-
Notifications
You must be signed in to change notification settings - Fork 9
/
ddpg_agent.py
180 lines (147 loc) · 7.28 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import random
import copy
#from collections import namedtuple, deque
from model import Actor, Critic
from memory import ReplayBuffer
from hyperparameters import *
import torch
import torch.nn.functional as F
import torch.optim as optim
GAMMA = 0.995 #0.99 # discount factor
TAU = 1e-3 # for soft update of target parameters
LR_ACTOR = 1e-4 # learning rate of the actor
LR_CRITIC = 1e-3 # learning rate of the critic
WEIGHT_DECAY = 0. # L2 weight decay
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""DDPG Agent : Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, random_seed, num_agents=1):
"""Initialize a DDPG Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
num_agents (int) : Number of agents (1 for DDPG, 2+ for MADDPG -> Will affect the critic)
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(random_seed)
self.num_agents = num_agents
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)
# Make sure the Actor Target Network has the same weight values as the Local Network
for target, local in zip(self.actor_target.parameters(), self.actor_local.parameters()):
target.data.copy_(local.data)
# Critic Network (w/ Target Network)
# Note : in MADDPG, critics have access to all agents obeservations and actions
self.critic_local = Critic(state_size*num_agents, action_size*num_agents, random_seed).to(device)
self.critic_target = Critic(state_size*num_agents, action_size*num_agents, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY)
# Make sure the Critic Target Network has the same weight values as the Local Network
for target, local in zip(self.critic_target.parameters(), self.critic_local.parameters()):
target.data.copy_(local.data)
# Noise process
self.noise = OUNoise(action_size, random_seed)
# Replay memory : in MADDPG, the ReplayBuffer is common to all agents
#self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)
def step(self, state, action, reward, next_state, done):
##TODO : not used with MADDPG ..
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
self.memory.add(state, action, reward, next_state, done)
# Learn, if enough samples are available in memory
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, noise=0.0):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(device)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
if ADD_OU_NOISE:
action += self.noise.sample() * noise
return np.clip(action, -1, 1)
def reset(self):
self.noise.reset()
def learn(self, experiences, gamma):
### Used only for DDPG (use madddpg.maddpg_learn() for MADDPG)
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
critic_target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_states, actions_next)
# Compute Q targets for current states (y_i)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Compute critic loss
Q_expected = self.critic_local(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, TAU)
self.soft_update(self.actor_local, self.actor_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class OUNoise:
"""Ornstein-Uhlenbeck process.
Params
======
size (int) : size of action space
target_model: PyTorch model (weights will be copied to)
mu (float) : Ornstein-Uhlenbeck noise parameter
theta (float) : Ornstein-Uhlenbeck noise parameter
sigma (flmoat) : Ornstein-Uhlenbeck noise parameter
"""
def __init__(self, size, seed, mu=MU, theta=THETA, sigma=SIGMA):
"""Initialize parameters and noise process."""
self.size=size
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.seed = random.seed(seed)
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
#dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.size) # use normal distribution
self.state = x + dx
return self.state