-
Notifications
You must be signed in to change notification settings - Fork 0
/
helpers.py
187 lines (152 loc) · 6.53 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
import cv2 as cv
def grayscale(img):
"""Applies the Grayscale transform
This will return an image with only one color channel
but NOTE: to see the returned image as grayscale
(assuming your grayscaled image is called 'gray')
you should call plt.imshow(gray, cmap='gray')"""
return cv.cvtColor(img, cv.COLOR_RGB2GRAY)
# Or use BGR2GRAY if you read an image with cv.imread()
# return cv.cvtColor(img, cv.COLOR_BGR2GRAY)
def canny(img, low_threshold, high_threshold):
"""Applies the Canny transform"""
return cv.Canny(img, low_threshold, high_threshold)
def gaussian_blur(img, kernel_size):
"""Applies a Gaussian Noise kernel"""
return cv.GaussianBlur(img, (kernel_size, kernel_size), 0)
def region_of_interest(img, vertices):
"""
Applies an image mask.
Only keeps the region of the image defined by the polygon
formed from `vertices`. The rest of the image is set to black.
"""
#defining a blank mask to start with
mask = np.zeros_like(img)
#defining a 3 channel or 1 channel color to fill the mask with depending on the input image
if len(img.shape) > 2:
channel_count = img.shape[2] # i.e. 3 or 4 depending on your image
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
#filling pixels inside the polygon defined by "vertices" with the fill color
cv.fillPoly(mask, vertices, ignore_mask_color)
#returning the image only where mask pixels are nonzero
masked_image = cv.bitwise_and(img, mask)
return masked_image
def draw_lines(img, lines, color=[255, 0, 0], thickness=10):
"""
NOTE: this is the function you might want to use as a starting point once you want to
average/extrapolate the line segments you detect to map out the full
extent of the lane (going from the result shown in raw-lines-example.mp4
to that shown in P1_example.mp4).
Think about things like separating line segments by their
slope ((y2-y1)/(x2-x1)) to decide which segments are part of the left
line vs. the right line. Then, you can average the position of each of
the lines and extrapolate to the top and bottom of the lane.
This function draws `lines` with `color` and `thickness`.
Lines are drawn on the image inplace (mutates the image).
If you want to make the lines semi-transparent, think about combining
this function with the weighted_img() function below
"""
left_count = 0
left_x1_sum = 0
left_y1_sum = 0
left_x2_sum = 0
left_y2_sum = 0
right_count = 0
right_x1_sum = 0
right_x2_sum = 0
right_y1_sum = 0
right_y2_sum = 0
for line in lines:
for x1,y1,x2,y2 in line:
# Separate left and right lines and ignore any horizontal lines
slope = (y2-y1)/(x2-x1)
if 0.8 > slope > 0.4:
# right line
right_count += 1
right_x1_sum += x1
right_x2_sum += x2
right_y1_sum += y1
right_y2_sum += y2
elif -0.9 < slope < -0.5:
# left line
left_count += 1
left_x1_sum += x1
left_x2_sum += x2
left_y1_sum += y1
left_y2_sum += y2
# Find average position for left and right lines
left_x1 = left_x1_sum/left_count
left_y1 = left_y1_sum/left_count
left_x2 = left_x2_sum/left_count
left_y2 = left_y2_sum/left_count
right_x1 = right_x1_sum/right_count
right_y1 = right_y1_sum/right_count
right_x2 = right_x2_sum/right_count
right_y2 = right_y2_sum/right_count
# Find slopes of left and right lines
left_slope = (left_y2 - left_y1) / (left_x2 - left_x1)
right_slope = (right_y2 - right_y1) / (right_x2 - right_x1)
# Find y-intercepts of left and right lines
left_b = left_y1 - left_slope * left_x1
right_b = right_y1 - right_slope * right_x1
# Find new points of extended left and right lines
left_line_x1 = int(round((540 - left_b)/left_slope))
left_line_y1 = 540
left_line_x2 = int(round((330 - left_b)/left_slope))
left_line_y2 = 330
right_line_x1 = int(round((540 - right_b)/right_slope))
right_line_y1 = 540
right_line_x2 = int(round((330 - right_b)/right_slope))
right_line_y2 = 330
# Create left and right lines on the image
cv.line(img, (left_line_x1,left_line_y1), (left_line_x2, left_line_y2), color, thickness)
cv.line(img, (right_line_x1,right_line_y1), (right_line_x2,right_line_y2), color, thickness)
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
"""
`img` should be the output of a Canny transform.
Returns an image with hough lines drawn.
"""
lines = cv.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
draw_lines(line_img, lines)
return line_img
# Python 3 has support for cool math symbols.
def weighted_img(img, initial_img, α=0.8, β=1., γ=0.):
"""
`img` is the output of the hough_lines(), An image with lines drawn on it.
Should be a blank image (all black) with lines drawn on it.
`initial_img` should be the image before any processing.
The result image is computed as follows:
initial_img * α + img * β + γ
NOTE: initial_img and img must be the same shape!
"""
return cv.addWeighted(initial_img, α, img, β, γ)
def process_image(image):
# NOTE: The output you return should be a color image (3 channel) for processing video below
# TODO: put your pipeline here,
# you should return the final output (image where lines are drawn on lanes)
# Convert to grayscale and smooth
gray = grayscale(image)
blur_gray = gaussian_blur(gray, 5)
# Apply Canny edge detection
low_threshold = 50
high_threshold = 150
edges = canny(blur_gray, low_threshold, high_threshold)
# Find region of interest
sizey = image.shape[0]
sizex = image.shape[1]
vertices = np.array([[(0,sizey),(470, 320), (490, 320), (sizex,sizey)]], dtype=np.int32)
roi = region_of_interest(edges, vertices)
# Apply Hough line detection
rho = 2
theta = np.pi/180
threshold = 15
min_line_length = 20
max_line_gap = 10
lines = hough_lines(roi, rho, theta, threshold, min_line_length, max_line_gap)
# Add Hough lines to image
result = weighted_img(lines, image)
return result