Skip to content

Reinforcement Learning environments for Traffic Signal Control with SUMO. Compatible with Gym, PettingZoo, and popular RL libraries.

License

Notifications You must be signed in to change notification settings

firemankoxd/sumo-rl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tests PyPI version Project Status: Active – The project has reached a stable, usable state and is being actively developed. License

SUMO-RL

SUMO-RL provides a simple interface to instantiate Reinforcement Learning environments with SUMO for Traffic Signal Control.

The main class SumoEnvironment behaves like a MultiAgentEnv from RLlib.
If instantiated with parameter 'single-agent=True', it behaves like a regular Gym Env from OpenAI.
Call env or parallel_env to instantiate a PettingZoo environment. TrafficSignal is responsible for retrieving information and actuating on traffic lights using TraCI API.

Goals of this repository:

  • Provide a simple interface to work with Reinforcement Learning for Traffic Signal Control using SUMO
  • Support Multiagent RL
  • Compatibility with gym.Env and popular RL libraries such as stable-baselines3 and RLlib
  • Easy customisation: state and reward definitions are easily modifiable

Install

Install SUMO latest version:

sudo add-apt-repository ppa:sumo/stable
sudo apt-get update
sudo apt-get install sumo sumo-tools sumo-doc 

Don't forget to set SUMO_HOME variable (default sumo installation path is /usr/share/sumo)

echo 'export SUMO_HOME="/usr/share/sumo"' >> ~/.bashrc
source ~/.bashrc

Important: for a huge performance boost (~8x) with Libsumo, you can declare the variable:

export LIBSUMO_AS_TRACI=1

Notice that you will not be able to run with sumo-gui or with multiple simulations in parallel if this is active (more details).

Install SUMO-RL

Stable release version is available through pip

pip install sumo-rl

Recommended: alternatively you can install using the latest (unreleased) version

git clone https://github.com/LucasAlegre/sumo-rl
cd sumo-rl
pip install -e .

MDP - Observations, Actions and Rewards

Observation

The default observation for each traffic signal agent is a vector:

    obs = [phase_one_hot, min_green, lane_1_density,...,lane_n_density, lane_1_queue,...,lane_n_queue]
  • phase_one_hot is a one-hot encoded vector indicating the current active green phase
  • min_green is a binary variable indicating whether min_green seconds have already passed in the current phase
  • lane_i_density is the number of vehicles in incoming lane i dividided by the total capacity of the lane
  • lane_i_queueis the number of queued (speed below 0.1 m/s) vehicles in incoming lane i divided by the total capacity of the lane

You can define your own observation changing the method 'compute_observation' of TrafficSignal.

Actions

The action space is discrete. Every 'delta_time' seconds, each traffic signal agent can choose the next green phase configuration.

E.g.: In the 2-way single intersection there are |A| = 4 discrete actions, corresponding to the following green phase configurations:

Important: every time a phase change occurs, the next phase is preeceded by a yellow phase lasting yellow_time seconds.

Rewards

The default reward function is the change in cumulative vehicle delay:

That is, the reward is how much the total delay (sum of the waiting times of all approaching vehicles) changed in relation to the previous time-step.

You can choose a different reward function (see the ones implemented in TrafficSignal) with the parameter reward_fn in the SumoEnvironment constructor.

It is also possible to implement your own reward function:

def my_reward_fn(traffic_signal):
    return traffic_signal.get_average_speed()

env = SumoEnvironment(..., reward_fn=my_reward_fn)

Examples

Please see SumoEnvironment docstring for details on all constructor parameters.

Single Agent Environment

If your network only has ONE traffic light, then you can instantiate a standard Gym env (see Gym API):

import gym
import sumo_rl
env = gym.make('sumo-rl-v0',
                net_file='path_to_your_network.net.xml',
                route_file='path_to_your_routefile.rou.xml',
                out_csv_name='path_to_output.csv',
                use_gui=True,
                num_seconds=100000)
obs, info = env.reset()
done = False
while not done:
    next_obs, reward, terminated, truncated, info = env.step(env.action_space.sample())
    done = terminated or truncated

PettingZoo Multi-Agent API

See Petting Zoo API for more details.

import sumo_rl
env = sumo_rl.env(net_file='sumo_net_file.net.xml',
                  route_file='sumo_route_file.rou.xml',
                  use_gui=True,
                  num_seconds=3600)  
env.reset()
for agent in env.agent_iter():
    observation, reward, done, info = env.last()
    action = policy(observation)
    env.step(action)

RESCO Benchmarks

In the folder nets/RESCO you can find the network and route files from RESCO (Reinforcement Learning Benchmarks for Traffic Signal Control), which was built on top of SUMO-RL. See their paper for results.

Experiments

WARNING: Gym 0.26 had many breaking changes, stable-baselines3 and RLlib still do not support it, but will be updated soon. See Stable Baselines 3 PR and RLib PR. Hence, only the tabular Q-learning experiment is running without erros for now.

Check experiments for examples on how to instantiate an environment and train your RL agent.

Q-learning in a one-way single intersection:

python experiments/ql_single-intersection.py 

RLlib A3C multiagent in a 4x4 grid:

python experiments/a3c_4x4grid.py

stable-baselines3 DQN in a 2-way single intersection:

python experiments/dqn_2way-single-intersection.py

Plotting results:

python outputs/plot.py -f outputs/2way-single-intersection/a3c 

Citing

If you use this repository in your research, please cite:

@misc{sumorl,
    author = {Lucas N. Alegre},
    title = {{SUMO-RL}},
    year = {2019},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/LucasAlegre/sumo-rl}},
}

List of publications using SUMO-RL (please open a pull request to add missing entries):

About

Reinforcement Learning environments for Traffic Signal Control with SUMO. Compatible with Gym, PettingZoo, and popular RL libraries.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%