh!tdmn;

Limits for interpreters compared to JIT compilers

P
RS, e, e U
I:' GE> [M:'
,‘,4'4.6:7 IM &7 I‘,‘:‘
y qTA il A\ nt2

Mnodong () oo Wrg Corrapuedinee .

oy o of ‘i‘“"‘ug(.c‘c‘) Hee apfuaivobing Cophe, oplz, o) ot . ‘.
%ﬁ; ‘L’ Ly 7""“‘“] S sl MC,&, Py |

45O

There are no theoretical limits for interpreters
when compared to JIT compilers

An interpreter can always do everything a JIT
compiler can do.

Since optimized interpreter instructions are being
compiled by an ahead-of-time compiler, the

resulting code may even be more optimized when
compared to a JIT compiler.

Constraints and practical considerations for
MLQ-style Interpreters

Maximum number of interpreter instructions

Anecdotal evidence puts the maximum number of
Interpreter instructions at about 2,000. This limit
puts some constraints on how many derivatives an
Interpreter can realistically accommodate.

Constraints and practical considerations for
MLQ-style Interpreters

Speculation on Derivative Utility

Derivatives are put into the interpreter source code
and are, therefore, fixed at interpreter
compiler-time.

= Interpreter instruction set fixed for subsequent
execution of programs.

Careful consideration and management of
expectations needed to ensure that the utility of
optimized derivatives is estimated properly.

Thoughts on MLQ for virtual machines

MLQ succeeds because it extends CPython's
Instruction set.

Whereas CPython’s instruction set is
untyped/type-generic, MLQ adds implicit typing
and data representation information, making the
Instruction set type-specific.

Information internal to the virtual machine is
externalized.

Contributions

« Advanced type feedback using a purely
Interpretative setup.

o ease of Implementation
o portability
o correctness formalized & verified (CPP'21)
O security, increasingly important
« Native-machine-type based superinstructions.

« Performance-Analysis driven Benchmark
Selection and Understanding

Contributions

« Advanced type feedback using a purely
Interpretative setup.

o ease of Implementation

o portability
o correctnes

O security, Ir

Questions?

brunthaler@unibw.de
@stbrunthaler

d (CPP'21)

« Native-machine-type based superinstructions.

« Performance-Analysis driven Benchmark
Selection and Understanding

