From c6009b24cfc306c60f54688c446b88627dfec027 Mon Sep 17 00:00:00 2001 From: alanakbik Date: Mon, 18 Sep 2023 14:36:17 +0000 Subject: [PATCH] deploy: f2a075a0479af845e181ea7f3646b2de0df71350 --- .../.doctrees/api/embeddings/token.doctree | Bin 335526 -> 0 bytes .../api/embeddings/transformer.doctree | Bin 172566 -> 0 bytes .../.doctrees/api/flair.tokenization.doctree | Bin 61331 -> 0 bytes doc-page/searchindex.js | 1 - {doc-page => master}/.buildinfo | 2 +- .../.doctrees/api/datasets/base.doctree | Bin 81232 -> 81206 bytes .../.doctrees/api/datasets/biomedical.doctree | Bin 1516834 -> 1516014 bytes .../datasets/document_classification.doctree | Bin 365247 -> 365131 bytes .../api/datasets/entity_linking.doctree | Bin 225059 -> 224993 bytes .../.doctrees/api/datasets/ocr.doctree | Bin 65762 -> 65748 bytes .../api/datasets/relation_extraction.doctree | Bin 48639 -> 48609 bytes .../api/datasets/sequence_labeling.doctree | Bin 752513 -> 752267 bytes .../.doctrees/api/datasets/text_image.doctree | Bin 11146 -> 11140 bytes .../.doctrees/api/datasets/text_text.doctree | Bin 200134 -> 200062 bytes .../.doctrees/api/datasets/treebanks.doctree | Bin 249810 -> 249684 bytes .../.doctrees/api/embeddings/base.doctree | Bin 75039 -> 75003 bytes .../.doctrees/api/embeddings/document.doctree | Bin 192307 -> 192241 bytes .../.doctrees/api/embeddings/image.doctree | Bin 59518 -> 59502 bytes .../.doctrees/api/embeddings/legacy.doctree | Bin 90884 -> 90856 bytes master/.doctrees/api/embeddings/token.doctree | Bin 0 -> 335394 bytes .../api/embeddings/transformer.doctree | Bin 0 -> 173647 bytes .../.doctrees/api/flair.data.doctree | Bin 328140 -> 327960 bytes .../.doctrees/api/flair.datasets.doctree | Bin 3128 -> 3128 bytes .../.doctrees/api/flair.doctree | Bin 17378 -> 17374 bytes .../.doctrees/api/flair.embeddings.doctree | Bin 2989 -> 2989 bytes .../.doctrees/api/flair.models.doctree | Bin 851832 -> 851564 bytes .../.doctrees/api/flair.nn.doctree | Bin 206737 -> 206673 bytes .../.doctrees/api/flair.splitter.doctree | Bin 67138 -> 67114 bytes .../.doctrees/api/flair.tokenization.doctree | Bin 0 -> 61299 bytes .../.doctrees/api/flair.trainers.doctree | Bin 110143 -> 110111 bytes .../api/flair.trainers.plugins.doctree | Bin 169330 -> 169224 bytes .../.doctrees/api/index.doctree | Bin 3011 -> 3011 bytes .../.doctrees/contributing/index.doctree | Bin 2956 -> 2956 bytes .../contributing/local_development.doctree | Bin 8252 -> 8252 bytes .../making_a_pull_request.doctree | Bin 6194 -> 6194 bytes .../updating_documentation.doctree | Bin 13950 -> 13950 bytes .../contributing/writing_a_good_issue.doctree | Bin 14926 -> 14926 bytes .../.doctrees/environment.pickle | Bin 10224422 -> 10223473 bytes {doc-page => master}/.doctrees/index.doctree | Bin 11299 -> 11299 bytes .../.doctrees/tutorial/index.doctree | Bin 3410 -> 3410 bytes .../.doctrees/tutorial/intro.doctree | Bin 11420 -> 11420 bytes .../tutorial-basics/basic-types.doctree | Bin 32167 -> 32167 bytes .../tutorial-basics/entity-linking.doctree | Bin 14351 -> 14351 bytes .../how-predictions-work.doctree | Bin 10506 -> 10506 bytes .../tutorial-basics/how-to-tag-corpus.doctree | Bin 7246 -> 7246 bytes .../tutorial/tutorial-basics/index.doctree | Bin 3632 -> 3632 bytes .../tutorial-basics/other-models.doctree | Bin 32316 -> 32316 bytes .../part-of-speech-tagging.doctree | Bin 41268 -> 41268 bytes .../tutorial-basics/tagging-entities.doctree | Bin 52866 -> 52866 bytes .../tutorial-basics/tagging-sentiment.doctree | Bin 14446 -> 14446 bytes .../classic-word-embeddings.doctree | Bin 39621 -> 39621 bytes .../tutorial-embeddings/embeddings.doctree | Bin 19870 -> 19870 bytes .../flair-embeddings.doctree | Bin 66133 -> 66133 bytes .../tutorial-embeddings/index.doctree | Bin 3853 -> 3853 bytes .../other-embeddings.doctree | Bin 45977 -> 45977 bytes .../transformer-embeddings.doctree | Bin 32140 -> 32140 bytes .../how-model-training-works.doctree | Bin 46213 -> 46213 bytes .../how-to-load-custom-dataset.doctree | Bin 26185 -> 26185 bytes .../how-to-load-prepared-dataset.doctree | Bin 40293 -> 40293 bytes .../how-to-train-sequence-tagger.doctree | Bin 23417 -> 23417 bytes .../how-to-train-text-classifier.doctree | Bin 9139 -> 9139 bytes .../tutorial/tutorial-training/index.doctree | Bin 3533 -> 3533 bytes .../train-vs-fine-tune.doctree | Bin 3788 -> 3788 bytes {doc-page => master}/.nojekyll | 0 {doc-page => master}/_images/api.svg | 0 {doc-page => master}/_images/contributing.svg | 0 {doc-page => master}/_images/tutorial.svg | 0 .../_sources/api/datasets/base.rst.txt | 0 .../_sources/api/datasets/biomedical.rst.txt | 0 .../datasets/document_classification.rst.txt | 0 .../api/datasets/entity_linking.rst.txt | 0 .../_sources/api/datasets/ocr.rst.txt | 0 .../api/datasets/relation_extraction.rst.txt | 0 .../api/datasets/sequence_labeling.rst.txt | 0 .../_sources/api/datasets/text_image.rst.txt | 0 .../_sources/api/datasets/text_text.rst.txt | 0 .../_sources/api/datasets/treebanks.rst.txt | 0 .../_sources/api/embeddings/base.rst.txt | 0 .../_sources/api/embeddings/document.rst.txt | 0 .../_sources/api/embeddings/image.rst.txt | 0 .../_sources/api/embeddings/legacy.rst.txt | 0 .../_sources/api/embeddings/token.rst.txt | 0 .../api/embeddings/transformer.rst.txt | 0 .../_sources/api/flair.data.rst.txt | 0 .../_sources/api/flair.datasets.rst.txt | 0 .../_sources/api/flair.embeddings.rst.txt | 0 .../_sources/api/flair.models.rst.txt | 0 .../_sources/api/flair.nn.rst.txt | 0 .../_sources/api/flair.rst.txt | 0 .../_sources/api/flair.splitter.rst.txt | 0 .../_sources/api/flair.tokenization.rst.txt | 0 .../api/flair.trainers.plugins.rst.txt | 0 .../_sources/api/flair.trainers.rst.txt | 0 .../_sources/api/index.rst.txt | 0 .../_sources/contributing/index.rst.txt | 0 .../contributing/local_development.md.txt | 0 .../contributing/making_a_pull_request.md.txt | 0 .../updating_documentation.md.txt | 0 .../contributing/writing_a_good_issue.md.txt | 0 {doc-page => master}/_sources/index.rst.txt | 0 .../_sources/tutorial/index.rst.txt | 0 .../_sources/tutorial/intro.md.txt | 0 .../tutorial-basics/basic-types.md.txt | 0 .../tutorial-basics/entity-linking.md.txt | 0 .../how-predictions-work.md.txt | 0 .../tutorial-basics/how-to-tag-corpus.md.txt | 0 .../tutorial/tutorial-basics/index.rst.txt | 0 .../tutorial-basics/other-models.md.txt | 0 .../part-of-speech-tagging.md.txt | 0 .../tutorial-basics/tagging-entities.md.txt | 0 .../tutorial-basics/tagging-sentiment.md.txt | 0 .../classic-word-embeddings.md.txt | 0 .../tutorial-embeddings/embeddings.md.txt | 0 .../flair-embeddings.md.txt | 0 .../tutorial-embeddings/index.rst.txt | 0 .../other-embeddings.md.txt | 0 .../transformer-embeddings.md.txt | 0 .../how-model-training-works.md.txt | 0 .../how-to-load-custom-dataset.md.txt | 0 .../how-to-load-prepared-dataset.md.txt | 0 .../how-to-train-sequence-tagger.md.txt | 0 .../how-to-train-text-classifier.md.txt | 0 .../tutorial/tutorial-training/index.rst.txt | 0 .../train-vs-fine-tune.md.txt | 0 ...e.1e8bd061cd6da7fc9cf755528e8ffc24.min.css | 0 .../_sphinx_design_static/design-tabs.js | 0 {doc-page => master}/_static/api.svg | 0 {doc-page => master}/_static/basic.css | 0 {doc-page => master}/_static/contributing.svg | 0 ...e.1e8bd061cd6da7fc9cf755528e8ffc24.min.css | 0 {doc-page => master}/_static/design-tabs.js | 0 {doc-page => master}/_static/doctools.js | 0 .../_static/documentation_options.js | 0 {doc-page => master}/_static/favicon.ico | Bin {doc-page => master}/_static/file.png | Bin {doc-page => master}/_static/github_style.css | 0 {doc-page => master}/_static/language_data.js | 0 {doc-page => master}/_static/minus.png | Bin {doc-page => master}/_static/plus.png | Bin {doc-page => master}/_static/pygments.css | 0 .../_static/scripts/bootstrap.js | 0 .../_static/scripts/bootstrap.js.LICENSE.txt | 0 .../_static/scripts/bootstrap.js.map | 0 .../_static/scripts/pydata-sphinx-theme.js | 0 .../scripts/pydata-sphinx-theme.js.map | 0 {doc-page => master}/_static/searchtools.js | 0 .../_static/sphinx_highlight.js | 0 .../_static/styles/bootstrap.css | 0 .../_static/styles/pydata-sphinx-theme.css | 0 {doc-page => master}/_static/styles/theme.css | 0 {doc-page => master}/_static/tutorial.svg | 0 .../vendor/fontawesome/6.1.2/LICENSE.txt | 0 .../vendor/fontawesome/6.1.2/css/all.min.css | 0 .../vendor/fontawesome/6.1.2/js/all.min.js | 0 .../6.1.2/js/all.min.js.LICENSE.txt | 0 .../6.1.2/webfonts/fa-brands-400.ttf | Bin .../6.1.2/webfonts/fa-brands-400.woff2 | Bin .../6.1.2/webfonts/fa-regular-400.ttf | Bin .../6.1.2/webfonts/fa-regular-400.woff2 | Bin .../6.1.2/webfonts/fa-solid-900.ttf | Bin .../6.1.2/webfonts/fa-solid-900.woff2 | Bin .../6.1.2/webfonts/fa-v4compatibility.ttf | Bin .../6.1.2/webfonts/fa-v4compatibility.woff2 | Bin .../_static/webpack-macros.html | 0 {doc-page => master}/api/datasets/base.html | 28 +- .../api/datasets/biomedical.html | 822 +++++++++--------- .../api/datasets/document_classification.html | 118 +-- .../api/datasets/entity_linking.html | 68 +- {doc-page => master}/api/datasets/ocr.html | 16 +- .../api/datasets/relation_extraction.html | 32 +- .../api/datasets/sequence_labeling.html | 248 +++--- .../api/datasets/text_image.html | 8 +- .../api/datasets/text_text.html | 74 +- .../api/datasets/treebanks.html | 128 +-- {doc-page => master}/api/embeddings/base.html | 38 +- .../api/embeddings/document.html | 68 +- .../api/embeddings/image.html | 18 +- .../api/embeddings/legacy.html | 30 +- .../api/embeddings/token.html | 134 +-- .../api/embeddings/transformer.html | 92 +- {doc-page => master}/api/flair.data.html | 182 ++-- {doc-page => master}/api/flair.datasets.html | 2 +- .../api/flair.embeddings.html | 2 +- {doc-page => master}/api/flair.html | 6 +- {doc-page => master}/api/flair.models.html | 270 +++--- {doc-page => master}/api/flair.nn.html | 66 +- {doc-page => master}/api/flair.splitter.html | 26 +- .../api/flair.tokenization.html | 34 +- {doc-page => master}/api/flair.trainers.html | 34 +- .../api/flair.trainers.plugins.html | 108 +-- {doc-page => master}/api/index.html | 2 +- {doc-page => master}/contributing/index.html | 2 +- .../contributing/local_development.html | 2 +- .../contributing/making_a_pull_request.html | 2 +- .../contributing/updating_documentation.html | 2 +- .../contributing/writing_a_good_issue.html | 2 +- {doc-page => master}/genindex.html | 2 +- {doc-page => master}/index.html | 0 {doc-page => master}/objects.inv | Bin {doc-page => master}/py-modindex.html | 2 +- {doc-page => master}/search.html | 2 +- master/searchindex.js | 1 + {doc-page => master}/tutorial/index.html | 2 +- {doc-page => master}/tutorial/intro.html | 2 +- .../tutorial/tutorial-basics/basic-types.html | 2 +- .../tutorial-basics/entity-linking.html | 2 +- .../tutorial-basics/how-predictions-work.html | 2 +- .../tutorial-basics/how-to-tag-corpus.html | 2 +- .../tutorial/tutorial-basics/index.html | 2 +- .../tutorial-basics/other-models.html | 2 +- .../part-of-speech-tagging.html | 2 +- .../tutorial-basics/tagging-entities.html | 2 +- .../tutorial-basics/tagging-sentiment.html | 2 +- .../classic-word-embeddings.html | 2 +- .../tutorial-embeddings/embeddings.html | 2 +- .../tutorial-embeddings/flair-embeddings.html | 2 +- .../tutorial/tutorial-embeddings/index.html | 2 +- .../tutorial-embeddings/other-embeddings.html | 2 +- .../transformer-embeddings.html | 2 +- .../how-model-training-works.html | 2 +- .../how-to-load-custom-dataset.html | 2 +- .../how-to-load-prepared-dataset.html | 2 +- .../how-to-train-sequence-tagger.html | 2 +- .../how-to-train-text-classifier.html | 2 +- .../tutorial/tutorial-training/index.html | 2 +- .../tutorial-training/train-vs-fine-tune.html | 2 +- 226 files changed, 1361 insertions(+), 1361 deletions(-) delete mode 100644 doc-page/.doctrees/api/embeddings/token.doctree delete mode 100644 doc-page/.doctrees/api/embeddings/transformer.doctree delete mode 100644 doc-page/.doctrees/api/flair.tokenization.doctree delete mode 100644 doc-page/searchindex.js rename {doc-page => master}/.buildinfo (82%) rename {doc-page => master}/.doctrees/api/datasets/base.doctree (77%) rename {doc-page => master}/.doctrees/api/datasets/biomedical.doctree (66%) rename {doc-page => master}/.doctrees/api/datasets/document_classification.doctree (68%) rename {doc-page => master}/.doctrees/api/datasets/entity_linking.doctree (67%) rename {doc-page => master}/.doctrees/api/datasets/ocr.doctree (87%) rename {doc-page => master}/.doctrees/api/datasets/relation_extraction.doctree (55%) rename {doc-page => master}/.doctrees/api/datasets/sequence_labeling.doctree (67%) rename {doc-page => master}/.doctrees/api/datasets/text_image.doctree (85%) rename {doc-page => master}/.doctrees/api/datasets/text_text.doctree (67%) rename {doc-page => master}/.doctrees/api/datasets/treebanks.doctree (88%) rename {doc-page => master}/.doctrees/api/embeddings/base.doctree (79%) rename {doc-page => master}/.doctrees/api/embeddings/document.doctree (60%) rename {doc-page => master}/.doctrees/api/embeddings/image.doctree (64%) rename {doc-page => master}/.doctrees/api/embeddings/legacy.doctree (77%) create mode 100644 master/.doctrees/api/embeddings/token.doctree create mode 100644 master/.doctrees/api/embeddings/transformer.doctree rename {doc-page => master}/.doctrees/api/flair.data.doctree (86%) rename {doc-page => master}/.doctrees/api/flair.datasets.doctree (95%) rename {doc-page => master}/.doctrees/api/flair.doctree (91%) rename {doc-page => master}/.doctrees/api/flair.embeddings.doctree (95%) rename {doc-page => master}/.doctrees/api/flair.models.doctree (76%) rename {doc-page => master}/.doctrees/api/flair.nn.doctree (73%) rename {doc-page => master}/.doctrees/api/flair.splitter.doctree (57%) create mode 100644 master/.doctrees/api/flair.tokenization.doctree rename {doc-page => master}/.doctrees/api/flair.trainers.doctree (72%) rename {doc-page => master}/.doctrees/api/flair.trainers.plugins.doctree (66%) rename {doc-page => master}/.doctrees/api/index.doctree (95%) rename {doc-page => master}/.doctrees/contributing/index.doctree (95%) rename {doc-page => master}/.doctrees/contributing/local_development.doctree (98%) rename {doc-page => master}/.doctrees/contributing/making_a_pull_request.doctree (97%) rename {doc-page => master}/.doctrees/contributing/updating_documentation.doctree (99%) rename {doc-page => master}/.doctrees/contributing/writing_a_good_issue.doctree (99%) rename {doc-page => master}/.doctrees/environment.pickle (65%) rename {doc-page => master}/.doctrees/index.doctree (98%) rename {doc-page => master}/.doctrees/tutorial/index.doctree (96%) rename {doc-page => master}/.doctrees/tutorial/intro.doctree (98%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/basic-types.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/entity-linking.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/how-predictions-work.doctree (98%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree (98%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/index.doctree (96%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/other-models.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/part-of-speech-tagging.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/tagging-entities.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-basics/tagging-sentiment.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-embeddings/classic-word-embeddings.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-embeddings/embeddings.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-embeddings/flair-embeddings.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-embeddings/index.doctree (96%) rename {doc-page => master}/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-embeddings/transformer-embeddings.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-training/how-model-training-works.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-training/how-to-load-custom-dataset.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-training/how-to-load-prepared-dataset.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-training/how-to-train-sequence-tagger.doctree (99%) rename {doc-page => master}/.doctrees/tutorial/tutorial-training/how-to-train-text-classifier.doctree (98%) rename {doc-page => master}/.doctrees/tutorial/tutorial-training/index.doctree (96%) rename {doc-page => master}/.doctrees/tutorial/tutorial-training/train-vs-fine-tune.doctree (96%) rename {doc-page => master}/.nojekyll (100%) rename {doc-page => master}/_images/api.svg (100%) rename {doc-page => master}/_images/contributing.svg (100%) rename {doc-page => master}/_images/tutorial.svg (100%) rename {doc-page => master}/_sources/api/datasets/base.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/biomedical.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/document_classification.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/entity_linking.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/ocr.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/relation_extraction.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/sequence_labeling.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/text_image.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/text_text.rst.txt (100%) rename {doc-page => master}/_sources/api/datasets/treebanks.rst.txt (100%) rename {doc-page => master}/_sources/api/embeddings/base.rst.txt (100%) rename {doc-page => master}/_sources/api/embeddings/document.rst.txt (100%) rename {doc-page => master}/_sources/api/embeddings/image.rst.txt (100%) rename {doc-page => master}/_sources/api/embeddings/legacy.rst.txt (100%) rename {doc-page => master}/_sources/api/embeddings/token.rst.txt (100%) rename {doc-page => master}/_sources/api/embeddings/transformer.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.data.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.datasets.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.embeddings.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.models.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.nn.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.splitter.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.tokenization.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.trainers.plugins.rst.txt (100%) rename {doc-page => master}/_sources/api/flair.trainers.rst.txt (100%) rename {doc-page => master}/_sources/api/index.rst.txt (100%) rename {doc-page => master}/_sources/contributing/index.rst.txt (100%) rename {doc-page => master}/_sources/contributing/local_development.md.txt (100%) rename {doc-page => master}/_sources/contributing/making_a_pull_request.md.txt (100%) rename {doc-page => master}/_sources/contributing/updating_documentation.md.txt (100%) rename {doc-page => master}/_sources/contributing/writing_a_good_issue.md.txt (100%) rename {doc-page => master}/_sources/index.rst.txt (100%) rename {doc-page => master}/_sources/tutorial/index.rst.txt (100%) rename {doc-page => master}/_sources/tutorial/intro.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/basic-types.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/entity-linking.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/how-predictions-work.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/how-to-tag-corpus.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/index.rst.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/other-models.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/part-of-speech-tagging.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/tagging-entities.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-basics/tagging-sentiment.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-embeddings/classic-word-embeddings.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-embeddings/embeddings.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-embeddings/flair-embeddings.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-embeddings/index.rst.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-embeddings/other-embeddings.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-training/how-model-training-works.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-training/how-to-load-custom-dataset.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-training/how-to-load-prepared-dataset.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-training/how-to-train-sequence-tagger.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-training/how-to-train-text-classifier.md.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-training/index.rst.txt (100%) rename {doc-page => master}/_sources/tutorial/tutorial-training/train-vs-fine-tune.md.txt (100%) rename {doc-page => master}/_sphinx_design_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css (100%) rename {doc-page => master}/_sphinx_design_static/design-tabs.js (100%) rename {doc-page => master}/_static/api.svg (100%) rename {doc-page => master}/_static/basic.css (100%) rename {doc-page => master}/_static/contributing.svg (100%) rename {doc-page => master}/_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css (100%) rename {doc-page => master}/_static/design-tabs.js (100%) rename {doc-page => master}/_static/doctools.js (100%) rename {doc-page => master}/_static/documentation_options.js (100%) rename {doc-page => master}/_static/favicon.ico (100%) rename {doc-page => master}/_static/file.png (100%) rename {doc-page => master}/_static/github_style.css (100%) rename {doc-page => master}/_static/language_data.js (100%) rename {doc-page => master}/_static/minus.png (100%) rename {doc-page => master}/_static/plus.png (100%) rename {doc-page => master}/_static/pygments.css (100%) rename {doc-page => master}/_static/scripts/bootstrap.js (100%) rename {doc-page => master}/_static/scripts/bootstrap.js.LICENSE.txt (100%) rename {doc-page => master}/_static/scripts/bootstrap.js.map (100%) rename {doc-page => master}/_static/scripts/pydata-sphinx-theme.js (100%) rename {doc-page => master}/_static/scripts/pydata-sphinx-theme.js.map (100%) rename {doc-page => master}/_static/searchtools.js (100%) rename {doc-page => master}/_static/sphinx_highlight.js (100%) rename {doc-page => master}/_static/styles/bootstrap.css (100%) rename {doc-page => master}/_static/styles/pydata-sphinx-theme.css (100%) rename {doc-page => master}/_static/styles/theme.css (100%) rename {doc-page => master}/_static/tutorial.svg (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/LICENSE.txt (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/css/all.min.css (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/js/all.min.js (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf (100%) rename {doc-page => master}/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 (100%) rename {doc-page => master}/_static/webpack-macros.html (100%) rename {doc-page => master}/api/datasets/base.html (92%) rename {doc-page => master}/api/datasets/biomedical.html (85%) rename {doc-page => master}/api/datasets/document_classification.html (90%) rename {doc-page => master}/api/datasets/entity_linking.html (91%) rename {doc-page => master}/api/datasets/ocr.html (94%) rename {doc-page => master}/api/datasets/relation_extraction.html (89%) rename {doc-page => master}/api/datasets/sequence_labeling.html (89%) rename {doc-page => master}/api/datasets/text_image.html (96%) rename {doc-page => master}/api/datasets/text_text.html (90%) rename {doc-page => master}/api/datasets/treebanks.html (88%) rename {doc-page => master}/api/embeddings/base.html (90%) rename {doc-page => master}/api/embeddings/document.html (89%) rename {doc-page => master}/api/embeddings/image.html (94%) rename {doc-page => master}/api/embeddings/legacy.html (92%) rename {doc-page => master}/api/embeddings/token.html (89%) rename {doc-page => master}/api/embeddings/transformer.html (87%) rename {doc-page => master}/api/flair.data.html (87%) rename {doc-page => master}/api/flair.datasets.html (99%) rename {doc-page => master}/api/flair.embeddings.html (99%) rename {doc-page => master}/api/flair.html (97%) rename {doc-page => master}/api/flair.models.html (90%) rename {doc-page => master}/api/flair.nn.html (91%) rename {doc-page => master}/api/flair.splitter.html (93%) rename {doc-page => master}/api/flair.tokenization.html (90%) rename {doc-page => master}/api/flair.trainers.html (92%) rename {doc-page => master}/api/flair.trainers.plugins.html (86%) rename {doc-page => master}/api/index.html (99%) rename {doc-page => master}/contributing/index.html (99%) rename {doc-page => master}/contributing/local_development.html (99%) rename {doc-page => master}/contributing/making_a_pull_request.html (99%) rename {doc-page => master}/contributing/updating_documentation.html (99%) rename {doc-page => master}/contributing/writing_a_good_issue.html (99%) rename {doc-page => master}/genindex.html (99%) rename {doc-page => master}/index.html (100%) rename {doc-page => master}/objects.inv (100%) rename {doc-page => master}/py-modindex.html (99%) rename {doc-page => master}/search.html (99%) create mode 100644 master/searchindex.js rename {doc-page => master}/tutorial/index.html (99%) rename {doc-page => master}/tutorial/intro.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/basic-types.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/entity-linking.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/how-predictions-work.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/how-to-tag-corpus.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/index.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/other-models.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/part-of-speech-tagging.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/tagging-entities.html (99%) rename {doc-page => master}/tutorial/tutorial-basics/tagging-sentiment.html (99%) rename {doc-page => master}/tutorial/tutorial-embeddings/classic-word-embeddings.html (99%) rename {doc-page => master}/tutorial/tutorial-embeddings/embeddings.html (99%) rename {doc-page => master}/tutorial/tutorial-embeddings/flair-embeddings.html (99%) rename {doc-page => master}/tutorial/tutorial-embeddings/index.html (99%) rename {doc-page => master}/tutorial/tutorial-embeddings/other-embeddings.html (99%) rename {doc-page => master}/tutorial/tutorial-embeddings/transformer-embeddings.html (99%) rename {doc-page => master}/tutorial/tutorial-training/how-model-training-works.html (99%) rename {doc-page => master}/tutorial/tutorial-training/how-to-load-custom-dataset.html (99%) rename {doc-page => master}/tutorial/tutorial-training/how-to-load-prepared-dataset.html (99%) rename {doc-page => master}/tutorial/tutorial-training/how-to-train-sequence-tagger.html (99%) rename {doc-page => master}/tutorial/tutorial-training/how-to-train-text-classifier.html (99%) rename {doc-page => master}/tutorial/tutorial-training/index.html (99%) rename {doc-page => master}/tutorial/tutorial-training/train-vs-fine-tune.html (99%) diff --git a/doc-page/.doctrees/api/embeddings/token.doctree b/doc-page/.doctrees/api/embeddings/token.doctree deleted file mode 100644 index 3b0c3621baa582373e0569543a87352eb295282c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 335526 zcmeEv37lkAdGE|HTlWCNI)LNA1;p-w?w);M8U|$(3Bw``0wQ)-SKpqhOLbLKRXxL~ zAZlDNr3f|}wO#Vsa2_dPLc+?5#POM)x7B{9+Dndtj}XSrv&=bn3Sb@kA`7k>h` zZ{72qbH4q2=R4oIbH#m2mMmRD|Ld%6%~Y!O+eS*0ll8`A*qZCCo@|t7r^9-C?qzcu zpFMZ`++e4#Svt^a%r?v6TxSWsC|9br$!1ueyLqm2Bz@kl)>M?YYX)oxZVn3YEh;E5*pK>@2TU>*3s$vlFFGf2rMWRwriLm@&=puL!JeO$;L=%@$^N^5x5BCn`%iE2{O$@HP#R9LJSYFq_J$K;7y1 z=M4NafPXg9%z&I`mCa|cvwQ|PpX;1F-I$!Mh35t-H0W&L9}K7bURil%d#*HFIjb_P zCVyq+WT3b*!g)s$Kj*+!w!i{lkj}Y#o27bds?nSdo7Xp*lb6K&5ezaK1=V`Wus6RP;JHBI~KFR?kALLt#BwP)oP6cW3@(o-&hOu4D02vwR>-K7C)VN<}C+G z&3&znOmb*wYuV6B^?IXSvIMfT^``SqZ$q+1g8_!kf%Aug^W;>n>lysoo?wU`rv2f{yvbG;zEh7%4*!&_%*zy*69Jt+v2I)swJE1jhW=1Mvz6T3}N zud@@O@umJzr|-7u+9;a`^wmr=Y=zDJ;T*NS0d4mRIlZTQIb|G{6w;Z4qa?u)wferG zF_priK1MwG@}*3|59j2AUMBS-b#Y}y=Y$mImY7ZbUE%wVbbJqX)_|Lbfil)_=Li}G zqd5CJ)UjMSSa~|3^qC5!m1jUj@d@;?3D~1QDOD=u_&r~!8NAdtgVi(xKK#`*i1d-a z#5wX~*vMf}fcbXVtW}|TH3HnUfZ{8pObSsv2EG52Qu~ivGpdnV8nf}gf;E=77Jn(c zzB3)Kou&1pB)$U(d<)~(qZ!hu%f?LDEVUa=eauUD%P#Sxy8D=~yGF9RkBIL2IxDMn zX3jOb9P3c1vRCJCY8+qoj03owD$Ul~WBW_B+0YzQ=h)Wl%uJ)%9&1gPn(bR>8{|>k zMMCjKKGbv_C8g(0`0({W;hUw!?5y_~0YT#XmRrqH&=7SEAd>(-7?vQ{8M!^;qS&xU*1h_MEF1KoHPyf zRvjaKIu=_T{0XziRN0?EJcY}o+4tp*dhMX5W zt8d~9w3`L$E9;{d041#n%MUzae>FT%hT}Ypao%F8VWDrM-)Go28|n^AXLS``bF*Hm z&E3^miDAw*t8<+vRod;D*65~9`>O5A?8Hd9F};cTSXb`3nm=rss5K^NX*N7l+82s< zv3K4Q3$&Sor|;Reb$HLtZRBW1&mqFDkDiq^rsd&nGgyo*ue7IYtl{mfp~N_Mt2GK< zUZTYv)~v9#bDe(jbs7^97Tt4(bJkf2OOMrE`qEi?@|BgH)l;*z8gmsY_jdZn+Kn%s9Mf19>iNa}9420*BUb)8jW z44M-7FioE=>f`0j;WJ^KA{Aq|fr0cXY%M-^t`_<_t7=v7CD>94O!QgmnxY`@1r(NDHBZ!+h~(a0)T&=LpRD=r8df#7ENCRU|Z!gSpOet{4Tl zg#A8Us@CVC2LPc%wOoaMVIN@STE}A_XfK$S@f{7AGs7I% zl0dhy#0}eXoilQ=29u^w)66z>7U@zCI42f^=&b838`9Rq?6uB$(P!{o>>oYO%WFA# zKKi@{GWs_{6z8|&wMCi|6pibCN#AN>VRFo1^iBMpm*@T!-{#`E=(_|}=ddNqig8%< z5FjwtiXO&O<=*JW1afPFn=%oou~zg`0)_O zT-LdyQLo=NR<5;z!Q^B}Vd}ci3aG`gP(;pl6>U8tJ2pdTk(?8Z#7Z6!yizi+GzHhn z7oF2IelrKBfoI{TyW=*iRmYrZ)eGfZ4TC{Ed|G*R0 zQFgRQ`&h%#RUo#BCyERs>=NApR+1>724-L^idw>kKT(fqY%AzJmIm95`h=YMem~~ zQ#5t%tVQSIS?H<9(j(J2(O=**i(@{dz3NCc_Ml zCUw6iTz;I8*lL`h$0g_>|%7&nQ~gtMiINqr4R&Hfw=3Y{al7}iwsw%y?% z_d@z&8)q+)CL7#YeFMWG7E;VvjowIqvf#1y_o{k>Z@b;qIb1x_uG&Gku50TJvF4$T z8G1!hcLlRO>$x$E4Pm!7{^GH*YQ5SX8yno%g_TDryV98K%EZflQ%$^B8+k1Jvo!WG zE!T*IekgXuH1|PvD9acSA+GGq*BSAkDvV5q&#GH)lqZRPIoA^Z**=36nnL2ks693gB_XtK-~* z5GKd@n_|RY`3F!ah|0&6zDAKgF!m*)uWJ=qW3 zO;Q0|ku+nQV#wb~A+qtlyCmD8+N`+5KVf$;`+}S#yVeifO)>#ok<7bUQSx_Dh+w?u zE(zAfe#O)MV|SxxKgYdNvvPw%=q355QbjNHcjG28@1_VY{NF~;ga;`1CL(2Oqpy;p z?DUr^;u(bFM$+I2^@Q6 zd2&i^!}8-ULQS7|A`rroSJwb6OBpd&g+^9Y~zJ(_Y~RQ8*S>2fx)H|^ECN+ zmZb>=gUDpt7z_^wG<9NMow4O7VHn6TUS)RQK5UImA%76tsGGE}TbqzlhQG1LJUPZ% zwnk{jGeC}K(3qhFMJ;#nNU0Vo?|-k87DRrN5EzqX5D7Jy}7&dwnf-bUbr<*qIl98jW zXj(jSL`v9*9I?q!V1|c)q6dj}Prm#x9kok0YSXtd3)HU&9=!8q`UaTen^Q8_(9?qv z2Jeh^&#+R`=L14%hO51Nkf0*vD@4~2y@70zVBo;h5vEkB?(A>Vy)5d0>G}0hUj~2C zr>kfl>!aoD(`YsRBLfOti<;Wysm`3WU~r<*s4;bO*;K&On%k978PK3yss|HcFpE^_ z05R!{#Yu&Di!x|88r*0OMn`L7=%l2<3E52fRiSM^%`SDjQ>PN)LMW9c!$m@=&}$u* zsZ@^AlnPQcT{y#l~+!(5LE=w;!VE0?OMe$XkqEL*8uUy5!CA&DBcY zdc=W>ckJ$R$>7H`a9>;oOETeR`ZthZ?O2O_-EKFmuPrx2sJbzV zc3~xt$F6p+S;}g_XNdjl3zIyWvDujz#ymE%x9?Rd+SQ zp|)p@_k-Fot<+O4pY@Ki;@&m-G#bGfP`gGe7@y0~i1}lcMfjw#`jGZIuB8e?d9Q_uM=$pvxS-e$4)CJilt3vTF?qjb{naJ4mz z(kH{iT4XfdZlO9C$HfQFXHZ6?J)06Am`(fFd9j{C``0q`MmOR= z%58U6PKe&+g&&3Z+4kHe`|@70r|=PP7v3pApLvm}q>u)q>$Z7NP&JLtW7DT&vhzQm zQ9##oH{;vr-0Nl}RJ}Z{@%LycJqO8|;Mem7j=J_7Bmj605^Rd+kd`RVV+lXOK)Cbp zQ+i^~1AAI{=ivgj^*g`AZ958k3@qcrs12nZY!lHDPuBa%sd{9DL$-W_OoZL5ZLFj#P6{tuW9Y+8d`ZN{z-;mH=t+lfFnCrbuFbuEW;~XuO-4pP+ zRCaO(PpzI{ru9V%AF+Q&BuBRua?AX)7E4xeDlqf|d#O9~)il63{9nWKJ zwebs-pL(Gb;0(y1%SjOhSc}^(#ds_(}sgxi~^~kRUpBvA(uoiq4 znh_jtQV(Siav?30_--_j>QK%E>aa?anorb70)RS{V7pR>AICtrI{XAZF?GnEa;w91f~p`FuOuTY z%cKlctR2k**KD)vi}4`86c3U;`38xyt>Un8cU4PKeqr0SZB&H~3zjKOQ|<|1rZ$#k zX0!dz_;k36WPEl9LFn(Cikj(St~U95y+wodG;#wpRE?A)=yC~)Q!zN zdYnSnAm58S=-l;4`Nj^4b4zf090y1(>nWl>slO`&x?;77d=r&}mAfi0GGt0(3H3cA zg{5dYf#JhbVa=l*Q{dq!$1iF~$7T%4SD?c^Bz2NiC62b-ye?unYWu8TNe2%ZsvWMx zPwP7RD>b8y-WjEwT08@deEA8I613NKD*IL|7kQjZj>X*61lC$#@d+aCY`<4ixuBb= z?B>H$1@_z(BBQJPz}*{<0(j2Td^h{MD0G^S_ndCRk`(fPYwkumS-F?Hk#_(U`FA6q z!Dwiz2VH%-cO$QnN%cLbqqpn}W;0_UaAH23OE`Q55) zjnJ~{g<{_S<7Hm|*1<31wu=y?y~ar`Lapzl%a%Kkr$&jA@ZbT9A|8^bXKqLL;wUX@)M4*&wv5|3f_CYa zuoaX7DhXgZWpp$NM*z+9eb|(l4+v$9?gc*dRfnZ2wX9v`Nk#uk6Xg!(-J-pZRjH-O znv^I){97WnRW!}Bt@k}|7by{U0X&i1K<{;F_uEIvEnUzRDN;sXApp!Ws;1Eg@v?_XJdJgE zKxbKhiUK$D84kl|G=56^mV?GrJ}eO6RMC0Tz9j$+Y>EQ&CvP2#@o^n?96d1|#-4KM zFd_Zj9t7LP7X00<7e{ih7g;Cii^aPak4_LH%~~mrCN(NYWPDtIh+-=3YFS+sXzt>v zb>a%qClAGmzm!oP0ZZs&YN{2#-aRvJ+gXG-ww8ydX5vmnOx3PXU)+T6nW#M#`Vg;s@?tA`0L+mxu@bT@+d(@}8A#@+}cLo&4XLOGG7G(RnoJo-Yw!1*rL#h_Arc zKBjap5qr5Yv}-#yhBh1J{pYd<_0e@1mONu|~sVeYejF~%= zKcOe)OtPmO&ZHpUd=|tP#>5(JP;r^yd(!# zJhA^EMT9ljY_+To!0k|#0_4z(lnKDy$9%rp!M7D_OkXcM2kQu{h3OrptO%(ao3ZqL zGU>q3dT(jmLFW$_nVYVWh8bV&DCdzT7fRR3eyt?^w0N2>N6_zOD-=bi5*R)h#VG7h zLH_jM?cSky;|QD4G*2AiLT?u-T*HAInFyjnYa+C8wI99~NYpP4;}?R&*V3`8c#ON{ z7$RBaoYqWOu1;0U*41>h->+Rw$AZD6Us;j5^%0*zx+-?_y+%~kH2NmVO2SgsRYf179Ix9AES{@(^Z%bbb ze$wM6*|zkJR*PJ=l)AAQKh2iDGVb7!JL-~$IJPxC%9a#qPm@0=i~7NMvc)Z`LR9nt z0+X<)xGb1QOmZDN{DOBVUW@u!G|gjC|IXV*ibdtXQ!FY?QDO5(e)uUCHF_GFskAwV zMWtTmVNv-Elv%VFH@Zc25>+*gUWT#u(4yv1L)@mWK0L*yCfQqB)jl+lR#kE+tm?}J zm7G@9-1I%`nh-Y$)Ul$+=C80nRK?w>s=Oc94K$kZDz{J@#XCn~u(~F+^qR&ye*%$Evx}~xi85fl%nup|)cnEUoAI?zI^DtF zYkPPqV9OR1DciEmi2gn$YgF#&ufi?od(A|g1Bg8|5$iotBO<`hMUT$)mL@PV3Y;N? z(q2f00UM11dfrIzY0_Y*kZ5Y6I^!0CZ1R)LLrh@ZmgA%;~%pvfk)G#_T4(Im$ENO0jS zfYgIl16e=Jxa_YEisjBYSR-2v_` z&{){DzqAt&kEKQ9prN)Xmp}Fy{{Nb^;_6p-!PU{Ls1d&%MPs7xp-`|q>?!Wdcqs8| zF#4JHuCst(dgoH?w9uyk%WKrquU-BsnyO__ zCuc=7()H}}9PPBw8VwhE8EwHStD$Z_F6NA7BCaV~a+8J*`IA(w#!|17qjucG1e>Fp z1wR$n{6zFBL7Q5;7^Z&&SY2ZJmuT7>OtbmXGD6%al7``>H+vAQd{$Mx=vFRqb9C+pEU(z5yObY7)8dW}abKEC$>vE81b29TXSDD#@by~-QGCdxsfnv& z-jsoN`c!ya#D6(Gu6uJp6&}~!V!Zi8L3mtJc$GMG;c@*OJ@YX3KhqQQxY*Oedt8^W z+g)bpCfrsbAIrMdWqa;yEUm+N_*Q2mwY&y+kWWYkwN;wUg5BKGcO+Nhl6kUsl8?4p zSen;eUYxq|alVW{Q&!fBxP#7pizm9SQAxUM>X^eC<5#Zhjdx1rKQ^8ncPLEs`Q2KD zndl4xV~6=ya`xdd8FiAtc&)PVjo0fs@=rC?^Snb%IY4j@8u>J*q%@sf-k#%IGcnzX zfnM%SJQYLA@9N%|F@Zy{H?fWOCbk==m!F(9Dz~evaGP*-mjGf9U0ug!f-XSZxqTM; zbUL?&U`coO6u(|oSEES50sAdO52+4p>Q))qb74d!02omT)>d-ahkWnBD7X>5m!6mr zWlsxlM0d9vV_lfg_)fI^`@nHW^Dvzbu8F}q!VrD&k1|HBy-`Z;?ScuU0W6}A-yFAH zOnXM!yln$fXdhV3F8TmXwC7=k&jD(FUHez~+Gkh}fv(+7r-01zaG%Z^m0Q;;+$MDG z>jANcy4JA|tQdrA+Ml9Fr>4~eM(WuNA%t>dVFJl8(6Vm;^m%Dn2>@DFf-SCPe~VFY zExTl`)Uxbp;kB&F#cla7ph}o9qoTq&xmPM`+m!V;50!grVn`zi;P7_mdC}BKph&lo z-s9u8omVcN#Xw)65iC$K{U;i`Z?^c12+R^Iram8 zkNV?~Z4$@tab`z3{!9%X`V5!b`kec&C7^ZYT1T z(@2BRHP$>RrkX}a0csB|e-7o%?f*N_uhagg-WYX1T1ZnbnGY;^j6jPsML5rbN&?LSISY)!?U7T((LmbYpYIB}yFPRd`XQg$>C`|c&k`(%( zxV}>ajlNF+7y>nY_eH$yp}zAmGgox$j!IEwfd)aR;5}KT<13lM&>8QcrJPsm0TD z*%<$=D+)!?Ed+*JKDFI-q&@NQseHSgAcX zl_lTe;b*n)miQ^{PM4Q@v6iy`)R0#^Gg8A|!G7bDS=SMN zDH6Y>o58+;4XJTdTFrMQvV4; z^u-^@xoB_HgudgSkh?bcw{jBX$9~{$f(YP>AS;-Cld}+isTusIzmq~F;eB^Wk|Rw6 z?4XD=&~h$)aSJV>`92SZMR|DotH;_spm zJ$TPu(&KR50ZLF~CI3~BGM21lXMg5!JI_;H$QMUkp%FZL|S%?*9sOQ67RW7BK5_K-~?g3#p2id zC*UT)322nZjBoSghvrLE)VksUEa4cd~nPLE($24<0u0Tu|7tMq=__v5oH+0+uf@ z;Mw?oIhq#V_+|uW7Zfrk=<0HNO5awRCWf=g?SCx-#<&v`0 zgQ;qYizzJk85O#!*6wiND` zbtSYbr{vbL#IhD0`I?sj{Rbny6t{ik?t(}mi45-l{}8Z#I3|N@&mkpX{R1@e*(E(# z`XKwZHv#Kq$C_5&w5=(F{S6;LW;E_7KXA7jFM#KC<4^W?QOJ$wJ^NjAa@AW7Ifx8JJfGdJzgypXFcT$KXyzeea(xZTN%|9PEMJhQd@^n9N zH$?<+MGk=#U{9AMtlmh!VW- zE-BHgfb}>16LOQ}t2s&XJwI?aNd)lRB>7i=CxuAD`|gq?^9We4Ij##Ez6y=Se(C zy+B3&fc3i=4XuUEp$%B?KqaQF+ji-fYri9FRPKPa!fhg8{W;)zz5#0%nvU4z+9#wf z<#{0c8yJ7b&UMpb9P+5-Nhx4(R#}F8O>;3YsKC zhjDx`-^VHt_`fkdJ^G!_K3X8~5xapi1;;Gv0<3;pOa}SdM!DRr7im|LPc{zJYmL%m zD`s!tPJIz;5&tYQ#&oY7^?F!dCy)R52%P zhfR@|h}=W%l^W;LCsIT=K8s`S7`ru@_>T4ag+^#q~7_CmcGs*SLct0H#g|C`v zR~z+Gjn#YI7z_`ys>Y3}(O_U-t+78G7zzduAjkaz^i*z^4%7xHa^61B7_NnF%sr@; z>icF(`{=THlrP3_rC_Fn^2l@pVNgcVqX=xA+>o!mK`k1mAAqtFMq_Cz#- zhl+};!Jrl)rPsP-n)_1gsmd+x7A%d9%ObZDQ?9CHn+X`-fLblT)B4(K^<`=SedlS_ z%)w#mcFwo~iFCu~P=pt=8DXyoK`r?sNgZ9G#NpD4yEq-%wNc%#&ZXdDF~%D?ZKuykFoK@N!|>)(Wk4pW;lj@nyoKc zuC_~6!ldo1?w9q~58#B%u%=ttBP+B{l1ArFc-3`rBOUbSL|7Z9+bB_xz17C46QG!V zGE+kd_n;kbOb(j*G9!8XK1@s3Z0X8^a3QqhJq#BKElIC+So6}7ZzW*qTJr5yU*@G(aNB^}@3qREBV2TDEKBgmy5Uy?zv;_7j4e1akvoM<#^%!#~gD&VK< zaPvgtK#Qef=(-WU;Y7&J<_*)?yvbm4wuzer0(C$bdcsnB+QAH=MYJ~xEk~|1RaUwd z(9~Z)8abRqdY!KRj?%6|pqaZo!_x=?*Lln78_mu>#sY2*RM&Ueau~4jn-Fp;yb(0j z6y7}KkWY}XYC3~`P;)VY4R^%GF9b0mXpV0lKX3L@>|%q@B}J<;&|O@LUJ{>iaY+%@ zP)#hM>C%>3sfndl>}KH3n0B*z8(Ug8__Z$kW@c&a)hg`|kxnz+XdWCEo40 z(Y5i)R~nf2^k}?&bfpxRW~J_IB({vrw5ce3Ml=wP{oy%96 zu0@%flVPjetWJ>Hst58`x>EDD>i&^NbKj=YL~GO5En7B^Y~Fg#&MmH3lRUsCbb|a- zA?TZhurF3mUu6hNs4sf0Gm*J^%HuvfOc31a>n9d)Q~4BAUq52wHzDYP;Za||MAL;; zUq?V3V+0%O%f_!ueL23_)&;L=@@Yeio~z%Fm5(bi((DfvQyzDM$w)e-?pwM9{o{YQ zu1nvJq8kd}RL@20(3m9jIXr@B4?mX%_)-Rg6xRT+iqA4?N}y54EqW9vX(Adz>j54K zp~%WsgrHeSgl{K|1h7GER=|V2BKjVo=u)dSOIO~}tEp-e_uD3D zI$flV2kbCk(84Yd-<+_WpLn=TtAKvaqnA59gfi(v7!%rKD-kFep{CdK(;mM^5Zu~h zj|E)kC|Y@a6U@?CHgj;UlfC$OA{)O6A;F51jq+UdU4q&N#+++PFwmVp5h z&UpO-tKJNQQjG-oU_cv(+_v+D%TO@WZ0xUMTZtNR_-g;q648wFxG(T>yw0zhXg-%= z37lbW9?|P`(JZ)m^lAderPQ@~^jfPgQ_gfr&D=bCC7X>2K%cnB%)c2;H9=j_&7-3s zvI_A=Sk#aBA{PmLOkthhOQhuK6S*;-ts6hmJ<30CqI@2K8F@FQb&-(VPD;VIph9cH zbX#-8p1-SbYsH?w-$T^?Q}?L-dCyRrvO{O0bV%P`^RuvyU1&{LNO9GPvA#GApJ<+G zAN_)~7kTQ*lyqHHWHasx!1As6Ji6joG}Uy)JQ$bFkJPalP&Bc7vwqK~ja{g2!{|GH zPedFY-&{)GW-siP(lT~0xvch`89ZOyYVVItv8b+~ZFG{^p10Lbz)v;c$wCdnEGBA>J_Se#Ga{iFYbwTRQPMx$&H>6YuCA(H#@fz1N8bc8%Rm8@aYhbo`!B ziH>isnU6|LQ3^_|?GAHk#|tv(Q(QZ4qp~KNMxT$LxtJM zwN;qo_k;>_e6!vs#Yz|1EpzFj4`v`bp^N-bm+_RfwK>u^#Qmt0Kb%!uL)=LJYxZfn z^wC(w{irf!S}rmCqZWm)Wjek}XYS&D)V*LoUZndvdSXSo*^{sGHLqf^fgf_{x{k$8 zZUs{A3^KFkjcbO^%++Lsz?*fjNckf4PV# zZrk~T#ZdxUAb=NIR@Vd_F+5yt4P#Sac$oAL8MZ;|f|XGj++RAXEvug$&(Kwg!F$2V z?P!Y7emUL+UK+$*=s|(Iysa=J-s{v%mr+>`g08?(bc~)!02umI(o`!?BrWSZ++u%(lZx+)UZ7c&>IfHHfOhbACPr zme%7ul-f3PNF!-oXjOV-`Te_NX*)5kl@!AC50v@;TftLO6&F#CUys{%{&OB+X5_ zW{^ixH|Fd{JEAI?3e5Qx;;%GI6?JnQam_Vhd$x%jP@E`{`ptN!RN4iYvhE?6DotN_ zlj|=IB%V)=Hb}t$W4aC`8V5sZa+!OuD^ra zms)jVg!sr6Jh`2E;e4^2zR|q*XNdvGUQAxsc_KS{@(jT0k}2*&Q;jKdMo(N^ak!2Q zJ&dxSW_t4F39K8T6dUQv!*|_W^+BF9c2&l_NlS>Z18E7{W40BF2s@mc1F8r+oI_Jf z-PyF^i?D-Ku}W!m5q9`EdghM&C+LYe^6Y8h9r+95pmMx5m&+Zeq?wtp**>^&uCp^& z3w05(=qc54@4RA>xUn{FP^92W=$I>|Wx+MDWNj+f$`_qeEPI`Vz#6E4!H%2GJDm<; z;w-$x=)n0y!FiN~Jl3l28*9y!%He1be-#Xzf4;DCh)}MUjWlKSZHteyBLm;HTA1o9 zB{D$W_=He;$+Yf&Ansr>)An+RZbdEZk~_je`zL=;UeABTGj%OE{8282rRY}##ttsA zT}Q@oxk5_)>wWsn8&X<{rg=h2CwjX`VH^(JFvMJtz|Ypk>SO)z^;Bd%0DELj`zZ<612oYX;dZXLp6r!#^h`*oQtRuHYKHw^7H$w)C}1lwwJIz;xkCM zYHrroh^m@KUje0ixGu?5Kzu#&1RyrK9!WB`424}v3?V{ck~bmOUl-i&yj|0*2yzx* zIfw&hVSOK}ci8)y0rIbL3N5bOQmBoR!7Fof4bhaj9~+{t35mn3E*I^6UKq6$E`US= zTmXq0TQ7=mp3>Gv>5b^E%V70G^va!pDSBc~0DH>e1c=d-aT<}fNXXPFx5Gf43X5?% z{?P?yRanQVzOXe%7VNUlrI3uVa;aQFAdlUlIaaMthPQPQ&pR)lJK*jw)hXcW)MtCo zvTU!rgTVtx^iM|d*15lyYuvP-71KS-%XEIl|BSe8=e3K(^+`jA9lu*n=;T;Zkvr|B zx{gqLiTjFKGljjE#~5&#&6GIZy=dfHY#x^OuJE zvy2J2<8)WZ^K1L6?aJ)L2x9e{n0Q{f=W712X`q1z9LJ+y>pQEPmMN6VSwai#^z#&)o}JYdZJ27{_$_A zFCJ^LT*9S~=6G`ty;!K_ztM|Nfp{{4)?gULLoLK+b^wmekI>8$RelF700n>klL*8@ z%hqC1b1`D?YJK#}3{2CfBDh0rX8TVzM~dLigE^pz;LbmY@w(Z@hA%ujDWi((y9n+) z4xGaMy2sNK^Xu4C4!=$~J>B|r=a52zPu+zRH=N&zLkIKl+8*st(==pq5Rz`%DlsGJ zm&Jc8SK>y$f~feeuD&jA+j+?%a>N*h7s&IPiKkq^^QxhdPjTv=S0%@{rst)o5bdMU z_1yD%DWK-}yk49!0k`LMZFinm958HcVyiIje{I_d|7-hZ-T!(~)~MY6m%?qr|GF9w zd+2|ya|^a`xc&^CB^|C#YXQEHk|-V=oI)lyYT+f9u-I`WAJ}{VNGkY0z(br&7$tdH}F|n!@8^eIHGW zyI90nwu^PRjt*@%YcVQ$a<0B62;f7U=3IR_1ILewBWo{z@sX?cjm*9bA75ZgbpraUzs$PN}@PWdcvB`KHnZ z`xEFBHMi(Onr6=(s%rr?ze9C3zV@lML*P*D+yRGb=T6g9@q@WwDbJEsz(B)*oa$LwSNxuNZOAI{2W)((nu8SK z7WNu&T`GzPiY*_p(I#AwB2AREKT8ZMpVblDJVVq7{EtaJQ%%aqD0{`;2C^Fvm=cBM zQLblFOr}~#;UH8)#7u^QgN@msRcXxDCNat3>hw%4oW?x++ZEJAL&^S1gH;g2XUzZ? z76g3Gt&!lu2KK&MC_PjQhgt0)stq(fTWeR@pZz#FfFDKGl5#nmVO7fFU9m+wK1G@r z&x16F8KhA=rS=9Ec{Re7kn9OpLNcxGqvA!%&bOtfp_xFqGo5=nFLH zo_kHloLt0fT8pnAX|L%V@|ujhp$^X)mD_7lxJ`IXe-2#t&}%x*T4``W`{bgu=+ zDSWMK!!W?+HYzp>53~grw11}5Y*)*(sBJQsxPVPbEz}^2lH9;-$^a_jj%=qL{HY%8fh(52K)QGMp2;5;o8S4C;j=x-b4vL-p@XliuSG+FY@)nN3{Vd|`s$S99~roA&Rd=o@--vRelFV%FM(?G=@#G9zm2I=B} z;WE=YZYHg#Rn$FD!D1Jcap^(;TKhMlfu$7-2HEO>ZfmmCW-!R=hHo4RE)J(kSpAN& z;@mgCs@qg_J}`PXx5@0?g!C`%a(Ct8@<-~-cVs8qjE{-s9F`5(v@ms;q(j) zQMIMljORC0$gx`YaeTvqpDq!UBTv8I2jSG(o)bk|Tdd-K9Ic49A)3LQNF z*k&g53;CsNroM`0W_=W6&Zv23BMw?CQ60tc&B=b=(KM3X*f1QO)#KyDXXAXY3!U?8 z=9LWpx)9>UMR<0ffV*y^la+H1v~PTzvAr6pxQJa1^@vkU9!w`ZQ6+t-hwGx1dw`jk zJf%m&TRP$yQw|jicRNEa2t6XHh?JZi60-H7NGkeM_Gz|OUL_LR;#5y zrACD?yz&ZuFoXuttWQ)*Qhy(n>E%ub9(0e zIBK^Ed)wNLE+W8#IU~T0)bMZTuEi2Y#Tc{pj_rLg;A}G7UoAUg(97C@$Co+usD$&I zpseoanKI#zK7TcCySUJ1?GUfzNa6EWXETh~D&}mwhB_0C6~=xV&$>X|`5`p&*%3WJ z`~4i>ngLoxi0FGXx}FDUj|hqcX#4TCZ?cDATl;LPq;mESeOr4~)~MV8T7}z0fc6W( zbq@oyN816~hDZ_IjFBg!vn0ndG;7!QBJD|YXWQ43C9r_{5^+ab9TY1rJ8}hXB&XQo zHCg=wa%BHKw7(Ss5q>Fk#2zR03b4Eg(cX1 zB`%X53MR>E63_KUeGEsP%C{ggv71L8m}=DP7p9tveO_ev%|$tG8wskdK;S`T@|?w0 zZLT4U5i4!JMr$m7ETGeGkB3%3ryoS4JbQ_M;0NyBOBBGhy+ooUw_#Y+vp*D%zS7@C zp}j=jbGnzQo2prk0!4;?#c2sDtYE*%DTu$+9Nz1n!v{*12B^FPQt?hcfXw~ekNbhU zX&`{-q`?>cT@<1L@3~7F9Fvsr1T7BNzmX&{Uni7H_p!na(>9)8Nxk;^Kf+UVW+iQ7u7uQptrlTrsLG_|s*y46%3js6xJ4BWCRjs3j1{{sHZv(d;W>$>5;oqbzT z!|b`yd2KgScqJcJraSOROGijFJ@F+Y?kLmS)+1W9);WA3Cptvmgi)_ zxLsQw2|!sMs6dk;^H`owV;p?B^BH<#mWMqpKFf0kEDyiGd5j;)+Re{+mn)@uJ*>6H zYKYt?52d6=c)u-3AmhxYF!+}}55#Sy0Xot!K&NI7l-nD%tjO6yKQwZL(Fq5*u4BDb z2J2tqF&8jcKSiTFq2J&7fxET60IszCu?~vLc{zVmvpeE+pF2@0WC{4VOkqm11P?I; znY?3vYgz&)@AT3Vi~tq+Ex}p%+UJryGHZ~*tWmiwfx_+Yge5oOpC8vdWL^>c?^qRBN^VM!j~BZSb;Nm($_8cYfKZ^&a~NaSUW%b$?h# z-X&f7hv9|$kR=?X0H8t8-t06soG1I`=vgKUCeF^3l-h(R29%@XKov)a*$i6&;+8OW z`@+eQ;QC5fmk{*m-#9~a*akSt%SN?V8g{u+-;Z-Lo2X-K2_FQUW~1JiZPgC;vkq`z z8+DP95db=Y(b$_jR4&LQ<#U%}=N!B!^Rw+EtV2K0-Su zPa?AW3i>VAc@!cEiDfEDUdHBW(p0z6p5rL5LsOk3te!l?k97dn?M*01=d-5ECQS?OlnbXW5(#sa3 z2cujC+vJ&^wr*Bvo@VkM>3WqVXZXvV6X@LXL|AJaUnqzxV`v;A7>w)sp0AxexA>mU39ME`2uj% z)OOEfY8x=MU1;y~%7|8HQy(W^v5YDONh*m&6&7a;dyezTh2|$twOmV$;&cbh&vlOT zu;t0KrmGY03~F_5;GTOh$o)wE*T!IYm@N))QBk!CZ(n>Q>N}|=PrsHe%TCd=>PYH1 z&7gVGQ|fNv2+BVd?QboF8*$om8jYB5yUaN4Nw0OqYOXAfmnW(9dAl6f=Mfn0xQa@X z92uIec!AZE>3-@jPKw${ z$BH9yQq=Ly<8Z_nOx8WKDHgJ!=TO?Xx;g{vgo0Je!3bDMu}`BcxoWU=d@NS9EJ{dK zdQ^fpMlB1%ixM|IIX#ECWhB&m5;M^SB%SGK`a;+~%BBypn!-k}by%jb9cKw!+9L6r z1cl4m8X=eTsU~WFYxQG}xtOSZolV7rkWs!xJ;M~IbSBkAb1fP<>>#~P6-|+N`*oa(lvhi2%!10M z?c?VqKV{w zt6x*jirL5}o0eQ7-PKaUeTZl`2Itz!VXKQo-6Ut-jZ{D4H;h*4Dw3o? zaKNu~d@4AA&{>EB{K75jZdkD{R*k`o2lZbfqLHJcG99Ncex(_iq1=Rs=N~i27N{9H z5;&}Vog-w)Ep~=ii$vbAV#Sgr=bwLmaC&eX3O%;N77B@-b=jp?UUkhSW7l7B<=(;5 z5P}~@X~(cRjk;tl6n;EyV?VW^+S^D!*d5gCBYW8M;MSpFtN!E2fv~!-(pKfxX!D#Z zOk(4Ew4XcWgE!q2Y#!ONYsPgF}SUU*rX%7Tnm9;4=?Wb475+xZj> zlwWhnldik$noF)74D0(x_g;0)MNb^N_^ONcUUKc;G1~v%!kg@yncV`6>mjwl)5^1x zrO_=0RgnELNZ*>hS4y=hE7P2nmpf!g!=6zpi9sd&1`=<-`DSz23~5_-;w9Uk+daT1 zJit*>o|#QzWM(#j4t#g$xMN-u-Po@&WkSA?UO>!yB@T9PBrv72=RKyj$PaMH=xq??c3QOHl;)^(Uz^}=t3%nhyk|-A><%5 ziwMY+Q!(<5N*`<<*|}va8^jQ)hAlfb+XL$Q3yZb10SjgPKMJuM4l1C&P3r%TLi`_v zn5p^yMi`JG*2{2E^F+BZZn)vzxOQ8oy$r?03z!T*)IAZ zUut*?(9u$aC*NL+@$lqZ_C(3Iccq;=zx^0(?DM&avZVO58!`-bGUAPa_d3{;|?^cgJ{IWBe+1`}B7TcX!28 zbDd-HpW9JriC#!x?8{qLa^B%IQ-^bm*V-9T{cD^N6@RLs{;_wc6?Z+ESEG?HRYgCC z_=+6gnx{{k80h8claFCYw&IQMK~{2tr@sh3{cy$v7XI|f_O087_iW#4RM7iC)~MX4 zPZVzL(kpCh&cOTo+^&!QWL>%&G)M$g0d5D)QQ_6_+9%*8jX#^u4+1WZeb5L&A z+>y)nxpr_?4`5_m-`QO%J?wzvD}2Ik>nxA98-*QQ?jXXo-IR-65!n)5%)_y@ zHG2$G-2SQ;uk4F|luoAhMrn@;!Jlr8>35i(7PsxZbdmUx+N5pwt4Z912h9YoL%D8 zukfHrSCoeBrLrvSpvLKv=loG#k)-j74CW$|3#Xm*Y)+^B{v1$+)BZMMq*MahDqlG5 z(nu+_--XluWDt!z?bp*2bK2R{!aMEfws41hI5r7mkv}XQd+nR^dF`r?RJXlz&m!@C z^|5AMnsTP)8L75|XCgbcH58nA<}DDkeJvR(SK(M(NG}mDmlpafwYInwERoKZ{6w~FeqlU&R~WnEu9)=uXaozbLeR^J zeiA2FPQVA?9J2OTDJ*q*z(?3Wz9^Pi-VI}8e zi3$0q>gL1#Zrr%w-4wxv|64N@ulPTD7LBgw3(&s@)cgz3Z!w&j9++-d4#5I+8*Url zzTF7Le=}=T?ggmAZDIks4-k8}0JZO?(ljSuf&Lc#C0C%jI+aV%_30X0U2-E?1)fX< z$f;{k>yn#2;_kwr6p%SZ_45)c^{CXwfbI`%hV?Qp7(_|#I0=PI%GrFx{n+B9H$UKw z{m|Y5Rl>S@qtB}7Oi6y1IAdQWY(R#9m=&Tu*0@Gc|9@TBKrtn@O-IS0?9QKH1`o&) z#ckp8il1PRUF6-It+PvQODLUG+84Gq(rw@U)q1%$J4q#&E)Nd^0?vh%8%?U8)TmFg zDpm5@AnjmgP{&O|tr3+}%DWa<3h_I18^QQEWyp<>GoUzrkJFr@FQHD?b^d5^&p^}b z>ns`?g_-E~Rz6p$vF(dqPPUq->m_0VQG1E{WDD4194J)mWe+V~X(!o>E;`cK>l_?m zh&Qpry^xw_h+=0{4688_QAI6O^C|@`q_I+EhjL@)Ac~Z=rQo$RvFjJLw|F&$ftJmu z#{E+!UmwDbA@%!uIL!y|d}aDX6~#siaf7K4sL=OL#u$Dc66GIm)D;L8PNY^?KKd$J zltRF@O!Uq-E}Dht*V`y7H$JX3|KLUv;##W_h#GcONR1VxLv1*DGOb0&+xo}Hk$Zyb zcBpXIsE?xx-1ztmRB`n-f`D7c#>a07!HmRhpph{<994^Na5 zd-@d}H5Ink;yP1>9c5EosHuSoynGy<0`y16scH({($MI2P zMygF{M2$g7OG5oIGYgNYA3veqDAXDq#}Dh1!)Pt;K^ zHE3sN5PfI%U-+E_jHyLh`?auM(L7k`)Qxwqu@^97_;2g;ks5lfM=*`u zEmtLs<%B3{1Na|G8jd>Cgy!dKQTgHsH1h7K^uZ&XY)s=2;#|?n7smj$UipHe5o)uN z);DaYYJJ4f6B$K6$Z88pm{`80cpmL$0B0A#b94qi zc5O{z=P8^^oDPo8!{-I?3^p{15!hUa-xDRW9N*Lrt+;CkQ^qL|Xp}6pt2~lgW%#%=B>hOGiB8%3)jANB_q3oL}*X zvSt6mKFus!wx4_7!5~Wok>bhBO$pY9R;yHX9XcPTB#y2zTf&1D{Ve=NztZ7Fs;@*g z28&a;Zgn1EWSe{=L2M=l2AoDhE(C;Dl7A}2a9<%>2-9#68Zqz3G!68+kZEAM|L#nO zw^^|K^bv;P&1_uhpBm*13M#C30Cp~g#gUWKFnqF`X^I|tVi>;G%>cfrCbh`iaN34v8#XMU zjgl6na)nm6IIkC!X4?(iHi4Z8cmdV+K&!tMvKt(zKmt`BppPji$UJk}Pk`Hx-3}_Q zh5d{ESl2!Qp-Q(;u7x;+TGQSrrTgf!OhuWlu?Ukw>7Iy24y8-43n|^@gkR|^@;}tb zwph^oBNJ+OgpDly)A^{~ZGfFi?Q-pt&`_?$xtkx@{TO(r03Cg z&{WIw%UN{TT$)DgCKI#lWV~FBLn~CR7ACFV^H8+i=4jkab^b89K@y1N|(N`hm$aDwmq_3 z%bepg*fU|X{ZK`ryPxG)Jc&F{it**l^ZYx$&U)xDJMu9Y{Y-n;S#=HDJdP8(;=dIU zeprYIA{_ZWY81;1M(qkm8krK?($Yjq>1iR-26xp~&G0`8%~0g${(BB?5OgDC^q6i1 zj;|g+WV$!$UIsC+px-gns1W^BkkYU-aS=T`Zh2z&>F{22xj&D^fP67g!j7Q* z={Y_Xv?oLsqP<^fd>6tC10?f7ViKVihq>7#tL3Tsd8jl2PVBnZCI0`|Za17%3cdw{xsu@ny5Fpd8yG{J zdfkz$$%xfcY7#y7I($W4PPXzN6OiHd>gQkAx;_9mCf+OKa<5m!{Q2rHiQ9HwzDUjk zBoM$)#HyM%Ck+o*Tf@y(dwAG&PHQl_aiyjxmd52h@uZOU#(3hKhNjJmLV&P~dqg+j zB}DIaXbQhPvmnl&dAq2%3*vC#hJowkIF9xy>dSc??K9p{6k9%hg3a7Sm9DNlbr!ya zrp1>}&pnJl@d~HAN>j8$7Zpk228OXV1D3WHqC$R z#dZqKf5^~kvF&c@dM@3qvF(3);d|MZ_mVw@Rl`6?`l&28+X~?8I!VkanWK+%$n&6; zY8u@Is6EVm&r;Yt0sagiDVYGDP|_j`K6)%ZhkwHkTuX)n8~%Yn2%MY0NbDe2PPrYH z;Z*n|jv%iv>kwI^;FSdf_A;{>hsKyrU#Q3;nKbxM|c{uiz!?Ft-*sWC` zZ8v!#;%?0ONIr8eyO@U^KfzQ8BMPKtz*if;z;de>N)oOHmUT%mRjS`)?}^)X?p`D& zTTR(kq(>@S9f!2@8R&96&B6wH3{Cw8`o3jLAaD2|iP-w+R&QS^T3ht8u4BjN=?9&- zN>|yEteYf7*63*jfMHTKjV{H@9;&%ie&+h^ZuFMaZ;F+rVtXmRlZs6a8wkCOW&j(~ zwPKS1px7kXt`ys!U?5zvy^fxkVq;Ia6`LY~O+8w$3O)S9qa?|rTjzr)r+`s zsJl&E2fs5O>bv5hvM1kAD~HSIZKYcUyyKz@PWPbXeDjiceH9GyLYUaHb8A>ErOtH! zGU5Pd>RpUkb1!_0r|TWCPztkM8AHJwTpQnH85XPt_fWw8ju#L3WqSA49YaB-iY$&g z3SmAyWKHl=o()z@img@|%_0Rf1x1x||18L7%rJAM@MWuoX%15K4|QY9gw9pEa`|-J zLFW%1DVyP-rL38GdmPp|A%&@=Go1RnLjU*Uxw;I;VCAmLiwxT8o{t@=g{4&q!awW-RG|b@Gr$!<;VBLs@guwcZR=L%1EA7v(?_V|Ij2_=9lLM=n3Q$Z$rRAYaNAABJq@m{+m(ykOe@5-_#9`jC^3j{ z4M0m&adLdgCeRuFELwd-5EG1TBuHEsd$&Qnj%v|4#RE8?joL~$m56g#lIC|32c-@#?;MKO|H!G)CDFCK?Rd6unD@&k9f+XA?9 zx4p~OF@G0@TyEa8a@XwmsJ?7Hm!sg&En9E%Pt?6GYV%QME?b}P2ks`60Imp?x@?{E zgD*rR-fNdcTDWEF{r)Ms$@A8nvxSKozcnRjjAO1nMN8r`&MU$tGCofyG! zOMZ93m3yw{51VkC?!+csn>##%nr7mi@?bZ$X~{J*bMW*%+jne5HNJDs(U+~?%Nmt? z*{X1xShk)9i1S^x^7SgMTsx2U`6}XSoFg{lLuUlKqx=k6lka37K<#=Q$un3ooPjBk z2cBmweA8uhWLnnSRh;vpLSYlt$tnss@q!LPt<|0mYNdl=6K7|usAp1cOrkCytuO+d zG{Fh6YLo5duq`Rn62oEK7RphvVp8$?VnO>*{@6O8wdleldJN%;ue6R8?d_G;+1DXj zz)r)-BXecB38$AbtWE`Wl$MCAU&Pbzy1km(W9Bh6Dj27xmadU#H70gQB?DnYSF)A8 za1}eGo&?l$F=oD-dmcTp-CXwM+al$wl?{R{^SM&+TyNH?L#T|@)3gg$9PLJ^qtrDQ z*Eha>(-YHSV(p=)n=a=)@f8XGL$SzpUKa7MMxGS6edI1#Nyh@;*HinyN2oLvD&|k| zuzXo6m3W%2^?)}YZxT)YSt>j^WxuzJl+9rQd|iiSODdAmdtITW%dYg^DP2+#Gb$4R zhCbCa+Jl!pGoo1)D8 zX?JhLK)6186Fo6~#-4KMGob~#&H8vk>>rKQ!uq~;B{ludAw?_<7&hAn5l%X{Ksd?n zGgZZPUbC3OO37hog_j=VK$<#KATTaA0F@Tnp|VgY&PoU_l8CZeHqzqu9~Z11X9;EI zqI}kBVZ~bA>A%#CEdhF1R#zq;jyqWNRJJa3Ju1lv+;Ap;P#X6;@pN4l!f!+ss-nLq zFt*t`4C|!=#_H$Zp?HnekI^)bvHEXs7b(Vy12;Ce;zNCGiVB-+wwU(I;!b@JR4XtR zJ#CG?ZTpHOSG?GSEaw(?y0l^8*6{ETDbe1?G z%oaq#8e!LoiiN}y7wpFhveArJK!w^U{@IqBe~7wb>+FBgRQQ5!vuN)NV^B-6>XAr* zqaaaZt4XoyQOeuM0^_NnzlUDApKv)nF+YJlK;*-N1TmnGIfANrfsCoLAtK9N(iT3AZYZIY=Qo7d7z@_5`q=M{^|@zUrdQ$^K= znsM*5$Y3zuDXD*UJip>LSm7qRlfZBrta2~q4e4wIYJbCct+FMJ*RJc;U*R2U$_CTR z(8#Ber29n)gm>ro){G)MG0@8>^7}EQ{88lhWlUhC{3^>uZSClO&Hp1< z)ra5MQANGu3{udiqG|~7v(G)CPsKIt-^~G4R1Nt@G2VQlC7fib43v0vaiino!Ajgk zzJQ*Xi_D&KxX8kb>^7A4xcK(&Zd0xcgh#pW;_572g?`C&z6& z_bnzLG)9Z`K$YuP=xTN~zo3|t*lYGy(op- zgctQBKxI5GldbVm=z9?Yy-P+EqZvw{HM2z&hsgG;Xl2F z8f}oQpT~bXl5Sw=-A(PEqycc}$iAul)7}Xc^M*bSSYEkGuQ2&VG%fB85wqFeP})uH zi&wFdv-4p=2E>_hp@nf>yZlMAoasX6sE_kQg3YOK?T9`kdX=Ef)j%=ge;=^AB>peZ zv^T`J>f=QJNE77OwM#T|3>(*1$)6+|ObqA0u6@lmg=q7-_9N(*Tx*WZ>)QJOs!Ked zfTkLr^Ig~e8lcdYv6SoD)39w^*KQ+Qt@`ba1I@YrKn8PZ&OIsHoX-6lb3hf&{p;~* zIsx_AA`L}2_tH`+-QR_Ce*}J@5q-@G^;HDYKVQ61TeK`&7tG%NrW@ul*W^S5lT>*JwPH#k0 z%>d-A^Xc^kL5FN){x=xqTc-jnBydUi+{MamZylekzKxB?&=5l<(i}Do0e}v&S zS2emXdEt9`m-mvr_w^lb7v3qri%dbE(pxkPU2n~UYN}~82B6M{8M0yWMJ{5)B55&%rU1Zz7bV)NUdC3pCCY5k9&CuaTG)52T- z$H~fOg*Lt8QhNnYTguMnVeg%11r%J%(5rf0LS?HLN<gWfZuu6g1s}S8{DUwFp2>?T&Y8q|8 z%O2`JKSOh+7oy7)rKcELYP%_XEVZ4S0JPmHG?)401WN$Wb`oq?+HOAv!q++n=!t1N z_LN)ODPq`k)YfIPxCMqQOJ1Z5H@#xr@5e)ZUOZIxZ#%hfNVN*h*(;K4vU8U3-n+)kNmH2gmtK9t& zNUm#-Y*+40RtwXRq-Zbd#%4_2)7MqgtKtqiFLmx~=#Ct`eA^!y3r|AdL2u^1viAMdv-6Rsg6^Ramp_4OV&ua8f^mkB*JiOm7$#a~` z4kzhjeI;kL)_$*MSn|)%O`n@{(x>4E?xv3buIR&WcM}q1U-fpozl%Z?;yrgsp`#N% zQGz_UT@R=Ih1(=)W4=^`dAWaLZo=G~lQ3`a19uZf0MAL7_xigiL>S(4mxMXe^h^^} zSuKB;6j3h}H9qg3jhh;Om6ICZ@&k8MLjYIQ$gng&^mkH-9=z`^>CqRj3=*X99{FCf z(`%32B>1nKBskI!+)V-jT#>+A-{{f)E(#HV_uM4`j!vw{5`CQy+-QLn+MX!*rj zj`|@;)Z4jjc+alQoAu)kwX9LO6ZI5s6N!5FVZ|`txS_1|`gy?Op~3qw&WQe$wO;92 zhX3RO7^|mO;B{*F?~v4beHBKk$5YIm*WT26eFOC&*7JMKI<(rE@i$o`F?p}pM(yhX z%eR8{Y}CFRO^a{TGJ>;OuZ#)U;eg_`UKdsP2<%DB;fsP%U{@Sg{UlKjQ5|AxdgL)} zqt5GP7d234>$di6sTQEz2`*Gr=WIRoUN5+1qI!#7?)9AbG;R+eDx>$;V)!y8&E!Kp z2&ksNxB`C$4Z5!QIw~uNdX5)ZQ9D)bHLdE9)j%tqy7J2QT!~cVur_>217Fpl*QCK* zM8WX8Cs(7*TjP~7&BtALb75gC^Le=yLx{A|;XT3W;HDlb7J zpPAC5djAEw!maLop!Lz+jQm74^6V(ynSS7ICtm>1?c|^1@1&5E&-?Z}?xdwC_MITf zLIql%kH;DvrMIuk2b=u!SA@cBkyClzo1zMl)pP`#R&&f%jIX`eW zeFShtA8(-b_5LmjQHb~4C53t&X#J3XVs65`KPO@S+7H}K7y&#dVIJ^zQHU_S=Pn7; zlR)b~`)A{(#!qrm<2QcbZfXeNiW(W=q{GkgTKPis;C**Vk8T64XZR=JCc&v_lqaIM z%@5p70s&l+z#C}2z~4n70`Q)@BtUNitxxe!%T1Oi=OjzT58O=_0bG$KLo)XJJ1ImM z-ggng_`fv+t!jZ3{hHQFEET1ff!0?575M|LbBv1Ca^VmMT6YfbIr|*rQmuQkM&%B) zD%>Ult=|K#=No8cAysy-R_DajH71Y1eh?GrB(jGbRmmTf21qL*Bl!eA{}06S+L@ki zMQpFW3^(RfOEv5Yw}P@S_%++2Xjn-VARn%U`@qqPTp(@_OR9SMLF<@Ykn+ zI6WYo&Y4>H>!ph%?@fy*@mS=?#cV*X?;W;ei44Q=I*-vqiC2Ts&$M@){;P3EF|IHQ zn=QFjroU2H``bcT6Nl5kL5(&@Ed&$mD(-XGa(mc=(dxuIqq5-*eW>5hI3^e#=By(E zu0sLUbw`oIfqHnLH9Xa59w;>@2ZqGo6Q%Mk#tZSm@KmYQPJAWa_76-~Z_`21pE{&{ zVRO1v*S`>N^p9p5wQ8$kv=gu7AcM(pCah1Apfu_M(pJkAB`=nw1l1NkZ=wGGBo~^& z=x7aRGEYusZrNFLzbHh_qW~G2;pb=sF9}I_!Gm|cEYQMv^ouT1m321^#uVa_@R%?U z-uZ_*X&$`ul|ul>-${HKFLe?bKgh2cndp~(z|lx0Ki0`5-L%|3%6S!zdII-evNyAC*EJPDCRn4$Fc;O%~|2E(_*<<55~wGD57Y+}LJEIM ztrl=|pvATjN7(pH2>RxaXAAK>G%db`NFED6?XR{F`2>lVdF8O^E2K(JzI-M0O^o2B z8#NTz_;u+c$2Whx*tu76qdoduI^g&WY7&Zz>45vKeA!?SLd_Jxbm_LBK07^ut7c$n z*=GSxUIfj0J(wxAn7EQR*lb`QbS4ZZH%*7rjV3Okfwl-6Q&S`TPps~%pv81ps<#3% zzW8HewvB6PZk>fuYr&{D;S{oFBf%azn;||Xbs;{kh3HFs!?S=)BbdnS6;hRWuW&!@ z6);^q2%$m~R2lB6xQd|(=ykd#(9e7Wu`WgMYy!X)fmN>ixfW>6soMy^W@IKG)%l)S6>&mM9v*`LawU~$=hzLj&Wc>$MA z3G+_|nBS}p-Zxq}CWM@lx(Q7eR#MkOQey-gl4|4EC8>^Y8i$%E6?fUA$tA3-GpN&ruxk0~x~zsJ zE~|~8)+j;FuzD5;kB2K*1(UB$@Ain0=@oPmdL&>A>Q<#OTf-N1tfwK4?dEJaMCUtZ%$i$Q<`dfX=^~s6Le;GhtNe_54J&O%U9o zy59nB3R*EyZL;y35cH{fjOv|ey0D^p3`8|Xupz28eqEyK_-5w%L(P(kz3k!SlGPhC z$WvTaFO=u2bU}3(RcR~{u%hMZaJfXLayj|XH=A6> z(8o)PJ8WpV1mtZQ*exy~Tj@YtFnHArzlNCV3g66vM0;VX*l)sYsj7djP>uKS+_G~` z=1u1gO%Q&=rkW50dYvu^>nS`-Qad_+NBiImV$CCRX08CuIvN<4iPiEuZQXgIcig&M zWL9Q94xoIAv>vfI4NWz%$XA)w6{}rqVT7GqGQ+kfKtL4YjZ(vY#Ou*8u#gMcqYBwp zsp0c-;~6*24YRAW=8W6Gh;2TH4J(ZPobD0*1QXFYD`(I0V9$5(Se6}5cj zcDy{-;UBfAetn?G3c<)*H+PLoRmWQw;rhO-9j-)Mt8BftwI>}qH^rL8s@J(jX)h~OyNGWqAfG6(jruRBI z)8$kiQK71`ijdJq2ms5hQ%$2c;bjj~z}#%h)4zU(t{mxK<~`j%$49Vj?3N2TU`*pJ zH1_$_#QZ`Nu9->4uQ^M@y%{d{te~SS*!!I?p=IxG>_5> zY^B9VOsPDqYMrb@cel*>>Z}l5a*tH}rR?-cz_HHrMO4`Faof&|7mErLvt>e9Q77*D zVhr(&Hg%xP`ejh7GPax=$qYFDheF)uc=9ggmQrJE2#uiDGRr`n?+5NqUKYSr^0N2z z%N~Chg;JM!&r0Xnr7)$sq~l|Q31%oV)=XViY!(gBpnIOWJPoM%QmELt>c}VOI(EcQuO68TtZvP>n~4mg3vOS zC3}F)jse6}b7o~MpL%WB#@-fU6A<{>8YQZ!tTWO9JY0wMQ;si{hIpkIg4FBjJWoqa zUQu8%DpFwc{;*vZ;aL#;{@mLfAs!L4@vvbZ1{lK!Sis zi0q0GIxnwZ((mSVzvjKy3GE0nuAom)X#`{$#6droal>sK{k!jq`-%z!d^0jCgMR4e z%wL`FoLcUws#{gJ?t8bB_WM45P~5)n)~Tvb88ao+$B5Ae@0qGL$`q^lt|3*9UZYe^jbv55tLShuOX zR`Ic!MlC`m7eFOTtOmYT`Cb!Y;w;M#P9TZZ;(^cb;H$4snQ&~ndVFML6EKN^JcNWr`#NiRsihiX=vxB z=qdOu(uGnyF&0KKdNl8?i5(D43Gc1tn-lyDqKF-{vZftcGk5MpX4=V}^3XV6Y|uo# zG!wpsqup#1;2ve?*WixM+PRbQHuY4T>7=ffbL#3`b^Zi*Fcp*gbL!sYUQeF_bd+SK`^OY|!jt}2rjyb|?~F^z&5`<0d?qdan<#l-CR7QbdpB0fBy3WZGiK*-%oboTFZOq6?`U-2%rrWI;jdw( zOc* zwoApH#^2++HI6{&tColMz{#=hFi$Q!)&>jQQMh($eOMLR1ru#K{lKj|CyG1OL=Wr^ zZ3k0ryIdvm>DWDRseI8&c&L*g*cKb@FRi_5^I{A>+*Ig-fMPf^)Ew&YKT5MK}v)#e)aZ;KL|q8B0e2OYeeaEnep&Ys>4*-Ubx_1#Ih7awkmfEYwC64+Y26}JUG0j+Xd;Ggk{*#hh-z!r#j?@>YZN_`~k#S^cGsE(6B zX)K2Sl%cm~fG@gUDL2M2?Bo2_>CIXnIHZe%jdpf{R|FaYaU)I(fD2Bao?V#O456M2 z-AH15meQi|G}0SlnePdb+gZjhxF3$|w%$BZtQQ)i&?B@VJO#Fmn5W3a8B%`T4^x50 z7CnZ;%zX#)cK|hf2l8q7+PA70{~gE;n5BNhhL!3L zBqOQ8IohvW5o+&974C?~mVFIFc!{n?FnkR|x@S6P9BE;$AA=SxODJtpNu{~SCr_84DZv(2a>@YXZ3O5YsZ9w0)TRV$ z3OBJR@u$+uCn41ddb$_g z4kze(hF8OnyM>!Ya8_-LV*Q@)h41BC-b%V3_r=~Oyh8vsv7+i zNSLFxPZio+TqjsCEg~q1tB^o8aPu zG&W`1=HqLje_Xr24xgBIXHVm=-A`wS6)-w0bki{&2`q*~FPoB$bfC`@X{QOMp~z=y zzrehp7c?F22SlsWLDvv|H{(5V-HCJ26OGvvsPjl?v!tEj8&?m-{<|yObjLe1GqtKj1xDgXesrDFr zD5aY0I7qd-a15OsqLTnXs!6bINwsI7BV4Ne4xgA*V^6_Sjfh~<55^sdO&@uaCv;cd z@9F5SuzV~#K7Wn7`af}3*^{rU19PR_-}Y9|`imfqZn@vEcnaOz=LqK(?8_#QyspE3 zR)D(Lg?=lM+`j#t9ad=Flu*BqRt(Du!!Q<5BwHXW`4FTm$DB`nrQ&d<$@1{`ZxLx0 zmoCLj=X)ASzvU{!Z<)noDQHUq{+P3LS&(jg6^t6XN^r;`Y{q0am#^~3xPgOr#KuZd z>7~40?pU^twliLQ2+8?75nydRTATLh9=Lhn_1a97i-ebh3?ocMYY+_AX|z^f;1~v9 zhBvlCRAZ+<6-mi&Q6`A+{R?Kdqw5J;zw z_<`H$B!DY)Vk$}wCK03md4D6B=)~J@lTI_G4i%IkHlDI{sq8*J680bQ_uY=5A9L)} zbezsrw`@ZGNzFXvZ^lk!-b@x;_`lWnfvmbD&wZd-TeIu~O^2_2($c;UblE_&Io#N^ zeEFVAb6{jwZ>cuO*WTN=UBn-j@2b{zEr+A6J;QKqk$6Yu*>axqW_Wb*wv8*+^lV$X zV&xh&a$;&)x9l51gxthN&|$y|oi3XOrn5VzqH_QiUmY!jezHGbI~ILpvUrxOAZaUr zqB&eJqSd!!oW0(-6_O%0HWd_?_6-U9XBT|adl@DUItMNo=*Qb|8vNi91^~|xAe0%m z5_+l{+PY(TRhx}zC!nI!u?=qY9A@-Q>B$zOC%R#q%@4g1V0qbhIy;S48jGF)>S%`? z&V#Di{m_iy{~;+I{TiX35=0%w-ux8pM6|boNs&c-iw9igilE3Vk%nLfL#GxJ|6OM(p0G>#gh3{1{>o*NhQ{XNX zku!P~0x*4kRe0H{^5RW_gyZPM?=FxZm%~_{98v?CE_|CQZ6I`X^StA4?p?g^YMYs&$(1ZwqsSd%~uz zQz$*S&swdQHKzO4V&N=hjL*Gxst0U09+qz}oz|m(b#+E$5p$2kbq`)Rod+w@QAO?+ zBXySISulPHPOA0C7zH)~=1W|wlnd@g8ERg z3a6CN%pIv$##)!=xiVY5p=aC1HQK_gC#_fZg&E;Cu`v4);5tX$w$L|UxpKP##^6+L zMuM$H9&k#UEy*yzct1hjaVb7ysTYtuOHA8-Z7?~bZ5eK2!T5j;zU%$;x9Ac>w-R;6JZ~~ z@=98_6XDfRHMHHd@c$+i%mpwZ1_TYfZ$CEL0OTj7XS z(ohkq@5A4fE!s{{{WdlX9fB&4JaL2n2UN`m)ygPSkey7nWg^^djF4!J6gn!BYKnrYM`+14XaiO((VUQ&Fm^1UX)_#xUTJlWQ> z1~m5^KzfK|TfbvHbAPHjG_xk#`Xj(rGq&hLDV`V*m&iH+qDM=%Wnu?@PbAy2d=s8* z%dD(vhxBAy$39=Do*RicRFQ1UY!e2Ro@~pkq<1tR+16<}b=8$@%iqD&WLsNu>YkQt z%j{Et90k)lWjY`wMM5ByWTv~w6nY}r))(2Qxg^`_&x9%=bcOaKF9_61$FIR!Ch0u z_U)4gk8#2 zH<8(rb&FxxbF2-2=dR+P;S+Nev#0TQ6~7?f8&Au+WpzlXxwp1t+6^4&c-7|Jy#7Y1agIl0iIqAXtc2;3^fJ_8h@Qq|}`V20%AsSXuK+-cnh_;ot1-TAq8 zB72Bqnuo}%}&Dm@^jgZhB%9i>pZ-* zT5sH-(^lY{Jig85lTtv7TvY14bF-9og}aj85EI?$Wg@>=AB*cAyi@Qgh)M1_XUf|} zBaGgOgUx-D^Wy+De3SDd@U?HY+QUzC-Q?W37B)FIu2Z8=Ka|!h`z9yhHnGWhD?rRq zb)1;SBwT0w3|e*S3}rgWbR+?jQtA@PJRo)746UFoYt<#jhUdvL*<-O#tu)|boZW@k z{ASl6H{vrrA)nH$e?oLZE*f=X&h-3n)iJT>IAHcM!mPIK`J40c3L!urUZ3883x1k~ zN}~{sz#DS8d7Wyl2kx(5nMba0ILieT3Vrg%={~Q^Tyrg&bWdr4*Wjwbh z5*&{W!JZ|*TMGNat}`lDt12Am2e#cnXfZ$he{0ah*}rdtv!mZ(CBAd0Fi~>HDc$R- z`QiM&x#{O}K@c_vg>P;uR$3&L5h#PyEvH%AfRWe*>TK7zTU(yAj!`4o#ZBB;!FE;l zB5a$R5{KY7%Kr6<-mzrcUtS2Xyh_f!zq|yhX5aKgxo_?-&rxupgrZAMnF-?NXfbBK z7pC1xE`O4w)o~t>mgX#k%~5Tnr8!%)DnaX#I~%6Y1Xyii`a-Ch52lT@G)@d_H%``Xqwk4p0h&mN_|D59rvq_F6f}siyz5CG`BRx2ujQ=x;$KpEi)x#&F@U z1$?WA3tKUeXSne1piAK^>8Dc$U|&gJo@2Q1$`vbMDGlX%buIntw0_yw(uCc_TKaZ? znB!X7vFKH&3|~zjd7fuAtxY?*o?e_TX(`F4oJPQmcfbgpE9#I;U=jeRSP9k?d+A9& zPlfSv72AbROvSRN@mH~D#cAp@E7&%DnsI|2C{_n2#h`6I&G<)oK0`^ZPLle0Kmb)e zW|7pJ_I}SE?pJpFG4VT1M!`D8wb3i2V#^jm$E7SUAm&AnK zgd|=M5Ob8o4zDJ$375mKgjU^NP5N3&;ecr=y_%AJKn8DwRyvZw5&+0x2{yY79)n(R z8GJiFF&WIB#$N_gL`q7cWvi0Y&S!7Vw91KHj@G2hz2bO{Typw0nNG2GjV_&&4X}6* zGNBWRJB1mYcuxZQ{eoL$ud)c}_r!Hu_fD*ZMuHMtOjBe`E(w@F7mwez4Dkj(d>X2T z1V4P++k|7W$bo0}bUlh~Sv_6<>g`1~PuDNl$aOYT{W+e46u*Y5**#sh#21FAD^9@7 zG3Ry$$%Pk&9TE3OpF;eYEOvC4brJ`sVV>~^#S`udFCXA}Vh^W!a5CB6U zRgFsUGDkU>#?)K@z84yG3P56ODf!+9pG(On2LY0=jN|D<@<{+7`6Sr3B;Ti?BV6)* z8lRZtV^6`7j|gJY5_ieO)|5=s2Hlm(+Z^3>CvX0G+|_TyU1d+cuI7-udCj@SM)NYb zG&+vHfPjqj%*{(2LOBUd7sTOdo6kvt>ZX;&vcgEC+*hrYidB|hW?5l(rCjabvK^vV zc;E_q9Ov}RPXejbnV)Wy{l=)Fs{x1P!DdW`QmuAXtUMMs(0cvB(iKU{$qlDmb2Cpq zU&p?VOMh-=LQ^ye!Ep6Oi}~l+#=w_nwx3APAC}T7UwSrsr)YO`hnYNAb=}0KqVpva0vT@`hSbRiA*%$Ew@R7Sr`V%lw5)Y-u#j8@(;jH zfOiBE;G=%vb^-|Cfdu%1zllr);4Nn%fd5;4tKTZl^W5rx5>OGo!St_;hPsket%w7$ z!L$-mgRNY-Vzs)}|I4&~**BO7yNL~^N5BT^bm=6MHXjbX<7=ZCFN7!jQzmW3XSw>3 zMg(ZDUkD2%P9qP^H<| z=LvO@gi+`c$GJFffKRvsdSy%cNh@$;VzBM6>S?()llsVI61^bq>GN`r z-vxVBT=(E*JoMmDuCFKDT5(^DH=8rpu~w`@C7+~M*Cs>k+x*vxx3tso*YnP#t`+a` z1Gk&W0=Qx(UsfNXbqf1~nEgHeCNi1Hyk)=Xi-r)c-4pcaV6FHC{}}8`mCppy;Jbd{ zb{Yua3JrW~#Yg>3WTF9YxlJ0hyH@;@e*ks@JR3-W=@;l$s%{%PvPcWyfdn|x-$W(? z@RqX>!2hkjRwVrr4I?YQVR{*v~9q6b;LvhqH*IL)nQ3;1Ta5bgYk;UV+y=Fx8dl;5h85(rb6|M(Ma4QeG$A#8 zL%LqoSJcl}XX>XoF8udcX^|AIAlhulg{K}uaa%l5Yj-p=@lGfGdfHDZbOR48DfILd zhKq2FzF8}b)<){eOe%Es?t)8Y853}yZFIN-UfXREt`++R%s*s8fk;<-H&o(BbhUJ~ z_*$K$y00kUi0(rOz#6#tQ3JF-|Fb!NKE!&jL(rU;?!(ZZfvVY^KPaX7VQ6yx7=eqD z`=^0uh_S0>yETz(%XVw|rpv`ZkKcGFve4r<-o=@SW`zmGZF|I?k%iHnDM-anX8?!7 z_-<#PrcQ?|;*GdMH(qPbrbDCLgv1OW)L=?5xrWjX=0>4dhrAFC2&qyh37(*Wd=&Na zV66$s9AFBS_#&rUpDoG`pI|@b4I$(86m72HYZaD0SLQ1z z1aR!O)B%TVizkbD?fZ263EXSaouYR%+iaNvu)OA*d$!Dns`<0b?5>mw)#9#lwFj~~fXx9$OS#yO*>v!e z;VRw=fhHigJB<03vafrVmwioKh=Y77wkdZx z0uxR_`JIxnIt|rnH)D9T2b&$!Zq-K0iZtMtveD=O)PZ|8D2h;3nRSP-c5GRF z;nMk`v74i(Ao*`(Q&EQ*7*TU}i1{}Q<{u$m%h%yYe1I`9O2{_yb^Kj0o@WA{Spb?7 z(fiv+^lNlPi+H?tFzqk~H0)}*I!xpO+iTL#@_QmRzU3R3*5fY^NIaT72ojH*QV5n^ zJg(+(h(9zvAk7Ms*z~4N;Pk#Kxt4?hkfRJe)V`ELoG<=<#OnVrCxn@*ZJ;o zr#Gc;;#wd$7F|16)EivQcK5T4hLHI7?S3C^@#137Mc^K7V|%sH9>A`uL3E+)-@Y!z zbz8SiAO|Z)0*}3>P zHy(W@T1F!XfT547M%Td09CtLF%*%H(-U+SQcQf?+p5F!EfoL7L1Z0iuHVkGbj-ZpH zLK1)i))cNm_dS0cI>M#cC-8|$G4?e6QtX`AMoqiKBPmDJ8$33J3pBGuXJ}9B?g=C= zlD$s5yJK+@W0c21U|UFGl0V~camV)ro5$LswB+x{t{>|jnAVzHkoz6*M7GV(j2gPM zcL*A6#^iq0T35x$!*K%>oyK|G+VP+9Xl<&&uRIA;(bEXV)K?jA?U=k>m-;$oy;|xo zjK1lo%ntK5;b0yPT=TW@T`(}}jaxew`Qa-&yXu`)(KU0_6=C#2aAL9Fo5eb$RI6JgKOkRs^zf=BXZSSJ46IFcQ7xE_y|Z9nnyP6?5_}&szzT0ROhHg zg9H)Rs9ONJc8%)3uj34;BekpKQP8g65L|B!2GBP$Gu^!*d=HuGkZ3z6n0s(7CIXSa zE@mE#YOAR4+u^{PVv!?}02YEojVU8T?(4W3TIB}94t!z;0(%ND5F+0DPVVbC8!xS3 zu>$>l`^u#@qkdh9V=Zb@Z_jBUaB=Ee{dA=Q@5W6Gc~qBHL-WioaF3Vyniy-Jm$Cdp zz8=>-czIh>5tR({Jp@t54G22qsl22!lFCa+VZf>p=H3{O-liTMVY)X%CEpyB;uga~ zUlZ`H9uY?biC&Gp%RM6Qp8#rjMBIB)24Ihfdr^CdQZY=ZZ=_kNHhPCg7ef@>I+h}J z{R%Y}?poP9RrcQNfp+v_?_5n7m zK}*i%X4FpHQih8T9utgnyhBlU7}7o8&jKu;81ZZ|OnDJ7&Ww6_ zH|}STwE{ig$Zlq6&s-H9%BJZAR|Zpnr=JnD@Zm5vq~H#>6m;XK!c&dBXPQbTn+i|$ zPXnL|PxX&Pf5WDMFyiFIrK!+{r+OW*3pe4`;}bLC*i(QBC+wVdv;Ut7VHNdaU%fnB zZ_{*Jlfk^`S7Nw%%R(NyBikwZqN=J+Oie%cwz!R!BRu|8H z>+!<4?!-kbbED7!u}ry=X?#&14mEdUY#5-18)Jj;wNKpHjj?>Q)^Avc#}hVaS?i;; ze%Vbj!fwJOI}ae{Xp-5^6Dae8n`5^@n|5fd=%~!Ln#4qp~Db34>yPvF)mIL4oEXqBMq%~Oy?llJ;KJAAe7A<|9_=n6@|kI`$!n&)wp}qa?;@_s99qMEM0Pe* z^4Twv)aW^z9`LR1IkRFQ&$Fbx(4}x=?X;8u91vrTU2LIW*V~=eFT1fu*i9H~-vfTj z(O5enWrlHU?P3^)-CENomo(Sl1df^SvsaPZirY-i9^k_V5Yn-IE9fS9AuJ>DW8iAT7|{R}i|7rDwcTvFhsO+~ppmRtkkb|1iZE{{XRtpot# zR)WngZodn?;Ntds_{795dm4XnOA&D?mk1?^rG@xz441lbY?-{>XZrT$SP_ZS0~E;; z?R#>vQxtP1p~J>Xw{nF*;%*6HA1B_Ejr?oDBzD8oZzKPET(|YM2_%aXG~l*7Mdsyl zanN7m!P^!W-uSEkhN>Y^!gDY7=}E`>j|10t>;jIb9FJ}BeLCZK$_d_HWZR@W4q$op ziTgxxH&o5ONoPyGXdJnVFAn0EbGvrratc?@#QM>HAtRV9cBCa-rAuroqy}w1--~ev z-Ji!$8+2>XC0_Vm*5$3FyDoNmoA3?+;sov3BcX-8Pz}fqXhv0|$AOSJngAgJoEri+ zz;Nt_KtgZ}b0B&JRFNuQG9a+!lR_x9y~2_JK;=uY4wdh}Ea+C~AJ_VC!Y8Kn+0*!I z{WIikGS16_lA2Xh_Zf0p%BDJ4W7$$Y5m-aP)7>dTR?`cb9q$H=tFt4E+v~x&?u1HE zNeD3oZTlAleJUPmW(EEUs2ZZczwT|qAq55S-0Lm*X+ z?uVB-NPNRWlvvYxL7K0D#V`@y3ROb zhp-Wkl2K?R)=vVesnb8*2wP&*&=rA0{9rRCZ@Ko57R3#;ZaP>CK$DQt0hj9?L1)AR zwdo4~9YKVoXbXbj8jLoy<|jwM*I~&Yh#9t}bjWux2#eyT={2Hj_TZ2mFiMwVmW#1}kq37}|Yq(GlqohHkBsY3lJKf#K zyO5d;`X)bcdm>^1{M+%a`E+Guun?1f63XA|ZzfYNT;94{0eUHMWbEcq1ag8R$+J$v za8CX}WBh=BjP}jg_Xg7G(|+J~Itk!Jr>UTQ_!NRub@)uZ|AxPTOcdhnwn?G6s&Y(F zW;*{>4nqD(<9O0P4m%Yd3#7vD{lM*15WtBF)0p0uLlA$_2qs;sYivXRW}*adI}0WJ z-|Bn)R+W(FUjIpeitufx6X0u~h&}+@PAgZehrrBLE7qxJWfrFO%f9VI*iCFZ9RqyW z>FP_~F|-|E@fFtdp`Q`{DeoAUUxnt;ZqbK@g&F1F57+`t%*X`!+gR0rx+>GGtjv>YbZQe07v21wYPvj2Y zS_D_fB7*i>Bp>JMbMcXLwH86U5De{}fm*Xr9xB!P)r8uOIEvN#4N3OvL=*O1Gj+K{ zU7TP`BtS1As_pxOPM0_4cmi6?^-UoTXIT-r%2!gTYx}8k0Fn&8^TRvLZp1)yT>8_h zj*{?8Pp!n1VyfNaWh4LQ>z#4k)|)5F+B-(6T!jBEE-D|25o=rPI~J86fJ#1zuP$ZY z%f8KPQTdH_y89L0h15mmPyN8{X0iZIX0lvGikTq)Bysxh{$?^6%Di>I@r$MqF7FeR z7{^8Bq|0t;)30Wm@CJfPFv zVmLsjcCufnSM&%YL48GNdngmyMDB|ZVx>h=27x5E<-Ta=)}H5^n;M1g=g0ep?2-k% z5P^L(QZ3d;;eLc7T#QwzRtvj;<@hR;J4W?ONs@aW0xQWM2saOB!i`8X{&lDXs?EHj z1YfJ{sk>!PRuh2mB^=%~&`X22WdeB|VRARjZ2D4J4LxZzs?UjR9+=12xO52WvfPsm zQQNfD zs}X>hWblbXz}Fg}^(m5VlD(4kUWcF#)T5@}1XXjIWH>%VskmTEC?&jLE5@!i$xP(h zCYj}%=y=HAQTh5TjQ?-sCv$CyXnhr|BOOQ~r;a)(J|Xza^S{1sF{r zi(U!66Btx^F=*m{GKDV^6WKq?jpZGr0t!> z1!gbAMK2%#)x(+ITUjm#ysCVz3pM{v;Kgy>)*C0xPGHV=vJAvyv~9|HkF51W)sVv) z`@Bs!qNN4!#GNeoUZtmduF9Q3JXJ`Pj7kWAdCaM5v<+V7=-72IE_dpVL0dMbu6`fO z?eGLD@(#t^m7EmMC<@@OU7GR{?pqP zuU`5!R1MKffAKcqU>y!zbKARaVVUz{T~!&ZsqT=@f?d)6+8|u;Jl6RwEEuz>-ohec zROKx!d<3NY%+qmp=2wVHRilpq3Ukz(0YZrD(9;05HXWMug30ra%bGp z0qZ{KLA!xvbuj1Pic17)egcQW12tEO`o6#^tSOc<5(!`vNYt3pG2{l87ecGtB)9;d zm`T8%0!)I4_r8;in$Krx(n_`Z@JJ&|(4>)1)0GJJnaOe1*M)Hj02IGt*4-U<8QgRMM4X>v-Jo*jpOjpuX zqlO^~YeiN0;w;?-Qxlsp*--sXl~X(81`b~GG9Mvj*d~Rs^5lPPP zt?XN+ryU(G{6IV1eJ}4qYGm7|{lM*!Z2~w&w#mRx>BSaj4GHDn@HdkwwvD$=Mu5wH zuu@_+$u7Z9#5gnMZ*o4+3mVCj{*l<@3?B=m#_#>W?bHy!i5inv%K^X>^?cGxyyjpg z8t^vTq`^$7GXw>QNvAAbD!Y!4)c0fkeYYcK0aOAzoCrLft18)q{F9pL@;75AE^j6a zF8tr>v6eeymQVy}p0Sqa!I;BiEuYVDYUodOC2;^^E!VHcSj&xT)L6^2()wkOwIu8& zVlA%%#OJuQINqzC`Kls zQhJ)+m%}KznSMP!F*BV#1(@laN^Ku%;wJiVv0fZJa3(r$t^*VOxpqp6VetPQK=b>p zKsD6^o^F2MXVfsnhu!?fW=!UCncr`T8<=S3wpdMwS3&9lpcx)m)-m( z#6%xPFsAvfrLU)?9@=X~f9m~}Ur|@T=IyG(vi=fO3bm|17x1mFKdl(ZQ-3}MT?*Hq z|CTa<191R;Bi>B3a^nV7e?F1cFT4IE>?ZW*8v)|@>rcUvTz}5J(x*Sgrz!fAf2HV8 zId5=X2Se&;^GgB%{VBnkA}(Ejo&cld`twA5V)~Okjlcff9A~=D;^2x;1+NUn#&zH$TRS^bnD2CR2KQ8eDWPj*}^xJjLvb z0cyCIy$rtg>68N?W>>AiBVk6Kk&Dy%Wf!xA-GrE34iIw`v&SWDP2vzPWM2ji+7>C6 z)b{=rPB?DA|Q6wD4$*n)&@L`@|!APeVV;ysy{?-cAI_cgLe-v{Eltve@- z^iANO+vl`tol8Rde~yQ4TR?cXvOfw{L$fbQkkYmfQUU-KFTpxgyg!ls z3!#4^S^%GTv;aPhzn0%Dvz|K>*_%^RQ}4mam1Hv=tfG=B0tl#~&?(2akk0gi=0rbW zSe+BPfb}n+cE)ulP+}xPhbdUwPhh`49%yET-GHhg3i~zQCLD5408b{c#~)OxlDKkh z&Z1@_dPa2wzz|4PqpRR$j*`y9%3Q>~1KP8RIO1a|+x`*0l(J2B9R{=mN6|@ev;+XM zO@eJpwtWOT!e!e>@rlVc_7p7JhzuqLVcarqOJKEd!vL|0x zb4Xsl;swRVz&V3(bg!RXe%;N(u;3VIp^BpAZb!SF|NH&+I>6W0|i> zm(RFLX9Jz6eqC@iGZKx2X2pe5x^-F=nxbe5 z&UcA_jP{70?Yx7jG}`G0Zl{p|PBii)=Ns}j5JI8bCryF_xA4!+Xs|pC=;s}1lT?Q% zbWLI&%~3v)tf##r4t$+|e0J)*Dv&z2`+?i3BY+cirZI&o$07cr5xm3SNC<^u!tl1U z5XS$lz7cMfxOwi-d=XF)zC-glMnzp^sLK67?9i~JeXG{5P&dN=S6aX9J2Zq{u9%53 z(f2{wcDjs_nc!zZ@AzWn-|-3ml$qf1S*}T>euvrqLt!yk{VhhKz46He{~PF-YAxyx z-+VH`{}J2Z_KGJH{GW`T=-ijhKm07BdzTJD<6n0s_$gPn;~!=OXPMv`6SSELej*vi zz@5k&J`*1oo8oxUk$^R{S)tZbf{wt`S|0eWOPi4Xv8X46++S%96wtJVWget-sg(A{ zIUs|-CwadRdjU&)yGvSS0P6aLT9IhzYder~oi}-dzL3y-mrH}z&?3)*wi_vlE-~** z34es%gErDOoav>re{FMmT(|XxiLn+H2rxaAhxYVT8a?$!v!@3#^KnDY*qGTQEuYDo zl*P#<@d$0pQ18afcBmTSpxo(g!r?Ixz!OOu@Vz=~Njsa~ExArXp90Y_x)1@F{>gRl zvQx#*R5;JZYh_xl>~DaUTINE$r6+871$-m*zw9myVgvTP6Q86608Ty$)|A*m2^(&O zj&PskoA8PGB-xYC(Z@x7r>SPn)K~V-T^C(ysL2}E1d1)qXQz7tW33e;z!vFU>D33o zXR30xeH=0&yj$>1+}qU4%|B$+Fl-}xls7hGvXiPs)%o~f+(7I0i6U1Gf+u`x7Q(^4 zvD>Hg<#>!X$?DfTgrDe32*wom88aaK#M>3GkpBTx4H5GH=54|u8uccy= zd~UHOp%V?InS{V17AU%I9MtCXfQM8|Gkt691xAe^wTaD`%3-_sz7ze*lCxPn}yqQ#$+y+(tRv$ z;NTtha+65Lrcm&QcJ^58q-gJGhEKjmH*s{_`Io4KmS_@!;aZl$KID;N)&mL<&|Xu- zhV~jV{fHBu)YYTCU3Elg908SlJ3G=PfuRhC1$?V-!&)(r=Qiwm=u-GL?3$DT9Efe$ zbu00p+`853Htfo@e%ZHS3AvvU!Vr>bUYk_%Eb{SgV9H5k zIb(qDej&t*RriN1o+SX#n-Z)k+R{%VS7C%)YYyTQ)0*rlKx+yW(<>9z3m49b*F$RU zlXi@mR$XgGd8k>hlpAB1d;9#>rubN*=OnU@Rl1#cdDxmcZlVJ{X|hQSv;8y3uLWGI zOUx|t_my$o)|)2CIzPsUR7#``GMzxCp+#djN~T)!6s!*d)NsN20DSG!A_qjUu0_GB z$G7}LTEFaqm9U!-tk(m?90lt!`mF6G{@`NutI%9htXfVV`=*{;PDxGyk@^aN+tEgu z1OOscg3T^ce+IqaBJ~k`Vj`72jlW1GZ)D2ZW1T?S_Ws&1$r>*@<=No2cluAzJ2M`q zj-M5bAy*e!}QT`F=ehZ#~gEHP@5K-Toz&E z1hIWI1@U9D*!(Vi+6JFEzR-(p2hGoCXf*;`>{0hudEtB6mba4bdZ>7t@D2fXj+2<9 z)h_lxH4HnT6;+LX4I(T@^`0iMxsrb!3?-@Loo9`2g3qN&mkbAN_*)@;+g>F}0HD$( zScgjYpEbS{`p32UUHHVbI(r&_t-eVfP!07e7Mrlnf-6_caN?~uOr6UnI#?$itqX)+ z0?GF5$WcXyF@-#)7c>(-3|LlYf-X}1E~@v(bz8Si5S2~HFa>G*XNU76szZCI&19O%yC22 zg>U$|bQ4stz5yc8&+PU&>xX_Zk!ms$>yg3XwGqng#K<$7w|z`@(MaT7$k z$Z|bXd|o_cnTz~V}@g-`gW zJo$#tQd>$c1hOxN*G_GDKu*5BS@b}9j&!#}J}2Mq#y0p&@|=9T*XW5ZH?w&u?gCg| z{&k;xdlyvA?xkP^XD8nn6SR5q?V#mc^@%``m%ypWCq4y*CXqM=_s>X3Uh5WoWY%EY z$GEn7k8!y>uK9dj5vcC!w&PuLG;*%^f=^CN1#K)Ey*Kp!P~cIvY|M=TpKAGTT=(F` zR;D6@D`m3b+CKL6t9Z0FOToKld=jdLtQr64ZNg#T3E+uiU-(|NFWrj{)dVD(Mo%CB zhCZqqeG^`Gs@0hO;>W&HnVD<7Ba0w9eYTQu9Bcu6FO{Mk28f!6aYUUgAteA5yTne#C$@xSPrh|obPIOB)8k+l>?t?+TuBjdWLwxC-4Eyb_dem$yXyd`8` z5hKhdejU+lmp~<-wI(GWMzd{a-zxXk9fE9P_F8!fUOM&#^>L`3K1P}QNaEOZAK`fP zh&$r5=tArrljnIZ|84=O;mf}_qzu*`81kZlW^=f)Y5DR!kj`LaS8u5{$fKCHZ@Y*; zEZhy+V?94jAywif4QUdcNTfr3C04+Q9YxLyQNt5(|x9F+FtM2G& zb>rwOKCRvv29c)kFANqg+3;n7VjEPd0?8{jZOX`q*XyOZ@i`o?4$fAnK)kt-Mp zk%sb9{87<@`cSehSbqqxd?L`Zt^Nd5&Awno_KS=K>s%EbZ1#O|G9vzOME6YrPWdhj zi}SWl4U@6hQWZ>1_}qtf3lI`@6ul1|Nhur<4RYxclt;I`f|0qwqI@6*nm z`gBGT8got1VtgFVpsoU*Q)OrRw#p`>hB3eG$6>G;b84uQR$7)A5Y!tt@V7$qJkF!O zC?2)VVE2b15XPeI2*z~cWK8Bz^mfJTy4e9$LtHmCZxasJ4F|4S5w2to*ZbisCktD- zCUZddvzp97Y&Xbc4txau1qnK0^l6|Fm8wSFFvJ|~=1hW#Th8}F5B!$1`<&{1P*=K~ zB+tU!KTXih8il1>mYL3+3fnPL9WpQ<6uk;F4uto8DOQ4+2%~x+9+e?16+T1@N0=27 z31C)8)R?j}9ELS83tEpJn}#;48_O>B{?;Mh$}>?aCXQF&WUMyuTMW(7JB|8f*%=q?e97 zn%Z$YAu+UfBoY3vc$nF>HK8c_J%Zudnw*95Xe#Rgxd*k^+k}|)$3NNzP80_{j&So2)hYi+qZzk5&OR%OWOkd((10&~}xDTJ0CT33onpmi(cF(?^8y|^lPY1{M z@t&St`^HUopnH8R7Q>HY4@s6QXZ(aDSKg2uzYgf3E`N35=wEd;ye|x zD_m565}NjlYGpP_K^;0(<+4w56Nu?+p*`*`jy^V--2N%&{FNn>1OQ@Mg3T_bzX`qI zV)|S7#Kbgv8h_vu-OzmEgg{Cy$kZ;!^d_+FuL z{`OdJFS2bEE&y0wJ>-sTT?|#TZxq@hTV3aGIp)Y&XbXHmF^qmjngY?Y$OtBj9pB}i z&cSDK&-7y6LI2Ykii6JLUg(AIWntb*y6faBZxh}jz*$^B7ReyR-lzs?2Q;Lr(Jz3o zIhqn#1Uxq=MqyZfgTi@U_hnF3nhcUbfo&fZLaXhSodf_Tg9Pg^8T{vUUl0A`R>K?c ziCGQoY5c8*bLC;rcJ^)6v%8zJn+vk(4(x=*Zo$&wncjZ{N~p6ai%D>QT(@=i1T+Z< z@1~$`|9tPq;~{4@03L#>AqK#gyiGWyrvRQj--|z}^d(W}({x1H=)(wrA&{y@cf-pZ zrDPC$bMg2DwCop;$#cI?LLDg=<#0eQ-issaBxqX#0J$i^wj~#zg^qB!_y>Gqa*;g+ z%S9rMNmXU#w-}?mS@4%~s!*>f9CYq;zf;Pxt5flbb(KB&x|+ke-!)rDo8^m&mHIiE z&igKLNb4jtT{wrI^LJy0n`f1K$DZl{m{9!Q}J{Y_+|5O29n z3LWDzs}oc@!t$l0l=U~F)^7i3?bO;8NUf$HxSd)8cp$Z2>2D$vwRp>IQfpSc)Jc%X zn}y(R{{ZX+xFe7N@AdkDB*4f0O=KbfZ@EnZ%#;gEfq$}xrYv15X9GSG^MA+R zcRPB%$#G9s^>n_jl}*S$shMB;o3WFaH!kEJYLH;+xsiAI_ zfa(Jf2(o4+M(wR#q1{IDr?h_A13?J8i9nDez!d4!FDX+aoe!|M&+()^@PvQL)JXU& z9f}*^85h&AMp=N5E{Ea)NsV+W^i*}v=sUvsq()kSZE(kcCpFS4qbEA|W!pgR1z2rv zAa91M**B0G!P!Yu#sqDqMw)2eDBw`!51(HRy~W~C#&#qi=j+Az$oRVLlt^3p`YJ<} zW?!Etwle8}qI4juf*rZNvL)T48_7Yy+2GqIj+;>FZQ6OryOQ{cYflK5^R2N5X(rKt z3krHcdV8O*n|RO7k@*|{i0st(RUkF~+Yj7M4FQ~}Aw8GEZj*nKFrGP}8;-iUHjs%by!AGz zl9MCzB>#BqG+6|dLZs7jKX5xu1aP8>*O9r!-$W*Q@Rr-8$GAB%uker1PN7QzDb()= zZl{m{9!R0Ozllr~;w`sHp#$Q`e1m_qc51yYkXm>7f!nDifCp0RUH&FAQH!_SCbimi zWPa8^06PIb6-a=G{lM)65WoWo@N<6?nFzpJZj%6QI5Pj>@4Fp6zvH;i;K-a>@#Bw9RV-9y@7T{~IBWPx2s9CNL6{}-6v-D#l^~zW) z*W<@)R^qj~Yu2t)j~_2e>zCb;N!U#|GK+xiP92%dWy!PQF7)^g#F^uBVGJ!>q)&?$ z@ACZGA`dv_bg^U^SoQP^Gu9e|Zn#E|J0Cnnm14E>vT~!a^`b(&{nqG}y8ymV$f$i0 z3`zBd8b+<+0ayH9CBf&=>20DuboyVEvv#djXV-=r&H6|QlFt?TYx{?)wPJsxP%mFQ zQmL2w3mCxHC{%VAhHA}1bD&%=#~p8{Dh+5y2Lqa_4ahA75EUZ3iX74Ax5_4OF7_lJYi9#p7j-48*>bOw$B|EOU*eRb zogl%1);(}*>{|2gcHZLU5C0kM*T;1a-UVGwB=BHGifL^-*ZSMzQQEv#-qTO_LRDBD zmSR#&E=X|%Pc%tC;BCSY@G5{Oa;@WgRfM_ct;{om2i1s{(LD%&p^vIYuYs32Y8NN- z^6j&4L2Gu+!kJlUmFQvk4!vZTfV`32hQYiJN8s933rS2N0VrS{V$6Sh>6g$EF3BFn zCnm|*Q-CBB5}@7O6z7l*WJivjr9XzQWT(dCaPyx8pR}`| z@N8VS^|lGLIh3G*DF<^o)I2BBWsGhnd1c}Zs2U;@kM%a;kck|)zJ-05k_s72Fk1rT zCD<0rgYt90`2$P>`xCi1nlCh#!;1 zj_gWK-{8Z{7ke@8p!Yay{TTn%6eaV2J^?xTMvUR~2qV**J(E1W=TU!4f=pWbm z_u>=N`s``^wf-6M1Z%tMK10-mY^no2Z*wvbSYsVSr!P7+pIVZukCFiE^m2z$d zJ~27Rp2lC!(ds5Gxqi|VQIqPsax)}r(fUKQ=oEVgFS9{VuhW9Y76(CLvYEUq~}~UY{uk%)hbsF-$ii)6P?C+B+Wk~9<5DB_*E%kD%yfzOwE-s zY5qmtu6T|1ZBR8tU0vgC!ofToxVGMOCC#t;;VU}}`6kWBz+^RPz6eB@N%Q##!nCQC zs8lsN8itsoHVqO)T&uRAWxG~&C&_;!)REd%@+fH6;{=_os|bBlCsV?EVY6ncLuT!m z=#|}5rOGQ9l8nbb7AwKbgHgRX9+e>!6~4ooVjD*y0W1WG8dFA!ZJe3I_1bW`-W(m% zZvBqlJq0ZSXq7L7-iJ@jKwwV+213Mp-^oVKndR%icJ8Z}hwE*|kgv(${EXXj8wR&e zBuAmr-!zlpM4L$v*S91Ho=upS8y@N_;_EL9zO?hTU&nktuG^Zhh&5umGvx-R@kKwt zp)wtsXC%e{2~fi$DISNf4|XKQ1{O)NK}+QRXj;GQkraeoZrvz)>{9?SM?Gc>eNg5H z*I+ZNE)Awm92rfKIw7TElZ*o@;4?5P=d#g=r&xMvnS~(~SU(|5VYpsyl!uzdW~DY% zsO`oOg#w&JAF0M!KeAMz`F}VJTQ&0i+DV)<`d>H_uGi*?`ewYv9hcQ$nFpagh0;i) zSsR4FkbW_k%FymweUOc0Sz)v`QfLg+MymZV$ezmJaJ4)LU`U`_2)nHM4A&jAPq*25NT*?nZ6pu$W^atfJb1~H2L(JuWEOAzfH&G*50c-fcxgqo;|VEA&M&a!Fu z=qTryhKu#$V1t{8O4zIV+IH*CtGr!x93*=MRPxy`lGJ$O>hA)+)x%z`7|7FDdk1tW z+*rFmWdH}_{Qd^K$YIS!%~-oPtzULyjj)?A*3JWnIT~vx_ywVeeEl*sYWFv2lS`Uw z1wT+F{#DK%;KB2u4X3>pvYjabfJT*IO;MK~i}@4i1=pxQ#V4jw*;9Z<6>6v52&OaQ zi!-w6()d=L)!|w+ZmI(vYGa)ku4R#|-0~qLv+{=I^6v#7w6jEhITr+r3^ptTb= zV{(ma?G(igv|f9#6p>CQsd{qFw)}>8nD#Z)%>%F3wn^lg&6fL!0l&D1#mio zJDm$BIRyD9jo}G@GntOz^48rd%1eovQhX+;a0vb)N5KD}{{PwEfBPBPKLyfY_K+@W z4Z&%rfdEc4mUcAq^{?~m~}kO}*|-7MJmf2(^ytRf>%V|*i^BHS2X2VeUp{Q)q> z*REKP#`v1`>cQXDY5lSrWdMBZEdqbYYO~ut)`9dD+)}1Kxh9n*Fc{qc=-n$auh! zz|e*-#@$~8Y(bv9iDcXXb0TZ_OjO)|5}S%QBk}mA;x+i#S@OcO$ky?nzSE65?c|+n z6G*Q@ajE=rQ+*W^$+1Z9k?%zD32Bgxfc(S(4KYI!?@66KC{QcAV@#0&pH2GqxbDH* ze@Vj-H`*yKHkZ?OpNI!;TUB_YA3p+BL!uwQ>}|pk{m6mq;x^#4-H)&>E=!Hmc0cj< zBAWpH0UNo_U+U`AbK354sG5%eb)B~3nDbj#sB7_LHnDy55aP#VvH4v(QwE>3`>Pk* z4x0ZrLu=4UySX(kM(uOm%eK6gbic)M-X^?509zu7ITBRZ1J$VLfL2sBx(A?kYN|1# zjOS=c6WH96+W<&vnQnqsLP*O~CmZ2&Y3E6X12()*Af#>os008$M+w$c&0;&sf2RI? z=pT2Hz7U_7idD?UcmpyqQ7tX{f34r4B1suVTvxl0|ZErS^ z5@1y2dR=__!!i5fx~(@%3>TlkrztSo&IGbA9${uZT!*S5did4eCL97y08eBB!S^aP zNf4QFSkmu;`iAHjU5fx1`lxF3Qh1r846`yV7hDfOOG&|{X8?Hzd?Tfm>@E!AYV3I@ zXXGRRkX90GThi(w=m?iqAHgRkt=QA}ORG)t;HdK~ur4n&iRH>;q*qaH5}v-jIaWkU z^Z@#^NUfutAPvby2PB2{NH0ile@hVFZglu1*w^B^2QQzI6B(uyYya%;WAQLEi?N?W z)etfEw6_U|7!$ygXMgdB>~f5#89jmkOgZ*Nc$uRdbFwj)WpjsZvWz%bT3?64cT%3o zZo`E7vOq!G)|UhT@=StlOP(!){&9JB0zNT$#-7Gso^7rcN6YoTA&A~?N209=v%#p5 z4m>Hx8q-(>YDl%&#&57LQD2c{TMzhFXF(R*Y;|0>_2vm;o2kP#Wm}=Ar_$)DH<~>? zFB--p2gT}DLqomWkpA0&{5$v#kg*EgB)3o|Z&IAHFN}wtS=yZoRYRoROT0}uq@4hM zRO=|m5Q*~msY-b=#(Z`h(L6c_0hscy7hdKl|2!I_LbRkZlNhe$AK>VGq zcY*GlA+LB^Xbi0i3 z{(0-^io;5YHUlrFU8}1t-C%LB%w(tpIyaRDNBDu;X&`_T4LpGtC;1!5gniy_7VP`K z)dMd`enlTZmSKuM&%leVfQsje+fQZaf6{&;?I>fPO+!qAQBIjiHUY8wHX&rJ3riz><7_p{`f#n@ z9N9Ah$ASy&@M5J@*bgxqO6v6j^FP74+g+mtGzbdYio4zJLGz-l0mh)LSVHmU>4T!@axe%gMf) z-DbjhjIo)<+ELa}*BjW4UZupwv`!7{kzAdHeon-FjnTZDxbY1R(d(cNlKPbxm$ERz z5rA4bsbsOiY@&P{}fB@O4L%=D7&KI%!TdKA@_4rDI)D}cR70htX1 zO`TaOh|fNCR^Z8iLN_FW(R9w*70U_`bHA*x8jE!+R^TLp7b~nY#CyD;=w&>WZIt=3 zgAEi2qbn7B9X3B;K(<8oBM3mu5BNk8W%~`#I(KKA9}U)f9fCSgPiWoWL)EnT5jZVy ze27vWc`TL6Y?u}?cC~3?BG)!8EZ>|gr-g@Si0w@PL2Uoh6nrMw-Vb#OS1un8&_jPA z!_V}Ds|3Xk{EB~iUjWo6_@~m=l|EU2uSMoTxgI4ubh6pA^rQvf1cY)2{kQOmIq2Eb z_&eygD(P6lee_29pOs--l}b|`IO|U~ob?LS1E2Qi-+*4K1WXSBecGsDh$Va4A8f{C zE0y7;V;bY39*-Mny=8*zohl@f$5?5V8)%2J-Z~ZiFs{`(4+i4B$ZcUDvSe6UKqJw0_zB zu7ur$-}M(TBXjh-9_JQ-BHho`FodM*Rhv}O`+B?^nBstyGX})Vqe8q`9k5Y5PNF%N zl$#^0WVVw=j@Sw(>;PV^d%{ zyj)PnhgBR2JGHkk8ciVpekzPyWLuxk$4`ZkTMmFKjNDzKztYI{&mdvs$~jN7s0}0c z^UyLka=(C2%*bU=!A5S7K`zhtLSN;nUlWVMAa|#V`A*!`@5WtaPrj~Fsu=2L_rT`X zQOr2*A(wIwJCq9PKo>(?7;H3(FO-9kz5I*fKo@+mWCt!A2VkK%FqO-`fn{L5O!0AC zYkC7Rz?MLqE^8eL+gd}7DoY^S2iec}Kx*8^*!5%Gt!d3#6Yi0|U{Y(g{HELwe~w^# zlUwsjBlS8Ym+cd zQLMs-+t_VmeBYooy*APu9%+tkA2@7#Yu29fP`O@&3x)yGto~xN+-MdDhvAPoyum(b zWiR|WTl_gvufku4HfyE6UB%K~{1qCW20g5gjp^b8>IW#iZ zcO7QY9fLRXFxBmFU#T{TnR6Qeav^_H=DBnmefulTfj+jxfzCsVqC&OUfYadcVlLzt zhTTNCS7l!r&^M(ud!Sg2|D4u3ynI~+um;(OM;h{@X{~AfSG}bzzUM|5FNnd|?7&rx*sW8M&FV%*2!!Q9Om44vW^6tuY zuu^QzD~>>VEqc|OQUUflw0~r9xG!cwKrDL!ein8=I#TK|_J%PxlAm4;H_9XZwZ7{H zk)`IBuN$s4%6)20#wDd@-@Zzt!ddjNzWz!B-P14-(aRZfYQQv`3xjFEWMK0QfF3G7 z>tk1CkFjYEmu5pF4Y+;)Vnl&92(2GTKBr#XAO8s~dN|H6acvLGg2762?85n7t$D-c zVYnS&H{7;8RN|b7Z+1bFfgi5~kKB!SEau6^)Ty#&?xLWL~`goXy5Vm{bCu!Hixog-4+a1LblP z8d*?+ulDwp2aAvakP6F+~eg~bld0vmK(PmlDi)7o@gx?{%!J~PSbTC86raK3xwD~Iip8I?m^=rH z+pxF`iw$$3*n-6wheB~S7L(>dF%63cuy_|1^ACe!0TvHq@qH}Loe#wYSbY6CP<$JU z^081vSbQ6cA7Js_Ec@;+rQz@jWa`r$RA+ z#g$!9T!Y1)ZYTz^xOo{Aw_tHz4;0(5_zV_b#Ny=TP;_IlZ3Pq;WAQO8K83|qE1}ql z#l@?jxB`p5)ll?fv1knxCu4Ct7H`Ai$#qaXg~dBhhvL0h%-;;f0xX_;1{6!N_!<@u zW3m2BC^lp9Q!IXo#U0Os;vOsxI}3^L-@=e-Du z3$gef7C*+Kc@Y$&SUir!zhiO##ZWwm#W9yau?UOXE`{PwEVf+%#l={B42w@;an*~V z*onm(UjoHjuvmU26l<`!7mEk5xay@)?8M^xSo{Qwbyq`iIu`e1@gNrKc0jQii$}0{ z42$cpf#Q`|{2GgAuy}VL6z|94q@7Tlip4jv_%0Uficp-6MfWZ!da?Kx7T?37R)V65 z#V@dU9E-dAp|~H5Bg#-5gGF%<6nn713*Ol+@a!ts2=9xH@Os1u?@(k{J4JZ^Q-qge zM0j~dgqfEk%*-5NI?xEyg+`c*h-I>4N8MTO0(M}Oohps+$W?^rvLZZu5a9_07DN|e zkX?js9p-HvX&tI+HzsZmEmipK6R1)78#H3%cU-QkZ}@j0?Liw3?y6N|g~>iW(s&tv zJxhZ)OSZ}?Jx7BN_GrC{2JiwCmiPsh0bpX4Y9nYsjkV^KYSk*&TVQ6-I9t5G4fMoo z#x4PK0kWQh;Q?x=0Sb~g7+YG}>pAgjrsL*RhDz0ue$=UZP`%CWM`KXfOG@=oWCZbVM#3dRvi+QdIE<6Pya>b|-;}XS?#OKTZ`>Q&2YB}fBS-S7d z<@0}hKJ=V>PF4MWRli^TwyOHoEpz^G#tAb{p#Qw3t+7hAesri*F4r4nr`7T1mm4GF zqfWiuxvR7O*3PRs172UVbfnc7Z;m(}?*x<>sZ?v_rc>|S(D9Z~@piS=8uIJUYdItB zYNH-hugs~;t<1ZjGf?UC=CrHrnxlO3PCHO5RhvW3=&(~RSL+8`L+xg%-a61|jylZ_ z)kC$}*EmNBpM=u4bvV9r$4bDi-Ki}1`ien!Dzm(~elPZWvuoA5)7d{hT=Eu_+U;g_ zc)X3?Q*UQg%Ps2JypdX|)xt|W M2`P2OJ_?Y}-xHNL8=^UUk=^%aTRF+m& zR~A)HtIVpb@ow1E9v!3q4a9(svFau{I-8Wy8EUrB$J4KvIX+xD!JAX9mz|@^(DG5Q zoPj=7&craT#s6pF|8@9(J@pSm)U2{z4S2K1K!uL??9oPfyyl!!uu{ca%Zm+KOI7CX zZ+A-LmFHFl<#6n;oQ^@S3~|m9tdSDQxh*gV*vGqItW++xoSVj-`iN7MqcgC+Fi@=* zICj=PtnYZ+ZP*XRKiwPw*XV~A4#%z5@M{9dpVFdeBfBGU|2&kf>>>*S*t>LD15U##B3aK!MQ=jbd?x05W5%6af$=f??rr( zWAldivGHcqJ0+FdXb^rMgK!7LyT-C=Au(FFq2R4a1-(;7$7}6sk+eoJ7z+G}K|D_2 zUK2Uyvm5o=F=fDfk=zH3>Kt$|aWEYu4T7(8t97QHLZAA*`PXw5c0-2`4Zwb^W%SZp ze7Ncy8G$+)`az;(P??RdK@?eTKue7?jZL zN_(`%s=QB*DwjZxBr}Z?`&?$0|47-hoX)ulQ6vC1%zStY;m#y0V5(L3HGW#KBB}aN#}D zz!)oLR-g>~yaflUPOZ$@E5rn_qS)sU=a7Nr*EA>H!mAxcfw*6pW{%ub8e zaI+Z>-psLMq_&O?avsqb3##?pZFIH-_RIPX1Gts0s z4=)(y1e1CT@dlHnRvoEA0I>o`O3gYR`!Gg6$5$RBocV}#_OoW&rRG7W-SHNw!$+Lz zE}<^0@us^5o{3>zK&Z006ffPWOY^DRYIhF)u~CJJ&SFI?zZf4@B#dD&qg>@@;P{^; zG*wSih6t{>j=3sYr3)BE0=lCZ#U5an6bJ|o5^P1 zX0>jk0a#7;{kkJEPhWS^3?_L4y&k z44QifHN%m+B|z@vI96c#XrOX?P;#+WlB+Av`nBIP>c}p=!`h|FA4S>1?%k+l6I_B> zU=F))W@Q!h`vN96Q8&Nzd&(P$^2hU_e1B$?0erf(9|LXyEu}SoPeofc5yL!5GJoAcYE?CJ2T(POnd@#t z3!GuL<7vOUgIbKWYNxr%Bcrz8CxmSP$x`)=+LZ}oO+~p;%NWlzDNP22UF-fAhA;s- znYQl#LAiJ{#B3SXZ7@3}`$Ng=vf6Irx~~9C_vPrbTcoEO=;_Absf4HF?lAiuq2Jyb zt`{KCF-(CU3Luu9auIGj{MA+_%heujj)9QZbai9eGi}$#VW)YZ);NNIMzK{I9jiIT z(bCu$obQc=N~w0h@A1aMXz6IN=F|_iD;o=C=RgU;u;SrTZQPl3qxY~sFNFJ{yLMNW`y^cixH+j&1Iy3sZ zmRF4f!y}89IX&^nR?kZ9k)4d9wn-oDk?qN`FtT&Y;Jz)JcLpxmswBv!OC|>_Ym!6qRc1ny|QhYL@FJSdGsEMic$u0-7=?zoz$u6ZDYlM;m<)_Lg zD-qy0pKQe1k8D0!5p7u+S}aL~eX>zh&F+&ij!EN_O^cO=7=~uMYQP`Y`;@SapyHHW zn=sglQ%0O;`ar65BoBt1vWt?NWKP-heN3axWV2;*%Ea`P{GZDydlvw6r|eJYi8*EL zX_B3?=N+hGcg$$1bqEfbQ*&s?S~ibti*+p_s`;2JmSagUYL)iH`F}fI+*3loO zS@q?h%h}y7Ib80Ss2S7kx|p`;bj>l$ZdBJMPK;{Sv@R`$`n~9na!@9$gA(I^eFv3n za#!`g9%f|~|EoWG8kxPa7VG!oKFgl{d!C*>)lJW4lOQnrp}g$(_#YC-WwWhjQS@@r zB2>yf`tyaDGVwG%VErU0De)c1gYUDu!FQf7Oigt4_x;#j!a`szfA7@*wCMSHkUcju zvZ>vuXc^KIH|j=UopNF8hJ+4AyHV%laHFz2TedRY=^(~puP7V@L+$3*SY zkNPSJhza+#z{;g(=128MX&A+c64D?1^#Ik6cB0}oc9ZEy2A-%215Y$)TAXR3?r$R0 zS=9Y5dSV71dzxee@1klQn}plN(Q1pfeJe&%rnvjrRx2+SMqX3z+}IWe!kXI`e!`fW z^jP`_K)`qh*>20-8`Smwcskf}vEv*z=uWYej+I-Atsuk+6#k!5 zBhj|PllnfBN^ds7Tm^LF^@$mDqJZm_RAY^hfgt`=1zZmj;JAQm)!L720apiYS$R4> z;Mzjf>;YHCGid^@(_d}VKA4hE3)>hfA=g(V47U<;CEha)V3S8FlPu(VsgG&; zkgJ%Wat7oIxxN>GxkY|2Ju!=%Jx#Jjeld4joKig$h00`-@3fla@j&w0qGxPRyqo>NI;D4WMM4LA=-r&X6W-0v-GO)Wf+WzUcOyqE0nGn4t3a$S`|}{n@}-drF?&1(Ch5hlN>SkUTVg)o>KEg$Uw4M3DQKe z7E5DHe9qeY7&Gb9sFYSYe}a`&%%o+(ToDV7hEWky0HNJbO-aRX=jq2cGxsC4mX79( zo@nW(fptnP{Zv8+d#I&%ZH1QJCAIXwCV@7!v>dUJmVP7J>QYPpIhuf$K6M^c8$B~E zeNv?4P!zP7)KJiOQ3LrDw5SRNEgH9OA|YNW%;`NZgATsKF5ltTULpv&1+vm7q> zMbykQPc>Jpy^m4NWmHP5nr~!fCtWq)lBXXxXYNO8)f~+kJyFf?1lB24^B*U4u!pL7 zH>u{`QZ?V51lm;1a>PQac@Ns^QZ-+LCZL-C7XP^P%y$t*$qhv_i#ZL=d@j|`rLY-;mZ_*Rf%`{(-R+(zmMy>} zrD7RMKss8nT$gowDhs*ArzBmwZ|k;ggZPnZ=ebFUnQBLlXGraQA8gg7+W9SU=7f6< zuyW~{dxVkGLeV>dpP_etKn>*6JEAJ|j%YBC-Weg>ncgYW6Vp5FX_EEM^RJOvtS>0F zoQs3})`bCYGAvm-YB!*zw zWH&< ze}f?KSMrQ_P}E_$n~M<5&C&=`DEj5=j#F;Iw5X56!f1?$*My!Jla@oNFR98kO_?|Fc^eDovhtKymnBo)QwWL_)}41A@_Isd z4IsIvpUqTig4clkRlizINzL0*l4g1{3S9T})01rExY3B7jKiC8B$R8`y@RT(b_u*W zf7Q)5{<5+ADqj3p0BCybHjbSa!l;Hmoyh@@VLp3pMNY?dq7SYS|I!l+~=B)$LEO79q> z@^h$^)~Nh6E2~6Z`k3q{y~D+lw0_Mm$Ui8{N|gUG56a)}2IXae3i9=#iFr%`tl@-e z%6|MRPd|R%O+S_h4HmugJ@RwEXTFv_SlFlQAzg*UFwZC?e(`qUTL*=9$~FA%h{tVH>>c~E{$Hz>~+{(y`$zNOeqT4ZueSJDtSbW*shU?s7Un(f z_hP=v-hCxc@4mo#2j6CS;3qZ4a3cU5FU`H#E6|v+S8;Ft(F)R=(FnUYk5HA>t`9dz z5bVuiey4!q|0O&3q#crxwM$DL?5%8#kBv2OGPZ?acKfFB23=gmQeIL{VUCG?rH4)k zQ=aFLopo}Yn;atUif~EM*{Dyl=d%~&(Elf(63z-eicu2>nLJRA8LeUq^H_PtnFK= z#-S)wv(B^6*#Tvx83&$|W~(9tvLTW!Gm8m|g+EAwJ#6h~48a~sPp}_a+qV*oLrF`p zr|f{T5{v`SNw8DnL**f=t%@uwNEh=}(r@v?9QH>aDy6hPR$JS*(vL$?=|^h?qGz+& zAF?Cs?SQhV2q@ci#1W(RbTs+{LkT z^XA~N&P7RxnTx)1JVT4VZG`%|T=czfCF)u%0{m5 z4(L}|TuW=9tvv%-;CrFLoP#eR~+8|8x6JRgGM&Na~m zb;(P=Lt`-9b`W@N4Vk#GS*YKuaWgf~mq`{#tQGjLHsI^Lmo2TpE76uM0&2Ni<4#n~ zo>qX-pVA62+VlH0!VA{MFcD9So8+cNx&g}q7Z$_7!NeoDaH`*%bwc5Kg?4t{iQr?M zFC*CHUBnHXUFHk^RRF%5K4U6H@6^f0EcdWZ>FlO1wpy6wgQ(gYW?9MSw>B;cf4Fy3 zhYcdk5Z9VgYCV$#@%o0ij@^s0Ms2m>k0=zkcCF5Ok`x8L2?LH6Z8#_>d?KgvkWjrD zYDoS3B_Dh=K~-`{^q&cf-Jnd|$bRFRO0`uWncxp^rBpB1oK~S-ad^fATEZ*fC40jz z6)WH}Xtp&1n;&rLNaKiuJ4p)FHd5Wz*R=~(x|D=+`?4C?bb&1vbicP#8(P4ijg;zz zVW)r_Y5}BKz;+4T9_j!G$D(XJZ@x7QLDg|TDo7R-$W7vR7Mje7lP;YjHi-4Kma z`iF4FGGKv+dfc@qZh7l8=$z!%hjVbN`)xjjXK5^v?{0V84|ypqGZzLzWS7jGEEh(e9*dpdGTWOYw_jKn*?(gt z$bj|U!l#3}-k(f|Q>sbh!uF-OuZA%hM0Xbt4pv)(%~pGG5KDbb5Yx5yCkA2tF}e(O zJhW$O#vUQG@g&)M*&>^E^=6EPBl}CJ3ND+)KhPj|s>sFcjyl5%#Ot-M z8A834c+-2;Du~yC#s(_M0&X9*!G>7Yc7F*L$?qsIo3Qe@m&oxG?p{FmEZd0u-6eOB zmvJ7-3NJ%o4H7)%voq{8^K!qWga4u`+!oQGxeLud_}>=@5dHpee)ZUXV8*wRzL1{S zHd6Lv+eXTTN4MAJUWU85aBDNmZJ$rB6-J$QrBQ}pJTG4ZLp}=n&eBY>ac#T|2>R#G zaw#C^1#r3D9Q-XONCo6jCx~wJ+Qno!sO$ad^cIuBIIwA43AV?1GqLZQITdjeL8Rk( z4d#*TuX~uf&Kv7V9Oe$Rmog6XIux~fvQrg@p`cF9XoZ%snXjKj$B48>uJXsdhi zdS>FJ=^#?`e!#Ly*kIa_ko8i{L?ML*pMZNx07Ek^hZGi7A%#VQF;aLg7gbRr_%8vU zi{Q`D6BEJgY4Szziw`s#qeb#kM!ONi+~o{}@dY`Bv4Tt&0(mf=w-f*aywm>SGu=en zWo%F99m}#weIXkWpX5@ef6M1IVRNT4zP@Wz(iMT#_#${FKdSz@VOo77faJYzdaDhE zkYb;@RIUrPuUx@u?<7Hf74$fI54vrGw;V0^m(+}@!RB%f<67+Y!2Z`>%RNQfYitAb zD@#=S7TfHBnB}=SsAN+~LW$CznHed{Dr+Cn-S3IcT@OrB>fGlfAU#zF-nQ-DF}QEL zvi7ky2{BXW%JB^8+`k8Vb+2>JN+lOb@9qQcR=umuCZ>DWrD|L`ODCob81F%U66Vmq zqAK*SXwZ~*z87TCzpp@dx&AHE6Vt!!Y4Y{&6|jH1*1mz>JwK=34Up(U>sq)gXx=yJ z2P#rl<4l7;03y1fyph81C`=+->3DGm`EiI2I!+oZRFH$4VT9RKQ%kgt(QZuHqo98o~={jle2lP$zGdFAy z76d&?L{G6IYTdTB3RPj0N+)d&n+pPt|Ca={&I&5VMdLu^0!C#mw*Dx)w^SExIYUTi zY_qK5qD7B$Ph7N1fk{d`;GzVir_2u6f$eGAcgV2l^OF!W?EpERAv@qPh=lI#fahkA z%;c!K=z-N9h?v66F0jPNLgGMi+Qe*yeek$119LcSqAKhI(V!`OlbyDk(RFSgyo#Qf zeZZb3-#)lH*iGjjfX;0kj3IvrZUQ`p1*}VR8U`jVv37y?q3Nxv!W}t%KbUL32%J^s z(sIy1<;CKKw;_JEgd3x}dX#sEjPeRPWC`)k7nKxU^A@n8>ZYcO@7`ln(#5+qzDw}T zsblH`+Joii9=R)k^bBN%D{!Nb5;zFw67aVmhCfIJ{Xj4P*~7hZ@Z675Gt6kwIciq5 z&NG`0xJwb!3K%tJ>&E}GV&kr6Q9s2JAWHgsH~t1yQ|{e($PUG}cf*IW6nkYwU-&Gf z?HtrsIkHb!p{P9R^);OX<;G~KTJLx>$BuR6rp(HB*~d0E1vu>v2jMM5ahBuoKy{>Z z-0K@Vwg(&D#%oT8?d106;{{u7>4?4De4p-Wm!qF(S%qhZLSR|jeFM7Ky^7Byv?knH zOA|DFnB7UiyR%VGc=du^p|$^~Po}We)_0OV_iCp--mLTejXXaF?H#1uj)7<`97e{g zMl;w*n5mBBoQ1$tm6^KuQ#ptD-`@=TKd2v=f#}kFzrHQhL?b~L2aE2*@(_b!icfJ{ zMj+iC6$QR$=2-yAZI89|#B2}tl*0CKIqIa^hKxxSx6{F!hh3tSN~}Zr?=tVIfCR<% zv9bIc3q==UeO%nN^+A}#+8$im+I0Cq8ePs|Oo=8x*Wk)jn*1W8lFrIjO-}GkR#X|! zSgG9=K=MBDOfl;?^|-Gu7XX&%%q)Cs^R<*0*9BeAuEXW9xz|!NQ93->l$lD0AF^U& z)!_$GHKh(eW`|koW>F;|{OXzRGs!(7%d=iEAcO_1H2;C>DLidRVO@Wg} z_k9u=aNYM8^u%-@drG1Ed^M0)@4bj0s6e(%r`~EbyVRCB8G3S*`TwdmMkuaM0uQG0AO~THCiq={XejaJemO${IVMtcS}v zaH(Np^b<=;#7SZ=t3>bRv~nkiTR5-wBzk`y1|eni{u~sw@!XU}?{^}j`1aj9gTv*! zk`Oba_i{Y>l#_&Tzl8Da-Yi%j@56)y&xBh7{#LsnB&}KG-m*ks08!%hf`4E^e1%vk z-)3h~6&8eOFvfzgY_@8l+uVL=(-X5F*wf_O4>E4wD)#I|US0ztaCOa06Ra5$pAF@NS`Hwyn)qnJsM)g-uA@Ny)2yP1>{QD~_F4@un{3RO#-B#87 z)VVCyJkoIo5yRHJ)-R)~^jbw$dFH7)N5^W_k!l;!=6R@pq|~f;j=S3^V?4|9{_B8q0=Zba{OCC6R zpL?}9ILC>A?elW_tpbTI^v$#4%^cafp=gkxmUmuw81jWwEi0FE{>bBlE)D8>e>S~+ zP&pE8hU+VcOQcR2#$DJM6v=af0m!UKo`tF@70Grx6q_R9P@oTHvz|$^(+Aa}kTNep zVoI93XHpxc#9V-v-Al|=>^|XM4PaJLDLJ0W$QPr$kdXp=$jC+1k$f^zRE3Nb4d#-O zBS3-6$TB@K8Ofef%gA^NieRKjuLWG?{T+HWKN#s>_Y$!RcT<38Gr*HQ+3>6^64E92 z@|zm4dm$35TpZ-}nuH6GbO5^4Mqj`wL4Wq^%Zchv8C=a%s<)65Xw+%yEe=p>m?Fy{ zvk?hv8i%W8r`g(j{S6xn8#Ww*>2t6Zx%IcFH~9QM=%;oi)neOSMkU<}v@W(0JacNO zW}~s#c1Hkd+GR1)i77VsPTG|{_XZ;orDW_kDauiF-%HIfX{~JNQO!)VTilVbl#trw z;|VC*PIN}2D5JyAN}eoSV=H0T1+oseePqxz^r_!dU&%gw)!L_+VDT4G$riX%gTQ(f+4AXiqRyQpJpaX>H#cGv-i~nDNZ(dBR25C-f*g zal#5+HW^|jYrL2P)-_#(=wb2V5LM<2k<2Ng4^sRFczX|QdE-~1DwY~0<>zvhAjmHM zl*6^o3M__IIhZViVlS%%(W9qyPlD)|qN^!`=ohhZ)LBQR`cwtccW&N3xNp~v?LiRz z`ALYGL3BBup&cqTxyL4ihhtpH%?b4eW((*0k7SHOL#CQPzEqS}n1bsEzE=|(Z^+qLKAy@-c1kdD0 z)n70IRBHlA(=KmUJRyYwk-HJJtU|t3tG$zM=6OMnqXSX4D32U1cP}-=15r|siPT#R zgYNToU1LQx#v{H8m28Sh4c_caQC9JYqr2Y|&D#bhDK+m+2}nH1F1Jfk#|V zLd?{>ay&zt_hhuyz2>zjNKNogxNiYGtM1ii6VtwG-mdt$s%#|_QwI9?RDg@ozfbCG z5tX0oe-Bii5-+@k{HR$WINSsGT6-sF{h#>&qfKm8K$5laE1>vps2-?Wm;tJjA)%B%kjVIB7B^@@sD|2gZpWb^7jjkau($Kut0301Ru^~AJp zUa#I562+^ZZV4=POm&m#^ebk9S3luX(Kh;lm%rM5Ac0U+bQbMM;}~cm`S$izepU= zBTGIgo$xXelKRM{-hjvisPYxKk5CJv!^ML;El0%brkpP@$HKLoi@0RNvs5)?!wOOMpDAHgR$F4hxDcf^gprQ z)2?hR(Dl}Ii(#`~suk(>%p&bbEw%SvQmVC_(1ufGZ{QNWy+BzRucfkj%AY2Al+`bS zy3aWJu^egA-Po&-PewAZQC1JVuZ(DplR|C~i!amfMShbsTeymgwrHBg1j^^3l1;g( zf$~|btg_4TbUR1-10Xwha$I@Aknsg%H`nIr<{1oieZybON%}3;_N}`jITU4A*vl#_ zK~m7UGYPdGny0s;y_DwZYuPyJi=!&lr!2s*omPT&Nb~fTB*aYfRE}rJJbe;6Wm3&k zT{Kf};P(N2yLoEVNit9M;);1HmKsg#(Xp3RY;`H|+&P3=4{i11XfLI$emfgSW7aDf%BRd$-$Aze z+0s^jZ4zRptuDtiWUK!S%4Je*bzR1it^NU^Z@1NrI!U&=UR<%&1@mB1{K8kFVOu>h zm#C-;>rXV8-TM11I?b)W&(RaJ{@7Cr>(4iY@}6mV`ADNyL-z7w`4|#`RY!`YqfVxD zqWbc#xsUpavcSShAU<3h1!*8i0JO2-XIPCq`afy6BR>o_P+hiEX#ggS zO1f~e?y@F$Cfll!2Va?q1WgYGki7e+S&Erde8g3T+-`kh6cY%$J^G`x1b-b22A_)h zu-mP7IgsvC)Qo8puLv_@$k6Qz%9!S@`2~m5Wm(yQg(vCErgtDl!Ougbw5IGVR#q`( z=lPS$L|A{1v!$Y(M0RZ+WY5TqY-(#Hnu0yqnsgzsPHBytpU}Z6vqpAp!Kv!a@>KQS zB*aW>M2=_38hH>iqbJ=2^@SWLJF&;YCf`1}0VxO@%{IS*G>~3hta!5va^&9AeK`%3 zNVK}JP{!l=BoY)3f6+p6Fd}$7S{fZgP&df2y|K_3YdP)WVWcs_PTjp*wySxKC^Pib z8Z~bM?_@S=?lvmv%E@Zf5ImFDEk?~B1dzOsPH&?ok|D$vTWQs-iYdpBQ^b6gn)be6 zJhIz0axC2sQ8T7pb5Sq2H)ILTrdCaxLV1aVd#r@)V^%Oix&;u9(?hJj5o|rSlo+jTJx;ilTvtHYvd%6WRe|G9?8}v4Y z3|zYKebj3kl7PT?9Zjfi(8zwqJSuZs+_epS8eIECeFzjP9+4o zupmy4w=8+fhS@MXcuOu9`$J9>55uoc6J0vn4TL*`y565m?;s){fe0DBSYEu5?E>I? zg1%?A1m1?KDJ_8y+M(FwC5Hlv8w#D?s|1&lE#cY?Np1ITYJ-iYtnI!QFT0nEiOfCW zeg%N6!jSVglYn1ESs?)h){ua=Q3vu#Kv5MEP&AlJ0)7W5a0&PrJuwN$o+e)c=D3o` zA_Y@lNu;+yJO0_dNL@%m^^TU<)(vSW?_==|Uim^w#eehpBhMz~Uj}uj-IYYKV-z77 z^Iu8Scd9O7bd_RtlIEalO3`?d9g0mfawwz>jVp=hLoV4UY3|OZHcZ+0Q}9IhvN09A zPq;gPfmJ?Aj%PCRY?K!=QeY1m`E#F-bA+BmRme!uU@jSX2{7X_@=|(YGLk(_zKq=0 zZX9yzI3&_ce{Y*Uy);uXfBtJ9i!P+(+IV|0=p^??l~@zf^#+i6U_f~z1?7#Pi#lWU zxo$TfUmnz*{@JgCv51hAYorZ%Rnx&>SL;ss8g2Ln3?FQa5s-u!CsGQ0b(n?IQF(pg5b!x+uqc6qF?&WB@2{GZ`187!3s!Rzc zN#BVILXrynAxW>JuH>^eMO8>r(O@n~`eC5JCFw`#iAhrSlvhX9LB}9KcoF z*Aatj{N-++4eQ-wJvj7qvDv4%Mbp2=xyT-n^v9YFHlKFz`w z25T_!SDCbH-F_VmM3labrFrA zJb_tAnkT+VBr}2c1vPjdJwF!#Z$F8f7gy(gZp-GkqO>!Ne{Y z{u+fJ*l|CGs@WH=8C$UA=)@8|yYg)Mn>*lk;x3ythY2E*n0x_6$?`z0x6>o{vGSe{ zy*#*~D9ecp&192DEmB9twfeF5or&&=fV3?a$g|^2FWEXao6%fSHy0`QGx^g@c_X#n z_x*7ei0G5TZjwD7)SY&b@mMNwyH=WwnG(Uu4!i&AvnphGPgL^E(^9MC{{m>M^qQjE z&UWqGid~{RcLk}u|4$NPrb?FM8B)oQqOJTYnW^B)$^jkZ$i_Wsh<&Cj&S?wyn?s94mtGx)s)eO2cd%3PND(RZQ8n7XFCNrw` zlo7DGGJxdWJDmeII-i&k5$zHtU&U(gq>`-%9gYsn*seK~gXNA=Go}LT@ik|!v!WW~ z1>b^7HjSiu!8fNUt9ZfD-S3IYeGf26=>@+l0qH68f_H6(%H1W8sJ|l#F;nHr@eHZl z7oe@~Rc^d)RHP!E#`prj*_5s}muNZ0drm5WD-WTI`2xjzIe^6|-X}%!Nci#OkM`z{ zvv2tTqwQ){IFgw_cbt8bYOE2H9P=shj6UH!+sVnXqe@3Y;x|r-o zKDlhe95~~v-G54;2o?1&CL`9h>3?Ezx|r;1$xX70$^PEQG~MK(wMsF+N?+j&0yTnGwn)bQSOFdhX<)Qb z9fnY$8141r=POVLSDOe)2P5nZnQU;rv;MwMsVN+iiK$>=0ty1xnXK_vv=F^doU{opCNN&v924q}12_o+u^z@JeeRVodSF zsALoHswv)NWtHVcGmC>n*8CEa-{DPpQ2v8%P}WvBnYAL34u6YX5q*Ci#Q!Wa;&RO? zYU7mR_C)hwPu!j_1M8G-&leIpI8|=X?#*y}c5mJqL>fPzgqZ2}$ngxhJ?EjV?%f_W zGgm5sH{t#ifNc&?jF4llkeZn*1vup}x)5nFn$8CTF-}p^HG-ll>@CrtsjQNtk^cqw zJQ{hz>B8P(Pm^zNUCZnU2bUNXu}V~{w%R?jwJr@g5$$HF-l98_oMt?mgb?b&&blnt z&I&!NekXCfBN-xnW|h3LtqOn$}^<5Rt>_ zwU$Se;jVtf7ip559SlKsvq}!1yMvlB&8jtul^^EBkX2<`BvS30Ut(;Peb&Cjm{%`A zrL^YNMXao1Ud{8nWmbJZ^B{X;H^}w{Lcm1V{DSe7WhKft=Rx^sW|UK# zRMGs`6O-!gz&fQ#_11(APMt}$UEfdj<|M>SlS+Z@X4K@wmjA&AC_*l}%2PEM1>PvO{1vLPM#x=A zu*BH%>DP=SALsS^U>RMHlhikCEU?FGoO-L#ya8cy+HRr;oKL2JGu;Qd=f+pJkBwF9 z2ZvZAQL*J85JFtx%wdI;onAk(c25l}&qIn50@#VmQ1X2=WfRwysPey}suES6&ER+o z>DH;EW3}o?wcR<+z8@(y>z(87HtZB*JZJ`$7pY^R29TeDMg)bCANR?FoiF{~%oDCx zC?`G%#*E+(wtz1ggqSLdKNg%3@W*T_qX1b%pOoE-I`^yWk(|M1KHAF3AN{DR@P~f{ zCJ%!w^cjTplcMTND80@acNTT@^eeg=^Ax#)h6oIwibiUI&Ge;5BfSxAIY zK9`qLXnVAW!`{w6?7!EuVPB*UhoWv`nSCa-xwP6%UXM4gNm8-P2eGX!LCsQ8f2oix z5u49V77HyEelfX8wp93czBUpnN7n|XEksL&!d#Q~P>!X-zW}{>=;~AS#Fh%#)8vP) zUKIGrS@S4rMznUE{o;HvD+7}*B31*j5vvdkGCY-o?V(IrzAg*BmpuMWkj$djDz@!d z4+eFo-IawJdBYhlS-eF*CEAl5ia!iSBq}CkO%L(}s-`^U{*)bx?UcI@C2J1F*@ZZ} zXfA!}kzF(sZRNC!mZ55PyC~`?ieVRFBNUhgqLPnXyb3S^q;hV!-y?EGaNMbC4n>V& z*ZD4GnysoEtpu=cRUKgCZKQ9APNBHR4#k#2(T9?zFE6k|u`xD>0x!%qs#5Gxag}Ym zqpPg#ei_8>KHQT*1>ja2^u-qJ2}yqn^|%L7iwq3PpC~vKZ2nbWwuH~)CElPXswxed z){VaoX3w8^1ekGq;wU{adxAYpzCCdXCDTiv6i1u1nh~)lpAo@x`Q_e)zb4jl;0+t* z0?#Gq+X(y*IYZuvu~%n^ZcN$_L%kuW>%D7QuMYJ-cj9}3u4lFY-ifLyEr9#&P;7#d zLxG?)0vz;SrMHx6QQI@fi}AAsOJckCP#a9s$=dFnc-g%~Ok(W`_iKP-6N8+=ne6*I ziVE2$aE9!AJ)xiPM3Sfq*(VyzCHuYy6u9hrf}WV{V^5PW`!2`QJWE>G3;B0mKKUn5 z=)!wCGgb!5#tk_rbH@3yP`;4z@HaklL_61ZdH8ft*Zb3HEf3`oMcAwPvnDP%QOv6bMB#Ya)HfB^4#f-9Bo=l#0IuOLQ+4(=hvly9Wr^B%@?^ zCLPZ~aUmTA?vRd8`AnR{G89!I9Yuq=q~jI9j7!IT^u(kidzyUdctwyiuovPn_X+wS zS6^-$(RK_tXx$KyN-j8GLMm^hh;%>{b+YKw+%6(ZLEUM8em)qb2pQS4e2GVc@yKjP zwox^u$h_SS#U?U26o|}(e2G*}WeRB-CfJpdBit6XVM@@K<7M{}G}UyNaNh%9HW8}K z2PQ-R6y=2s71%?DzJfZE&%zW{Awxxjxn$_afC87HAEzfKL)lYm85&PP>M<=Vh@?Ki zRiyff!8JZx;@<{%em=mHJ=yT=LAJz;bo=q8jb{1c92paLXE1>aa#J37*Ma>ROi(n0+LG?`W`iBAip3j*ZHi%BpqeS&|E2`E+eW#)-%xk%QS7he%tuFDW1h&x%EN0^_ z2NN&G)pJq(3?+TI&Do`#)rlVKo@^}L2TW3KEWIoN=_%V-x@9LemTr}2buLLl%-mQi z$CFP`Ni_E%OuGE`4@=ay0O%n5Km-4{^vn|V(StBu#KeY9|CTQ*!tS4usP9#jwyw3O zpl(YEDMNOaoaGUh%Js&L_BseoBpw~%dtL@$md^9hP-bSEx~r^J>Ra-*W=EI_0C&|4 zdHt{ZYJvgx2^cIj`ln!Wi-Czgzq0MyyP4>fFM;3dQ8oLjDPtFwz>ipkC-6Hf6@`^8 zIL{E}3&tm|0n=lDr?wH!&P*3rnJGOd>&*3TpyD%Ee1_tbVsQc+taniRchVjk104JZ!X4{7~6O< z1(b9HQCoAoEHnq>`Alynyg^0_FNr>j(6=qEfpLN$362qH3N2L&QECjCB1*sG6GR}V zv#8xNd^o79=+$w$PIgCF>@p#cKoU zX{>!Nr7t}alnc>TPIY_=s`f@u#%*HaBNs383}0E!5BEtTR|LnMZfs)GC;Yk$8<}=k ziC_%@Y++-bY9rHyb||)uOg@w}8<}2Yhhk%H4h7~$(#T3ZPgPX*?T)^(w);&GJ->^= zTnZ!}&8QOKkDxyZkpVBHDOlKb3^j%CA~+VR{(t+jChWT;ZfX)$5y}(|n!%=2o0@I` zW<2bAD?PEWD|@nqGhL>6yUjLwdFD+``Xttjj4TWLdNV^2o13y&7RFjUb)*(HinmZv625EcrrO7qg$O&zUT8@`RwS_r7WGU`aYe$jbbipH2$KAhWPs ziK;1uuAnwdY55yW_wJ=-TBe_HF9Z@v5>v81vm`G< z6(Kc6A0Rb{S*BYXL5pH-27xQlh z=~NMrYBB$HMkQTiSUq`yXL6bvW;V>SqX8uEJ=0IWgef=a3;J&j1|&+^*cbHWV7h-q z%`mC0Ea(@KCYD$aPcA5}i}xlVY&(A%jqs!`?0?3Js&!%iFHjZ1hYSn*U$FvEkVu>UcJl0G%fnWil4M~`(+7WRJvOj0iF|8oM;Q?{_b^=vHcZ`%?i;ru}oV&=lW z98W$`CDGg#+RASov4#Ejp$RPPFF6Ya0zI>ZeR>ckjhNuj_2X1F(h)Qk_HRkOupbtD zlfJgU5?$34m9{#t!@3;HHX}sf9I?E=hQRRU{T1OF%CgiM20r>k%eKP58g1oVQdp0w z*_RX;->?;a;u*feKM=BoVunp!@&!s!tU{YtH6{+M>L(0`q=YMp7J zKP+9ec+-`k>4@+}%=V~oQ{lyAZNXpkU973wLQh8aUs}66MTj+ts=rxJz4nwgJ5K$oCoW||LajTWu)rub||(;l@CQz?J2UleSjcx zX=rHUv5+rWBl?MAhC1&bWntK63Fg(D19}9C44+5Jhm@vy6rR@Wjuu z`2UcV5Y~{v*VwqHTKs>)4#l?k??Xwm`2Pz#6dQwcCG6Llu(;@oan>k$HlJL;fav#xi<#v3x*)G1@Qt@O=&^A%nrpSU^$fV#sGS+ z(p}0x(_1h!r6jt0DYd~yQ`UAj<7M{}G%c%7xJLmmjo4H+2pmHdAuB~6AS<_0cOv6L ziJPWGRme)wU@lpC94K&E`FeU{vXVVbzO1}jtOobeX}hF5r%j-wFD!B0kWyx@Pm1Ap zxmn=dKGO(Yl|_Eu6V&xS_>6GOBt0TzX#NcY9}mVMvk<)>RZ|Ml&)cEcgeZp+v0;Ed zT*VSY46gAT2WG4jc+R9Jh9`Tn;n{U^Jo>jeWC#97%U4HNzyf zvROdQ*B8|_9*#>WB_kY{B%o^BCJ>G4q-_&;xfNCGHi2tVHQP1;*9t6Vn*awBFU-|# z0@pB<^ciVRFlC!S^jP;~o51UVNy=>kcO)P^W!nU{?Z7sH?VE#b0NJq5t`fQ!#wrx^CC zoCL}~lwRRJMV`Xc4pWKQ-ji^f$zU)nQT~B-KfroaO&N$f#}367i1MLi-4AdD zLF6jh*bi`}6_;#k`7$;HxuoSwQMEVHGHyQrAGvtBXZX!>g17@TL=hZ!hCK$6Wivp_ zN(E~?puq+`)n4y^=7byRiV z9ff6WcR3o)?`<&e0y_b+ss;Eafa@iM31apDdeh;r-!5LFS~6b+ie zr&N0YJ_{6hB=&Rk#3G#R$rj;snf~o|55N`K_5g&{k7jJ7&SM>JCu;RSi-n;k?u~8T zFe|J}{}20oA;CjUm%Nk|cYjE2u+dcH<%4+Hy}V4tr)6xWySwwloygwU=PXob$>8&NJdc= zl2J66OEL}sGcFm|(-V`7>}m2P;|t-FXG{qYo?Du9ys!&bOdzAL2yq>txbrq2Oic(K z#d`^mgfa^z4uRlcS}+tLSp7$<$p;q2$@CZi%>PC$Q-dlv58C$C1RDI zKB%OZQqPQ@7+!>=yL%P2Vam+ic-g(oOwINa?yUfrXj~fW`@e@eLUxK?Kz5!(9f}N( zC+?OKRUtb?gSlkqn}7nBop;d_lb!4-wd{-^76?7|eT^?wS~Q{_Oawf?^`D(QN| z>e~}MliAepvmtFh9zdFQIlAJQf(gXRq-Fd6b}%AQD#yOwFGth;7B$0Bt*^he^D10H zJ;zg1SH*RYhul(>l<|xoB%o|t_m4(-($@WdV@1`v?*BBZ!syPB9-wc7KKJx#6tnKn z!Nd!Be*#r*gP{KvL&<3NEaWv`hyT~(f46c-S@(|~>z=IpuSZu?uKPa+MXf8L^Q-l? z)2x?jo#Sk=YP?zPc-K|h?XlLLO`8r@+m-R*p^?VuCT6+s-***%*fd;g3~wqoMh3@9 z2Oa;NT)^1`6H)B{8X7yc7EAuyY2AN!u;7SVIQdKeFG626Wu+||^ejKX^#q2? zIeUJ98w`B(nU-y(;X1TsW&62J=K#33;|}7g0?;k7ao7d`Vwx`U z15CHuFyk~Av>m1b@estcc@u!0wI*pFz%9f-oY7M41Nc2EuLKUd;kQ?_anM^(4Kd3; z01s7r!*4y<2XKtWL?x}1vZf~s!6^0tD7E(cg9@g|dl|sXq#7w^56y=qsTP3RpCtel zZY#XftnCL7y%zy<<2JRkEc9iDW6Yv*4eFTO&%i2Tw9}DVwADf0jsx;JM zHu@y&3;1dQOrsTjy56 zEnTFp+V2fk?e{9H_60i>+ui^lN}9a^Lv|=O4(Cu{iliD|=}%KV)ePv4(z3SuVURz+ zSHipy><`GJCg8`QQ)vPaG5Z9rM0Mf#2rh=TcRw+7q~ntq(G^t@B^3>tfvZ&e1a1Ik zJfiywdSVe>_GF8cx=b&3yHDVSJvT-&t%ik#MAUwPEEb5lED#I9FgvV!29AI%>U7ej zy4}EN1$C$8Dp>6JM9BEu`vzVgj6r5g;&xO`X-WK%9g0oPawy?_1N2@cyp)8d=U`|| zNp<%&YJ-iYtnJqEvU@q2n%O7Zj{{&T;i>E&_yp<*i79#ki8)3c$|o^JRY*+HU@nRI z1)#ts<`?OSNlf-M`4aQRhyv!=KMvR*c>i}lnS39kJL76Kx%9T;tto!Z`Y z!%nk3NEv8o1zrmqsek;{#jU&Zc zqkgd1!VM2jeZ*<)y`)rY0k`p%QygjF<=r4eUOAt+KCCvHh z_x!mf;|AAZBB`P|)n1R1Q7MCtAb94ySA%4RRsE6xlK0kWW(BBomFcC)+uw0G7=f$b68Qqe*RyQ-R`!sTg>*DH=`1)-$(nBZ&IlsB?V4_dnvL%FXoWKvP?F>Cu)%5f+PQm_NcN)iq{CrOqX_Hu|U3uFP&AN7^&)oyFAV#u>2J$Wv*wr?d5hoX|l zHe+652b7gO9C%LhoE+!9gy^))EGeiJ{vc^qw{|s#W^Q_#-E3{&N;3{cq1im&Zxj6r z{+8W&y&YUu%5fBOQf_(3y9|+Rp;AQjN_!`J_HJv>VhD9ldP04~+P;-g9Ew7yIq>sZ zf$;PHl3n?n9aL5#aqu~bbW)7JA0pL?a6v(_s86!D4_kX1L%4_16YhuB_N|2DP!z&h z?TDxBfU=T}1J6meQ{$sCAx?OW-`p`@kXdOM)3 z^y9$u(l0(@7NXyYQDp`BqCZONU105W%tuDrqy zDl7ds_?+}xt^@;l*f2!4g-Q|8C+(f=*%52cVu;jAPo&$d?OTb&p`<6$U3O4eiNwL@ zBvK(M&K#oIYD*14Lu(mH(+^k&B8H~-rl;wrtnFKA%AqJUwW_@@+5u&yCEUblyF0p6Xjo;eAWF-{`os(3{ zL#s6*LM>8@h%V_bW#9TY16 z5@}_``dNrfOY}mbU*>Ds!z-*kjG0ZBrYF^P*7mKW;!x6(>YyD^R#I``IZ3tJvZ@&( zS$}k4LAtoll7zQddmcl=o70o<53KE5Nywq3CE?rcfU=U11J6mqzF_S+L@?{#){j~H z5JQZQq$kGTTHCi0gF{J6jIY}PWhDj&o|72;2O?MhLzG!&mJ^dG{6S8iC#@Zgq1X@8 zQ|#ZZ?OQ3vp(qqf@Ve%1w&`6rE6q6goHSb%xice7GP77fvd{-fvNNpxj3L=-R7z=I z3|iZ_l8i%9NM^M!&anf^N-z#QC&5ltd|+eGOo(c$BFhTW#e9|YyT;n>82Vk6o_@pD z_O0~eP*nQa7GK8ffU?q$1J6mn`C?xarO__h=0XB}t`mmBTB>LWsm-RmX z#*S@+`?hS`y)#I_@sT9V%mf^AK>1!ONeTBVtnBCCP0SK-+)kSVCfrAXl}pbo0S7&Z zjlW_K7MSyDDjRvK!brezd71bEP|o zg05eC@M8kXkLIfB4)ltOF!+gqq|TGs4($F2ZRJd_@oQAgeqfie1xv3%EWy)jq)vBW z3<*iOCDtMuOFewQRdSsWbCgXWV&P&?jtCM6K`mwC*Ac!=(+RX)9v+H2rO# za<*vab*Ee$q{i>{i%s72Ny0>3!8p8{=Q}@NX5EH6>a6$l}tC{Sa>3HPq^0ukQcKJ*^|6|N2l_H`*P|a z_B>vVLnd4B?8}kU=rK~!x_uBj!BpEMic{9h3b-ejw#|GJ1gpQ+bOC_;>B8m0Y z?jf{gofPq@td5~-c3n$+H}$v7&|Q`SXNk74sWjw~I+ z{i~@H4M-gzlMneg#H!+HcUIrpi6pB*JtuB$h^z$vMI}X$e9Y(k zK-#5AqVgG|l0Ipy2T=*0IbGCQW*jp5NC4>>#spW)fbA%c@+>naoQS7{KS)#X8$suz z&lcGZ@W_F4zfR4tvqd^L%|c>MKiZ?`=h-8W)6O{mlNB3l2C4~EMesBYYyHv=#g;e1 zhoZX1+-9d#64X~YvL|fi@?LPg&cG@^YMC25vm%c9hZnwx(?4mUqw1CB$iiNOV| z&DlRI+Sv~QFns`_(hkL@r#KW+O09NNQA+e)jr>Sqo}daO(cOd8M#N~Iq-F$^lvwBM|1_HU%?5h9 z&a@hRZ$ed!t8QgPX90YV9f~arpbsTYU+%Xh_R`W2*h@s3KIm;7aJWtNkGftMJAjVb7;>HD+zoXJ-b1M(|ADQ@sYmR)0D`&%5^-pp|{fF*Tz2uuF926$Z8WT8h7u ztpjW~WaN;!Cs8vII*qAMwkBg}mT3QVgB2UAUGN-KO=%bGvO}?H79UEq|Eik`msp{w zoS4CXB@kWsuN-};q!NslNCL~+?k_QCx>s>2h17(503#Z!;Y=213hp2=g}$juy#Pl0`ntc8C!UN65Xps^ojkX5X=TdJhI8qpO z+LcBbf#uYfeo3QtNI{|t{kA?@zbTCm@Qy}ig4!iRwX8?HLs_D=I2~PTwRk`Ox0WD;wICCJ8!#1lWOyb)Tp;MSHqfthW~bD_bE&d{tCc8Z;%GuV?4_;x{6?dJ4M9wd|?%#I!7XntUyLX}i&#jt#Wy zxj7uj0C*R=HHMRdrU!hTs(2rL!ABvJl{Zq%Z38h>^{8t)yF}g;)b-vyecd!=988rl z(;v6kP>PV(ufYV8y>*{Y9p{bpL;zon_EHMq7ow<5!%Uq3-nN+p@Qy8k0N$5`nkj(g zh=v642DH_^06rsHRw^7Z;f@1RtRtgL876#F%tPVg2p$3FYy^m$qE}Rf=oJlS7rl1? zJ{P@r(i0QC>}m2v@5MMHhV-xHoX$-kc=zNGygukI#O~il^N;9LwLUi9E>_DeB;Xw% z_LBqiW!09Nh1cJ&BiL>@J2pl+iFrQX zBaLR6VEKR6O7(-{d3d;S)PFrzJ?hkohfB3_Bn+mCVZ|^n7#F^OF8Et2g?IT3E5d_W zl)@heb-i~@U!@R?fvFPS^GqNr)93?AV#~e&Yp(32pJRT(CQeyaQv8zv)uJ4;7;onR zRI=$Jp*`uY-Vd{~3d;S_Q^xO_?7;F+IbqL4e32dcTAmJll_9C0<(d(_?)F`4`_@Bm z9Ey7AjV7w-m6;UbU+jRg9(v=zrK@Aw{8pN+;Q7y05f`G@Vy%qmmGM^6Y0eIt{Tah} zGf)ZfP_a=yyizLlID zN?LOMz8z3ja&q7~$+=iF(?Z0XFFp%W$rq9^@3HnLhA{6;Pni3y?OO@Mp`<0uU)cd= zB@73ilQ76jEDYulRpzj7f+YT5k{*v(yAeZ=|DB#5KeD!Or3Z(SmL9*h1IkJd4m>A4 z`U0mVM2^|?Nl=6TA&If%>>T#O0#r(AFPvs=-%1P)B`q;F*a2lF1_z##7|TO$V~8k= z)FOg7`b$Zq3$1;NnK92xPox)F+qV*lLrF`dq8(6HB5~kZh-5FTEDuSy+r5uGh8{*I zZ^0m>j849a(NGT;s4EIn7o9wND`i*MwK<4RzA_0lGdd|pG!&iuBaCqO(aAN|=u!u{ z7v2q=V`Gy++=fLaV?v!GR3(>$1b4tEzuR{$!&@(mtPPtla_D9Zer{l-F^aHPi2_&! z9A^WBQKyWJ=LH8LtYd`{g~$ic`S_Iym8%eP^-mByQ$kJ{{P+3YgI>~3 z?yh@rr7>PB7lxezS^CXtx$M*n!^a93R|+$-T@Fqw7~<6B<;Z?I$H=;$qDrSt6yOYuJl2ey~!Yb0tk2?ZL)Pa0&fSq2R(8wrLbtzA0Q%M*S=^ z?kX3KRNIwmeF1)2g#)p6MS81 zG!C^2M=I4CuUjLpxrxRQ1Zmff6{-j84W!1UYNMPcIywLUJ{ojvd}InZLfP^2puyhy zf%K&Y?=V|NKV1F@HNb=8b2*18t^cFZx~}Z9Wo`L3+Oh>uz4(*lKS0&&C&@{nm?z0a z7fFipEG%NK&&6D)!GwP3_wJlFlS~RSlhX0ll2j3D=f09K{#5HrC{sE8%2CSVB4jpJ z<47EuD{+QSVrSEYjztxrdCh9cdncCd6bpFE>4`1iv8Tyjz`M*j$}Zz-ARkG$i+FkV zCMw{&Sjf95+SF1S$KJ$tWn;lP%Gch4yE-=(M54FwO4>rDzHo`Ocal>#fNt@|jD4HM zbAr0ld5fSn7UrtjnTez8JDhUg-fXJEM^!EcDKBv~GbTtgeUb zW@VK%tmPqgF%ga{(eFikkzKhiPgh>jO;_^eGrY-)r_~W3<%20{JD1-RD<+coQx3{& ztiWQT3LH$lVhGdMURH6r<-Bxv5o$ejx$i-HDP8WjvvJg|5LFRPnajOx*A640;aihX zGhJ>uq9K?2OtjU#%N?_SN0VI>?%x1btlO;#_&Y2+GL=TL%?zdl%jG0E1=hq`fQjA~ zWVqkYy_o6XLZlKSABuAPTmnD5)DGOjOm*ZO`-+cK^v(~JucSrwOwvji_Akm|e^NND zd?V~Y<>%&$r^E|y!Buoh!-4bH5+X`{C5Lb#%Mez61&kh}8f%0QfjV+$BOif)>~GTT z^A-+|*J@6?Sc7k>INSpFKCh3y6sv7#H1t__NV{s<$~0dCLf(eu9@~sh_rNC7QBX zIu>X1OjK2z&DjhNJNgD8SF4Ux+eqCq51CvL->G+wyW1$821!xV*IcBI1<6F=aXvz$ z$)ihhyid4Z843G%FICdqfhnSfdAA&9Bay&4sRubZIo!_tqkOSG%KrWKd4`$wFKKi) z7E+JyDaz=+nkHwhIy`h0{*4;v8{|08rZNhYVh;!U`uqc3?b$#tQU@c6pJ&{l428+g zh_K99Z~s20@Wd^5*@%WV-bNCckRr2Sx`}V8BhB8&+uVVfvD*E2CWzxLT`Kx-Bu7@e zzhXt*r}2-jMs+>-havy1Ft86g^!gVgxJ&AatHe@)6e|UZgRlTJAJpHGD&o-yU?V?& znT5F9&C&?T`od-H0#q7;-;L2xr(VWq(1QZbg{_0z7szHPjZ_z)+VIJqoItF5cg9{T;a{8G78&2 zU;xpnt?IjEQT$=n54{Do%NB+ASyWXNUKgTxp|9~+Kf@xKLacJUHHBv%?})svq?LyR z=SGeDx8%6b7v+?(f4GNZ|4{z1f1+n&zmgvs(8eV~NNY6EgtSQlQ%FaA4+-grGL5Mg zC{pm6*rXD?Z%H6#cES5QBB&}o4&hv}jZPT5D1E9&%R89dGXMuydb5IMkcl7;j^*UT1%0 z>3*;8pi@WC6yaI4)CZ&3!JetnG5oQR14LlCeh7aq@c$fd*6{ zhE3d)u;M_Y(Wbp$%Ev2ac#B&|A6y?FEgq#^Rvo-qf_PkYtjIm#b_-3e=5L&u1K+sa zDv}e7i*2wi%%RVV{R+X0MNNn8L8xJeA%<_Jx1dt0Ar8*}oI}oW6{ChdiQ_H#c23zD z9zTfomQYj@qejtUr!HkZIjohAx5oHlG~v$M13|llw;Qf~n*PD4>@A}{ zv@lQ=3{eez>UfLkFvEE1po0-F5OO zXRL@p!A3yDf~Yf#=*=+hAuH14@J<$aZScA^GUP&n3+RBS!P|MmGN((L8yu#IlE+=1|pXA7C&b05(On+u4_3gxvum`D;w@^8mYVJ2 zP2-r?EezC3_Ba2tSZiSaB_G-~BNeQMjeziczG0Nv5Tf>>@iBl{0_@t=HpZXJf#cww z20~*8zym@stRPW=9j!*W>L@X9tx@8$aW<1m;2FAs15@}IP^dUaAb;FjHG)!yiq2@M zS}T^yWfHUu?d8-mk-X*94sfw{+?(ap4|kBD+ndkD3Fa?Yv05)zF*({ro|c|54jn88 zYqcR?(FS&>lKA#kXm9DlV)h!X9SHuQ{dzc~PsQiaOaAPBhcw(H_-T3UreiXXsSx{c zyj3|9+JSwCemfU?YUlbn^5w2tGgHsGY%N^X&EA}93z_pfcalkSC4>rYQ+w?+IDpTt zu7WOIM7k92@)eb9+%Z}o8mFJpnfPha&;7IT^9lNS_iX&!OFy5SgP+gP&l~6B=gsu9 zXC8i@M?c@EpMR#G_I&&tqn}?c#Lv_8Q(T0fGX4BL{d|Ld8jJDMrk}^?=L!0G1MVnr z@1mb=OYyUde!fIM|3E*lTZW(G^s`_&ewNbD@6pd4^z;4|__>dMPF{(hHT1LOMEtCz zpPT9DR{D98ettneKU;;LU(wHl{rGu^evY4npFg0VzdIQ}U#6eeo`Rn{>F1~P^Go`9 z>8bd6IsH6HKM&E*qpR`rIQ_ifH2hpiKj*E%&xQ1}>~#FBqMt9Hfu9HI=gtCt-atRU zq@Snh=jCVOr$j#w(a$6F^UY`B=VAJJ<68W@nSOplKPNmJKP~z>NE|)}p?fV|y7$thTf1Dk)r;NS;L`maEX}h^*}YjdOqWt-x|GVxrBq)o<&~R+hkO>ZXMz_f(g9%+n|Qbu;tkp{L5Fj)xGZQh0c`@0}} zZtGkP6@;95P-YNiEeKr>FwoxG>xIEDmQlGBA8y%xC)0{|DhD B-3R~x diff --git a/doc-page/.doctrees/api/flair.tokenization.doctree b/doc-page/.doctrees/api/flair.tokenization.doctree deleted file mode 100644 index 30a108cc22fd99b963b905a09d7f497650e51b33..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 61331 zcmd6Q4U`;Lb*5x#G(Y;aYzy1c*ku``(V`j2lB}Pxt;GD;fMnr=6=P#7t(xwdsVen! zH{I2i#=*vrgRx94u%>r8B>bC@bHW}Hf-z(bVGkjjm}LV5V}+j$;IQE@%TL0|*-diJ z?swm-SMSy9s#n#mo{@BpW@@V5yYIex@4NTDdvCpZc<4Vq`txP%U%0;2aJ|~;DZ5gs z)hkY`6OL5s<@UT&3p(%WY=2Yd!OlcD+O$u#>g{IP>4eMBqU?IrO4F%zj(5U!)I9L2 zt*NO0aLXwNUcDA~cZb|n?(p%>ggY7z1zu2fltaCr2!`sj=)%w2Uf=-6%d#qOk>_EGmL5Z9gJ z(jwSh5TR8quQmsf2)7;MBH%Qw3C0b}tEHf~y%TQfMrE7#-_6E&<^V+ z0l(C0*kxzhikn#54jlro*b>syNRwOgo+Bm zPB121eyU@u;zGQgp;6m2PNJpSC>%XKU!7+2fI4V2otD$Q-|0}_yV3Vpv>X=tUk;4L zJ5{YP)mWIOMFLr_%~|!?6xmRv;HtyR*>YLK*#z}Qt5xCAB`H!QsF(Uo((|EgdQOC^ zAwrWN2^%k5OT#mcvcDabitd8@0Fmqsl4S00VV!ftM;YQe)}yf~3S5;t62o_zFdQKa zIeH^BNH%6~PsMCyy;faNNEs=hQP>G**1^nSCnTZcr>ndgQ^Z}5HiaYia%Fuy5?T!V zpIbAUq^`Z+b550Eq$UC8WVh7*0ebyDlzg_-j(D}eY1Zs&=S;W?xVD>KC%oMaf<|k4 z=gv7VaN9Fe<@!9=!AFnW!7p~sRO>UOpeGyloD<#CMDyAs*YBP@viksA1HT7MK5WEf zrE|IgHN4Ud=BupB2PLKXLRS{wVViV1j1~CS3CDGo3S6?auQ zGTW|J8Pnaz!?99OFPC6MgI33V)_weu4(ur1iW-oBzQ!Hrf(ayFO_HUota2SRRh$K( z{>j>p0<1mPv>UD>58>vQ*s!$I)-)D0TN%?Q9i1(oD#}X}Ib^1|R~882)eOaBK=!00m{hU#bHp#R`U$jT&CmSRf6! zFv+!cf+0k@pMzvSHHrcWB4n!*Zc4ZQ;0J3lZ+o?l`)}be{t6Zvu$Ymh2v_3{$>ZG=rs;D3It{ueiSEA^5kmhOKq(}L z{s>yCGUxB48$F1fzm70|)?ZJ*9``pecrlSL93f+TgDQi!G-cqXqKP%vTFBuoG|>z> zy!%!>j3?i+uv@X(EvI4ybt#XQU7f2pVSnb)pjNT4W}Rw_nzXR21FL~OQq3Zd5>9bY zAHx>FyWgv{?JC+}(#l)$ezjr!atHP0u@l zJAHz6^B!Dy;8| zJEs{5l3msP0`pnPRp?gHkD%*0a%UxT_()RV0i<%~_WsxM^AEqLYc)&R)>%?m<3ey^ z%imY{!F^@8OGxF!c55PKPZ;YOi$uO&K>*@9Q!^3DLTD%vEMXpsJ05umM}_$pv9UYF zjqvh##2C~BseTc9xF>FTgA6kWPp6ki!-(jltd37>g6x*#(b9tp{^zwGn*7$&q6(Q|C8|m;hWD}Kp|!Y1>$If{*IU~QmsYmLEexe{%kx6E&xd?O}M}7zBjRV z5Cp&uTp@t}bpj(I1RGg|fc99BOs84(5GItnns6lv4cB5KXcV{2Y{%ji6b0k^zjSb$ zBG__zzc5ZOTwd$iuKPcuE}Q+I;FrlHMTGEw#GC)1Kyw5z+tt7;QM7?}wwyfp6ZAO) z1?NA{VM)PK>G~nT*eG!EQSI-KX@93hFZ_)cEnB7sFx;oQmI6W+{(3Yu5g=UDsKsuI zTI^*88Bq&=O&&5laN&N5>;z&Kifrm(3;*MwGLKxif8~B9DcxUBjp@7Ja36P{3paKv zz>a&?zX74L=nG;ISicth}h4g7~j^IIU0_^E3HlF?|1iBdeC_&|nU4iEc(8r?j1W?_U6$?l_0w{g*wS%q$;47OJ=?8Ln z-$au_j!mcMauJiBP@agH=Q*mI{nzEpk{0saG&EnxCZC9!zLYop^#V{2@uoM@ugsl^ zrc>N+0S}=brBZ>vlbq=U4>_&k9&vK78Lq0-S*+6k?-)89MyQ&pKL5+~Crdaee-GE{ zJfC?cToYYVx^e-*%k{N-6kKjaw}@A_v&oR#FI?$<9seDqsdHTZMzh{L%P&H(%h>lbbI(DNFdLnpEVw`TwN#NG^Ie-OZayA2gkP{KxqHAD8%M|xjtF>cks==p zX_%zBIcNs1mO3bz60V`*sI~izM8<;+!J=2KhEql)vTV$ja3dk;k<^9x@~p5{cJ-f! zy!YiEcd3iB{_8-Zglo(NmfT|hUgBZo1Pd7hYkv?eH?UWCg0m_~2nrbp(G>~Ox636lzPQWgeOl`iqvHW zhLKO0*qw0n7Gm@sh|yzLM)cO4yIHyuB>o=~7~Nd1)A8op2>rH1=1+5wF-6Bxk@5cyd;FM8 zLrip;ZS;Sf_2B0j50D;=`b&JDHR9|4D?sV79ue>QD!Q7sJzBi$%LSVIt0N^T0$Zsh zaR(CE`W5gg7})w{4(f{=*xGab?MBz$g9(g>RN%n)$7>wSb*aQ- zs;yb_&5f>%p{*fb#B7rZBy_39=4Hem-sK9q-7px-9wWWY%MkI;b=_ZRwczlwb>EE7YcnPvHV|ydKR{bZ*u&Xb={iqU#Z*+$L4omTDK$4v-;|&@UDd2UA;D^gwTb3jpo^9ZBO+y#WuCx?7tqrSU_~h zdj8>eDb>*INkYwS3U~K0FUbNLN(E@%nS2+>)fjR{Sr$=2VpYyM6;Z+06@VH=1%-5q zWz}EtKC5^3BXZoaJ8vUO{L1XE~@ZuCu&v*W{6X2V-aXr+LWe&a$Lom$Uo{ z!0Odm=8p1n;R`Zl_N;&D5ZpF>N2#ZTugCzPNGBdHrI#`BH24lLvn9KPxjtqoI+7Q{s5r#>BrxSuD$#5 zBt|URtN8J$`Q8gjUsIBDZ$$5uq_21s8+W;n%S-x}2r6f=7KOK?@dVJMh!*AVaX{&l zzbDakF#KgRi?(C_-83(r_Z4(wBu(Uf#S=04d=KyXoQYz1;o;FbF6iNn7l0ahcvsTA zddm9>^(S>oPkCP+HUBV%xe z7xcKbG0pqU82dCg*6jDonfrf3VEDjkXcIdEPiw4pc<|Jp#iD*ThCxtgicV zyZg2rbWG{qbaVz1uK57aDj2SLFPa+nF^gKXzklE4k%KZ^^PW6p^l*)&VOO~3wSd*D z^@5py&j0u5h}`BE@QYou+$P-=W=RMSY|A~=c4>2)e-RBCE9}@wIfvZl*9a)zEvM!- zzpf3M)K^9K%wGW%qpW2Y!2eHll^#?6fdRY#p7D_7Hi>_|RuFbV^l1M8~i!S;&QuqFIG*7V*k}|0p#)wE4h9%76 z(7s!dfy6;BNIW({|G>scWLC?;@k(jOy40#WTa1H|XR|51BD23zqcAkgWkb-+{b;;H z8_ypGDUqC3k~?d)k+QiHA7JCJM<3!9y}w1677_fFG|p9r>BVbB@cXT#-D?l-c^91qwN_YEIC&wgf1i^Wd_9*t+6=7ky) zfv-YWlMU1ofwvZD-jxWHOz~e%m~uyVAf9Cn@CtgCCv#9=+(h7k8zzq&*cT@P-8^J; z&r;H`%d?yUtX@4!?o~b)UY@mp>AleZ0Kj3_ZbMH6UYP|#$ps3wLo4nA&~z7dv2%eR zj7AoUE!zY@>5E+8`>4~nkXtMjb3xA_a)F;|iy4n=~U91S0 z+}!|ve*E`8jYbw~U(<@p>&lA%{xo$O7fTw;X7T;^Z_tqG{`*8G%2S=nf!kMrB5cW z8XXjq6F&Su(Y&}1FX-0o!;2?k^7%gemvbhn`0%utO)d^KjSh18OaZ8o5C18eS5H2? z(1B91^x?zb3@&jW{t#U;AD&$m_TkO6rCJk_4+NqjOQ_Q?sx`?j;5Z!Pc_hY@U77G4 zKmo@Ns_%1To+zh&BkOg22_dL{9|2kgo%Ii)snKGkmTtT{Ezd_^F6#9w5xa2U;`O^_@y7e}(9zv> zNyRRA{XW3z)m>-B8;_$SJo3N5FQ2Yi@djPMRI!>uAv{plze#PEws_;q(U8JgEB;Ua zFQz|7K)JZ57H|BGHfT~^74?sv1r(#SWfyNekFLEt!HkEjc!T)YOYz2ec`;qpJy1@N zFJiVy?k|gUl>tE#6U&&q>R?T|#SGHAh(uwyj1fK=9P3{nT^*04% zBAD9atG`!|aXAy?C%J77+-;8go}X8LQ%JG+8UKCpq|;m%WAt!0x|$TH7CoFQ(7Y>p zD0$*f5~kcc8i+%37vL3iNbbx*Jw19jIEMt`!|QiRhvbetbaaPAQnAY+*#ua*%DoVgma2*Qqa)3;CYZg1<|7bLF zx>nI_h)DRqg*uH3vBgSR{D9#HXvp+{;fIVlWL(It&dvBLL6^iGKtibq146kje|3tQ<5`sN|4%s+r2t@*@27Q~XbfWg~O|{o>;zrgsxbukX@N#aNK)8*L?r4CsRV{`Tk_2PEYqwr4^$lx|p*4 zz4)frBtvxxunGTk(USewfIq5$&3eo% znV^gmX7Z-oARdZmmF5APw+xaZ{>=o2A+m_M{$oa5jo$hl=xS2!nzw$WK=UqdJ(V1T z$@K@or=Yj~`W)03*;~IJ$6Bi4!&)9Xy0zfTKjgtNE2JCK+J-KR_ z*RJo|lX{(1CeusKVnM*#UJ20W$8-N^G;+FIl;OEQL7n0WVAU+X=l(ewGTn3kym1Oe zJ@=;p#kBklp8GTC+Ph~*;#A0UztBtxdGDW&XrAJ|i$_ADdhp(#C#b33`wyb=1kj}E zF3RKY0ZN}d{u#OshQ|r-{o6Dz?!61Tb!Ym;6EXRG@BPV~i7MVZt!0ycLrtSh{|5^| zjlB2w(Y$){-h~R3dZiEV{kk>6dw&sKG4GvS753iEw53eHNFD)Eky6s>mz(L|6XUrz z#*tT=Cw@cgkyJ_<`w1FGmlxH{s{4so#sh?JTI&5o7i*$WyE~AA06(5t z`kum65Fn}Idjv+`++3W3IyWjQPvkb|bPh_UvVc^SlG~ik2Fd2H@+QwI9gW+wr+(tF zQtcsL&sFZoDZSk|CF5@BF?2PVN^Ljv2y334!G=~lxqzc-CT6lmZNwU2GRd2AJ|FFW zJ|AWX;tNC<$6p|#&$`$_y{R7Ky!>W?1Fq!2PZn<QeH}Bfprmlg(>}`Jt!W7)w{s2u)a=XZT+dWhob6|J;_UZTY(9!p{l8Rk>+m``W zuX|fo8uI`;V*fg}7A_H8v(gy4poBi{M1>lKq})nvm$o!!J@85xUio@o|D`ck5Kyl5 zQ%hquYl9|jchL>S3joC^ZP}$U*P(0g8w$olRvJV6>!md20&yT9V#IHg2Sidy)iL{t zMKJE@vW718>X<{vqIct((PtY@)@yYa$C}iwNEupiGJCU8`7ka;M=AS=4l%v5@?|y;uJFN4N;n86}DckA~}E%DtKwc=cN5 zXPWV;#6+8t7dZ2(uQHu=?#oz8p{MK3pA2^L6*4x)Ju!S`83)}r6F@J|0xEo#>;{rh zZZCxLXQ}nLpw$RyHG?|{gWx03k_O7mqcb_>$33pjnJ~vaKJmtXkVfRjA-AiX)f)@X zip2`sO|Qd7qQy=J+x!-rRjyJHgcwGb)A?Qe`w1;UvuvLYSokNXX@b(n3k+~CA3z8& zzW?*sdEbo2l`ym`9fqv*TLE}LScHrhtcC89nvj1m7zZy;772|gh$iX)B{jL9XQ~5? z6=;k^3^kEz?XeW_Y2s^UjLw|b`*hs*LK6l=4U-#h`C*Ub_Efo_*pbTnDIWs)>v-O2 zaSP*)`mfN{urC#8-n9plZ1JBVOnGQzAk~2X2zUkeU_Z}6eUbNI`|%}^>-Qgs z_hA2!hmO7nlT_^5gZ(jJ^|}XRdoEN1UfHEf;$=+f#mm-VLy!`o(rW^@WP?%40tNeF z8J+~r>07$RE(?4irj)H=G>2G}1ztm)#)bT1$t-?y@kSbw`vdwpKsOtwP;{So5Kv5O z-;i9q4PATRCz3GnV5XdMi#J3hPsuHcM`DN7LvHZ|LFGJV893?J%|zn~ zph*v{D2sm+Q2JzX6AyiD#lNQ{0Lp4>vBI4 z@-N0AGUOow9!II8aKxrivnwO(i|VNXej#6t_oWSN#Lvxg^2tNP!(C53{;`qgDn|1@)*SzAB zYf}uE4x``N6H5mqOHWF(?OJ(}t4(ZBUUg#fb(N>}C}g{67+pS84@q6}$KwIQhnL!R z>C6~tvB^X6#L{h=sn|pk#ea~%=*1=*x-sXQjP3_=#}VcrWGXdDMJO5ZS{H~c7n5Wb z{Z7WdQd=aVU}-H757TeUIepkTCu3yn{pf1iI%$!y-zm_%D>9Z!w!u^X{aI^n`FIFK-6x5;3VP*QQiMi7XM0lNG!Vip`vnUcKY6;72roO0D}wWuWF z6kHx90ZuLkrGMEoeEEYnjJ~xJ>u<}eAwfHf)4Ad!J_Zk1>hLRQQiUTcAj1XXC?uKC zZz^!VAbUnCP`C8*IFKC${M0D{J?XH<(i7_!!x76@>nOxP&m|9dvytoOE&su|Z+PZ> z`;0L$BIhyb6v?z+(iKwfCmbMoKP3%#ES`3nM`?6+?m$9_3G>}=LTuOD>4@`d&v-x z!|uIO3f@CK?gQ9#$7!*1fFF%U7Wyse%BXu$N*ui6BH+2%e}X!V3*p6j zS^ON}=V(aolIc0X&l{&u)Ej#mP)rNo;Eg?luDvIS-i=;72PnO<)EwZ2rMcPbg%QPB zzUrc7_bR3MpN<|0c~boGyu(4Br>>mETB!C18qlPW7Ul5w0Hse3{|sFR!{I~<@Y^)6 z==H*Aij1U*!$EY4nuCy(0(>%OqO_8u6dGJ!cu@j z0ZOgXM+)$|i?O2E;UF)fEB<;RU6}%>+`~K96yToB6rgSi)C}N65yvzo0VuXKg1)Be zw99k^mMs7GYaqS4UCEE3-lp}?1V&B& zi8vai|2X2=+C5#46<*4&{yt2uUk5l#VVw2<08rDMUnTkXF*Ff@K_O+B+kuGK;Cipg zKhYJIK>*ZOdy(Yd)4+h+hR@O!vkmO3ux*g!%}V}>@F!3eLD39Uvy*?%#CU!w#*)}xTMqG5EQ zP#q$5m47!LVCmmP>Z1QZQ+~@fCW)OS-GpmO`AMqy|Bncyr~EEXL7nd^Ql7}*>be}1 zOi90Vlm=4Qy%lH`4Cq{qrpEovq8>ZHdl%}ucOQ@eoh^Cj=m8x`#jb$Px4`IL?HS8n zZ6L0m^O0YL>o!soO6FkKOYpt**0eRvV$Yf_IS~;q6q}d9gS%HQU$*R(^LT-F-l@@NJ#qMdeby2>A!g7Ci@$eUfJI}@ z>AM*^hOk`v+!e^IEuAYDRy%Wzr{JtF)F1F)>eoxZx!OK`N zd3k}57flp(p?QkP#)XD`ZbojT95ypX5Br*plp9&>DULT?ZpM`Xo)_vwTXS zfxb4)TU|0xibSRwDElZ*xY=PX)Z3Of%YL1*YXNC6=s{+ww$|#+dAqvR62?+gUvO3G zw_D7t<*S|BbBBVw^1(=GbB0r>^0%5~C>pD%1pbIXa;E_fdo>KzESQWIM!SzVI$o_SYurT8K7p1D9>ctxg2 zek{5%5;4?ssV}+i60-s{ZG5kZ`!4-^<|Z1mn7|?ynA{Z4J1q`xEHF8MuBLUW6`1TT z(7da_M6$)-Lzwaq$w1-}_W@qPc*H$9s4s4T$?pAo5s%m}zdCbQ9y)qFLQ=6S90Oo>$KB_><4!6-E*g8k5vR{?OekdjzMn3^4rnPT~nS26Wd$-XfOuWWK z#!OOcOqTpT^K9v*Kr|q@a~6_CCgPD0D8)0&D>C^KLFGKwicG#7jVFL6rL-uE z{}NF8Wbt$8Iv5rwicJ2D=9NOyM3IS3(LDcav;W?liPBPzicDxJ=S00kk;$V4phiU| zZ=rc*Zrn7j!ir3U29#>0k0O(`mtsk=B9nD=#S)3^%9NnvF6y}!nPk6b-nE+4DwDML z%)2^7RUv&lr<<}MVy#WM@+IRN?!D>S0CBEqYg?m9N4y3L+YarpZiEAQYVgz>rNON$_g(hgHGNNKEGRIO{(Su&GY4 zQfl%pw4n$Wy=N}u470N$a)a-ho9kXpvE*x@Os>U$h3*7}J{=&sDggBbU!>IJ31Gl2 z#7F3gSqOGj*g{AGXQ3)`l|WTwFf&liE;ac?jOQQ6c(N-Kp0dypAKVkDiKf1%GP0+rWnH$JrYIWA0{m1y|zk4)RvaK2)pTZkC;nyCb|bXxgs4qKikCa<>9(=yV*qMrWCvCAjvDFz+_hRuZz2w1NN zHN;evhliJkYgESvKSK=UgZ%IDTI)@u*4v@8$3ldc^ zr%t%GY9n)I&pDuY1%F@U)H>lMO$SNXN~z*BD4ka;dyKHFki474G(i!s0$IiRv8PcV z6|S?}LA@kzg%^1cueFu-e4`YLAPCEDus05Cc9mGSp50->P3)Jq8ZDBSSSPqM&fn~M^lc6jjU%HT*s99;&t73A; zJK-j}!XPcUbhH+o8bPao<*S?asrXNb=*6_YAUU-;2x8Tn_kzyt8@7e(8cw4GqBvNU zWiE+yhrX;{qQwzjE{>7K?bcLdA#m%psd{s6XD7UjS~3LCvV?vru0 zJ=Zm7%NlsPBf-B&fX8CBNn}qt%_+|bX4x1}06X1azKX#{1A7Lms1mrH!z1B1WOBX~ zFVA=aCFaO>&V(CU3&;A4+=+E`Q8AwmP?A2x=141!uBvsLB&uHzuc@o}g-R7%t zCDTffnfV!~f+f5F6kNv%Fvw+Pv^rUG=54Q9LT;H9E!gyEcrigHmbaYhELUr1!WB;K z{?5_%OgO^T3Dz$}(W_NFERLWQ*v&Zy>Is5#F_4021<+NBL{pslEA0;@qBt;j}<2S zH=@wWr;;w8O1^vwrur0YW!|Ju+lO|zR$Wny#cRtRFSDRk%M zVA_XY8r^>v7 Lk*?;_G4=leJQbb) diff --git a/doc-page/searchindex.js b/doc-page/searchindex.js deleted file mode 100644 index 4c6e7fc6ce..0000000000 --- a/doc-page/searchindex.js +++ /dev/null @@ -1 +0,0 @@ -Search.setIndex({"docnames": ["api/datasets/base", "api/datasets/biomedical", "api/datasets/document_classification", "api/datasets/entity_linking", "api/datasets/ocr", "api/datasets/relation_extraction", "api/datasets/sequence_labeling", "api/datasets/text_image", "api/datasets/text_text", "api/datasets/treebanks", "api/embeddings/base", "api/embeddings/document", "api/embeddings/image", "api/embeddings/legacy", "api/embeddings/token", "api/embeddings/transformer", "api/flair", "api/flair.data", "api/flair.datasets", "api/flair.embeddings", "api/flair.models", "api/flair.nn", "api/flair.splitter", "api/flair.tokenization", "api/flair.trainers", "api/flair.trainers.plugins", "api/index", "contributing/index", "contributing/local_development", "contributing/making_a_pull_request", "contributing/updating_documentation", "contributing/writing_a_good_issue", "index", "tutorial/index", "tutorial/intro", "tutorial/tutorial-basics/basic-types", "tutorial/tutorial-basics/entity-linking", "tutorial/tutorial-basics/how-predictions-work", "tutorial/tutorial-basics/how-to-tag-corpus", "tutorial/tutorial-basics/index", "tutorial/tutorial-basics/other-models", "tutorial/tutorial-basics/part-of-speech-tagging", "tutorial/tutorial-basics/tagging-entities", "tutorial/tutorial-basics/tagging-sentiment", "tutorial/tutorial-embeddings/classic-word-embeddings", "tutorial/tutorial-embeddings/embeddings", "tutorial/tutorial-embeddings/flair-embeddings", "tutorial/tutorial-embeddings/index", "tutorial/tutorial-embeddings/other-embeddings", "tutorial/tutorial-embeddings/transformer-embeddings", "tutorial/tutorial-training/how-model-training-works", "tutorial/tutorial-training/how-to-load-custom-dataset", "tutorial/tutorial-training/how-to-load-prepared-dataset", "tutorial/tutorial-training/how-to-train-sequence-tagger", "tutorial/tutorial-training/how-to-train-text-classifier", "tutorial/tutorial-training/index", "tutorial/tutorial-training/train-vs-fine-tune"], "filenames": ["api/datasets/base.rst", "api/datasets/biomedical.rst", "api/datasets/document_classification.rst", "api/datasets/entity_linking.rst", "api/datasets/ocr.rst", "api/datasets/relation_extraction.rst", "api/datasets/sequence_labeling.rst", "api/datasets/text_image.rst", "api/datasets/text_text.rst", "api/datasets/treebanks.rst", "api/embeddings/base.rst", "api/embeddings/document.rst", "api/embeddings/image.rst", "api/embeddings/legacy.rst", "api/embeddings/token.rst", "api/embeddings/transformer.rst", "api/flair.rst", "api/flair.data.rst", "api/flair.datasets.rst", "api/flair.embeddings.rst", "api/flair.models.rst", "api/flair.nn.rst", "api/flair.splitter.rst", "api/flair.tokenization.rst", "api/flair.trainers.rst", "api/flair.trainers.plugins.rst", "api/index.rst", "contributing/index.rst", "contributing/local_development.md", "contributing/making_a_pull_request.md", "contributing/updating_documentation.md", "contributing/writing_a_good_issue.md", "index.rst", "tutorial/index.rst", "tutorial/intro.md", "tutorial/tutorial-basics/basic-types.md", "tutorial/tutorial-basics/entity-linking.md", "tutorial/tutorial-basics/how-predictions-work.md", "tutorial/tutorial-basics/how-to-tag-corpus.md", "tutorial/tutorial-basics/index.rst", "tutorial/tutorial-basics/other-models.md", "tutorial/tutorial-basics/part-of-speech-tagging.md", "tutorial/tutorial-basics/tagging-entities.md", "tutorial/tutorial-basics/tagging-sentiment.md", "tutorial/tutorial-embeddings/classic-word-embeddings.md", "tutorial/tutorial-embeddings/embeddings.md", "tutorial/tutorial-embeddings/flair-embeddings.md", "tutorial/tutorial-embeddings/index.rst", "tutorial/tutorial-embeddings/other-embeddings.md", "tutorial/tutorial-embeddings/transformer-embeddings.md", "tutorial/tutorial-training/how-model-training-works.md", "tutorial/tutorial-training/how-to-load-custom-dataset.md", "tutorial/tutorial-training/how-to-load-prepared-dataset.md", "tutorial/tutorial-training/how-to-train-sequence-tagger.md", "tutorial/tutorial-training/how-to-train-text-classifier.md", "tutorial/tutorial-training/index.rst", "tutorial/tutorial-training/train-vs-fine-tune.md"], "titles": ["flair.datasets.base", "flair.datasets.biomedical", "flair.datasets.document_classification", "flair.datasets.entity_linking", "flair.datasets.ocr", "flair.datasets.relation_extraction", "flair.datasets.sequence_labeling", "flair.datasets.text_image", "flair.datasets.text_text", "flair.datasets.treebanks", "flair.embeddings.base", "flair.embeddings.document", "flair.embeddings.image", "flair.embeddings.legacy", "flair.embeddings.token", "flair.embeddings.transformer", "flair", "flair.data", "flair.datasets", "flair.embeddings", "flair.models", "flair.nn", "flair.splitter", "flair.tokenization", "flair.trainers", "flair.trainers.plugins", "API Docs", "Contributing", "Local Development", "Making a pull request", "Updating documentation", "Writing a good issue", "flair", "Tutorials", "Quick Start", "Basics", "Tagging and linking entities", "How predictions work", "How to tag a whole corpus", "Tutorial 1: Basic Tagging", "Tagging other things", "Tagging parts-of-speech", "Tagging entities", "Tagging sentiment", "Classic Word Embeddings", "Embeddings", "Flair embeddings", "Tutorial 3: Embeddings", "Other embeddings in Flair", "Transformer embeddings", "How model training works in Flair", "How to load a custom dataset", "How to load a prepared dataset", "Train a sequence tagger", "Train a text classifier", "Tutorial 2: Training models", "Training vs fine-tuning"], "terms": {"class": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28, 30, 32, 35, 37, 44, 45, 46, 48, 49, 50, 54], "dataload": [0, 17, 18], "batch_siz": [0, 11, 20, 21], "1": [0, 1, 2, 3, 5, 6, 8, 11, 13, 14, 15, 17, 20, 24, 30, 33, 40, 41, 42, 43, 46, 49, 51, 52, 53, 54], "shuffl": [0, 24], "fals": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 21, 24, 44, 49, 53], "sampler": [0, 24], "none": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 48], "batch_sampl": 0, "drop_last": 0, "timeout": 0, "0": [0, 1, 2, 3, 4, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 24, 32, 34, 35, 36, 37, 40, 43, 45, 49, 50, 51, 52, 53], "worker_init_fn": 0, "view": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 30], "github": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 46], "typevar": [0, 10, 21], "t_co": [0, 17], "covari": 0, "true": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 24, 49, 51, 53, 54], "option": [0, 1, 2, 3, 4, 6, 8, 11, 13, 14, 17, 20, 21, 22, 24, 25, 44, 48, 49], "int": [0, 1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 25], "num_work": [0, 24], "pin_memori": [0, 17], "bool": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 24], "float": [0, 3, 11, 13, 14, 17, 20, 24, 25], "union": [0, 1, 2, 3, 4, 6, 8, 9, 11, 15, 17, 20, 21, 22, 24, 25], "iter": [0, 6, 20, 21, 25, 36, 37, 38, 40, 45, 50], "pin_memory_devic": 0, "str": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25], "prefetch_factor": 0, "flairdatapointdataset": [0, 18, 20], "datapoint": [0, 10, 17, 20, 21, 26], "flairdataset": [0, 2, 4, 6, 7, 8, 9, 17, 26], "gener": [0, 6, 10, 14, 16, 17, 20, 21, 28, 30, 31, 44, 49, 50, 52], "dt": [0, 10, 17, 21, 41], "A": [0, 1, 2, 3, 6, 14, 16, 17, 20, 21, 23, 24, 30, 31, 35, 37, 41, 42, 50, 51, 52], "simpl": [0, 8, 20, 25, 30, 31, 32, 48, 50], "object": [0, 1, 2, 3, 4, 5, 6, 8, 14, 17, 20, 21, 22, 24, 25, 30, 35, 36, 38, 45, 46, 48, 50, 51, 53], "wrap": [0, 20, 23, 24, 25], "list": [0, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 36, 38, 44, 45, 48, 51, 52], "exampl": [0, 14, 17, 21, 25, 28, 29, 31, 33, 38, 40, 42, 43, 44, 48, 51, 52, 53, 54], "sentenc": [0, 1, 2, 3, 4, 6, 8, 10, 11, 13, 14, 15, 17, 20, 21, 22, 24, 26, 31, 34, 37, 38, 40, 41, 43, 44, 45, 46, 48, 50, 51, 52, 54], "__init__": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 17, 20, 24, 25], "instanti": [0, 2, 4, 6, 8, 9, 11, 14, 20, 22, 44, 45, 46, 48, 51, 52], "paramet": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 35, 38, 40, 48, 50, 51, 53], "bound": [0, 10, 21], "make": [0, 11, 20, 27, 28, 31, 34, 35, 36, 37, 40, 41, 42, 43, 44, 48, 49, 50, 52, 53, 54], "up": [0, 6, 10, 11, 14, 20, 30, 48, 52, 53], "is_in_memori": [0, 2, 4, 6, 7, 8, 9, 17], "return": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 40, 44, 52], "type": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 29, 30, 34, 35, 42, 44, 53], "sentencedataset": [0, 18], "deprec": [0, 1, 13, 14, 17, 20], "sinc": [0, 1, 2, 3, 6, 12, 13, 15, 17, 20, 21, 35, 44, 46, 48, 49, 50, 51], "version": [0, 1, 3, 6, 13, 17, 20, 24, 28, 32, 40, 46], "11": 0, "The": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 20, 21, 22, 23, 24, 25, 28, 31, 32, 34, 35, 36, 37, 40, 42, 44, 45, 46, 48, 49, 50, 51, 53, 56], "wa": [0, 3, 6, 10, 20, 34, 36, 40, 42, 43], "renam": [0, 20], "stringdataset": [0, 18], "text": [0, 1, 2, 3, 4, 6, 8, 14, 15, 17, 20, 21, 22, 23, 33, 35, 37, 38, 39, 40, 41, 46, 48, 49, 50, 52, 53, 55], "use_token": [0, 8, 17], "token": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 15, 17, 19, 20, 21, 22, 26, 40, 44, 45, 46, 48, 49], "spacetoken": [0, 2, 17, 23, 26], "take": [0, 6, 11, 12, 13, 14, 15, 17, 20, 21, 25, 28, 31, 48], "string": [0, 2, 3, 4, 6, 8, 11, 13, 14, 17, 20, 21, 25, 35, 41, 42, 44, 46, 49], "input": [0, 10, 15, 20, 21, 48], "dure": [0, 2, 11, 14, 20, 24, 48, 50, 52], "custom": [0, 1, 2, 3, 11, 13, 14, 17, 20, 21, 22, 31, 33, 44, 48, 55], "us": [0, 1, 2, 3, 6, 8, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], "If": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 17, 20, 21, 24, 25, 28, 29, 35, 42, 44, 48, 49, 50, 51, 52, 53], "instead": [0, 1, 2, 6, 12, 13, 14, 15, 17, 20, 21, 30, 31, 34, 35, 36, 42, 43, 48, 49, 50, 53], "provid": [0, 1, 2, 3, 6, 11, 13, 14, 15, 17, 20, 21, 30, 31, 32, 40, 42, 44, 46, 48], "function": [0, 1, 2, 3, 6, 8, 12, 13, 14, 15, 17, 20, 21, 23, 25, 30, 32, 40, 44, 49, 50], "thi": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54], "just": [0, 8, 10, 11, 14, 23, 30, 31, 34, 42, 43, 45, 46, 49, 50, 52, 54], "set": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 20, 21, 24, 25, 35, 38, 41, 48, 49, 50, 52, 53], "segtoktoken": [0, 2, 17, 22, 23, 26], "abstract": [0, 1, 10, 17, 20, 21, 22, 23, 46], "mongodataset": [0, 18], "queri": 0, "host": [0, 3, 14], "port": 0, "databas": [0, 1, 3], "collect": [0, 3, 6], "text_field": 0, "categories_field": 0, "max_tokens_per_doc": [0, 2, 8], "max_chars_per_doc": [0, 2, 8], "in_memori": [0, 1, 2, 3, 4, 5, 6, 8, 9], "tag_typ": [0, 1, 17, 20, 31, 50, 53], "read": [0, 1, 2, 3, 4, 6, 9, 14, 30, 31, 52], "mongo": 0, "each": [0, 1, 2, 3, 6, 8, 17, 20, 21, 24, 25, 36, 41, 44, 45, 46, 48, 49, 50, 51, 52], "should": [0, 2, 3, 6, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28, 30, 31, 34, 35, 36, 37, 40, 41, 42, 43, 45, 47, 48, 49, 50, 52, 53], "contain": [0, 1, 2, 3, 4, 6, 8, 10, 11, 14, 17, 20, 21, 24, 32, 35, 45, 48, 50, 51, 52], "one": [0, 1, 2, 3, 6, 8, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 25, 29, 31, 35, 36, 40, 44, 45, 48, 49, 50, 51, 52], "document": [0, 1, 2, 3, 6, 10, 13, 14, 16, 17, 19, 20, 26, 27, 28, 32, 47, 49, 51, 53, 54], "per": [0, 2, 6, 14, 20, 21, 37, 40, 42, 51], "item": [0, 2, 10, 11, 14, 17], "have": [0, 1, 2, 3, 8, 17, 20, 21, 30, 31, 34, 35, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 53], "follow": [0, 1, 2, 9, 29, 30, 34, 35, 36, 44, 46, 48, 49, 52, 53], "format": [0, 1, 2, 3, 4, 6, 8, 9, 14, 17, 20, 30, 44], "beskrivn": 0, "abrahamsbi": 0, "g\u00e5rd": 0, "gottr\u00f6ra": 0, "sn": 0, "l\u00e5nghundra": 0, "hd": 0, "stockholm": 0, "l\u00e4n": 0, "n\u00e4ra": 0, "l\u00e5ngsj\u00f6n": 0, "h\u00e4rad": 0, "f\u00f6rsaml": 0, "plat": 0, "e": [0, 1, 2, 3, 6, 8, 13, 14, 20, 25, 28, 30, 42, 44, 45, 46, 48, 49, 51, 52, 53], "g": [0, 1, 2, 6, 8, 13, 14, 20, 25, 30, 49, 52, 53], "localhost": 0, "27017": 0, "rosenberg": 0, "book": 0, "field": [0, 1, 4, 14, 17, 20, 48, 51], "categori": [0, 2, 6], "tingslag": 0, "most": [0, 2, 10, 11, 14, 17, 20, 21, 22, 28, 31, 35, 41, 42, 44, 45, 46, 48, 49, 50, 51], "amount": [0, 21], "all": [0, 1, 2, 3, 6, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 28, 30, 34, 35, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53], "ar": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 15, 17, 20, 21, 22, 23, 24, 28, 29, 30, 31, 35, 36, 37, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56], "taken": [0, 11, 13, 17, 20, 21, 48], "truncat": [0, 2, 15, 45], "maximum": [0, 2, 8, 17, 20, 24], "number": [0, 1, 2, 6, 8, 10, 11, 13, 14, 17, 20, 24, 29, 48, 49, 50, 52, 53], "char": [0, 1, 2, 6, 14, 17, 20], "default": [0, 1, 2, 3, 6, 8, 9, 13, 14, 16, 17, 20, 21, 22, 24, 25, 30, 44, 48, 49, 50, 51], "keep": [0, 1, 2, 3, 6, 8, 9, 20, 21, 46], "memori": [0, 1, 2, 3, 4, 6, 8, 9, 13, 14, 20, 21, 42, 46, 53], "otherwis": [0, 1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 16, 17, 20, 49], "onli": [0, 1, 2, 3, 6, 10, 11, 13, 14, 17, 20, 21, 23, 28, 31, 35, 36, 45, 48, 49, 50, 52], "tag": [0, 3, 4, 6, 14, 17, 20, 22, 33, 35, 37, 50, 51, 52, 53], "assign": [0, 6, 17, 20, 25], "label": [0, 2, 3, 4, 6, 8, 14, 17, 20, 21, 24, 26, 36, 37, 38, 40, 42, 51, 53, 54], "find_train_dev_test_fil": [0, 18], "data_fold": [0, 1, 2, 3, 5, 6, 8, 9, 51], "dev_fil": [0, 1, 2, 6, 8, 9, 51], "test_fil": [0, 1, 2, 6, 8, 9, 51], "train_fil": [0, 1, 2, 6, 8, 9, 51], "autofind_split": [0, 1, 6, 8], "entiti": [1, 3, 5, 6, 18, 20, 30, 33, 37, 39, 40, 48, 52], "char_span": [1, 5], "entity_typ": 1, "base": [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 43, 45, 46, 48, 49, 50, 53, 54], "intern": [1, 20], "repres": [1, 3, 6, 17, 20, 21, 22, 23, 25, 51, 52], "while": [1, 12, 15, 20, 21, 31, 40, 42, 46, 48, 50], "convert": [1, 3, 5, 6, 14, 17, 44, 51], "ner": [1, 4, 6, 20, 21, 31, 34, 35, 37, 38, 40, 41, 43, 50, 51, 52], "corpora": [1, 6, 9, 17, 20, 41, 43, 46, 48, 50, 53], "standard": [1, 14, 20, 28, 37, 45, 46, 49, 50], "consist": [1, 3, 6, 17, 20, 35, 48, 51, 52], "span": [1, 3, 6, 17, 20, 21, 26, 36, 37, 40], "address": 1, "origin": [1, 2, 3, 6, 8, 13, 17, 20, 50, 52], "well": [1, 3, 11, 20, 50], "chemic": [1, 5], "gene": [1, 42], "so": [1, 2, 6, 13, 14, 20, 28, 31, 35, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53], "is_befor": 1, "other_ent": 1, "check": [1, 3, 17, 28, 29, 32, 35, 40, 44, 45, 46, 48, 50, 51, 52], "whether": [1, 2, 3, 6, 8, 11, 13, 14, 17, 20, 34, 48, 49], "locat": [1, 6, 34, 37, 40, 42, 51], "befor": [1, 11, 13, 17, 20, 24, 28, 31, 48, 53], "given": [1, 3, 6, 8, 11, 13, 14, 17, 20, 21, 22, 23], "fulli": [1, 8, 50, 52], "overlap": [1, 20], "internalbionerdataset": [1, 18], "entities_per_docu": 1, "corpu": [1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 17, 20, 21, 24, 25, 26, 33, 39, 43, 46, 48, 51, 53, 54], "": [1, 2, 6, 10, 11, 14, 20, 22, 23, 32, 34, 35, 36, 37, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52], "dpentri": [1, 18], "position_end": 1, "entity_count": 1, "entity_lengths_sum": 1, "last_ent": 1, "tupl": [1, 4, 6, 15, 17, 20, 21, 24, 25], "alia": [1, 11, 14, 15, 17], "2": [1, 2, 3, 8, 10, 14, 15, 17, 20, 24, 32, 33, 37, 40, 42, 46, 49, 51, 52, 53, 54], "3": [1, 2, 3, 4, 6, 11, 13, 14, 17, 24, 28, 31, 33, 34, 35, 36, 40, 45, 46, 48, 49, 53, 54], "merge_dataset": [1, 18], "data_set": 1, "filter_and_map_ent": [1, 18], "entity_type_to_canon": 1, "filter_nested_ent": [1, 18], "bioc_to_intern": [1, 18], "bioc_fil": 1, "helper": [1, 23, 50], "pars": [1, 3], "bioc": 1, "see": [1, 2, 3, 5, 6, 8, 11, 13, 14, 16, 20, 22, 23, 35, 36, 37, 40, 42, 43, 46, 48, 49, 51, 52, 53, 54], "http": [1, 2, 3, 5, 6, 8, 10, 11, 14, 16, 17, 20], "sourceforg": 1, "net": 1, "detail": [1, 6, 13, 14, 22, 23, 30, 39, 46, 53], "brat_to_intern": [1, 18], "corpus_dir": 1, "ann_file_suffix": 1, "annot": [1, 2, 3, 6, 8, 9, 17, 20, 34, 35, 37, 42, 48, 50, 51, 52], "brat": 1, "nlplab": 1, "org": [1, 3, 5, 6, 10, 14, 17, 20, 21], "conllwrit": [1, 18], "sentence_splitt": [1, 3, 5], "util": 1, "write": [1, 13, 24, 27, 42], "conll": [1, 3, 6, 9, 17, 40, 42], "file": [1, 2, 3, 4, 6, 8, 9, 13, 14, 15, 20, 21, 24, 25, 30, 48], "initi": [1, 2, 3, 5, 6, 13, 14, 17, 20, 21, 24, 25, 36, 38, 44, 48, 51, 52, 53, 54], "sentencesplitt": [1, 3, 22, 26, 38], "splitter": [1, 3, 5, 26, 36, 38], "which": [1, 2, 3, 4, 6, 8, 11, 13, 14, 17, 20, 21, 22, 23, 24, 25, 30, 31, 35, 37, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52], "segment": [1, 3, 35], "process_dataset": 1, "out_dir": 1, "write_to_conl": 1, "output_fil": 1, "hunerdataset": [1, 18], "base_path": [1, 2, 3, 4, 5, 6, 8, 9, 24, 25], "columncorpu": [1, 3, 5, 6, 18], "abc": [1, 20, 21, 22, 23], "huner": 1, "everi": [1, 10, 11, 12, 13, 15, 20, 21, 25, 48], "subclass": [1, 12, 15, 20, 21, 22, 23], "ha": [1, 6, 8, 13, 14, 17, 20, 25, 31, 35, 41, 46, 48, 49, 50, 51, 52], "implement": [1, 10, 11, 13, 14, 15, 20, 21, 22, 23, 24, 49], "method": [1, 3, 6, 10, 11, 13, 14, 16, 17, 20, 21, 25, 28, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54], "to_intern": 1, "complet": [1, 6, 22, 46, 48], "data": [1, 2, 3, 4, 6, 8, 9, 14, 16, 20, 21, 24, 26, 31, 34, 35, 36, 37, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54], "incl": 1, "train": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 25, 28, 31, 33, 34, 36, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52], "dev": [1, 2, 4, 6, 8, 9, 17, 24, 25, 28, 50, 51, 52], "test": [1, 2, 3, 4, 6, 8, 9, 17, 20, 24, 31, 50, 51, 52], "split_url": 1, "url": [1, 3, 16, 20, 36], "without": [1, 2, 30, 31, 46, 53], "split": [1, 2, 3, 6, 9, 17, 20, 22, 23, 24, 36, 38, 48, 50, 51, 52], "For": [1, 6, 8, 20, 22, 23, 28, 30, 31, 35, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 52, 53, 54], "further": [1, 15, 22, 23], "inform": [1, 3, 4, 11, 13, 14, 20, 21, 24, 32, 37, 44, 46, 48, 52], "weber": 1, "et": [1, 3, 6, 10, 13, 14, 20, 46, 49, 53], "al": [1, 3, 6, 10, 13, 14, 20, 46, 53], "improv": [1, 32, 36, 50], "pretrain": [1, 12], "academ": 1, "oup": 1, "com": [1, 2, 6, 8], "bioinformat": 1, "articl": [1, 2, 3, 6], "36": [1, 50], "295": 1, "5523847": 1, "redirectedfrom": 1, "fulltext": 1, "repositori": [1, 6, 10, 20, 28, 32, 46], "hu": 1, "static": [1, 10, 11, 13, 14, 17, 20, 21, 23, 24, 44], "get_corpus_sentence_splitt": 1, "pre": [1, 17, 20, 34, 40, 41, 42, 44, 48], "defin": [1, 6, 12, 15, 17, 20, 21, 24, 30, 49, 51], "path": [1, 2, 3, 4, 6, 8, 9, 13, 14, 15, 16, 20, 21, 24, 31, 44, 48, 50, 51], "your": [1, 2, 3, 6, 10, 11, 13, 14, 16, 21, 28, 29, 30, 31, 34, 38, 39, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55], "machin": [1, 6, 50], "give": [1, 3, 6, 20, 30, 40, 41, 45, 46, 48, 50, 51, 53], "speedup": [1, 2, 3, 6], "scispacysentencesplitt": [1, 22, 26], "get_subset": 1, "split_dir": 1, "bio_inf": [1, 18], "bioinfer": 1, "pyysalo": 1, "extract": [1, 5, 6, 20, 21, 25, 30, 40, 52], "domain": [1, 6, 43, 46], "bmcbioinformat": 1, "biomedcentr": 1, "10": [1, 2, 24, 48, 50, 52, 54], "1186": 1, "1471": 1, "2105": 1, "8": [1, 2, 4, 5, 6, 8, 17, 28, 40, 43], "50": [1, 2, 14, 20, 41, 48, 52], "classmethod": [1, 6, 10, 11, 12, 14, 15, 17, 20, 21, 25], "download_dataset": 1, "data_dir": 1, "parse_dataset": 1, "original_fil": 1, "huner_gene_bio_inf": [1, 18], "arg": [1, 2, 10, 14, 17, 20, 21, 25], "kwarg": [1, 7, 11, 14, 15, 20, 21, 24, 25], "protein": [1, 5], "jnlpba": [1, 18], "share": [1, 17, 20, 21, 31, 46], "task": [1, 2, 3, 4, 5, 6, 8, 9, 17, 21, 36, 40, 41, 42, 43, 46, 49, 50, 51, 52, 53], "kim": 1, "introduct": [1, 32, 50], "bio": [1, 4, 6, 20, 51], "recognit": [1, 6, 20, 34, 42, 52], "www": [1, 3, 6, 14], "aclweb": 1, "anthologi": 1, "w04": 1, "1213": 1, "pdf": [1, 3, 5], "13": [1, 42], "pleas": [1, 6, 14, 29, 31, 48, 49], "from": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 16, 17, 20, 21, 22, 23, 24, 25, 30, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54], "bigbio": 1, "bigbio_ner_corpu": [1, 18], "hunerjnlpba": [1, 18], "download_and_prepare_train": 1, "sentence_tag": 1, "download_and_prepare_test": 1, "read_fil": 1, "input_iob_fil": 1, "huner_gene_jnlpba": [1, 18], "huner_cell_line_jnlpba": [1, 18], "cell": [1, 20], "line": [1, 2, 6, 8, 11, 13, 14, 21, 35, 41, 50, 51, 52], "cell_find": [1, 18], "cellfind": 1, "speci": [1, 42], "futher": 1, "neve": 1, "evalu": [1, 2, 3, 8, 13, 14, 20, 21, 24, 50], "stem": 1, "research": [1, 2, 3, 6, 8, 40], "semanticscholar": 1, "38e3": 1, "75aeeeb1937d03c3c80128a70d8e7a74441f": 1, "download_and_prepar": 1, "read_fold": 1, "huner_cell_line_cell_find": [1, 18], "huner_species_cell_find": [1, 18], "huner_gene_cell_find": [1, 18], "mirna": [1, 18], "bagewadi": 1, "detect": [1, 3, 20, 33, 42, 43, 54], "mention": [1, 3, 20, 30, 36, 51], "relat": [1, 5, 9, 17, 20, 26, 52], "literatur": 1, "ncbi": 1, "nlm": 1, "nih": 1, "gov": 1, "pmc": 1, "pmc4602280": 1, "callabl": [1, 25], "word": [1, 3, 4, 6, 10, 11, 13, 14, 17, 20, 21, 22, 23, 33, 35, 40, 46, 47, 48, 50, 51], "scispaci": [1, 23], "sentence_separ": 1, "parse_fil": 1, "input_fil": 1, "hunermirnahelp": [1, 18], "get_mirna_subset": 1, "huner_gene_mirna": [1, 18], "huner_species_mirna": [1, 18], "huner_disease_mirna": [1, 18], "diseas": [1, 42], "kaewphancorpushelp": [1, 18], "kaewphan": 1, "cll": [1, 18], "gellu": [1, 18], "download_cll_dataset": 1, "prepare_and_save_dataset": 1, "nersuite_fold": 1, "download_gellus_dataset": 1, "read_dataset": 1, "name": [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 25, 30, 31, 34, 35, 40, 42, 48, 51, 52], "support": [1, 6, 20, 23, 28, 44, 48, 49, 50, 52], "identif": [1, 2], "synthet": 1, "lethal": 1, "cancer": 1, "pmc4708107": 1, "huner_cell_line_cl": [1, 18], "huner_cell_line_gellu": [1, 18], "loctext": [1, 18], "cejuela": 1, "local": [1, 10, 27, 31], "assist": 1, "curat": [1, 42], "s12859": 1, "018": 1, "2021": [1, 53], "9": [1, 40], "huner_species_loctext": [1, 18], "huner_gene_loctext": [1, 18], "chemdner": [1, 18], "kralling": 1, "drug": [1, 5], "its": [1, 3, 16, 17, 20, 30, 37, 43, 46, 48, 50], "principl": 1, "jcheminf": 1, "1758": 1, "2946": 1, "7": [1, 34, 36, 40, 41, 53, 54], "s1": 1, "s2": 1, "segement": 1, "huner_chemical_chemdn": [1, 18], "iepa": [1, 18], "informatik": 1, "berlin": [1, 34, 38, 40, 50], "de": [1, 3, 6, 8, 40, 41, 42, 43, 44, 46], "ding": 1, "berleant": 1, "nettleton": 1, "wurtel": 1, "mine": 1, "medlin": 1, "phrase": [1, 40], "pubm": [1, 46], "11928487": 1, "huner_gene_iepa": [1, 18], "linneau": [1, 18], "gerner": 1, "linnaeu": 1, "system": [1, 3, 6], "20149233": 1, "scispacytoken": [1, 22, 23, 26], "download_and_parse_dataset": 1, "huner_species_linneau": [1, 18], "cdr": [1, 18], "jhnlp": 1, "biocr": [1, 5], "v": [1, 33, 51, 55], "li": 1, "resourc": [1, 38, 50, 51, 53, 54], "pmc4860626": 1, "huner_disease_cdr": [1, 18], "huner_chemical_cdr": [1, 18], "variom": [1, 18], "brat2bioc": 1, "hvp_bioc": 1, "xml": [1, 3], "zip": [1, 6], "verspoor": 1, "human": [1, 3], "pmc3676157": 1, "parse_corpu": 1, "corpus_xml": 1, "huner_gene_variom": [1, 18], "huner_disease_variom": [1, 18], "huner_species_variom": [1, 18], "ncbi_diseas": [1, 18], "dogan": 1, "concept": [1, 32, 35, 45], "normal": [1, 5, 6, 23, 24, 50, 52], "24393765": 1, "download_corpu": 1, "patch_training_fil": 1, "orig_train_fil": 1, "patched_fil": 1, "parse_input_fil": 1, "huner_disease_ncbi": [1, 18], "scaicorpu": [1, 18], "scai": 1, "scau": 1, "scai_chem": [1, 18], "kol\u00e1\u0159ik": 1, "terminolog": 1, "pub": 1, "uni": 1, "bielefeld": 1, "record": [1, 5, 25], "2603498": 1, "perform_corpus_download": 1, "scai_diseas": [1, 18], "gurulingappa": 1, "an": [1, 2, 3, 6, 8, 10, 11, 14, 15, 17, 20, 21, 22, 23, 24, 29, 31, 32, 35, 36, 38, 40, 43, 44, 45, 48, 49, 50], "empir": [1, 3], "advers": 1, "effect": [1, 13, 14, 20, 25], "2603398": 1, "huner_chemical_scai": [1, 18], "huner_disease_scai": [1, 18], "osiri": [1, 18], "load_original_unfixed_annot": 1, "variat": [1, 15, 21], "furlong": 1, "v1": [1, 6, 46], "sequenc": [1, 17, 20, 22, 25, 33, 35, 46, 49, 50, 51, 52, 55], "variant": [1, 20, 43, 46], "18251998": 1, "erron": 1, "two": [1, 2, 6, 8, 10, 14, 20, 31, 35, 36, 37, 40, 42, 44, 45, 46, 49, 50, 51, 56], "you": [1, 2, 3, 6, 11, 13, 14, 16, 17, 20, 21, 23, 24, 25, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], "don": [1, 31, 51, 52], "t": [1, 6, 8, 15, 20, 21, 30, 31, 51, 52], "want": [1, 2, 3, 6, 16, 20, 23, 24, 31, 32, 35, 38, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], "fix": [1, 20, 28], "corpus_fold": 1, "fix_annot": 1, "huner_gene_osiri": [1, 18], "s800": [1, 18], "pafili": 1, "organ": [1, 6, 20], "fast": [1, 13, 14, 40, 41, 42, 46, 50], "accur": [1, 43], "taxonom": 1, "ploson": 1, "info": [1, 16, 17, 45], "doi": 1, "2f10": 1, "1371": 1, "2fjournal": 1, "pone": 1, "0065390": 1, "huner_species_s800": [1, 18], "gpro": [1, 18], "udel": 1, "edu": [1, 2, 5, 6], "descript": [1, 3, 48, 49], "download_train_corpu": 1, "download_dev_corpu": 1, "text_fil": 1, "ann_fil": 1, "huner_gene_gpro": [1, 18], "deca": [1, 18], "wang": 1, "disambigu": [1, 3, 40], "natur": [1, 8, 32], "languag": [1, 2, 3, 6, 8, 9, 13, 14, 17, 23, 32, 40, 42, 43, 44, 46, 48, 50, 53, 54], "parser": [1, 30], "pmc2828111": 1, "biospacysentencespliit": 1, "text_dir": 1, "gold_fil": 1, "huner_gene_deca": [1, 18], "fsu": [1, 18], "deriv": [1, 6, 48], "hahn": 1, "propos": [1, 10, 13, 14, 46, 48], "configur": [1, 20, 22, 23, 28], "silver": 1, "w10": 1, "1838": 1, "huner_gene_fsu": [1, 18], "craft": [1, 18], "corefer": [1, 6], "section": [1, 40, 41, 42, 43, 48, 49, 50, 53, 56], "typographi": 1, "bada": 1, "161": 1, "biosemant": [1, 18], "akhondi": 1, "patent": 1, "gold": [1, 3, 20, 21], "pmc4182036": 1, "bc2gm": [1, 18], "ii": [1, 6], "gm": 1, "smith": [1, 6], "overview": [1, 50], "pmc2559986": 1, "parse_train_dataset": 1, "parse_test_dataset": 1, "huner_gene_bc2gm": [1, 18], "cemp": [1, 18], "huner_chemical_cemp": [1, 18], "chebi": [1, 18], "shardlow": 1, "new": [1, 2, 3, 6, 10, 13, 14, 17, 20, 21, 24, 29, 30, 32, 34, 44, 45, 46, 48, 50, 53, 54], "metabolit": 1, "lrec": 1, "conf": [1, 30], "proceed": [1, 6], "lrec2018": 1, "229": 1, "been": [1, 6, 31, 40, 52], "can": [1, 2, 3, 6, 8, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 28, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55], "select": [1, 6, 49, 50], "choos": [1, 16, 20, 31, 41, 42, 44, 46, 48, 49], "both": [1, 11, 13, 14, 20, 21, 34, 35, 40, 46, 50, 52, 53], "get_ent": 1, "f": [1, 20, 35, 37, 50], "huner_chemical_chebi": [1, 18], "huner_gene_chebi": [1, 18], "huner_species_chebi": [1, 18], "bionlpcorpu": [1, 18], "bionlp": 1, "event": [1, 24, 25], "2013": 1, "st": [1, 8], "intro": 1, "input_fold": 1, "bionlp2013_pc": [1, 18], "pathwai": 1, "ohta": 1, "pc": 1, "w13": 1, "2009": [1, 6], "download_fold": 1, "bionlp2013_cg": [1, 18], "genet": 1, "ananiad": 1, "cg": 1, "2008": 1, "anat_em": [1, 18], "anatom": 1, "scale": 1, "pmc3957068": 1, "nactem": 1, "ac": [1, 3], "uk": [1, 6, 42, 46], "anatomytagg": 1, "anatem": 1, "input_dir": 1, "bioberthelp": [1, 18], "column_format": [1, 3, 6], "comment_symbol": [1, 6], "corpusarg": [1, 2, 3, 4, 5, 6, 8, 17], "respect": [1, 3, 4, 6, 8, 14, 20, 21, 30, 48, 52], "biobert": 1, "lee": 1, "4": [1, 2, 11, 13, 15, 24, 35, 37, 40, 42, 45, 49, 51, 53, 54], "1234": 1, "5566506": 1, "dmi": 1, "lab": [1, 6, 14], "download_corpora": 1, "download_dir": 1, "convert_and_writ": 1, "biobert_chemical_bc4chemd": [1, 18], "bc4chemd": 1, "regard": 1, "biobert_gene_bc2gm": [1, 18], "biobert_gene_jnlpba": [1, 18], "biobert_chemical_bc5cdr": [1, 18], "bc5cdr": 1, "biobert_disease_bc5cdr": [1, 18], "biobert_disease_ncbi": [1, 18], "biobert_species_linnaeu": [1, 18], "linneaeu": 1, "biobert_species_s800": [1, 18], "craft_v4": [1, 18], "co": [1, 11, 14, 20], "refer": [1, 6, 14, 17, 20, 30, 36], "structur": [1, 4, 51], "ucdenv": 1, "ccp": 1, "filter_ent": 1, "prepare_split": 1, "huner_chemical_craft_v4": [1, 18], "huner_gene_craft_v4": [1, 18], "huner_species_craft_v4": [1, 18], "huner_chemical_bionlp2013_cg": [1, 18], "huner_disease_bionlp2013_cg": [1, 18], "huner_gene_bionlp2013_cg": [1, 18], "huner_species_bionlp2013_cg": [1, 18], "azdz": [1, 18], "arizona": 1, "informat": 1, "state": [1, 11, 13, 14, 15, 20, 21, 24, 25, 32, 46, 48, 50, 53, 54, 55], "univers": [1, 6, 48, 50, 52, 53], "diego": 1, "asu": 1, "index": [1, 2, 6, 16, 20, 30, 35], "php": [1, 6], "pdr": [1, 18], "plant": 1, "journal": 1, "plo": 1, "id": [1, 3, 6, 17, 20, 28, 35, 40, 41, 42, 43, 44, 46, 52], "0221582": 1, "gcancer": 1, "huner_disease_pdr": [1, 18], "hunermulticorpu": [1, 18], "multicorpu": [1, 3, 6, 17, 26, 53], "build": [1, 20], "consid": [1, 3, 6, 13, 17, 20, 21, 23, 29, 30], "particular": [1, 6, 13, 14, 24, 50], "huner_cell_lin": [1, 18], "huner_chem": [1, 18], "huner_diseas": [1, 18], "huner_gen": [1, 18], "huner_speci": [1, 18], "dataset_nam": [1, 6], "train_split_nam": 1, "dev_split_nam": [1, 6], "test_split_nam": 1, "adapt": [1, 6], "framework": [1, 3, 32], "bigscienc": 1, "workshop": [1, 6], "harmon": 1, "over": [1, 6, 14, 20, 30, 34, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51], "120": 1, "uniform": [1, 17], "program": 1, "api": [1, 28, 30, 32, 48], "access": [1, 17, 31, 37, 39, 48, 51, 52], "them": [1, 11, 12, 13, 15, 20, 21, 24, 28, 48, 50, 51], "allow": [1, 2, 11, 13, 14, 16, 20, 24, 25, 45], "bigbio_kb": 1, "schema": [1, 2, 4, 6, 8], "huggingfac": [1, 11, 14, 20, 49], "hub": [1, 20, 41, 42, 49], "nlmchem": 1, "usual": [1, 10, 20, 30, 31, 52], "develop": [1, 6, 27, 46, 50], "valid": [1, 17, 20, 52], "get_entity_type_map": 1, "map": [1, 2, 4, 6, 17, 20, 21], "canon": 1, "note": [1, 3, 6, 20, 23, 40, 41, 42, 46, 48, 51], "present": [1, 6, 48], "discard": 1, "dict": [1, 2, 3, 4, 6, 10, 11, 12, 14, 16, 17, 20, 21, 24], "build_corpus_directory_nam": 1, "directori": [1, 6, 13, 16, 25], "to_internal_dataset": 1, "hug": [1, 20], "our": [1, 6, 28, 34, 35, 36, 37, 41, 46, 48, 50, 51, 53], "represent": [1, 10, 11, 13, 14, 20, 21, 45, 46, 47, 49], "bin_search_passag": 1, "passag": 1, "low": 1, "high": [1, 53], "find": [1, 28, 34, 42, 48, 49, 52], "inclus": [1, 6], "offset": [1, 17], "binari": [1, 20, 44, 48], "search": [1, 51], "order": [1, 6, 14, 20, 35, 48, 50], "huner_gene_nlm_gen": [1, 18], "huner_gene_drugprot": [1, 18], "huner_chemical_drugprot": [1, 18], "huner_gene_bior": [1, 18], "huner_chemical_bior": [1, 18], "huner_disease_bior": [1, 18], "huner_species_bior": [1, 18], "huner_cell_line_bior": [1, 18], "huner_gene_cpi": [1, 18], "huner_chemical_cpi": [1, 18], "huner_gene_bionlp_st_2013_pc": [1, 18], "huner_chemical_bionlp_st_2013_pc": [1, 18], "huner_gene_bionlp_st_2013_g": [1, 18], "huner_gene_bionlp_st_2011_g": [1, 18], "huner_gene_bionlp_st_2011_id": [1, 18], "huner_chemical_bionlp_st_2011_id": [1, 18], "huner_species_bionlp_st_2011_id": [1, 18], "huner_gene_bionlp_st_2011_rel": [1, 18], "huner_gene_bionlp_st_2011_epi": [1, 18], "huner_species_bionlp_st_2019_bb": [1, 18], "huner_gene_bioid": [1, 18], "huner_chemical_bioid": [1, 18], "huner_species_bioid": [1, 18], "huner_cell_line_bioid": [1, 18], "huner_gene_gnormplu": [1, 18], "huner_gene_progen": [1, 18], "huner_chemical_nlm_chem": [1, 18], "huner_gene_seth_corpu": [1, 18], "huner_gene_tmvar_v3": [1, 18], "huner_species_tmvar_v3": [1, 18], "huner_cell_line_tmvar_v3": [1, 18], "classificationcorpu": [2, 18, 51], "label_typ": [2, 4, 6, 8, 17, 20, 21, 50, 51, 52, 53, 54], "truncate_to_max_token": 2, "truncate_to_max_char": 2, "filter_if_longer_than": 2, "memory_mod": 2, "partial": [2, 6], "label_name_map": [2, 3, 4, 6], "skip_label": 2, "allow_examples_without_label": 2, "sample_missing_split": [2, 3, 6, 8, 17], "encod": [2, 3, 4, 6, 8, 14, 17, 20, 21, 48], "utf": [2, 4, 6, 8], "classif": [2, 5, 6, 8, 20, 21, 50, 52], "fasttext": [2, 14, 44], "folder": [2, 3, 4, 6, 8, 9, 16, 28, 30, 51], "sampl": [2, 3, 6, 8, 9, 20, 24, 50], "filter": [2, 20, 31], "longer": [2, 31, 45, 49], "specifi": [2, 3, 6, 17, 20, 21, 25, 30, 48, 50, 51], "what": [2, 29, 31, 36, 37, 40, 41, 50, 52, 53, 54], "degre": [2, 52], "full": [2, 9, 22, 31, 35, 41, 42, 50, 53], "disk": [2, 4, 6, 9, 13, 20], "embed": [2, 17, 20, 21, 24, 26, 29, 33, 42, 43, 54], "fit": [2, 13, 20], "even": [2, 6, 20, 37, 46, 50], "too": [2, 11, 14, 20, 50, 52], "much": [2, 31, 42, 45, 46, 50], "differ": [2, 3, 4, 6, 10, 11, 13, 14, 17, 20, 25, 35, 40, 41, 42, 45, 46, 48, 49, 50, 51, 56], "some": [2, 3, 6, 10, 11, 14, 15, 17, 20, 23, 24, 30, 31, 44, 46, 49, 50, 51], "latin": 2, "classificationdataset": [2, 18], "path_to_fil": 2, "singl": [2, 3, 6, 9, 11, 13, 14, 16, 20, 21, 22, 31, 45, 46, 48, 49, 53], "__label__": [2, 51], "class_nam": 2, "multi": [2, 3, 5, 6, 8, 11, 13, 14, 20, 21, 41, 46, 48, 52], "mani": [2, 20, 24, 35, 36, 38, 41, 46, 48, 50, 51, 52, 54], "begin": [2, 6, 21, 51], "class_name_1": 2, "class_name_2": 2, "param": [2, 4, 6, 8, 10, 11, 12, 14, 15], "csvclassificationcorpu": [2, 18, 51], "column_name_map": [2, 6, 51], "csv_corpu": 2, "skip_head": [2, 51], "no_class_label": 2, "fmtparam": 2, "csv": [2, 8], "column": [2, 3, 6, 8, 9, 51], "indic": [2, 3, 6, 8, 11, 13, 20, 21, 35, 37, 40, 43, 51], "skip": [2, 14, 51], "first": [2, 3, 6, 8, 14, 15, 16, 17, 20, 24, 35, 36, 45, 48, 49, 50, 51, 52, 53], "becaus": [2, 3, 31, 50, 51, 53], "header": [2, 6, 51], "addit": [2, 3, 6, 14, 23, 24, 25, 30, 51], "reader": [2, 14], "csvclassificationdataset": [2, 18], "amazon_review": [2, 18], "split_max": 2, "30000": [2, 41], "neg": [2, 20, 34, 43], "posit": [2, 3, 14, 20, 34, 35, 43], "5": [2, 3, 11, 13, 15, 20, 21, 24, 34, 35, 36, 37, 40, 42, 46, 52, 53, 54], "fraction_of_5_star_review": 2, "veri": [2, 32, 42, 43, 46, 48, 50, 53], "larg": [2, 14, 42, 48, 53], "amazon": [2, 43], "review": [2, 43], "rate": [2, 24, 50, 53], "download": [2, 3, 5, 6, 14, 16, 52], "nijianmo": 2, "io": [2, 3, 6, 16], "html": [2, 11, 14, 20, 30], "we": [2, 3, 6, 8, 13, 20, 28, 29, 30, 31, 35, 36, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 53, 54], "core": 2, "subset": [2, 6], "still": [2, 13, 45], "ten": [2, 6], "million": [2, 3, 46], "construct": [2, 11, 13, 20, 48], "how": [2, 20, 28, 30, 31, 33, 34, 35, 36, 39, 41, 42, 43, 46, 47, 53, 54, 55], "point": [2, 3, 6, 14, 17, 20, 21, 24, 35, 37, 46, 51], "28": [2, 6, 50], "higher": [2, 14, 24, 28, 48, 50], "lower": [2, 3, 14, 46, 48], "increas": [2, 6, 44, 49], "decreas": 2, "size": [2, 10, 11, 14, 17, 20, 21, 24, 38, 49, 50], "By": [2, 17, 44, 48, 49, 50, 51], "star": [2, 36], "onto": [2, 20, 52], "neutral": [2, 8], "argument": [2, 6, 11, 14, 20, 21, 24, 25, 48], "download_and_prepare_amazon_product_fil": 2, "part_nam": 2, "max_data_point": 2, "imdb": [2, 18, 51], "rebalance_corpu": 2, "movi": [2, 6, 43], "sentiment": [2, 20, 33, 35, 39, 54], "ai": 2, "stanford": [2, 5], "amaa": 2, "move": [2, 13, 14], "store": [2, 4, 14, 15, 20, 21, 24, 30, 41], "specif": [2, 3, 6, 14, 16, 20, 35, 48, 50], "weather": [2, 10, 14, 20, 21], "80": [2, 40], "huge": 2, "also": [2, 3, 6, 14, 17, 20, 21, 25, 28, 31, 35, 36, 40, 42, 43, 44, 46, 48, 49, 51, 52, 53], "faster": [2, 14, 43, 53], "process": [2, 6, 11, 20, 24, 29, 32], "less": [2, 3, 8, 14, 34, 43, 53], "other": [2, 8, 20, 21, 31, 33, 37, 39, 41, 42, 44, 45, 46, 47, 50, 51, 53], "newsgroup": [2, 18], "20": [2, 6, 20, 24, 50], "classifi": [2, 6, 8, 20, 21, 26, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 48, 55], "qwone": 2, "jason": 2, "20newsgroup": 2, "mai": [2, 17, 20, 22, 23, 35, 38, 46, 49, 51, 53], "long": [2, 14, 45], "big": [2, 53], "stackoverflow": [2, 18], "question": [2, 8, 37, 54], "jacoxu": 2, "sentiment_140": [2, 18], "twitter": [2, 3, 44], "help": [2, 20, 32, 37], "sentiment140": 2, "student": 2, "three": [2, 6, 45, 46, 50, 51, 52], "numer": 2, "valu": [2, 6, 11, 13, 16, 17, 20, 21, 24, 25, 30, 35, 48, 49, 50], "senteval_cr": [2, 18], "sentev": 2, "facebookresearch": 2, "small": [2, 9, 28, 31, 44, 48, 50, 53], "senteval_mr": [2, 18], "senteval_subj": [2, 18], "subject": 2, "senteval_mpqa": [2, 18], "opinion": 2, "polar": 2, "senteval_sst_binari": [2, 18], "treebank": [2, 18, 26, 41, 50, 52], "senteval_sst_granular": [2, 18], "glue_cola": [2, 18], "accept": [2, 11, 13, 14, 21, 29], "linguist": [2, 10, 51], "glue": [2, 8, 52], "benchmark": [2, 3, 8, 20, 52], "gluebenchmark": [2, 8], "predict": [2, 8, 17, 20, 21, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 46, 52, 53, 54], "english": [2, 6, 40, 43, 44, 46, 48, 50, 52, 53], "grammat": 2, "correct": [2, 20, 36], "additionali": [2, 8], "eval_dataset": [2, 8], "unlabel": [2, 8], "cola": 2, "tsv_from_eval_dataset": [2, 8], "folder_path": [2, 8], "creat": [2, 3, 6, 8, 14, 17, 20, 24, 25, 28, 31, 35, 44, 45, 46, 48, 49, 51, 53, 54], "eval": 2, "tsv": [2, 3, 8, 25], "after": [2, 6, 8, 14, 17, 31, 46, 50], "call": [2, 3, 6, 8, 12, 14, 15, 17, 20, 21, 24, 25, 28, 30, 35, 44, 45, 46, 48, 50, 52, 54], "label_nam": [2, 8, 20, 21], "result": [2, 6, 10, 13, 20, 21, 45, 46, 48, 49, 50], "requir": [2, 5, 6, 11, 14, 20, 28, 30, 31, 33, 46, 48, 50, 53], "submiss": [2, 8], "glue_sst2": [2, 18], "datasetarg": 2, "label_map": 2, "go_emot": [2, 18], "goemot": 2, "58k": 2, "reddit": [2, 3], "comment": [2, 3, 6, 25], "27": [2, 42, 50], "emot": 2, "googl": [2, 6, 20, 30, 52], "trec_50": [2, 18], "trec": 2, "fine": [2, 11, 14, 20, 33, 41, 45, 50, 53, 54, 55], "grain": [2, 41], "answer": [2, 8], "6": [2, 36, 40, 41, 43, 46, 53, 54], "trec_6": [2, 18, 52, 54], "coars": [2, 51], "yahoo_answ": [2, 18], "yahoo": 2, "rather": [2, 30], "germeval_2018_offensive_languag": [2, 18], "fine_grained_class": 2, "germev": [2, 6, 42, 43], "2018": [2, 13, 14, 43, 48, 53], "offens": [2, 43, 54], "german": [2, 3, 6, 13, 14, 40, 43, 44, 46, 52, 53], "tweet": [2, 3, 41], "abus": 2, "insult": 2, "profatinti": 2, "load": [2, 3, 4, 6, 14, 17, 20, 21, 22, 23, 25, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 49, 53, 54, 55], "communicative_funct": [2, 18], "commun": [2, 40, 41, 42], "scientif": 2, "paper": [2, 3, 6, 10, 20, 40, 46, 53], "39": [2, 41, 50], "date": [2, 3, 42], "wassa_ang": [2, 18], "wassa": 2, "2017": 2, "anger": 2, "intens": 2, "saifmohammad": 2, "webpag": 2, "emotionintens": 2, "sharedtask": 2, "wassa_fear": [2, 18], "fear": 2, "wassa_joi": [2, 18], "joi": 2, "wassa_sad": [2, 18], "sad": 2, "zelda": [3, 18, 36], "nel": [3, 20], "multifilecolumncorpu": [3, 6, 18], "link": [3, 6, 9, 20, 30, 32, 33, 39, 52], "introduc": [3, 6, 48], "comprehens": 3, "supervis": [3, 6], "milich": 3, "akbik": [3, 13, 14, 46, 53], "2023": [3, 6, 50], "when": [3, 6, 8, 14, 17, 20, 25, 30, 31, 35, 36, 45, 49], "constructor": [3, 6, 11, 13, 14, 20, 44, 46, 48, 49, 52], "time": [3, 6, 8, 17, 20, 25, 28, 31, 46, 48, 50, 52], "get": [3, 6, 17, 20, 24, 25, 28, 31, 32, 35, 40, 44, 45, 46, 48, 50, 51, 52, 53, 54], "automat": [3, 6, 8, 16, 24, 35, 48, 51, 52], "mean": [3, 6, 11, 14, 20, 21, 24, 35, 40, 41, 44, 45, 46, 48, 50, 52], "auto": [3, 6, 20], "overrid": [3, 6], "typic": [3, 6, 24, 36, 44, 53], "necessari": [3, 6, 20, 50], "correspond": [3, 14, 20, 35, 36, 48, 51, 52], "nel_english_aquaint": [3, 18], "agreement_threshold": 3, "segtoksentencesplitt": [3, 5, 22, 26, 36, 38], "aquaint": 3, "d": [3, 36], "miln": 3, "h": [3, 20, 24], "witten": 3, "learn": [3, 6, 10, 11, 20, 24, 35, 50, 52, 53], "wikipedia": [3, 6, 36, 44, 46], "cm": 3, "waikato": 3, "nz": 3, "ihw": 3, "08": 3, "dnm": 3, "learningtolinkwithwikipedia": 3, "transform": [3, 6, 11, 12, 14, 19, 20, 26, 33, 42, 43, 47, 48, 50], "tab": [3, 6, 51], "separ": [3, 8, 11, 13, 20, 23, 24, 35, 51], "txt": [3, 6, 24, 28, 30, 44, 48, 51], "come": [3, 6], "agreement_scor": 3, "agreement": 3, "score": [3, 17, 20, 21, 24, 25, 35, 37, 50, 54], "rang": [3, 4, 6], "lowest": 3, "highest": 3, "import": [3, 20, 28, 31, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54], "fewer": 3, "thought": 3, "worth": 3, "major": 3, "must": [3, 6, 8, 10, 17, 20, 21, 30, 40, 51], "annotet": 3, "nel_german_hip": [3, 18], "wiki_languag": 3, "dewiki": 3, "hipe": [3, 6, 46], "histor": [3, 6, 40, 46], "impresso": [3, 46], "clef": [3, 6, 46], "2020": 3, "stefan": [3, 6, 41, 46], "page": [3, 20, 30, 48], "nel_english_aida": [3, 18], "use_ids_and_check_exist": 3, "aida": 3, "yago": [3, 6], "got": 3, "here": [3, 6, 14, 20, 21, 24, 31, 35, 40, 44, 48, 50], "mpi": 3, "inf": 3, "mpg": 3, "depart": 3, "ambivers": 3, "nlu": 3, "licens": [3, 6, 10, 46], "creativecommon": 3, "sa": [3, 46], "deed": 3, "en_u": 3, "exist": [3, 6, 17, 20, 36, 41, 48], "pagenam": 3, "non": [3, 10, 11, 13, 14, 20], "ignor": [3, 6, 8, 12, 15, 17, 20, 21], "work": [3, 6, 11, 13, 15, 17, 29, 31, 33, 35, 36, 39, 41, 42, 45, 46, 47, 55], "current": [3, 6, 14, 20, 21, 25, 40, 41, 42, 43, 44, 46, 50, 51], "arcticl": 3, "possibli": 3, "alter": 3, "out": [3, 20, 21, 24, 28, 32, 35, 37, 44, 45, 46, 48, 50, 51, 52], "ones": [3, 14, 53], "nel_english_iitb": [3, 18], "ignore_disagr": 3, "ittb": 3, "web": [3, 44, 46, 48], "sayali": 3, "kulkarni": 3, "amit": 3, "singh": 3, "ganesh": 3, "ramakrishnan": 3, "soumen": 3, "chakrabarti": 3, "disagr": 3, "nel_english_tweeki": [3, 18], "tweeki": 3, "knowledg": [3, 10, 48], "graph": 3, "harandizadeh": 3, "consit": 3, "manual": [3, 5, 6, 20, 28, 35, 51], "nel_english_reddit": [3, 18], "arxiv": [3, 10, 14, 20], "ab": [3, 10, 14, 20], "2101": 3, "01228v2": 3, "document_as_sequ": [3, 6], "_text_to_col": 3, "outfil": 3, "post": 3, "titl": [3, 51], "thread": 3, "arrai": [3, 17], "about": [3, 6, 17, 35, 50, 51], "start": [3, 6, 17, 20, 24, 29, 31, 32, 33, 35, 40, 50, 51, 53], "end": [3, 6, 14, 20, 21, 24, 35, 40, 41, 42, 43, 50, 53], "wiki": 3, "output": [3, 11, 13, 16, 20, 21, 24, 25, 34, 35, 45, 48, 50], "written": [3, 13, 24, 25], "_fill_annot_arrai": 3, "annot_arrai": 3, "kei": [3, 14, 17, 20, 24, 46], "post_flag": 3, "fill": [3, 6, 20], "match": [3, 4, 20, 36], "flag": 3, "_fill_curr_com": 3, "fix_flag": 3, "extend": [3, 15, 23], "pass": [3, 6, 10, 12, 14, 15, 20, 21, 22, 24, 35, 36, 38, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52], "incorrectli": 3, "row": [3, 25, 51], "regular": [3, 46, 50, 52], "from_ufsac_to_tsv": [3, 18], "xml_file": 3, "conll_fil": 3, "datasetnam": 3, "utf8": [3, 6], "cut_multisens": 3, "ufsac": 3, "need": [3, 8, 12, 14, 15, 17, 20, 21, 29, 30, 31, 34, 35, 38, 44, 50, 51, 52, 53, 56], "handl": [3, 15, 20, 25, 43], "open": [3, 6, 29, 30, 49], "boolean": [3, 11, 13], "determin": [3, 6, 8, 17, 20, 24, 34, 50], "wn30_kei": 3, "cut": 3, "multipl": [3, 6, 17, 20, 21, 23, 51, 52], "possibl": [3, 6, 14, 31, 52], "sens": [3, 20, 40, 48], "whole": [3, 14, 33, 36, 39, 45, 49], "determine_tsv_fil": [3, 18], "filenam": [3, 17], "alreadi": [3, 10, 11, 13, 14, 17, 20, 21, 29], "resid": [3, 6, 51], "wsd_ufsac": [3, 18], "masc": 3, "semcor": 3, "banned_sent": [3, 6], "sample_missing_splits_in_multicorpu": 3, "sample_missing_splits_in_each_corpu": 3, "use_raganato_all_as_test_data": 3, "ani": [3, 6, 10, 11, 12, 13, 14, 16, 17, 20, 21, 22, 24, 25, 31, 44, 45, 46, 48, 49, 52], "wsd": 3, "getalp": 3, "wordnet": 3, "avail": [3, 6, 8, 16, 48, 54], "were": [3, 31, 34, 41, 48], "omsti": 3, "raganato_al": 3, "raganato_semeval2007": 3, "raganato_semeval2013": 3, "raganato_semeval2015": 3, "raganato_senseval2": 3, "raganato_senseval3": 3, "semeval2007task17": 3, "semeval2007task7": 3, "semeval2013task12": 3, "semeval2015task13": 3, "senseval2": 3, "senseval2_lexical_sample_test": 3, "senseval2_lexical_sample_train": 3, "senseval3task1": 3, "senseval3task6_test": 3, "senseval3task6_train": 3, "trainomat": 3, "wngt": 3, "suffix": [3, 25], "_cut": 3, "ad": [3, 4, 10, 11, 13, 14, 17, 20, 21, 24, 29, 30, 35, 40, 41, 46], "add": [3, 4, 6, 10, 11, 13, 14, 17, 20, 21, 24, 25, 30, 31, 32, 35], "lemma": [3, 6, 20, 52], "po": [3, 6, 14, 48, 50, 51, 52, 53], "remov": [3, 6, 8, 20, 21, 25, 53], "miss": [3, 8], "redund": 3, "raganato": 3, "unifi": [3, 21], "compariso": 3, "only_dev": 3, "case": [3, 10, 11, 14, 17, 20, 21, 22, 31, 35, 36, 38, 45, 46, 48, 49, 50, 51, 52], "wsd_raganato_al": [3, 18], "ragnato_al": 3, "concaten": [3, 13, 17, 20, 45, 46, 49], "sensev": 3, "semev": [3, 5], "wsd_semcor": [3, 18], "wsd_wordnet_gloss_tag": [3, 18], "princeton": 3, "gloss": 3, "wsd_masc": [3, 18], "sub": [3, 6, 44], "wsd_omsti": [3, 18], "One": [3, 14, 20, 21, 24], "instanc": [3, 6, 12, 15, 17, 20, 21, 24, 25, 35, 38, 40, 41, 42, 45, 48, 49, 50, 51, 52, 54], "wsd_trainomat": [3, 18], "o": [3, 6, 17, 20, 51], "matic": 3, "ocrjsondataset": [4, 18], "path_to_split_directori": 4, "load_imag": 4, "normalize_coords_to_thousand": 4, "json": 4, "imag": [4, 17, 19, 25, 26], "those": [4, 20, 30, 31, 44], "jpg": 4, "bbox": [4, 15], "equal": [4, 20], "length": [4, 10, 11, 12, 13, 14, 15, 20, 21, 49, 52], "left": [4, 17, 42], "top": [4, 13, 17, 20, 45, 47, 49, 53], "right": [4, 17, 42, 50], "bottom": [4, 17], "coordin": 4, "1000": [4, 14, 20, 24], "pillow": 4, "metadata": [4, 17, 51], "kept": [4, 6, 9, 21], "doe": [4, 6, 9, 20, 36, 51, 53], "ocrcorpu": [4, 18], "train_path": 4, "dev_path": 4, "test_path": 4, "sroie": [4, 18], "perfect": 4, "box": [4, 52], "convert_ptb_token": [5, 18], "ptb": 5, "re_english_semeval2010": [5, 18], "augment_train": 5, "2010": 5, "wai": [5, 13, 15, 20, 21, 28, 30, 31, 56], "semant": [5, 8, 20, 46], "between": [5, 8, 17, 20, 21, 40, 42, 44], "pair": [5, 8, 20], "nomin": 5, "aclanthologi": [5, 6], "s10": 5, "1006": 5, "extract_and_convert_to_conllu": 5, "data_fil": [5, 6], "re_english_tacr": [5, 18], "tac": 5, "41": [5, 41, 50], "nlp": [5, 6, 17, 32, 51, 55], "project": [5, 6, 17, 30, 40], "tacr": [5, 40], "re_english_conll04": [5, 18], "convert_to_conllu": 5, "source_data_fold": 5, "re_english_drugprot": [5, 18], "drugprot": 5, "vii": 5, "track": 5, "zenodo": 5, "5119892": 5, "ysdsavuxu5k": 5, "interact": 5, "char_spans_to_token_span": 5, "token_offset": 5, "has_overlap": 5, "b": [5, 6, 8, 51], "drugprot_document_to_tokenlist": 5, "pmid": 5, "title_sent": 5, "abstract_sent": 5, "abstract_offset": 5, "tokenlist": 5, "multifilejsonlcorpu": [6, 18], "text_column_nam": 6, "label_column_nam": 6, "jsonl": 6, "mulifilejsonlcorpu": 6, "doccano": 6, "export": [6, 15], "least": [6, 10, 17, 20, 24, 48], "fail": [6, 20, 28], "empti": [6, 11, 21, 51], "insid": [6, 21], "rais": [6, 20, 21], "runtimeerror": [6, 21], "jsonlcorpu": [6, 18], "jsonldataset": [6, 18], "path_to_jsonl_fil": 6, "iob": [6, 17], "scheme": 6, "expect": [6, 8, 20, 31], "start_char_index": 6, "end_char_index": 6, "path_to_json": 6, "_file": 6, "_add_label_to_sent": 6, "ne": 6, "raw": 6, "whitespac": [6, 14, 17], "etc": [6, 8, 13, 14, 17, 20, 25], "charact": [6, 8, 13, 14, 20, 21, 23, 46, 51], "noth": [6, 20], "chang": [6, 16, 20, 21, 29, 30, 48], "inout": 6, "column_delimit": 6, "document_separator_token": 6, "skip_first_lin": [6, 8], "default_whitespace_aft": 6, "conll03": 6, "conll2000": 6, "separat": 6, "overwrit": [6, 10, 16, 20, 22, 23, 24], "symbol": [6, 20, 30], "treat": [6, 22], "boundari": [6, 22], "mark": [6, 20, 22, 25], "columndataset": [6, 18], "path_to_column_fil": 6, "space_after_kei": 6, "space": [6, 8, 13, 20, 21, 23], "feat": 6, "misc": 6, "head": [6, 14, 17, 20, 21], "head_id": [6, 17], "ontonot": [6, 18, 41, 42], "v4": 6, "archive_url": 6, "mendelei": 6, "public": [6, 31, 32], "zmycy7t9h9": 6, "b078e1c4": 6, "f7a4": 6, "4427": 6, "be7f": 6, "9389967831ef": 6, "file_download": 6, "get_available_domain": 6, "_process_coref_span_annotations_for_word": 6, "word_index": 6, "cluster": [6, 20], "coref_stack": 6, "coref": 6, "outsid": [6, 49], "mutat": 6, "dictionari": [6, 14, 16, 17, 20, 21, 24, 26, 48, 51, 53, 54], "defaultdict": 6, "stack": [6, 10, 11, 14, 20, 31, 53], "hold": [6, 17, 35, 40, 50, 51], "same": [6, 10, 11, 13, 14, 20, 31, 34, 35, 42, 43, 46, 48, 49, 53], "nest": [6, 20], "why": [6, 30, 31, 50], "greg": 6, "baker": 6, "who": [6, 48, 54], "himself": 6, "_id1": 6, "bread": 6, "man": 6, "dataset_document_iter": 6, "file_path": [6, 8], "yield": [6, 20], "regardless": 6, "preprocess": 6, "place": [6, 14, 36], "2012": 6, "resolut": 6, "sentence_iter": 6, "individu": [6, 20, 22, 23, 45, 50], "conll_03": [6, 18, 53], "03": [6, 17, 42], "ve": 6, "obtain": [6, 9, 20, 48], "clip": [6, 24], "uantwerpen": 6, "conll2003": 6, "put": [6, 11, 13, 20, 48], "eng": 6, "testa": 6, "testb": 6, "Then": [6, 10, 11, 14, 20, 30], "parent": [6, 17], "where": [6, 8, 10, 20, 31], "dateset": 6, "reduc": [6, 20], "part": [6, 33, 39, 46, 48, 51, 52], "chunk": [6, 24], "conll_03_german": [6, 18], "conll_03_dutch": [6, 18], "dutch": [6, 42, 44, 46, 52], "conll_03_spanish": [6, 18], "spanish": [6, 42, 44, 46], "conll_2000": [6, 18], "2000": [6, 17, 40], "wnut_17": [6, 18], "fewnerd": [6, 18], "bioscop": [6, 18, 40], "ner_arabic_an": [6, 18], "arab": [6, 44, 46], "anercorp": [6, 42], "curti": 6, "ml": [6, 41], "cmu": 6, "w": [6, 10], "cours": 6, "swap": 6, "ner_arabic_aqmar": [6, 18], "modifi": [6, 10, 14, 40], "american": 6, "qatari": 6, "model": [6, 8, 11, 13, 14, 15, 21, 22, 23, 24, 25, 26, 28, 30, 31, 33, 34, 35, 36, 37, 39, 44, 45, 46, 47, 48, 51, 52, 56], "aqmar": [6, 42], "c": [6, 46], "ark": 6, "modif": 6, "miscellan": 6, "mis0": 6, "mis1": 6, "mis2": 6, "mis3": 6, "merg": 6, "deviat": 6, "across": [6, 41], "alphabet": 6, "under": [6, 10, 20, 23, 44, 46], "creativ": 6, "common": [6, 20, 31, 37], "attribut": [6, 10, 20, 37], "sharealik": 6, "unport": 6, "cite": 6, "behrang": 6, "mohit": 6, "nathan": 6, "schneider": 6, "rishav": 6, "bhowmick": 6, "kemal": 6, "oflaz": 6, "noah": 6, "recal": [6, 50], "orient": 6, "eacl": 6, "ner_basqu": [6, 18], "ner_chinese_weibo": [6, 18], "weibo_n": 6, "ner_danish_dan": [6, 18], "ner_english_movie_simpl": [6, 18], "mit": 6, "ner_english_movie_complex": [6, 18], "trivia10k13": 6, "ner_english_sec_fil": [6, 18], "sec": [6, 50], "credit": 6, "risk": 6, "assess": 6, "alvarado": 6, "2015": [6, 46], "u15": 6, "1010": 6, "ner_english_restaur": [6, 18], "restaur": 6, "group": 6, "csail": 6, "sl": [6, 44, 46], "ner_english_stackoverflow": [6, 18], "stackoverflow_n": 6, "ner_english_twitt": [6, 18], "twitter_n": 6, "downoad": 6, "githubusercont": 6, "aritt": 6, "twitter_nlp": 6, "master": [6, 30], "ner_english_person": [6, 18], "person_n": 6, "person": [6, 21, 37, 42, 52], "ner_english_webpag": [6, 18], "webpages_n": 6, "design": [6, 14, 32], "challeng": [6, 8], "misconcept": 6, "ratinov": 6, "roth": 6, "w09": 6, "1119": 6, "ner_english_wnut_2020": [6, 18], "wnut_2020_ner": 6, "ner_english_wikigold": [6, 18], "wikigold": 6, "ner_finnish": [6, 18], "ner_german_biofid": [6, 18], "ner_german_europarl": [6, 18], "europarl_ner_german": 6, "Not": [6, 36], "recommend": [6, 13, 15, 28, 44], "due": 6, "heavi": 6, "ram": [6, 20], "usag": 6, "_add_iob_tag": 6, "ner_column": 6, "replac": [6, 46], "letter": [6, 14, 20, 44], "addition": [6, 8, 20, 21], "second": [6, 8, 17, 35, 36, 51, 52], "ner_german_leg": [6, 18], "ler_german": 6, "legal": [6, 42], "ner_german_germev": [6, 18], "site": 6, "germeval2014n": 6, "ner_german_polit": [6, 18], "polit": 6, "nemgp": 6, "thoma": 6, "zastrow": 6, "ner_hungarian": [6, 18], "busi": 6, "hungarian": 6, "ner_iceland": [6, 18], "icelandic_n": 6, "ner_japanes": [6, 18], "hironsan": 6, "iob2": [6, 17, 26], "japanes": [6, 23, 44, 46], "ner_masakhan": [6, 18], "luo": 6, "v2": [6, 22, 23], "masakhan": 6, "It": [6, 10, 14, 15, 17, 21, 31, 32, 35, 42, 50, 52], "african": 6, "code": [6, 8, 14, 17, 29, 30, 31, 34, 42, 43, 44, 48, 50], "ner_multi_con": [6, 18], "multicon": 6, "either": [6, 15, 20, 29, 46, 48], "switch": [6, 20], "mono": 6, "ner_multi_coner_v2": [6, 18], "use_dev_as_test": 6, "semeval2023": 6, "appli": [6, 20, 36, 48], "unpack": 6, "content": 6, "flair_cache_root": [6, 16], "leav": [6, 20], "random": [6, 16, 20, 52], "ner_multi_wikiann": [6, 18], "en": [6, 8, 16, 44, 46, 48], "wkiann": 6, "cross": [6, 20, 30], "lingual": 6, "282": 6, "elisa": 6, "ie": 6, "wikiann": 6, "abbrev": 6, "opendatacommon": 6, "abbrevi": 6, "save": [6, 8, 13, 14, 15, 17, 20, 21, 24, 25, 31, 44, 51], "though": [6, 20], "includ": [6, 8, 9, 14, 17, 20, 21, 25, 35, 40, 44, 49, 50], "aa": 6, "cho": 6, "ho": 6, "hz": 6, "jam": 6, "kj": 6, "kr": 6, "mu": 6, "olo": 6, "tcy": 6, "bioe": [6, 20], "dont": 6, "speed": [6, 14, 38, 42, 44, 53], "significantli": 6, "ner_multi_xtrem": [6, 18], "xtreme": 6, "total": [6, 20], "40": [6, 50], "ner_multi_wikin": [6, 18], "ner_swedish": [6, 18], "swedish": [6, 44, 46], "_add_iob2_tag": 6, "ner_turku": [6, 18], "finnish": [6, 44, 46], "turkun": 6, "ner_ukrainian": [6, 18], "ukrainian": [6, 42, 46], "lang": [6, 15], "keyphrase_semeval2017": [6, 18], "keyphrase_inspec": [6, 18], "keyphrase_semeval2010": [6, 18], "up_chines": [6, 18], "chines": [6, 44], "proposit": [6, 52], "bank": [6, 52], "universalproposit": 6, "up_english": [6, 18], "up_french": [6, 18], "french": [6, 42, 44, 46], "up_finnish": [6, 18], "up_german": [6, 18], "up_italian": [6, 18], "italian": [6, 44, 46], "up_spanish": [6, 18], "up_spanish_ancora": [6, 18], "ancora": 6, "ner_hipe_2022": [6, 18], "branch_nam": 6, "main": [6, 24, 32, 50], "add_document_separ": 6, "preproc_fn": 6, "2022": 6, "ajmc": 6, "hipe2020": 6, "letemp": 6, "newsey": 6, "sonar": 6, "topres19th": 6, "git": 6, "branch": [6, 30], "dev2": 6, "special": [6, 20, 22, 23, 24], "seper": [6, 8], "highli": 6, "flert": [6, 53], "approach": [6, 56], "certain": [6, 13, 14, 20, 21, 25, 49], "perform": [6, 12, 14, 15, 20, 21], "ner_icdar_europeana": [6, 18], "icdar": 6, "europeana": 6, "newspap": [6, 46], "kb": 6, "nl": [6, 42, 44, 46], "step": [6, 24, 25], "being": [6, 14], "punctuat": [6, 35], "releas": [6, 14], "centric": 6, "ocr": [6, 18, 26, 52], "error": [6, 10, 20, 31], "luisa": 6, "m\u00e4rz": 6, "schweter": [6, 53], "nina": 6, "poerner": 6, "benjamin": 6, "hinrich": 6, "sch\u00fctze": 6, "fr": [6, 42, 44, 46], "ner_nermud": [6, 18], "initil": 6, "nermud": 6, "evalita": 6, "agnost": 6, "dac": 6, "particip": [6, 20], "ask": [6, 37, 50], "among": 6, "fiction": 6, "speech": [6, 33, 39, 40, 48, 52], "dsc": 6, "deploi": 6, "abov": [6, 20, 34, 35, 43, 44, 49, 50, 51, 52], "try": [6, 42, 44, 48, 53], "accuraci": [6, 24, 36, 40, 41, 42, 43, 46, 48, 49, 50, 53], "wn": 6, "wikinew": 6, "fic": 6, "adg": 6, "gasperi": 6, "masakha_po": [6, 18], "bam": 6, "masakhapo": 6, "feideggercorpu": [7, 18], "feideggerdataset": [7, 18], "dataset_info": 7, "paralleltextcorpu": [8, 18], "source_fil": 8, "target_fil": 8, "opusparallelcorpu": [8, 18], "l1": 8, "l2": 8, "parallel": [8, 20], "opu": [8, 46], "nlpl": 8, "eu": [8, 44, 46], "tatoeba": 8, "built": [8, 54], "shorten": 8, "paralleltextdataset": [8, 18], "path_to_sourc": 8, "path_to_target": 8, "datapaircorpu": [8, 18], "involv": [8, 31], "paragraph": 8, "entri": [8, 20], "last": [8, 14, 20, 36, 48, 49], "datapair": [8, 17, 20, 26], "wise": [8, 46], "identifi": [8, 20, 22, 23, 34, 44, 49, 51], "datapairdataset": [8, 18], "path_to_data": 8, "like": [8, 16, 31, 35, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52], "rte": 8, "integ": [8, 20], "third": [8, 23, 51], "glue_rt": [8, 18], "entail": [8, 20], "recogn": [8, 20, 42], "textual": [8, 17, 20], "glue_mnli": [8, 18], "evaluate_on_match": 8, "genr": 8, "infer": [8, 17, 20], "mnli": 8, "contradict": 8, "mathc": 8, "mismatch": 8, "eval_dataset_match": 8, "eval_dataset_mismatch": 8, "glue_mrpc": [8, 18], "paraphras": 8, "microsoft": 8, "mrpc": 8, "glue_qnli": [8, 18], "qnli": 8, "glue_qqp": [8, 18], "quora": 8, "qqp": 8, "equival": 8, "glue_wnli": [8, 18], "winograd": 8, "wnli": 8, "pronoun": 8, "substitut": 8, "glue_stsb": [8, 18], "similar": [8, 14, 20, 53], "produc": [8, 45, 47, 49, 50], "suitabl": 8, "superglue_rt": [8, 18], "superglu": 8, "super": 8, "jsonl_from_eval_dataset": 8, "rte_jsonl_to_tsv": [8, 18], "universaldependenciescorpu": [9, 18], "split_multiword": 9, "u": [9, 35, 37, 40, 41, 42, 43, 48, 50, 52, 53], "ud": [9, 41, 48, 50, 52, 53], "multiword": 9, "universaldependenciesdataset": [9, 18], "path_to_conll_fil": 9, "ud_english": [9, 18, 48, 50, 52, 53], "ud_galician": [9, 18], "ud_ancient_greek": [9, 18], "ud_kazakh": [9, 18], "ud_old_church_slavon": [9, 18], "ud_armenian": [9, 18], "ud_estonian": [9, 18], "ud_german": [9, 18, 52, 53], "ud_german_hdt": [9, 18], "ud_dutch": [9, 18, 52], "ud_faroes": [9, 18], "faroes": 9, "universaldepend": 9, "farpahc": 9, "farones": 9, "western": 9, "scandinavian": 9, "60": 9, "000": 9, "100": [9, 11, 14, 20, 24, 31, 44, 46, 48], "iceland": 9, "old": [9, 17], "nors": 9, "ud_french": [9, 18], "ud_italian": [9, 18], "ud_latin": [9, 18], "ud_spanish": [9, 18], "ud_portugues": [9, 18], "ud_romanian": [9, 18], "ud_catalan": [9, 18], "ud_polish": [9, 18], "ud_czech": [9, 18], "ud_slovak": [9, 18], "ud_swedish": [9, 18], "ud_danish": [9, 18], "ud_norwegian": [9, 18], "ud_finnish": [9, 18], "ud_slovenian": [9, 18], "ud_croatian": [9, 18], "ud_serbian": [9, 18], "ud_bulgarian": [9, 18], "ud_arab": [9, 18], "ud_hebrew": [9, 18], "ud_turkish": [9, 18], "ud_ukrainian": [9, 18], "ud_persian": [9, 18], "ud_russian": [9, 18], "ud_hindi": [9, 18], "ud_indonesian": [9, 18], "ud_japanes": [9, 18], "ud_chines": [9, 18], "ud_korean": [9, 18], "ud_basqu": [9, 18], "ud_chinese_kyoto": [9, 18], "ud_greek": [9, 18], "ud_naija": [9, 18], "ud_livvi": [9, 18], "ud_buryat": [9, 18], "ud_north_sami": [9, 18], "ud_marathi": [9, 18], "ud_maltes": [9, 18], "ud_afrikaan": [9, 18], "ud_goth": [9, 18], "ud_old_french": [9, 18], "ud_wolof": [9, 18], "ud_belarusian": [9, 18], "ud_copt": [9, 18], "ud_irish": [9, 18], "ud_latvian": [9, 18], "ud_lithuanian": [9, 18], "modul": [10, 11, 12, 13, 14, 15, 20, 21, 52], "embeddings_nam": [10, 11, 12, 13, 14, 15], "would": [10, 20, 29, 31, 45, 46], "properti": [10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 25, 31], "embedding_length": [10, 11, 12, 13, 14, 15, 48], "vector": [10, 11, 12, 13, 14, 15, 17, 20, 44, 45, 47, 48, 49], "embedding_typ": [10, 12, 14, 15, 53], "emb": [10, 11, 13, 14, 20, 35, 44, 45, 46, 48, 49], "data_point": [10, 17, 20, 21, 35, 37], "updat": [10, 11, 13, 14, 27], "_add_embeddings_intern": [10, 11], "privat": [10, 20], "get_nam": [10, 11, 14], "In": [10, 11, 14, 20, 22, 28, 30, 31, 34, 36, 38, 45, 46, 48, 49, 50, 51, 53], "But": [10, 11, 14, 50], "made": [10, 11, 14], "stackedembed": [10, 11, 14, 19, 45, 46, 53], "get_named_embeddings_dict": [10, 14], "get_instance_paramet": 10, "from_param": [10, 11, 12, 14, 15], "to_param": [10, 11, 12, 14, 15], "load_embed": [10, 19], "save_embed": 10, "use_state_dict": 10, "scalarmix": [10, 19], "mixture_s": 10, "trainabl": [10, 11, 14, 20], "mix": [10, 11, 13, 14, 24, 41, 43, 46], "sever": [10, 14, 17, 20, 41, 49], "tensor": [10, 14, 15, 17, 20, 21, 24, 25, 45, 49], "weight": [10, 14, 20, 24, 25, 50], "comput": [10, 12, 13, 15, 20, 21, 44, 48, 50, 53], "parameteris": 10, "scalar": [10, 11, 25], "mixtur": 10, "n": [10, 20, 22, 24, 37, 51], "liu": 10, "2019": [10, 46], "transfer": 10, "contextu": [10, 13, 14, 46], "1903": 10, "08855": 10, "copi": [10, 14], "slightli": 10, "allennlp": 10, "apach": 10, "found": [10, 16, 17, 20, 40, 46, 48], "allenai": 10, "init": [10, 44, 45, 46, 48, 49, 51], "gamma": 10, "sum": [10, 20], "s_k": 10, "tensor_k": 10, "softmax": [10, 20], "layer": [10, 11, 13, 14, 15, 17, 20, 46, 48, 50, 51, 52, 53], "learnabl": 10, "forward": [10, 12, 13, 14, 15, 16, 20, 21, 24, 45, 46, 53], "averag": [10, 14, 20, 24, 41], "shape": [10, 20], "dimens": [10, 11, 13, 20, 48], "documentembed": [10, 11, 13, 14, 15, 19, 20, 29, 45, 48], "level": [10, 11, 13, 14, 44, 48, 51], "tokenembed": [10, 11, 13, 14, 15, 19, 20, 21, 48], "ever": 10, "register_embed": [10, 19], "transformerdocumentembed": [11, 19, 20, 45, 49, 54], "bert": [11, 14, 15, 20, 21, 45, 49], "uncas": [11, 14, 15, 20, 45, 49, 54], "layer_mean": [11, 15, 49], "is_token_embed": [11, 15], "transformerembed": [11, 14, 15, 19, 48], "onnx_cl": [11, 14, 15], "transformeronnxdocumentembed": [11, 15, 19], "bidirect": [11, 13, 14, 20, 48], "variou": [11, 14, 39, 42, 46, 49], "architectur": [11, 14, 49], "pretrained_model": [11, 14], "topmost": [11, 49], "cls_pool": [11, 15], "pool": [11, 14, 42], "strategi": [11, 20], "combin": [11, 13, 14, 20, 41, 45, 46, 52, 53], "cl": [11, 15], "max": [11, 14, 48], "fine_tun": [11, 14, 15, 24, 49, 50, 53, 54], "tune": [11, 14, 20, 33, 45, 49, 50, 53, 54, 55], "propag": [11, 13, 14, 20], "create_from_st": [11, 14, 15], "documentpoolembed": [11, 13, 19, 48], "fine_tune_mod": [11, 48], "linear": [11, 13, 14, 20, 25, 48, 50], "nonlinear": [11, 48], "min": [11, 14, 48], "extra_repr": [11, 13, 14, 21], "extra": [11, 13, 14, 21], "To": [11, 13, 14, 20, 21, 28, 29, 32, 34, 35, 36, 41, 42, 48, 49, 50, 51, 52, 53], "print": [11, 13, 14, 17, 20, 21, 25, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54], "re": [11, 13, 14, 20, 21, 35], "own": [11, 13, 14, 21, 45, 47, 51, 54, 55], "documenttfidfembed": [11, 19], "train_dataset": 11, "vectorizer_param": 11, "dataset": [11, 17, 20, 21, 24, 26, 31, 33, 36, 40, 41, 42, 43, 48, 50, 54, 55], "tfidfvector": 11, "precalcul": 11, "scikit": [11, 20], "documentrnnembed": [11, 13, 19, 48], "hidden_s": [11, 13, 20, 50, 53], "128": [11, 13, 50], "rnn_layer": [11, 13, 20], "reproject_word": [11, 13], "reproject_words_dimens": [11, 13], "dropout": [11, 13, 14, 20, 21], "word_dropout": [11, 13, 20, 21], "locked_dropout": [11, 13, 20, 21], "rnn_type": [11, 20, 48], "gru": [11, 20, 48], "rnn": [11, 14, 20, 42, 43, 53], "upon": [11, 20], "hidden": [11, 13, 14, 20, 24, 46, 48], "reproject": [11, 13, 53], "lock": [11, 13, 20, 21], "lstm": [11, 13, 14, 20, 48, 53], "finetun": 11, "documentlmembed": [11, 19], "flair_embed": 11, "sentencetransformerdocumentembed": [11, 19], "nli": 11, "sentencetransform": 11, "sentencestransform": 11, "batch": [11, 20, 21, 24, 38, 44], "documentcnnembed": [11, 19], "kernel": 11, "cnn": 11, "imageembed": [12, 19], "identityimageembed": [12, 19], "precomputedimageembed": [12, 19], "url2tensor_dict": 12, "networkimageembed": [12, 19], "convtransformnetworkimageembed": [12, 19], "feats_in": 12, "convnet_parm": 12, "posnet_parm": 12, "transformer_parm": 12, "x": [12, 13, 20, 21, 28, 42, 46, 50, 52], "overridden": [12, 15, 20, 21], "although": [12, 15, 20, 21], "recip": [12, 15, 20, 21], "within": [12, 15, 20, 21, 22], "afterward": [12, 14, 15, 20, 21, 48, 52], "former": [12, 15, 20, 21], "care": [12, 15, 20, 21, 25], "run": [12, 14, 15, 20, 21, 28, 30, 34, 42, 50, 53, 54], "regist": [12, 15, 20, 21, 25], "hook": [12, 15, 20, 21, 25], "latter": [12, 15, 20, 21, 23, 50, 52], "silent": [12, 15, 20, 21], "guarante": [13, 16], "thei": [13, 14, 24, 41, 46, 48, 50, 52], "elmoembed": [13, 19], "options_fil": 13, "weight_fil": 13, "embedding_mod": 13, "lm": [13, 14, 46], "peter": 13, "elmo": 13, "use_layers_al": 13, "use_layers_top": 13, "use_layers_averag": 13, "charlmembed": [13, 19], "detach": [13, 14, 20, 24, 25], "use_cach": 13, "cache_directori": 13, "backward": [13, 14, 24, 25, 45, 46, 53], "polish": [13, 14, 44, 46], "depend": [13, 14, 17, 20, 30, 38, 41, 46, 48, 50, 52, 53], "desir": [13, 14, 17, 52], "gradient": [13, 14, 24, 49], "dramat": [13, 14], "slow": [13, 14, 20, 49], "down": [13, 14, 20, 24, 31, 49], "often": [13, 14, 24, 35, 38, 45, 46, 48, 50, 51], "lead": [13, 14], "wors": 13, "later": 13, "retriev": [13, 17], "onc": [13, 48, 50, 52, 54], "do": [13, 20, 21, 25, 30, 34, 35, 37, 40, 41, 42, 43, 48, 49, 50, 51, 53, 54, 56], "cach": [13, 14, 16], "flairembed": [13, 14, 19, 45, 46, 48, 53], "mode": [13, 14, 20, 49, 50], "behavior": [13, 14, 42], "affect": [13, 14, 49], "batchnorm": [13, 14], "self": [13, 14, 20, 21], "documentmeanembed": [13, 19], "token_embed": [13, 15, 20], "documentlstmembed": [13, 19], "transformerwordembed": [14, 19, 20, 21, 45, 49, 53], "is_document_embed": [14, 15], "allow_long_sent": [14, 15, 49], "transformeronnxwordembed": [14, 15, 19], "patch": 14, "stride": [14, 15], "overwrite_nam": 14, "static_embed": 14, "wordembed": [14, 19, 44, 45, 46, 48, 50, 53], "force_cpu": 14, "stabl": [14, 20], "no_head": 14, "vocab": 14, "glove": [14, 44, 45, 46, 48, 50, 53], "classic": [14, 33, 45, 47, 50, 53, 56], "extvec": [14, 44], "crawl": [14, 44, 46], "plain": [14, 22, 23, 48], "matrix": [14, 20], "gpu": [14, 16, 20, 21, 24, 53], "describ": [14, 29], "2110": 14, "02861": 14, "word2vec": [14, 48], "assum": [14, 20, 22, 51], "resolve_precomputed_path": 14, "get_cached_token_index": 14, "get_vec": 14, "devic": [14, 15, 16, 17, 26, 45, 49, 50], "cast": 14, "buffer": 14, "dtype": 14, "non_block": 14, "memory_format": 14, "torch": [14, 20, 21, 24, 49], "channels_last": 14, "Its": 14, "signatur": [14, 30], "complex": 14, "integr": [14, 28], "unchang": 14, "tri": [14, 31], "asynchron": 14, "cpu": [14, 16, 20, 21, 24, 46, 50], "pin": 14, "cuda": [14, 45, 49, 50], "below": [14, 29, 50, 54], "whose": [14, 31], "4d": 14, "keyword": 14, "xdoctest": 14, "ignore_w": 14, "determinist": 14, "nn": [14, 20, 24, 26, 34, 36, 37, 38, 40, 41, 42, 43], "1913": 14, "3420": 14, "5113": 14, "2325": 14, "doubl": 14, "in_featur": 14, "out_featur": 14, "bia": 14, "float64": 14, "env": 14, "torch_doctest_cuda1": 14, "gpu1": 14, "half": 14, "1914": 14, "5112": 14, "2324": 14, "float16": 14, "cdoubl": 14, "3741": 14, "j": 14, "2382": 14, "5593": 14, "4443": 14, "complex128": 14, "6122": 14, "1150": [14, 46], "state_dict": 14, "persist": 14, "shallow": 14, "destin": 14, "prefix": [14, 20, 51], "keep_var": 14, "howev": [14, 15, 36, 41, 44, 48, 52], "enforc": 14, "futur": [14, 30], "avoid": [14, 29], "user": [14, 16, 20, 31], "ordereddict": 14, "compos": 14, "autograd": 14, "undefin": 14, "var": 14, "characterembed": [14, 19], "path_to_char_dict": 14, "char_embedding_dim": 14, "25": [14, 24, 42], "hidden_size_char": 14, "lampl": 14, "2016": 14, "toi": 14, "chars_per_chunk": [14, 20], "512": [14, 20], "with_whitespac": 14, "tokenized_lm": 14, "is_low": 14, "has_decod": [14, 20], "overfit": 14, "caution": 14, "control": [14, 20, 22, 49], "tradeoff": [14, 42], "more": [14, 17, 20, 28, 29, 30, 35, 39, 42, 44, 45, 46, 48, 50, 53], "slower": 14, "unprocess": 14, "might": [14, 21, 31, 38, 40, 48, 50], "better": [14, 20, 29, 31, 41, 48, 50, 52], "decod": [14, 20, 21, 24], "languagemodel": [14, 20, 26], "intend": 14, "pooledflairembed": [14, 19, 46], "contextual_embed": 14, "only_capit": 14, "fasttextembed": [14, 19, 44], "use_loc": 14, "oov": 14, "bin": 14, "remot": 14, "sourc": [14, 32, 46, 49], "get_cached_vec": 14, "onehotembed": [14, 19, 48], "vocab_dictionari": [14, 48], "300": [14, 46, 48], "hot": [14, 17, 20], "vocabulari": [14, 44], "dimension": [14, 44, 49], "from_corpu": [14, 48], "min_freq": [14, 17, 48], "hashembed": [14, 19], "num_embed": 14, "hash_method": 14, "md5": 14, "hash": 14, "trick": 14, "musecrosslingualembed": [14, 19], "language_cod": [14, 17], "bytepairembed": [14, 19, 48], "dim": 14, "syllabl": [14, 48], "100000": [14, 50], "cache_dir": 14, "model_file_path": [14, 48], "embedding_file_path": [14, 48], "bp": 14, "nilcembed": [14, 19], "layer_norm": 14, "layernorm": 14, "portugues": [14, 41, 44, 46], "nilc": 14, "icmc": 14, "usp": 14, "br": 14, "wang2vec": 14, "cbow": 14, "applic": 14, "600": 14, "pad_sequence_embed": [15, 19], "all_hidden_st": 15, "truncate_hidden_st": [15, 19], "hidden_st": 15, "input_id": 15, "combine_strided_tensor": [15, 19], "overflow_to_sample_map": 15, "half_strid": 15, "max_length": 15, "default_valu": 15, "fill_masked_el": [15, 19], "all_token_embed": 15, "sentence_hidden_st": 15, "mask": [15, 20], "word_id": 15, "insert_missing_embed": [15, 19], "fill_mean_token_embed": [15, 19], "token_length": 15, "document_mean_pool": [15, 19], "sentence_length": 15, "document_max_pool": [15, 19], "remove_special_markup": [15, 19], "transformerbaseembed": [15, 19], "context_length": [15, 17], "context_dropout": 15, "respect_document_boundari": [15, 17], "use_lang_emb": 15, "force_devic": 15, "force_max_length": 15, "feature_extractor": 15, "needs_manual_ocr": 15, "use_context_separ": 15, "prepar": [15, 33, 55], "won": [15, 20, 21, 30, 31, 42], "actual": [15, 20, 31, 45, 51], "pytorch": [15, 20, 44, 45, 50], "jit": 15, "onnx": 15, "to_arg": 15, "prepare_tensor": 15, "transformeronnxembed": [15, 19], "onnx_model": 15, "create_sess": 15, "remove_sess": 15, "optimize_model": 15, "optimize_model_path": 15, "use_external_data_format": 15, "wrapper": [15, 20], "onnxruntim": 15, "optim": [15, 20, 24, 25, 38, 50], "quantize_model": 15, "quantize_model_path": 15, "collect_dynamic_ax": 15, "export_from_embed": 15, "example_sent": 15, "opset_vers": 15, "14": [15, 41, 50], "pretrainedtoken": 15, "transformerjitembed": [15, 19], "jit_model": 15, "param_nam": 15, "create_from_embed": 15, "parameter_to_list": 15, "transformerjitwordembed": [15, 19], "transformerjitdocumentembed": [15, 19], "subtoken_pool": [15, 49, 53], "use_context": [15, 49, 53], "saved_config": 15, "tokenizer_data": 15, "feature_extractor_data": 15, "sub_token_length": 15, "attention_mask": 15, "pixel_valu": 15, "export_onnx": 15, "onnxformat": 15, "notic": [15, 31], "extern": 15, "henc": [15, 17], "matter": 15, "absolu": 15, "rel": 15, "trace": [15, 31], "cache_root": [16, 26], "posixpath": 16, "home": [16, 51], "runner": 16, "environ": [16, 28, 34], "variabl": [16, 20, 48], "everyth": [16, 30], "flair_devic": 16, "logger": [16, 26], "reconfigur": 16, "log": [16, 20, 24, 25], "set_se": [16, 26, 30], "seed": 16, "reproduc": [16, 31], "experi": [16, 53], "set_proxi": [16, 26], "proxi": 16, "request": [16, 17, 27], "readthedoc": 16, "latest": 16, "advanc": 16, "accord": [16, 20], "boundingbox": [17, 26], "add_unk": [17, 53], "remove_item": 17, "add_item": 17, "get_idx_for_item": 17, "get_item": 17, "get_item_for_index": 17, "idx": 17, "set_start_stop_tag": 17, "is_span_prediction_problem": 17, "start_stop_tags_are_set": 17, "savefil": 17, "load_from_fil": 17, "confid": [17, 20, 35, 37], "set_valu": 17, "to_dict": [17, 31], "shortstr": 17, "labeled_identifi": 17, "unlabeled_identifi": 17, "embedd": 17, "clear_embed": [17, 49], "add_label": [17, 35], "get_label": [17, 35, 36, 37, 40], "set_embed": 17, "get_embed": [17, 48], "get_each_embed": 17, "embedding_nam": [17, 20], "has_label": 17, "add_metadata": 17, "get_metadata": 17, "has_metadata": 17, "typenam": 17, "set_label": 17, "remove_label": [17, 20], "zero_tag_valu": [17, 20], "start_posit": 17, "end_posit": 17, "whitespace_aft": 17, "_partofsent": 17, "tree": 17, "add_tags_proba_dist": 17, "get_tags_proba_dist": 17, "get_head": 17, "fragment": 17, "pretoken": 17, "langdetect": 17, "pypi": 17, "superordin": 17, "get_rel": 17, "get_span": 17, "get_token": [17, 35], "token_id": 17, "left_context": 17, "right_context": 17, "to_tagged_str": [17, 50, 51, 52], "main_label": 17, "to_tokenized_str": 17, "to_plain_str": 17, "infer_space_aft": 17, "heurist": [17, 23], "wish": [17, 20, 21, 44, 45, 48, 49], "to_original_text": 17, "stop": [17, 25, 35, 50], "get_language_cod": 17, "next_sent": 17, "next": [17, 25, 35, 48], "context": [17, 21, 31, 49, 53], "through": [17, 20, 28, 32, 35, 36, 38, 40, 45], "elsewher": 17, "previous_sent": 17, "previou": [17, 20, 35], "is_context_set": 17, "rtype": [17, 20], "els": [17, 20], "copy_context_from_sent": 17, "set_context_for_sent": 17, "dt2": [17, 21], "imageurl": 17, "downsampl": [17, 50, 52, 53], "percentag": [17, 24], "downsample_train": 17, "downsample_dev": 17, "downsample_test": 17, "filter_empty_sent": 17, "filter_long_sent": 17, "max_charlength": 17, "make_vocab_dictionari": 17, "max_token": 17, "than": [17, 20, 24, 34, 42, 48, 49, 50], "frequent": 17, "greater": 17, "occur": [17, 31, 46, 48], "limit": 17, "obtain_statist": 17, "pretty_print": 17, "statist": [17, 50, 52], "distribut": [17, 51], "account": [17, 20], "make_label_dictionari": [17, 21, 50, 52, 53, 54], "min_count": 17, "add_dev_test": 17, "add_label_nois": 17, "noise_shar": 17, "noise_transition_matrix": 17, "nois": 17, "chosen": [17, 20], "simul": 17, "uniqu": [17, 22, 23, 48], "said": 17, "probabl": [17, 20, 21, 48], "flip": 17, "relev": [17, 25], "get_label_distribut": 17, "get_all_sent": 17, "concatdataset": 17, "make_tag_dictionari": 17, "gather": 17, "task_id": [17, 20], "kwd": 17, "concatflairdataset": [17, 26], "assembl": 17, "cumsum": 17, "cumulative_s": 17, "cummulative_s": 17, "iob1": 17, "randomly_split_into_two_dataset": [17, 26], "length_of_first": 17, "get_spans_from_bio": [17, 26], "bioes_tag": 17, "bioes_scor": 17, "biomed": [18, 26, 52], "document_classif": [18, 26, 52], "entity_link": [18, 26, 52], "relation_extract": [18, 26, 52], "sequence_label": [18, 26, 52], "text_imag": [18, 26], "text_text": [18, 26, 52], "legaci": [19, 26], "spanclassifi": [20, 26], "label_dictionari": [20, 21, 54], "pooling_oper": 20, "first_last": [20, 49], "candid": 20, "classifierarg": 20, "defaultclassifi": [20, 21, 26], "goe": [20, 46], "abl": [20, 48], "unk": [20, 21, 48, 50], "known": 20, "entitylink": 20, "candidategener": 20, "emb_first": 20, "emb_last": 20, "emb_firstandlast": 20, "emb_mean": 20, "model_path": [20, 21], "is_forward_lm": 20, "nlayer": 20, "embedding_s": 20, "nout": 20, "document_delimit": [20, 24], "recurrent_typ": 20, "recurr": 20, "init_weight": 20, "set_hidden": 20, "ordered_sequence_length": 20, "init_hidden": 20, "bsz": 20, "get_represent": 20, "start_mark": 20, "end_mark": 20, "get_output": 20, "repackage_hidden": 20, "histori": [20, 24, 25], "load_language_model": 20, "model_fil": [20, 21], "load_checkpoint": [20, 24], "save_checkpoint": 20, "epoch": [20, 24, 25, 31, 50], "loss": [20, 21, 24, 25, 50], "generate_text": 20, "number_of_charact": 20, "temperatur": 20, "break_on_suffix": 20, "calculate_perplex": 20, "lemmat": [20, 26], "rnn_input_s": 20, "rnn_hidden_s": 20, "256": [20, 50, 53], "encode_charact": 20, "char_dict": 20, "max_sequence_length_dependent_on_input": 20, "max_sequence_length": 20, "use_attent": 20, "beam_siz": 20, "start_symbol_for_encod": 20, "end_symbol_for_encod": 20, "bidirectional_encod": 20, "hand": [20, 48], "mayb": [20, 31], "input_s": 20, "hypothesi": 20, "unknown": [20, 21, 50], "itself": [20, 35, 51], "precis": [20, 24, 25, 50], "longest": 20, "plu": [20, 48, 50], "max_sequence_length_dependend_on_input": 20, "attent": 20, "sensibl": 20, "via": [20, 28, 30, 35], "words_to_char_indic": 20, "end_symbol": 20, "start_symbol": 20, "padding_in_front": 20, "seq_length": 20, "sequence_length": [20, 24], "alwai": [20, 21, 28, 30, 44, 49], "toeken": 20, "end_index": 20, "start_index": 20, "front": 20, "dummy_index": 20, "back": [20, 35, 40], "forward_pass": 20, "decoder_input_indic": 20, "initial_hidden_st": 20, "all_encoder_output": 20, "encoder_input_indic": 20, "token_embedding_hidden": 20, "encode_token": 20, "forward_loss": [20, 21], "backpropag": [20, 21], "enabl": [20, 21, 25, 53], "mini_batch_s": [20, 21, 24, 25, 38, 50, 53, 54], "16": [20, 24, 50], "return_probabilities_for_all_class": [20, 21], "verbos": [20, 21], "return_loss": [20, 21], "embedding_storage_mod": [20, 21], "send": 20, "simultan": 20, "batching_in_rnn": 20, "best": [20, 21, 24, 36, 45, 46, 49], "consol": 20, "unus": [20, 21], "gold_label_typ": [20, 21], "out_path": [20, 21], "delet": [20, 21, 24], "freshli": [20, 21, 24], "recomput": [20, 21, 24], "main_evaluation_metr": [20, 21, 24], "metric": [20, 21, 24, 25], "highlight": [20, 21], "main_scor": [20, 21, 25], "exclude_label": [20, 21, 24], "gold_label_dictionari": [20, 21], "textpairclassifi": [20, 21, 26], "embed_separ": 20, "textclassifi": [20, 21, 26, 50, 54], "newli": 20, "multi_label": [20, 21], "forc": [20, 24], "multi_label_threshold": [20, 21], "threshold": [20, 50], "loss_weight": [20, 21], "unspecifi": 20, "get_used_token": [20, 21], "textpairregressor": [20, 26], "reducetransformervocabmixin": [20, 21], "regress": [20, 52], "32": [20, 21, 24, 50, 53], "micro": [20, 21, 24, 50], "avg": [20, 21, 24, 25, 50], "f1": [20, 21, 24, 25, 40, 41, 42, 43, 50], "relationclassifi": [20, 26], "entity_label_typ": 20, "entity_pair_label": 20, "entity_threshold": 20, "cross_augment": 20, "encoding_strategi": 20, "relation_classifier_model": 20, "typedentitymark": 20, "allow_unk_tag": 20, "encodedsent": 20, "rc": 20, "contrast": 20, "founded_bi": 20, "tail": 20, "larri": 20, "sergei": 20, "brin": 20, "product": [20, 43], "docstr": 20, "zhou": 20, "2102": 20, "01373": 20, "go": [20, 40, 51], "tagger": [20, 33, 34, 36, 37, 38, 40, 41, 42, 43, 54, 55], "born_in": [20, 40], "loc": [20, 34, 37, 40, 42, 51], "meaning": [20, 29, 48], "advis": [20, 50], "disabl": 20, "ineffici": [20, 42], "augment": 20, "encodedsentenec": 20, "transform_corpu": 20, "encodingstrategi": 20, "conform": 20, "protocol": 20, "remain": 20, "underli": 20, "_valid_ent": 20, "_entiti": 20, "_entity_pair_permut": 20, "permut": 20, "along": 20, "py": [20, 30, 31], "meth": 20, "gold_label": 20, "_encode_sent": 20, "induc": 20, "_encode_sentence_for_infer": 20, "exactli": [20, 44], "therefor": [20, 21, 28, 35, 41], "_encode_sentence_for_train": 20, "transform_sent": 20, "procedur": [20, 50], "transform_dataset": 20, "_get_data_points_from_sent": [20, 21], "directli": [20, 21, 37, 48, 52], "mini": [20, 21, 24, 38], "displai": [20, 21], "progress": [20, 21], "bar": [20, 21], "relationextractor": [20, 21, 26], "entity_pair_filt": 20, "train_on_gold_pairs_onli": [20, 21], "regexptagg": [20, 26], "capabl": [20, 48], "regexp": 20, "r": [20, 28, 30], "quot": [20, 51], "multilabel": 20, "compil": 20, "violat": 20, "except": [20, 25, 49], "registered_label": 20, "register_label": 20, "_label": 20, "complex_label": 20, "registered_map": 20, "sequencetagg": [20, 21, 26, 30, 50, 53], "tag_dictionari": [20, 50, 53], "use_rnn": [20, 53], "tag_format": 20, "use_crf": [20, 53], "reproject_embed": [20, 53], "05": [20, 21, 24, 42], "train_initial_hidden_st": 20, "init_from_state_dict": 20, "allow_unk_predict": 20, "parameter": 20, "multitask": 20, "becom": 20, "condit": 20, "imit": 20, "crf": [20, 53], "_init_loss_weight": 20, "_init_initial_hidden_st": 20, "num_direct": 20, "direct": [20, 40], "rnn_input_dim": 20, "sentence_tensor": 20, "network": [20, 21], "longtensor": 20, "inttensor": 20, "_get_scores_from_featur": 20, "featur": [20, 21], "pad": 20, "smaller": [20, 44], "trim": 20, "tagset": 20, "_get_gold_label": 20, "force_token_predict": 20, "predict_span": 20, "_standard_infer": 20, "probabilities_for_all_class": 20, "emiss": 20, "_all_scores_for_token": 20, "_get_state_dict": [20, 21], "push_to_hub": 20, "repo_id": 20, "commit_messag": 20, "upload": 20, "face": 20, "namespac": 20, "repo": 20, "authent": 20, "messag": [20, 29], "commit": [20, 30], "push": 20, "tokenclassifi": [20, 21, 26], "span_encod": 20, "wordtagg": [20, 26], "12": [20, 32, 36, 41, 50], "fewshotclassifi": [20, 26], "tars_embed": 20, "popul": 20, "cosin": 20, "num_negative_labels_to_sampl": 20, "measur": 20, "distanc": 20, "_compute_label_similarity_for_current_epoch": 20, "get_current_label_dictionari": 20, "get_current_label_typ": 20, "is_current_task_multi_label": 20, "add_and_switch_to_new_task": 20, "task_nam": 20, "force_switch": 20, "tar": 20, "final": [20, 24, 49, 50, 54], "choic": [20, 48], "depict": 20, "problem": [20, 31, 53], "list_existing_task": 20, "switch_to_task": 20, "previous": [20, 51], "predict_zero_shot": 20, "candidate_label_set": 20, "zero": [20, 21], "shot": 20, "tarsclassifi": [20, 26], "tagger_arg": 20, "backend": 20, "inflat": 20, "static_label_typ": 20, "tars_label": 20, "label_match": 20, "ye": 20, "label_no_match": 20, "NO": 20, "against": [20, 36, 50], "That": [20, 21, 31, 45, 46], "consider": 20, "beta": [20, 40], "anneal": [20, 25, 50], "label_threshold": 20, "force_label": 20, "activ": 20, "minibatch": 20, "bigger": 20, "rapid": 20, "consum": 20, "all_tag_prob": 20, "doesn": [20, 30, 31], "tarstagg": [20, 26], "belong": 20, "most_probable_first": 20, "textregressor": [20, 26], "document_embed": [20, 48, 54], "forward_labels_and_loss": 20, "clusteringmodel": [20, 26], "sklearn": 20, "clustermixin": 20, "baseestim": 20, "algorithm": [20, 22, 23], "calcul": [20, 21, 48, 49], "_convert_dataset": 20, "return_label_dict": 20, "compat": 20, "turn": [20, 22], "y": 20, "ref": 20, "multitaskmodel": [20, 26], "loss_factor": 20, "use_all_task": 20, "act": 20, "done": [20, 50], "hard": [20, 36, 52], "child": 20, "task_0": 20, "task_1": 20, "teh": 20, "factor": 20, "count": 20, "predictarg": 20, "noqa": [20, 21, 24], "e501": [20, 21, 24], "split_batch_to_task_id": 20, "all_task": 20, "randomli": [20, 21, 48], "deactiv": [20, 53], "evaluate_al": 20, "evalarg": 20, "underneath": 20, "_init_model_with_state_dict": [20, 21], "lockeddropout": [21, 26], "dropout_r": 21, "batch_first": 21, "inplac": 21, "drop": 21, "entir": [21, 35, 38, 45], "worddropout": [21, 26], "inherit": [21, 24, 52], "ensur": [21, 28, 30, 31], "fair": 21, "comparison": [21, 48], "final_embedding_s": 21, "inverse_model": 21, "should_embed_sent": 21, "thu": [21, 42, 43, 46, 48, 51], "_filter_data_point": 21, "_get_data_points_for_batch": 21, "_get_label_of_datapoint": 21, "downstream": [21, 48], "model_card": 21, "checkpoint": [21, 24], "print_model_card": 21, "prototypicaldecod": [21, 26], "num_prototyp": 21, "embeddings_s": 21, "prototype_s": 21, "distance_funct": 21, "euclidean": 21, "use_radiu": 21, "min_radiu": 21, "unlabeled_dist": 21, "unlabeled_idx": 21, "learning_mod": 21, "joint": 21, "normal_distributed_initial_prototyp": 21, "labelverbalizerdecod": [21, 26], "label_embed": 21, "idea": [21, 31, 50], "siames": 21, "bi": 21, "label_encod": 21, "context_embed": 21, "ucnas": 21, "label_verbalizer_decod": 21, "verbalize_label": 21, "verbal": 21, "verbalized_label": 21, "subdivid": 22, "moreov": [22, 23], "segtok": [22, 23, 35], "librari": [22, 23, 24, 31, 35, 51], "fnl": [22, 23], "spacysentencesplitt": [22, 26], "spaci": [22, 23], "spacytoken": [22, 23, 26], "en_core_sci_sm": [22, 23], "conveni": 22, "tagsentencesplitt": [22, 26], "newlinesentencesplitt": [22, 26], "newlin": 22, "marker": 22, "sentencetagsplitt": 22, "nosentencesplitt": [22, 26], "hood": 23, "parti": 23, "dedic": [23, 45, 50], "rule": 23, "indo": 23, "european": [23, 41], "run_token": 23, "japanesetoken": [23, 26], "sudachi_mod": 23, "konoha": 23, "popular": [23, 44], "mecab": 23, "janom": 23, "sudachipi": 23, "himkt": 23, "tokenizerwrapp": [23, 26], "tokenizer_func": 23, "interfac": [23, 24], "distinguish": [23, 42], "modeltrain": [24, 26, 50, 53, 54], "pluggabl": [24, 25, 26], "valid_ev": [24, 25], "_training_except": 24, "_training_fin": [24, 25], "after_evalu": [24, 25], "after_setup": [24, 25], "after_train": [24, 25], "after_training_batch": [24, 25], "after_training_epoch": [24, 25], "after_training_loop": 24, "before_training_batch": 24, "before_training_epoch": [24, 25], "before_training_optimizer_step": 24, "metric_record": [24, 25], "training_interrupt": 24, "reset_training_attribut": 24, "check_for_and_delete_previous_best_model": 24, "get_batch_step": 24, "mini_batch_chunk_s": [24, 53], "_backward": 24, "plugin": [24, 26], "anneal_factor": [24, 25], "patienc": [24, 25], "min_learning_r": [24, 25], "0001": 24, "initial_extra_pati": [24, 25], "anneal_with_restart": [24, 25], "learning_r": [24, 50, 53, 54], "decoder_learning_r": 24, "eval_batch_s": 24, "64": 24, "max_epoch": [24, 25, 50, 53, 54], "sgd": [24, 50], "train_with_dev": [24, 25], "train_with_test": 24, "monitor_test": 24, "monitor_train_sampl": 24, "use_final_model_for_ev": 24, "gold_label_dictionary_for_ev": 24, "shuffle_first_epoch": 24, "embeddings_storage_mod": 24, "save_final_model": 24, "save_optimizer_st": [24, 25], "save_model_each_k_epoch": [24, 25], "create_file_log": 24, "create_loss_fil": 24, "write_weight": 24, "attach_default_schedul": 24, "warmup_fract": [24, 25], "5e": 24, "adamw": [24, 50], "use_amp": 24, "train_custom": 24, "max_grad_norm": 24, "larger": 24, "broken": 24, "purpos": [24, 48], "termin": 24, "surpass": 24, "adam": 24, "macro": [24, 25, 43, 50], "exclud": 24, "flairsampl": 24, "could": [24, 25, 31, 49, 51, 54], "continu": 24, "alongsid": 24, "k": [24, 25], "trainerplugin": [24, 25, 26], "test_scor": 24, "metrichistoryplugin": [24, 25, 26], "_initialize_model_card": 24, "training_paramet": 24, "card": 24, "languagemodeltrain": [24, 26], "test_mod": 24, "10000": 24, "optimizer_st": 24, "scaler_st": 24, "grow_to_sequence_length": 24, "data_sourc": 24, "_repackage_hidden": 24, "checkpoint_fil": 24, "textcorpu": [24, 26], "character_level": 24, "random_case_flip": 24, "ampplugin": [25, 26], "opt_level": 25, "amp": 25, "attach": [25, 35, 37], "kw": 25, "annealingplugin": [25, 26], "logic": 25, "store_learning_r": 25, "schedul": [25, 50], "target": 25, "annealonplateau": 25, "batch_growth_ann": 25, "current_model_is_best": 25, "validation_scor": 25, "checkpointplugin": [25, 26], "linearschedulerplugin": [25, 26], "linearschedulerwithwarmup": 25, "dataset_s": 25, "earli": [25, 50], "optimizer_was_run": 25, "cycl": 25, "decai": 25, "weightextractorplugin": [25, 26], "batch_no": 25, "total_number_of_batch": 25, "logfileplugin": [25, 26], "close_file_handl": 25, "lossfileplugin": [25, 26], "metrics_to_collect": 25, "manag": [25, 46], "dev_loss_histori": 25, "dev_score_histori": 25, "train_loss_histori": 25, "tensorboardlogg": [25, 26], "log_dir": 25, "tracked_metr": 25, "tensorboard": 25, "append": 25, "shall": 25, "plot": 25, "close": [25, 29], "writer": 25, "baseplugin": [25, 26], "attach_to": 25, "mark_func_as_hook": 25, "func": 25, "trigger": [25, 52], "first_arg": 25, "other_arg": 25, "convienc": 25, "syntax": [25, 30, 41], "some_ev": 25, "another_ev": 25, "dispatch": 25, "react": 25, "append_plugin": 25, "validate_ev": 25, "register_hook": 25, "emit": 25, "remove_hook": 25, "traininginterrupt": [25, 26], "interrupt": 25, "loop": 25, "metricnam": [25, 26], "metricrecord": [25, 26], "global_step": 25, "typ": 25, "walltim": 25, "recordtyp": 25, "anyth": 25, "time_step": 25, "increment": 25, "again": [25, 45, 51], "joined_nam": 25, "scalar_list": 25, "histogram": 25, "is_typ": 25, "is_scalar": 25, "is_scalar_list": 25, "is_str": 25, "is_histogram": 25, "flair": [26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 51, 54, 55], "trainer": [26, 53, 54], "good": [27, 42, 46, 50], "issu": [27, 29, 32], "pull": 27, "contributor": [28, 32, 40, 41, 42], "look": [28, 48, 49, 50, 51, 52], "deeper": 28, "suggest": 28, "clone": 28, "unit": [28, 35, 40, 41], "around": [28, 38], "hopefulli": 28, "easi": [28, 30, 36, 54], "python": [28, 34, 51], "sure": [28, 31, 44], "oldest": 28, "prefer": 28, "pip": [28, 30, 34], "instal": [28, 30, 33], "typecheck": 28, "execut": [28, 51], "pytest": 28, "basic": [28, 30, 33], "runintegr": 28, "style": [28, 52], "formatt": 28, "black": 28, "ruff": 28, "properli": 28, "root": 28, "happi": 29, "contribut": [29, 32, 41, 42], "awesom": [29, 49], "unnecessari": 29, "side": 29, "stick": 29, "concern": 29, "discuss": [29, 50], "hate": 29, "finish": 29, "pr": 29, "decid": [29, 50], "ticket": 29, "did": 29, "gh": 29, "42": [29, 50], "endus": 30, "someth": [30, 31, 40, 48], "lie": 30, "ate": 30, "whenev": 30, "accordingli": 30, "reflect": 30, "realiti": 30, "usabl": 30, "anoth": [30, 38], "markdown": 30, "rst": 30, "myst": 30, "understand": [30, 31, 37, 41, 45, 47], "md": 30, "liner": 30, "explan": 30, "temporarili": 30, "smv_branch_whitelist": 30, "pattern": 30, "sphinx": 30, "multivers": 30, "doc_build": 30, "great": [31, 48], "feedback": 31, "guidelin": [31, 32], "insight": 31, "There": [31, 49, 50, 56], "unrel": 31, "potenti": 31, "didn": 31, "ran": 31, "collect_env": 31, "minim": [31, 41, 50], "sai": [31, 35], "realli": 31, "encount": 31, "ok": [31, 36], "recreat": 31, "manni": 31, "quicker": 31, "spend": 31, "debug": 31, "show": [31, 34, 35, 37, 39, 41, 42, 43, 45, 47, 50, 51, 52, 53, 54], "verifi": 31, "enough": [31, 51], "easier": 31, "judg": 31, "know": [31, 34, 36, 50, 52], "lack": 31, "wrong": 31, "multitagg": 31, "cannot": 31, "clearli": 31, "resolv": [31, 36], "tracker": 32, "art": [32, 41, 42, 46, 50, 53, 54, 55], "tutori": [32, 35, 37, 40, 41, 42, 43, 45, 50, 51, 52, 53, 54], "doc": [32, 48], "depth": 32, "guid": 32, "codebas": 32, "translat": 32, "flowchart": 32, "numpi": 32, "quick": [33, 40], "summari": 33, "thing": [33, 39, 50, 56], "let": [34, 35, 36, 37, 40, 42, 43, 45, 50, 51, 52, 53], "discov": 34, "minut": 34, "favorit": 34, "virtual": 34, "simpli": [34, 44, 45, 46, 48, 49, 50, 52, 53], "love": [34, 38, 50], "york": 34, "goal": 34, "analysi": [34, 35, 43, 54], "essenti": 34, "now": [34, 35, 44, 45, 46, 48, 49, 50, 51, 53], "9982": 34, "congrat": [34, 50], "explain": [35, 49, 50, 56], "familiar": 35, "grass": [35, 44, 45, 46, 48, 49], "green": [35, 44, 45, 46, 48, 49], "tell": [35, 40, 41, 42], "atom": 35, "printout": [35, 41, 42], "lexic": [35, 48], "illustr": [35, 36, 37, 55], "color": 35, "mandatori": 35, "sometim": [35, 45, 48], "importantli": 35, "bring": 35, "togeth": [35, 37, 40, 48], "overal": [35, 43, 50], "pointer": 35, "As": [36, 37, 40, 42, 43, 50, 51, 53], "ship": [36, 39, 40, 41, 42, 43], "experiment": [36, 40], "linker": 36, "attempt": 36, "kirk": 36, "spock": 36, "met": 36, "enterpris": 36, "james_t": 36, "_kirk": 36, "9969": 36, "9971": [36, 40], "uss_enterprise_": 36, "ncc": 36, "1701": 36, "975": [36, 50], "barcelona": 36, "bad": [36, 43, 50], "eh": 36, "quit": [36, 53], "trek": 36, "fan": 36, "short": 36, "bayern": 36, "plai": [36, 38], "took": 36, "fc_bayern_munich": 36, "fc_barcelona": 36, "soccer": 36, "club": 36, "fc": 36, "munich": 36, "citi": 36, "georg": [37, 40, 41, 42, 51], "washington": [37, 40, 41, 42, 51], "went": [37, 41, 42, 51], "9989": 37, "9942": 37, "bracket": 37, "998886227607727": 37, "9942097663879395": 37, "showcas": [39, 41, 42], "tour": 40, "crazi": 40, "These": [40, 46, 48], "propbank": 40, "sort": [40, 51], "evok": 40, "curiou": 40, "hi": [40, 44, 46], "hat": 40, "01": 40, "9951": 40, "02": [40, 50], "6361": 40, "detector": 40, "distinct": [40, 44, 46], "verb": [40, 41, 50, 52], "noun": [40, 41, 50, 52], "brown": 40, "fox": 40, "jump": 40, "lazi": 40, "dog": 40, "np": 40, "9914": 40, "vp": 40, "pp": 40, "9967": 40, "9991": 40, "form": 40, "born": 40, "express": 40, "relationship": 40, "extractor": 40, "9847": 40, "96": [40, 41, 42, 43], "47": [40, 41], "22": [40, 50], "97": [40, 41], "54": [40, 42], "31": [40, 42, 52], "negat": 40, "specul": 40, "scholarli": 40, "indirect": 40, "redewiedergab": [40, 46], "87": [40, 41, 42, 43], "94": [40, 42], "report": [40, 50, 53], "free": 40, "univer": 41, "fundament": [41, 46], "offer": [41, 42, 43, 48], "dirk": 41, "nnp": [41, 52], "vbd": [41, 52], "IN": [41, 52], "proper": 41, "past": [41, 46], "tens": [41, 52], "consult": 41, "penn": 41, "dort": 41, "hatt": 41, "er": [41, 49], "einen": 41, "hut": 41, "gekauft": 41, "adv": [41, 50, 52], "vafin": 41, "pper": 41, "vvpp": 41, "\u0441\u044c\u043e\u0433\u043e\u0434\u043d\u0456": 41, "\u0432": 41, "\u0437\u043d\u0430\u043c": 41, "\u044f\u043d\u0446\u0456": 41, "\u043f\u0440\u043e\u0436\u0438\u0432\u0430\u044e\u0442\u044c": 41, "\u043d\u0430\u0449\u0430\u0434\u043a\u0438": 41, "\u043f\u043e\u0435\u0442\u0430": 41, "\u0440\u043e\u0434\u0438\u043d\u0430": 41, "\u0448\u043a\u043e\u0434\u0438": 41, "\u0639\u0645\u0631\u0648": 41, "\u0639\u0627\u062f\u0644\u064a": 41, "\u0623\u0633\u062a\u0627\u0630": 41, "\u0644\u0644\u0627\u0642\u062a\u0635\u0627\u062f": 41, "\u0627\u0644\u0633\u064a\u0627\u0633\u064a": 41, "\u0627\u0644\u0645\u0633\u0627\u0639\u062f": 41, "\u0641\u064a": 41, "\u0627\u0644\u062c\u0627\u0645\u0639\u0629": 41, "\u0627\u0644\u0623\u0645\u0631\u064a\u0643\u064a\u0629": 41, "\u0628\u0627\u0644\u0642\u0627\u0647\u0631\u0629": 41, "syntact": [41, 46, 52], "langag": 41, "multilingu": [41, 42, 48, 53], "kauft": 41, "break": 41, "readabl": [41, 45, 52], "propn": [41, 50, 52], "adp": [41, 50, 52], "punct": [41, 50, 52], "pron": [41, 50, 52], "det": [41, 50, 52], "98": [41, 43, 50, 52], "19": 41, "acc": 41, "92": [41, 42], "88": [41, 50], "dialect": 41, "hdt": 41, "93": [41, 42, 50], "06": [41, 42], "da": [41, 42, 44], "danish": [41, 42, 44], "amaliepauli": [41, 42], "malayalam": 41, "83": [41, 43], "sabiqueqb": 41, "pt": [41, 44, 46, 50, 54], "clinic": [41, 46], "pucpr": 41, "lucasferrohailab": 41, "dchaplinski": [41, 42, 46], "appropri": [41, 42, 44, 46, 50, 51, 54], "brows": [41, 42], "fastest": 42, "ging": 42, "nach": 42, "\u0627\u062d\u0628": 42, "\u0628\u0631\u0644\u064a\u0646": 42, "On": 42, "septemb": 42, "1st": 42, "dollar": 42, "watch": 42, "game": 42, "throne": 42, "monei": 42, "work_of_art": 42, "hunflair": 42, "abnorm": 42, "fmr1": 42, "ko2": 42, "mous": 42, "fragil": 42, "syndrom": 42, "bioner": 42, "75": [42, 43], "09": [42, 50], "24": [42, 50], "89": 42, "90": 42, "86": 42, "66": 42, "84": [42, 50], "ler": 42, "35": 42, "wikin": 42, "aij": 42, "wp3": 42, "95": [42, 50], "57": 42, "mhham": [42, 46], "2002": [42, 52], "58": 42, "79": 42, "distilbert": [43, 54], "notabl": 43, "varieti": [43, 45, 47], "9929": 43, "9999": 43, "71": 43, "fall": [44, 50], "komnino": 44, "glove_embed": [44, 45, 48], "few": 44, "turian": 44, "ro": 44, "romanian": 44, "ca": 44, "catalan": 44, "sv": [44, 46], "norwegian": [44, 46], "fi": [44, 46], "pl": [44, 46], "cz": 44, "czech": [44, 46], "sk": 44, "slovak": 44, "slovenian": [44, 46], "sr": 44, "serbian": 44, "hr": [44, 46], "croatian": [44, 46], "bg": [44, 46], "bulgarian": [44, 46], "ru": 44, "russian": 44, "he": [44, 46], "hebrew": [44, 46], "tr": 44, "turkish": 44, "fa": [44, 46], "persian": [44, 46], "ja": [44, 46], "ko": 44, "korean": 44, "zh": 44, "hindi": [44, 46], "indonesian": [44, 46], "basqu": [44, 46], "german_embed": 44, "altern": [44, 49, 53], "custom_embed": 44, "gensim": [44, 48], "correctli": [44, 50], "snippet": [44, 52], "word_vector": 44, "keyedvector": 44, "load_word2vec_format": 44, "reason": [45, 47], "caus": 45, "0323": [45, 49], "3904": [45, 49], "1946": [45, 49], "1296": 45, "5806": 45, "3973": 45, "2652": 45, "1337": 45, "4473": 45, "1641": 45, "1374": 45, "3688": 45, "8292": 45, "4068": 45, "7717": 45, "7722": 45, "1152": 45, "3661": 45, "3570": 45, "6573": 45, "1441": 45, "1772": 45, "5911": 45, "2236": 45, "0497": 45, "chapter": [45, 50], "flair_embedding_forward": [45, 46], "flair_embedding_backward": 45, "stacked_embed": [45, 46], "power": [46, 53], "captur": 46, "latent": 46, "beyond": 46, "explicit": 46, "notion": 46, "surround": 46, "With": [46, 52], "jw300": 46, "agi\u0107": 46, "vuli\u0107": 46, "cc": 46, "BY": 46, "nc": 46, "subtitl": 46, "friendli": 46, "billion": 46, "europarl": 46, "setim": 46, "v0": 46, "earlier": 46, "hamburg": 46, "anzeig": 46, "wz": 46, "wiener": 46, "zeitung": 46, "rw": 46, "iamyihwa": 46, "matirojasg": 46, "frtacoa": 46, "439m": 46, "2048": 46, "borchmann": 46, "commoncrawl": 46, "ericlief": 46, "opensubtitles2018": 46, "ta": 46, "tamil": 46, "jessepeng": 46, "until": 46, "swiss": 46, "luxembourgish": 46, "chronicl": 46, "america": 46, "materi": 46, "am": 46, "amhar": 46, "5m": 46, "offici": 46, "ubertext": 46, "flair_de_forward": 46, "And": [46, 48, 50], "flair_bg_backward": 46, "constantli": 46, "evolv": 46, "global": 46, "oper": 46, "ineffect": 46, "nearli": [46, 48], "mostli": 48, "prior": 48, "Such": 48, "rare": 48, "unless": 48, "upo": [48, 50, 52, 53], "18": [48, 50], "precomput": 48, "subword": [48, 49], "heinzerl": 48, "strube": 48, "fraction": 48, "275": 48, "200": [48, 50], "sentencepiec": 48, "m": 48, "w2v": 48, "sky": 48, "blue": 48, "off": 48, "besid": 48, "document_lstm_embed": 48, "immedi": 48, "happen": [48, 50], "hyperparamet": 48, "xlnet": 49, "roberta": [49, 53], "maxim": 49, "greatli": 49, "768": 49, "1536": 49, "9984": 49, "xl": 49, "puppet": 49, "pupp": 49, "subtoken": 49, "oktoberfest": 49, "world": 49, "largest": 49, "volksfest": 49, "setup": [49, 53], "routin": 49, "1305": 49, "1365": 49, "4323": 49, "grad_fn": 49, "catbackward": 49, "decis": 50, "label_dict": [50, 53, 54], "script": [50, 53, 54], "17": [50, 52], "07": 50, "38": 50, "014": 50, "016": 50, "017": 50, "020": 50, "022": 50, "023": 50, "storag": 50, "025": 50, "28409882": 50, "2611": 50, "lr": 50, "474": 50, "13510367": 50, "45": 50, "3143": 50, "21": 50, "910": 50, "02619775": 50, "3434": 50, "167": 50, "95288554": 50, "3783": 50, "76": 50, "504": 50, "86820018": 50, "48": 50, "4171": 50, "843": 50, "80507526": 50, "82": 50, "4557": 50, "72": 50, "118": 50, "74217397": 50, "4878": 50, "00": 50, "420": 50, "69161746": 50, "5072": 50, "705": 50, "63837577": 50, "68": 50, "5260": 50, "972": 50, "58915523": 50, "5394": 50, "33": 50, "977": 50, "5892": 50, "567": 50, "009714126586914": 50, "579": 50, "monitor": 50, "At": 50, "7732": 50, "6329": 50, "7199": 50, "407": 50, "9263": 50, "9843": 50, "9544": 50, "319": 50, "7521": 50, "6938": 50, "7218": 50, "258": 50, "7782": 50, "9300": 50, "8474": 50, "8559": 50, "9515": 50, "9011": 50, "206": 50, "6585": 50, "6398": 50, "6490": 50, "211": 50, "adj": [50, 52], "5654": 50, "6914": 50, "6221": 50, "175": 50, "9572": 50, "8995": 50, "9275": 50, "199": 50, "aux": [50, 52], "8609": 50, "8784": 50, "8696": 50, "148": 50, "5052": 50, "5000": 50, "5026": 50, "cconj": [50, 52], "9833": 50, "9077": 50, "9440": 50, "65": 50, "num": [50, 52], "5435": 50, "3289": 50, "4098": 50, "9091": 50, "7143": 50, "8000": 50, "56": 50, "sconj": [50, 52], "7083": 50, "5667": 50, "6296": 50, "30": 50, "sym": [50, 52], "3333": 50, "2143": 50, "2609": 50, "0000": 50, "15": 50, "intj": [50, 52], "2491": 50, "6504": 50, "6247": 50, "7635": 50, "7655": 50, "breakdown": 50, "1254": 50, "208": [50, 52], "handi": 50, "manipul": 50, "ll": 50, "crucial": 50, "launch": 50, "fo": 50, "halv": 50, "150": [50, 53], "mechan": 50, "workflow": 50, "invok": 50, "gave": 50, "p": 51, "sam": 51, "houston": 51, "stai": 51, "len": [51, 52], "command": 51, "excel": 51, "delimit": 51, "label_top": 51, "label_subtop": 51, "practic": 51, "label_1": 51, "label_2": 51, "therebi": 51, "topic": 51, "yourself": 51, "chose": 51, "denot": 51, "drive": 52, "morpholog": 52, "morph": 52, "Into": 52, "googleo": 52, "wp": 52, "readi": 52, "bunch": 52, "ratio": 52, "downsampled_corpu": 52, "12543": 52, "2077": 52, "1255": 52, "201": 52, "upos_dictionari": 52, "abcd": 52, "12036": 52, "verbform": 52, "10122": 52, "prontyp": 52, "9744": 52, "9381": 52, "mood": 52, "8911": 52, "8747": 52, "7148": 52, "definit": 52, "6851": 52, "6486": 52, "gender": 52, "2824": 52, "numtyp": 52, "2771": 52, "poss": 52, "2516": 52, "voic": 52, "1085": 52, "typo": 52, "399": 52, "extpo": 52, "185": 52, "abbr": 52, "168": 52, "reflex": 52, "foreign": 52, "pos_dictionari": 52, "tense_dictionari": 52, "singular": 52, "plural": 52, "question_class": [52, 54], "english_corpu": 52, "german_corpu": 52, "dutch_corpu": 52, "multi_corpu": 52, "layout": 52, "sytem": 53, "tuneabl": 53, "WITH": 53, "xlm": 53, "bare": 53, "bone": 53, "sota": 53, "0e": [53, 54], "compon": 53, "frozen": 53, "exchang": 53, "rest": 53, "reach": 54, "eiffel": 54, "tower": 54, "broad": 56}, "objects": {"": [[16, 0, 0, "-", "flair"]], "flair": [[16, 1, 1, "", "cache_root"], [17, 0, 0, "-", "data"], [16, 1, 1, "", "device"], [16, 1, 1, "", "logger"], [20, 0, 0, "-", "models"], [21, 0, 0, "-", "nn"], [16, 6, 1, "", "set_proxies"], [16, 6, 1, "", "set_seed"], [22, 0, 0, "-", "splitter"], [23, 0, 0, "-", "tokenization"], [24, 0, 0, "-", "trainers"]], "flair.data": [[17, 2, 1, "", "BoundingBox"], [17, 2, 1, "", "ConcatFlairDataset"], [17, 2, 1, "", "Corpus"], [17, 2, 1, "", "DataPair"], [17, 2, 1, "", "DataPoint"], [17, 2, 1, "", "Dictionary"], [17, 2, 1, "", "FlairDataset"], [17, 2, 1, "", "Image"], [17, 2, 1, "", "Label"], [17, 2, 1, "", "MultiCorpus"], [17, 2, 1, "", "Relation"], [17, 2, 1, "", "Sentence"], [17, 2, 1, "", "Span"], [17, 2, 1, "", "Token"], [17, 6, 1, "", "get_spans_from_bio"], [17, 6, 1, "", "iob2"], [17, 6, 1, "", "randomly_split_into_two_datasets"]], "flair.data.BoundingBox": [[17, 3, 1, "", "bottom"], [17, 3, 1, "", "left"], [17, 3, 1, "", "right"], [17, 3, 1, "", "top"]], "flair.data.ConcatFlairDataset": [[17, 4, 1, "", "cummulative_sizes"], [17, 5, 1, "", "cumsum"], [17, 3, 1, "", "cumulative_sizes"], [17, 3, 1, "", "datasets"]], "flair.data.Corpus": [[17, 5, 1, "", "add_label_noise"], [17, 4, 1, "", "dev"], [17, 5, 1, "", "downsample"], [17, 5, 1, "", "filter_empty_sentences"], [17, 5, 1, "", "filter_long_sentences"], [17, 5, 1, "", "get_all_sentences"], [17, 5, 1, "", "get_label_distribution"], [17, 5, 1, "", "make_label_dictionary"], [17, 5, 1, "", "make_tag_dictionary"], [17, 5, 1, "", "make_vocab_dictionary"], [17, 5, 1, "", "obtain_statistics"], [17, 4, 1, "", "test"], [17, 4, 1, "", "train"]], "flair.data.DataPair": [[17, 5, 1, "", "clear_embeddings"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.DataPoint": [[17, 5, 1, "", "add_label"], [17, 5, 1, "", "add_metadata"], [17, 5, 1, "", "clear_embeddings"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_each_embedding"], [17, 5, 1, "", "get_embedding"], [17, 5, 1, "", "get_label"], [17, 5, 1, "", "get_labels"], [17, 5, 1, "", "get_metadata"], [17, 5, 1, "", "has_label"], [17, 5, 1, "", "has_metadata"], [17, 4, 1, "", "labels"], [17, 5, 1, "", "remove_labels"], [17, 4, 1, "", "score"], [17, 5, 1, "", "set_embedding"], [17, 5, 1, "", "set_label"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "tag"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Dictionary": [[17, 5, 1, "", "add_item"], [17, 5, 1, "", "get_idx_for_item"], [17, 5, 1, "", "get_idx_for_items"], [17, 5, 1, "", "get_item_for_index"], [17, 5, 1, "", "get_items"], [17, 5, 1, "", "is_span_prediction_problem"], [17, 5, 1, "", "load"], [17, 5, 1, "", "load_from_file"], [17, 5, 1, "", "remove_item"], [17, 5, 1, "", "save"], [17, 5, 1, "", "set_start_stop_tags"], [17, 5, 1, "", "start_stop_tags_are_set"]], "flair.data.FlairDataset": [[17, 5, 1, "", "is_in_memory"]], "flair.data.Image": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Label": [[17, 4, 1, "", "labeled_identifier"], [17, 4, 1, "", "score"], [17, 5, 1, "", "set_value"], [17, 4, 1, "", "shortstring"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"], [17, 4, 1, "", "value"]], "flair.data.Relation": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "tag"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Sentence": [[17, 5, 1, "", "__init__"], [17, 5, 1, "", "clear_embeddings"], [17, 5, 1, "", "copy_context_from_sentence"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_labels"], [17, 5, 1, "", "get_language_code"], [17, 5, 1, "", "get_relations"], [17, 5, 1, "", "get_span"], [17, 5, 1, "", "get_spans"], [17, 5, 1, "", "get_token"], [17, 5, 1, "", "infer_space_after"], [17, 5, 1, "", "is_context_set"], [17, 5, 1, "", "left_context"], [17, 5, 1, "", "next_sentence"], [17, 5, 1, "", "previous_sentence"], [17, 5, 1, "", "remove_labels"], [17, 5, 1, "", "right_context"], [17, 5, 1, "", "set_context_for_sentences"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to"], [17, 5, 1, "", "to_dict"], [17, 5, 1, "", "to_original_text"], [17, 5, 1, "", "to_plain_string"], [17, 5, 1, "", "to_tagged_string"], [17, 5, 1, "", "to_tokenized_string"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Span": [[17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.data.Token": [[17, 5, 1, "", "add_label"], [17, 5, 1, "", "add_tags_proba_dist"], [17, 4, 1, "", "embedding"], [17, 4, 1, "", "end_position"], [17, 5, 1, "", "get_head"], [17, 5, 1, "", "get_tags_proba_dist"], [17, 4, 1, "", "idx"], [17, 5, 1, "", "set_label"], [17, 4, 1, "", "start_position"], [17, 4, 1, "", "text"], [17, 5, 1, "", "to_dict"], [17, 4, 1, "", "unlabeled_identifier"]], "flair.datasets": [[0, 0, 0, "-", "base"], [1, 0, 0, "-", "biomedical"], [2, 0, 0, "-", "document_classification"], [3, 0, 0, "-", "entity_linking"], [4, 0, 0, "-", "ocr"], [5, 0, 0, "-", "relation_extraction"], [6, 0, 0, "-", "sequence_labeling"], [7, 0, 0, "-", "text_image"], [8, 0, 0, "-", "text_text"], [9, 0, 0, "-", "treebanks"]], "flair.datasets.base": [[0, 2, 1, "", "DataLoader"], [0, 2, 1, "", "FlairDatapointDataset"], [0, 2, 1, "", "MongoDataset"], [0, 2, 1, "", "SentenceDataset"], [0, 2, 1, "", "StringDataset"], [0, 6, 1, "", "find_train_dev_test_files"]], "flair.datasets.base.DataLoader": [[0, 3, 1, "", "batch_size"], [0, 3, 1, "", "dataset"], [0, 3, 1, "", "drop_last"], [0, 3, 1, "", "num_workers"], [0, 3, 1, "", "pin_memory"], [0, 3, 1, "", "pin_memory_device"], [0, 3, 1, "", "prefetch_factor"], [0, 3, 1, "", "sampler"], [0, 3, 1, "", "timeout"]], "flair.datasets.base.FlairDatapointDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.base.MongoDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.base.SentenceDataset": [[0, 5, 1, "", "__init__"]], "flair.datasets.base.StringDataset": [[0, 5, 1, "", "__init__"], [0, 5, 1, "", "is_in_memory"]], "flair.datasets.biomedical": [[1, 2, 1, "", "ANAT_EM"], [1, 2, 1, "", "AZDZ"], [1, 2, 1, "", "BC2GM"], [1, 2, 1, "", "BIGBIO_NER_CORPUS"], [1, 2, 1, "", "BIOBERT_CHEMICAL_BC4CHEMD"], [1, 2, 1, "", "BIOBERT_CHEMICAL_BC5CDR"], [1, 2, 1, "", "BIOBERT_DISEASE_BC5CDR"], [1, 2, 1, "", "BIOBERT_DISEASE_NCBI"], [1, 2, 1, "", "BIOBERT_GENE_BC2GM"], [1, 2, 1, "", "BIOBERT_GENE_JNLPBA"], [1, 2, 1, "", "BIOBERT_SPECIES_LINNAEUS"], [1, 2, 1, "", "BIOBERT_SPECIES_S800"], [1, 2, 1, "", "BIONLP2013_CG"], [1, 2, 1, "", "BIONLP2013_PC"], [1, 2, 1, "", "BIOSEMANTICS"], [1, 2, 1, "", "BIO_INFER"], [1, 2, 1, "", "BioBertHelper"], [1, 2, 1, "", "BioNLPCorpus"], [1, 2, 1, "", "CDR"], [1, 2, 1, "", "CELL_FINDER"], [1, 2, 1, "", "CEMP"], [1, 2, 1, "", "CHEBI"], [1, 2, 1, "", "CHEMDNER"], [1, 2, 1, "", "CLL"], [1, 2, 1, "", "CRAFT"], [1, 2, 1, "", "CRAFT_V4"], [1, 2, 1, "", "CoNLLWriter"], [1, 2, 1, "", "DECA"], [1, 2, 1, "", "DpEntry"], [1, 2, 1, "", "Entity"], [1, 2, 1, "", "FSU"], [1, 2, 1, "", "GELLUS"], [1, 2, 1, "", "GPRO"], [1, 2, 1, "", "HUNER_CELL_LINE"], [1, 2, 1, "", "HUNER_CELL_LINE_BIOID"], [1, 2, 1, "", "HUNER_CELL_LINE_BIORED"], [1, 2, 1, "", "HUNER_CELL_LINE_CELL_FINDER"], [1, 2, 1, "", "HUNER_CELL_LINE_CLL"], [1, 2, 1, "", "HUNER_CELL_LINE_GELLUS"], [1, 2, 1, "", "HUNER_CELL_LINE_JNLPBA"], [1, 2, 1, "", "HUNER_CELL_LINE_TMVAR_V3"], [1, 2, 1, "", "HUNER_CHEMICAL"], [1, 2, 1, "", "HUNER_CHEMICAL_BIOID"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_CHEMICAL_BIONLP_ST_2013_PC"], [1, 2, 1, "", "HUNER_CHEMICAL_BIORED"], [1, 2, 1, "", "HUNER_CHEMICAL_CDR"], [1, 2, 1, "", "HUNER_CHEMICAL_CEMP"], [1, 2, 1, "", "HUNER_CHEMICAL_CHEBI"], [1, 2, 1, "", "HUNER_CHEMICAL_CHEMDNER"], [1, 2, 1, "", "HUNER_CHEMICAL_CPI"], [1, 2, 1, "", "HUNER_CHEMICAL_CRAFT_V4"], [1, 2, 1, "", "HUNER_CHEMICAL_DRUGPROT"], [1, 2, 1, "", "HUNER_CHEMICAL_NLM_CHEM"], [1, 2, 1, "", "HUNER_CHEMICAL_SCAI"], [1, 2, 1, "", "HUNER_DISEASE"], [1, 2, 1, "", "HUNER_DISEASE_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_DISEASE_BIORED"], [1, 2, 1, "", "HUNER_DISEASE_CDR"], [1, 2, 1, "", "HUNER_DISEASE_MIRNA"], [1, 2, 1, "", "HUNER_DISEASE_NCBI"], [1, 2, 1, "", "HUNER_DISEASE_PDR"], [1, 2, 1, "", "HUNER_DISEASE_SCAI"], [1, 2, 1, "", "HUNER_DISEASE_VARIOME"], [1, 2, 1, "", "HUNER_GENE"], [1, 2, 1, "", "HUNER_GENE_BC2GM"], [1, 2, 1, "", "HUNER_GENE_BIOID"], [1, 2, 1, "", "HUNER_GENE_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_EPI"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_GE"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2011_REL"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2013_GE"], [1, 2, 1, "", "HUNER_GENE_BIONLP_ST_2013_PC"], [1, 2, 1, "", "HUNER_GENE_BIORED"], [1, 2, 1, "", "HUNER_GENE_BIO_INFER"], [1, 2, 1, "", "HUNER_GENE_CELL_FINDER"], [1, 2, 1, "", "HUNER_GENE_CHEBI"], [1, 2, 1, "", "HUNER_GENE_CPI"], [1, 2, 1, "", "HUNER_GENE_CRAFT_V4"], [1, 2, 1, "", "HUNER_GENE_DECA"], [1, 2, 1, "", "HUNER_GENE_DRUGPROT"], [1, 2, 1, "", "HUNER_GENE_FSU"], [1, 2, 1, "", "HUNER_GENE_GNORMPLUS"], [1, 2, 1, "", "HUNER_GENE_GPRO"], [1, 2, 1, "", "HUNER_GENE_IEPA"], [1, 2, 1, "", "HUNER_GENE_JNLPBA"], [1, 2, 1, "", "HUNER_GENE_LOCTEXT"], [1, 2, 1, "", "HUNER_GENE_MIRNA"], [1, 2, 1, "", "HUNER_GENE_NLM_GENE"], [1, 2, 1, "", "HUNER_GENE_OSIRIS"], [1, 2, 1, "", "HUNER_GENE_PROGENE"], [1, 2, 1, "", "HUNER_GENE_SETH_CORPUS"], [1, 2, 1, "", "HUNER_GENE_TMVAR_V3"], [1, 2, 1, "", "HUNER_GENE_VARIOME"], [1, 2, 1, "", "HUNER_SPECIES"], [1, 2, 1, "", "HUNER_SPECIES_BIOID"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP2013_CG"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP_ST_2011_ID"], [1, 2, 1, "", "HUNER_SPECIES_BIONLP_ST_2019_BB"], [1, 2, 1, "", "HUNER_SPECIES_BIORED"], [1, 2, 1, "", "HUNER_SPECIES_CELL_FINDER"], [1, 2, 1, "", "HUNER_SPECIES_CHEBI"], [1, 2, 1, "", "HUNER_SPECIES_CRAFT_V4"], [1, 2, 1, "", "HUNER_SPECIES_LINNEAUS"], [1, 2, 1, "", "HUNER_SPECIES_LOCTEXT"], [1, 2, 1, "", "HUNER_SPECIES_MIRNA"], [1, 2, 1, "", "HUNER_SPECIES_S800"], [1, 2, 1, "", "HUNER_SPECIES_TMVAR_V3"], [1, 2, 1, "", "HUNER_SPECIES_VARIOME"], [1, 2, 1, "", "HunerDataset"], [1, 2, 1, "", "HunerJNLPBA"], [1, 2, 1, "", "HunerMiRNAHelper"], [1, 2, 1, "", "HunerMultiCorpus"], [1, 2, 1, "", "IEPA"], [1, 2, 1, "", "InternalBioNerDataset"], [1, 2, 1, "", "JNLPBA"], [1, 2, 1, "", "KaewphanCorpusHelper"], [1, 2, 1, "", "LINNEAUS"], [1, 2, 1, "", "LOCTEXT"], [1, 2, 1, "", "MIRNA"], [1, 2, 1, "", "NCBI_DISEASE"], [1, 2, 1, "", "OSIRIS"], [1, 2, 1, "", "PDR"], [1, 2, 1, "", "S800"], [1, 2, 1, "", "SCAI_CHEMICALS"], [1, 2, 1, "", "SCAI_DISEASE"], [1, 2, 1, "", "ScaiCorpus"], [1, 2, 1, "", "VARIOME"], [1, 6, 1, "", "bioc_to_internal"], [1, 6, 1, "", "brat_to_internal"], [1, 6, 1, "", "filter_and_map_entities"], [1, 6, 1, "", "filter_nested_entities"], [1, 6, 1, "", "merge_datasets"]], "flair.datasets.biomedical.ANAT_EM": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_files"]], "flair.datasets.biomedical.AZDZ": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.BC2GM": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"], [1, 5, 1, "", "parse_test_dataset"], [1, 5, 1, "", "parse_train_dataset"]], "flair.datasets.biomedical.BIGBIO_NER_CORPUS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "bin_search_passage"], [1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"], [1, 5, 1, "", "to_internal_dataset"]], "flair.datasets.biomedical.BIONLP2013_CG": [[1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.BIONLP2013_PC": [[1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.BIOSEMANTICS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.BIO_INFER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.BioBertHelper": [[1, 5, 1, "", "convert_and_write"], [1, 5, 1, "", "download_corpora"]], "flair.datasets.biomedical.BioNLPCorpus": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_files"]], "flair.datasets.biomedical.CDR": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"]], "flair.datasets.biomedical.CELL_FINDER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_prepare"], [1, 5, 1, "", "read_folder"]], "flair.datasets.biomedical.CEMP": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dev_corpus"], [1, 5, 1, "", "download_train_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.CHEBI": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "get_entities"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.CHEMDNER": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"]], "flair.datasets.biomedical.CLL": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.CRAFT": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.CRAFT_V4": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "filter_entities"], [1, 5, 1, "", "parse_corpus"], [1, 5, 1, "", "prepare_splits"]], "flair.datasets.biomedical.CoNLLWriter": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "process_dataset"], [1, 5, 1, "", "write_to_conll"]], "flair.datasets.biomedical.DECA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.DpEntry": [[1, 3, 1, "", "entity_count"], [1, 3, 1, "", "entity_lengths_sum"], [1, 3, 1, "", "last_entity"], [1, 3, 1, "", "position_end"]], "flair.datasets.biomedical.Entity": [[1, 5, 1, "", "contains"], [1, 5, 1, "", "is_before"], [1, 5, 1, "", "overlaps"]], "flair.datasets.biomedical.FSU": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.biomedical.GELLUS": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.GPRO": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dev_corpus"], [1, 5, 1, "", "download_train_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_CLL": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CELL_LINE_TMVAR_V3": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP2013_CG": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CDR": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CHEBI": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_CRAFT_V4": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_BIONLP2013_CG": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_DISEASE_CDR": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_MIRNA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_subset"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_NCBI": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_PDR": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_SCAI": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_DISEASE_VARIOME": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_BC2GM": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP2013_CG": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_BIO_INFER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_CHEBI": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_CPI": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_CRAFT_V4": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_DECA": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_DRUGPROT": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_FSU": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_GPRO": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_IEPA": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_JNLPBA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_LOCTEXT": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_MIRNA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_subset"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_NLM_GENE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_OSIRIS": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_GENE_PROGENE": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_GENE_VARIOME": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_BIOID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIONLP2013_CG": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_BIORED": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_CHEBI": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_CRAFT_V4": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_LOCTEXT": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_MIRNA": [[1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_subset"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_S800": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HUNER_SPECIES_TMVAR_V3": [[1, 5, 1, "", "build_corpus_directory_name"], [1, 5, 1, "", "get_entity_type_mapping"]], "flair.datasets.biomedical.HUNER_SPECIES_VARIOME": [[1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HunerDataset": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "get_corpus_sentence_splitter"], [1, 5, 1, "", "get_subset"], [1, 5, 1, "", "split_url"], [1, 5, 1, "", "to_internal"]], "flair.datasets.biomedical.HunerJNLPBA": [[1, 5, 1, "", "download_and_prepare_test"], [1, 5, 1, "", "download_and_prepare_train"], [1, 5, 1, "", "read_file"]], "flair.datasets.biomedical.HunerMiRNAHelper": [[1, 5, 1, "", "get_mirna_subset"]], "flair.datasets.biomedical.IEPA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.JNLPBA": [[1, 5, 1, "", "__init__"]], "flair.datasets.biomedical.KaewphanCorpusHelper": [[1, 5, 1, "", "download_cll_dataset"], [1, 5, 1, "", "download_gellus_dataset"], [1, 5, 1, "", "prepare_and_save_dataset"], [1, 5, 1, "", "read_dataset"]], "flair.datasets.biomedical.LINNEAUS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_parse_dataset"]], "flair.datasets.biomedical.LOCTEXT": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.MIRNA": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_and_prepare_test"], [1, 5, 1, "", "download_and_prepare_train"], [1, 5, 1, "", "parse_file"]], "flair.datasets.biomedical.NCBI_DISEASE": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_file"], [1, 5, 1, "", "patch_training_file"]], "flair.datasets.biomedical.OSIRIS": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.PDR": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"]], "flair.datasets.biomedical.S800": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_dataset"]], "flair.datasets.biomedical.SCAI_CHEMICALS": [[1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "perform_corpus_download"]], "flair.datasets.biomedical.SCAI_DISEASE": [[1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "perform_corpus_download"]], "flair.datasets.biomedical.ScaiCorpus": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_corpus"], [1, 5, 1, "", "parse_input_file"]], "flair.datasets.biomedical.VARIOME": [[1, 5, 1, "", "__init__"], [1, 5, 1, "", "download_dataset"], [1, 5, 1, "", "parse_corpus"]], "flair.datasets.document_classification": [[2, 2, 1, "", "AMAZON_REVIEWS"], [2, 2, 1, "", "COMMUNICATIVE_FUNCTIONS"], [2, 2, 1, "", "CSVClassificationCorpus"], [2, 2, 1, "", "CSVClassificationDataset"], [2, 2, 1, "", "ClassificationCorpus"], [2, 2, 1, "", "ClassificationDataset"], [2, 2, 1, "", "GERMEVAL_2018_OFFENSIVE_LANGUAGE"], [2, 2, 1, "", "GLUE_COLA"], [2, 2, 1, "", "GLUE_SST2"], [2, 2, 1, "", "GO_EMOTIONS"], [2, 2, 1, "", "IMDB"], [2, 2, 1, "", "NEWSGROUPS"], [2, 2, 1, "", "SENTEVAL_CR"], [2, 2, 1, "", "SENTEVAL_MPQA"], [2, 2, 1, "", "SENTEVAL_MR"], [2, 2, 1, "", "SENTEVAL_SST_BINARY"], [2, 2, 1, "", "SENTEVAL_SST_GRANULAR"], [2, 2, 1, "", "SENTEVAL_SUBJ"], [2, 2, 1, "", "SENTIMENT_140"], [2, 2, 1, "", "STACKOVERFLOW"], [2, 2, 1, "", "TREC_50"], [2, 2, 1, "", "TREC_6"], [2, 2, 1, "", "WASSA_ANGER"], [2, 2, 1, "", "WASSA_FEAR"], [2, 2, 1, "", "WASSA_JOY"], [2, 2, 1, "", "WASSA_SADNESS"], [2, 2, 1, "", "YAHOO_ANSWERS"]], "flair.datasets.document_classification.AMAZON_REVIEWS": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "download_and_prepare_amazon_product_file"]], "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.CSVClassificationCorpus": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.CSVClassificationDataset": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "is_in_memory"]], "flair.datasets.document_classification.ClassificationCorpus": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.ClassificationDataset": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "is_in_memory"]], "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.GLUE_COLA": [[2, 5, 1, "", "__init__"], [2, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.document_classification.GLUE_SST2": [[2, 3, 1, "", "label_map"], [2, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.document_classification.GO_EMOTIONS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.IMDB": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.NEWSGROUPS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_CR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_MPQA": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_MR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SST_BINARY": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTEVAL_SUBJ": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.SENTIMENT_140": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.STACKOVERFLOW": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.TREC_50": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.TREC_6": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_ANGER": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_FEAR": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_JOY": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.WASSA_SADNESS": [[2, 5, 1, "", "__init__"]], "flair.datasets.document_classification.YAHOO_ANSWERS": [[2, 5, 1, "", "__init__"]], "flair.datasets.entity_linking": [[3, 2, 1, "", "NEL_ENGLISH_AIDA"], [3, 2, 1, "", "NEL_ENGLISH_AQUAINT"], [3, 2, 1, "", "NEL_ENGLISH_IITB"], [3, 2, 1, "", "NEL_ENGLISH_REDDIT"], [3, 2, 1, "", "NEL_ENGLISH_TWEEKI"], [3, 2, 1, "", "NEL_GERMAN_HIPE"], [3, 2, 1, "", "WSD_MASC"], [3, 2, 1, "", "WSD_OMSTI"], [3, 2, 1, "", "WSD_RAGANATO_ALL"], [3, 2, 1, "", "WSD_SEMCOR"], [3, 2, 1, "", "WSD_TRAINOMATIC"], [3, 2, 1, "", "WSD_UFSAC"], [3, 2, 1, "", "WSD_WORDNET_GLOSS_TAGGED"], [3, 2, 1, "", "ZELDA"], [3, 6, 1, "", "determine_tsv_file"], [3, 6, 1, "", "from_ufsac_to_tsv"]], "flair.datasets.entity_linking.NEL_ENGLISH_AIDA": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_IITB": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT": [[3, 5, 1, "", "__init__"], [3, 5, 1, "", "_fill_annot_array"], [3, 5, 1, "", "_fill_curr_comment"], [3, 5, 1, "", "_text_to_cols"]], "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.NEL_GERMAN_HIPE": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_MASC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_OMSTI": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_RAGANATO_ALL": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_SEMCOR": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_TRAINOMATIC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_UFSAC": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED": [[3, 5, 1, "", "__init__"]], "flair.datasets.entity_linking.ZELDA": [[3, 5, 1, "", "__init__"]], "flair.datasets.ocr": [[4, 2, 1, "", "OcrCorpus"], [4, 2, 1, "", "OcrJsonDataset"], [4, 2, 1, "", "SROIE"]], "flair.datasets.ocr.OcrCorpus": [[4, 5, 1, "", "__init__"]], "flair.datasets.ocr.OcrJsonDataset": [[4, 5, 1, "", "__init__"], [4, 5, 1, "", "is_in_memory"]], "flair.datasets.ocr.SROIE": [[4, 5, 1, "", "__init__"]], "flair.datasets.relation_extraction": [[5, 2, 1, "", "RE_ENGLISH_CONLL04"], [5, 2, 1, "", "RE_ENGLISH_DRUGPROT"], [5, 2, 1, "", "RE_ENGLISH_SEMEVAL2010"], [5, 2, 1, "", "RE_ENGLISH_TACRED"], [5, 6, 1, "", "convert_ptb_token"]], "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04": [[5, 5, 1, "", "convert_to_conllu"]], "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "char_spans_to_token_spans"], [5, 5, 1, "", "drugprot_document_to_tokenlists"], [5, 5, 1, "", "extract_and_convert_to_conllu"], [5, 5, 1, "", "has_overlap"]], "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "extract_and_convert_to_conllu"]], "flair.datasets.relation_extraction.RE_ENGLISH_TACRED": [[5, 5, 1, "", "__init__"], [5, 5, 1, "", "extract_and_convert_to_conllu"]], "flair.datasets.sequence_labeling": [[6, 2, 1, "", "BIOSCOPE"], [6, 2, 1, "", "CONLL_03"], [6, 2, 1, "", "CONLL_03_DUTCH"], [6, 2, 1, "", "CONLL_03_GERMAN"], [6, 2, 1, "", "CONLL_03_SPANISH"], [6, 2, 1, "", "CONLL_2000"], [6, 2, 1, "", "ColumnCorpus"], [6, 2, 1, "", "ColumnDataset"], [6, 2, 1, "", "FEWNERD"], [6, 2, 1, "", "JsonlCorpus"], [6, 2, 1, "", "JsonlDataset"], [6, 2, 1, "", "KEYPHRASE_INSPEC"], [6, 2, 1, "", "KEYPHRASE_SEMEVAL2010"], [6, 2, 1, "", "KEYPHRASE_SEMEVAL2017"], [6, 2, 1, "", "MASAKHA_POS"], [6, 2, 1, "", "MultiFileColumnCorpus"], [6, 2, 1, "", "MultiFileJsonlCorpus"], [6, 2, 1, "", "NER_ARABIC_ANER"], [6, 2, 1, "", "NER_ARABIC_AQMAR"], [6, 2, 1, "", "NER_BASQUE"], [6, 2, 1, "", "NER_CHINESE_WEIBO"], [6, 2, 1, "", "NER_DANISH_DANE"], [6, 2, 1, "", "NER_ENGLISH_MOVIE_COMPLEX"], [6, 2, 1, "", "NER_ENGLISH_MOVIE_SIMPLE"], [6, 2, 1, "", "NER_ENGLISH_PERSON"], [6, 2, 1, "", "NER_ENGLISH_RESTAURANT"], [6, 2, 1, "", "NER_ENGLISH_SEC_FILLINGS"], [6, 2, 1, "", "NER_ENGLISH_STACKOVERFLOW"], [6, 2, 1, "", "NER_ENGLISH_TWITTER"], [6, 2, 1, "", "NER_ENGLISH_WEBPAGES"], [6, 2, 1, "", "NER_ENGLISH_WIKIGOLD"], [6, 2, 1, "", "NER_ENGLISH_WNUT_2020"], [6, 2, 1, "", "NER_FINNISH"], [6, 2, 1, "", "NER_GERMAN_BIOFID"], [6, 2, 1, "", "NER_GERMAN_EUROPARL"], [6, 2, 1, "", "NER_GERMAN_GERMEVAL"], [6, 2, 1, "", "NER_GERMAN_LEGAL"], [6, 2, 1, "", "NER_GERMAN_POLITICS"], [6, 2, 1, "", "NER_HIPE_2022"], [6, 2, 1, "", "NER_HUNGARIAN"], [6, 2, 1, "", "NER_ICDAR_EUROPEANA"], [6, 2, 1, "", "NER_ICELANDIC"], [6, 2, 1, "", "NER_JAPANESE"], [6, 2, 1, "", "NER_MASAKHANE"], [6, 2, 1, "", "NER_MULTI_CONER"], [6, 2, 1, "", "NER_MULTI_CONER_V2"], [6, 2, 1, "", "NER_MULTI_WIKIANN"], [6, 2, 1, "", "NER_MULTI_WIKINER"], [6, 2, 1, "", "NER_MULTI_XTREME"], [6, 2, 1, "", "NER_NERMUD"], [6, 2, 1, "", "NER_SWEDISH"], [6, 2, 1, "", "NER_TURKU"], [6, 2, 1, "", "NER_UKRAINIAN"], [6, 2, 1, "", "ONTONOTES"], [6, 2, 1, "", "UP_CHINESE"], [6, 2, 1, "", "UP_ENGLISH"], [6, 2, 1, "", "UP_FINNISH"], [6, 2, 1, "", "UP_FRENCH"], [6, 2, 1, "", "UP_GERMAN"], [6, 2, 1, "", "UP_ITALIAN"], [6, 2, 1, "", "UP_SPANISH"], [6, 2, 1, "", "UP_SPANISH_ANCORA"], [6, 2, 1, "", "WNUT_17"]], "flair.datasets.sequence_labeling.CONLL_03": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_DUTCH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_GERMAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_03_SPANISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.CONLL_2000": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ColumnCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ColumnDataset": [[6, 3, 1, "", "FEATS"], [6, 3, 1, "", "HEAD"], [6, 3, 1, "", "SPACE_AFTER_KEY"], [6, 5, 1, "", "__init__"], [6, 5, 1, "", "is_in_memory"]], "flair.datasets.sequence_labeling.JsonlCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.JsonlDataset": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_label_to_sentence"], [6, 5, 1, "", "is_in_memory"]], "flair.datasets.sequence_labeling.MASAKHA_POS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.MultiFileColumnCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.MultiFileJsonlCorpus": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ARABIC_ANER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_IOB_tags"]], "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_HIPE_2022": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_HUNGARIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_ICELANDIC": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_JAPANESE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MASAKHANE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_CONER": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_MULTI_XTREME": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_NERMUD": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_SWEDISH": [[6, 5, 1, "", "__init__"], [6, 5, 1, "", "_add_IOB2_tags"]], "flair.datasets.sequence_labeling.NER_TURKU": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.NER_UKRAINIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.ONTONOTES": [[6, 5, 1, "", "_process_coref_span_annotations_for_word"], [6, 3, 1, "", "archive_url"], [6, 5, 1, "", "dataset_document_iterator"], [6, 5, 1, "", "get_available_domains"], [6, 5, 1, "", "sentence_iterator"]], "flair.datasets.sequence_labeling.UP_CHINESE": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_ENGLISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_FINNISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_FRENCH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_GERMAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_ITALIAN": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_SPANISH": [[6, 5, 1, "", "__init__"]], "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA": [[6, 5, 1, "", "__init__"]], "flair.datasets.text_image": [[7, 2, 1, "", "FeideggerCorpus"], [7, 2, 1, "", "FeideggerDataset"]], "flair.datasets.text_image.FeideggerDataset": [[7, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text": [[8, 2, 1, "", "DataPairCorpus"], [8, 2, 1, "", "DataPairDataset"], [8, 2, 1, "", "GLUE_MNLI"], [8, 2, 1, "", "GLUE_MRPC"], [8, 2, 1, "", "GLUE_QNLI"], [8, 2, 1, "", "GLUE_QQP"], [8, 2, 1, "", "GLUE_RTE"], [8, 2, 1, "", "GLUE_STSB"], [8, 2, 1, "", "GLUE_WNLI"], [8, 2, 1, "", "OpusParallelCorpus"], [8, 2, 1, "", "ParallelTextCorpus"], [8, 2, 1, "", "ParallelTextDataset"], [8, 2, 1, "", "SUPERGLUE_RTE"], [8, 6, 1, "", "rte_jsonl_to_tsv"]], "flair.datasets.text_text.DataPairCorpus": [[8, 5, 1, "", "__init__"]], "flair.datasets.text_text.DataPairDataset": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.GLUE_MNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_MRPC": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_QNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_QQP": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_RTE": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_STSB": [[8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.GLUE_WNLI": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "tsv_from_eval_dataset"]], "flair.datasets.text_text.OpusParallelCorpus": [[8, 5, 1, "", "__init__"]], "flair.datasets.text_text.ParallelTextCorpus": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.ParallelTextDataset": [[8, 5, 1, "", "is_in_memory"]], "flair.datasets.text_text.SUPERGLUE_RTE": [[8, 5, 1, "", "__init__"], [8, 5, 1, "", "jsonl_from_eval_dataset"]], "flair.datasets.treebanks": [[9, 2, 1, "", "UD_AFRIKAANS"], [9, 2, 1, "", "UD_ANCIENT_GREEK"], [9, 2, 1, "", "UD_ARABIC"], [9, 2, 1, "", "UD_ARMENIAN"], [9, 2, 1, "", "UD_BASQUE"], [9, 2, 1, "", "UD_BELARUSIAN"], [9, 2, 1, "", "UD_BULGARIAN"], [9, 2, 1, "", "UD_BURYAT"], [9, 2, 1, "", "UD_CATALAN"], [9, 2, 1, "", "UD_CHINESE"], [9, 2, 1, "", "UD_CHINESE_KYOTO"], [9, 2, 1, "", "UD_COPTIC"], [9, 2, 1, "", "UD_CROATIAN"], [9, 2, 1, "", "UD_CZECH"], [9, 2, 1, "", "UD_DANISH"], [9, 2, 1, "", "UD_DUTCH"], [9, 2, 1, "", "UD_ENGLISH"], [9, 2, 1, "", "UD_ESTONIAN"], [9, 2, 1, "", "UD_FAROESE"], [9, 2, 1, "", "UD_FINNISH"], [9, 2, 1, "", "UD_FRENCH"], [9, 2, 1, "", "UD_GALICIAN"], [9, 2, 1, "", "UD_GERMAN"], [9, 2, 1, "", "UD_GERMAN_HDT"], [9, 2, 1, "", "UD_GOTHIC"], [9, 2, 1, "", "UD_GREEK"], [9, 2, 1, "", "UD_HEBREW"], [9, 2, 1, "", "UD_HINDI"], [9, 2, 1, "", "UD_INDONESIAN"], [9, 2, 1, "", "UD_IRISH"], [9, 2, 1, "", "UD_ITALIAN"], [9, 2, 1, "", "UD_JAPANESE"], [9, 2, 1, "", "UD_KAZAKH"], [9, 2, 1, "", "UD_KOREAN"], [9, 2, 1, "", "UD_LATIN"], [9, 2, 1, "", "UD_LATVIAN"], [9, 2, 1, "", "UD_LITHUANIAN"], [9, 2, 1, "", "UD_LIVVI"], [9, 2, 1, "", "UD_MALTESE"], [9, 2, 1, "", "UD_MARATHI"], [9, 2, 1, "", "UD_NAIJA"], [9, 2, 1, "", "UD_NORTH_SAMI"], [9, 2, 1, "", "UD_NORWEGIAN"], [9, 2, 1, "", "UD_OLD_CHURCH_SLAVONIC"], [9, 2, 1, "", "UD_OLD_FRENCH"], [9, 2, 1, "", "UD_PERSIAN"], [9, 2, 1, "", "UD_POLISH"], [9, 2, 1, "", "UD_PORTUGUESE"], [9, 2, 1, "", "UD_ROMANIAN"], [9, 2, 1, "", "UD_RUSSIAN"], [9, 2, 1, "", "UD_SERBIAN"], [9, 2, 1, "", "UD_SLOVAK"], [9, 2, 1, "", "UD_SLOVENIAN"], [9, 2, 1, "", "UD_SPANISH"], [9, 2, 1, "", "UD_SWEDISH"], [9, 2, 1, "", "UD_TURKISH"], [9, 2, 1, "", "UD_UKRAINIAN"], [9, 2, 1, "", "UD_WOLOF"], [9, 2, 1, "", "UniversalDependenciesCorpus"], [9, 2, 1, "", "UniversalDependenciesDataset"]], "flair.datasets.treebanks.UniversalDependenciesCorpus": [[9, 5, 1, "", "__init__"]], "flair.datasets.treebanks.UniversalDependenciesDataset": [[9, 5, 1, "", "__init__"], [9, 5, 1, "", "is_in_memory"]], "flair.embeddings": [[10, 0, 0, "-", "base"], [11, 0, 0, "-", "document"], [12, 0, 0, "-", "image"], [13, 0, 0, "-", "legacy"], [14, 0, 0, "-", "token"], [15, 0, 0, "-", "transformer"]], "flair.embeddings.base": [[10, 2, 1, "", "DocumentEmbeddings"], [10, 2, 1, "", "Embeddings"], [10, 2, 1, "", "ScalarMix"], [10, 2, 1, "", "TokenEmbeddings"], [10, 6, 1, "", "load_embeddings"], [10, 6, 1, "", "register_embeddings"]], "flair.embeddings.base.DocumentEmbeddings": [[10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 3, 1, "", "name"], [10, 3, 1, "", "training"]], "flair.embeddings.base.Embeddings": [[10, 5, 1, "", "__init__"], [10, 5, 1, "", "_add_embeddings_internal"], [10, 5, 1, "", "embed"], [10, 4, 1, "", "embedding_length"], [10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 5, 1, "", "from_params"], [10, 5, 1, "", "get_instance_parameters"], [10, 5, 1, "", "get_named_embeddings_dict"], [10, 5, 1, "", "get_names"], [10, 5, 1, "", "load_embedding"], [10, 5, 1, "", "save_embeddings"], [10, 5, 1, "", "to_params"]], "flair.embeddings.base.ScalarMix": [[10, 5, 1, "", "__init__"], [10, 5, 1, "", "forward"], [10, 3, 1, "", "training"]], "flair.embeddings.base.TokenEmbeddings": [[10, 4, 1, "", "embedding_type"], [10, 3, 1, "", "embeddings_name"], [10, 3, 1, "", "name"], [10, 3, 1, "", "training"]], "flair.embeddings.document": [[11, 2, 1, "", "DocumentCNNEmbeddings"], [11, 2, 1, "", "DocumentLMEmbeddings"], [11, 2, 1, "", "DocumentPoolEmbeddings"], [11, 2, 1, "", "DocumentRNNEmbeddings"], [11, 2, 1, "", "DocumentTFIDFEmbeddings"], [11, 2, 1, "", "SentenceTransformerDocumentEmbeddings"], [11, 2, 1, "", "TransformerDocumentEmbeddings"]], "flair.embeddings.document.DocumentCNNEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "_add_embeddings_internal"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentLMEmbeddings": [[11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 5, 1, "", "get_names"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentPoolEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "embed"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "extra_repr"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentRNNEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "_add_embeddings_internal"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.DocumentTFIDFEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "embed"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.SentenceTransformerDocumentEmbeddings": [[11, 5, 1, "", "__init__"], [11, 4, 1, "", "embedding_length"], [11, 3, 1, "", "embeddings_name"], [11, 5, 1, "", "from_params"], [11, 3, 1, "", "name"], [11, 5, 1, "", "to_params"], [11, 3, 1, "", "training"]], "flair.embeddings.document.TransformerDocumentEmbeddings": [[11, 5, 1, "", "__init__"], [11, 5, 1, "", "create_from_state"], [11, 3, 1, "", "embeddings_name"], [11, 3, 1, "", "name"], [11, 3, 1, "", "onnx_cls"], [11, 3, 1, "", "training"]], "flair.embeddings.image": [[12, 2, 1, "", "ConvTransformNetworkImageEmbeddings"], [12, 2, 1, "", "IdentityImageEmbeddings"], [12, 2, 1, "", "ImageEmbeddings"], [12, 2, 1, "", "NetworkImageEmbeddings"], [12, 2, 1, "", "PrecomputedImageEmbeddings"]], "flair.embeddings.image.ConvTransformNetworkImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 5, 1, "", "forward"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.IdentityImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.ImageEmbeddings": [[12, 4, 1, "", "embedding_type"], [12, 3, 1, "", "embeddings_name"], [12, 5, 1, "", "from_params"], [12, 3, 1, "", "name"], [12, 5, 1, "", "to_params"], [12, 3, 1, "", "training"]], "flair.embeddings.image.NetworkImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.image.PrecomputedImageEmbeddings": [[12, 4, 1, "", "embedding_length"], [12, 3, 1, "", "embeddings_name"], [12, 3, 1, "", "name"], [12, 3, 1, "", "training"]], "flair.embeddings.legacy": [[13, 2, 1, "", "CharLMEmbeddings"], [13, 2, 1, "", "DocumentLSTMEmbeddings"], [13, 2, 1, "", "DocumentMeanEmbeddings"], [13, 2, 1, "", "ELMoEmbeddings"]], "flair.embeddings.legacy.CharLMEmbeddings": [[13, 5, 1, "", "__init__"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 5, 1, "", "train"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.DocumentLSTMEmbeddings": [[13, 5, 1, "", "__init__"], [13, 5, 1, "", "embed"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.DocumentMeanEmbeddings": [[13, 5, 1, "", "__init__"], [13, 5, 1, "", "embed"], [13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"]], "flair.embeddings.legacy.ELMoEmbeddings": [[13, 4, 1, "", "embedding_length"], [13, 3, 1, "", "embeddings_name"], [13, 5, 1, "", "extra_repr"], [13, 3, 1, "", "name"], [13, 3, 1, "", "training"], [13, 5, 1, "", "use_layers_all"], [13, 5, 1, "", "use_layers_average"], [13, 5, 1, "", "use_layers_top"]], "flair.embeddings.token": [[14, 2, 1, "", "BytePairEmbeddings"], [14, 2, 1, "", "CharacterEmbeddings"], [14, 2, 1, "", "FastTextEmbeddings"], [14, 2, 1, "", "FlairEmbeddings"], [14, 2, 1, "", "HashEmbeddings"], [14, 2, 1, "", "MuseCrosslingualEmbeddings"], [14, 2, 1, "", "NILCEmbeddings"], [14, 2, 1, "", "OneHotEmbeddings"], [14, 2, 1, "", "PooledFlairEmbeddings"], [14, 2, 1, "", "StackedEmbeddings"], [14, 2, 1, "", "TransformerWordEmbeddings"], [14, 2, 1, "", "WordEmbeddings"]], "flair.embeddings.token.BytePairEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.CharacterEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.FastTextEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.FlairEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.token.HashEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 4, 1, "", "num_embeddings"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.MuseCrosslingualEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.NILCEmbeddings": [[14, 5, 1, "", "__init__"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "layer_norm"], [14, 3, 1, "", "name"], [14, 3, 1, "", "training"]], "flair.embeddings.token.OneHotEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_corpus"], [14, 5, 1, "", "from_params"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.PooledFlairEmbeddings": [[14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_names"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.token.StackedEmbeddings": [[14, 5, 1, "", "__init__"], [14, 5, 1, "", "embed"], [14, 4, 1, "", "embedding_length"], [14, 4, 1, "", "embedding_type"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_named_embeddings_dict"], [14, 5, 1, "", "get_names"], [14, 3, 1, "", "name"], [14, 5, 1, "", "to_params"], [14, 3, 1, "", "training"]], "flair.embeddings.token.TransformerWordEmbeddings": [[14, 5, 1, "", "__init__"], [14, 5, 1, "", "create_from_state"], [14, 3, 1, "", "embeddings_name"], [14, 3, 1, "", "name"], [14, 3, 1, "", "onnx_cls"], [14, 3, 1, "", "training"]], "flair.embeddings.token.WordEmbeddings": [[14, 5, 1, "", "__init__"], [14, 4, 1, "", "embedding_length"], [14, 3, 1, "", "embeddings_name"], [14, 5, 1, "", "extra_repr"], [14, 5, 1, "", "from_params"], [14, 5, 1, "", "get_cached_token_index"], [14, 5, 1, "", "get_vec"], [14, 3, 1, "", "name"], [14, 5, 1, "", "resolve_precomputed_path"], [14, 5, 1, "", "state_dict"], [14, 5, 1, "", "to"], [14, 5, 1, "", "to_params"], [14, 5, 1, "", "train"], [14, 3, 1, "", "training"]], "flair.embeddings.transformer": [[15, 2, 1, "", "TransformerBaseEmbeddings"], [15, 2, 1, "", "TransformerEmbeddings"], [15, 2, 1, "", "TransformerJitDocumentEmbeddings"], [15, 2, 1, "", "TransformerJitEmbeddings"], [15, 2, 1, "", "TransformerJitWordEmbeddings"], [15, 2, 1, "", "TransformerOnnxDocumentEmbeddings"], [15, 2, 1, "", "TransformerOnnxEmbeddings"], [15, 2, 1, "", "TransformerOnnxWordEmbeddings"], [15, 6, 1, "", "combine_strided_tensors"], [15, 6, 1, "", "document_max_pooling"], [15, 6, 1, "", "document_mean_pooling"], [15, 6, 1, "", "fill_masked_elements"], [15, 6, 1, "", "fill_mean_token_embeddings"], [15, 6, 1, "", "insert_missing_embeddings"], [15, 6, 1, "", "pad_sequence_embeddings"], [15, 6, 1, "", "remove_special_markup"], [15, 6, 1, "", "truncate_hidden_states"]], "flair.embeddings.transformer.TransformerBaseEmbeddings": [[15, 5, 1, "", "create_from_state"], [15, 4, 1, "", "embedding_length"], [15, 4, 1, "", "embedding_type"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "prepare_tensors"], [15, 5, 1, "", "to_args"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerEmbeddings": [[15, 4, 1, "", "embedding_length"], [15, 4, 1, "", "embedding_type"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "export_onnx"], [15, 5, 1, "", "forward"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "onnx_cls"], [15, 5, 1, "", "to_params"]], "flair.embeddings.transformer.TransformerJitDocumentEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerJitEmbeddings": [[15, 5, 1, "", "create_from_embedding"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "parameter_to_list"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "tokenizer"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerJitWordEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxEmbeddings": [[15, 5, 1, "", "collect_dynamic_axes"], [15, 5, 1, "", "create_session"], [15, 3, 1, "", "embeddings_name"], [15, 5, 1, "", "export_from_embedding"], [15, 5, 1, "", "from_params"], [15, 3, 1, "", "name"], [15, 5, 1, "", "optimize_model"], [15, 5, 1, "", "quantize_model"], [15, 5, 1, "", "remove_session"], [15, 5, 1, "", "to_params"], [15, 3, 1, "", "tokenizer"], [15, 3, 1, "", "training"]], "flair.embeddings.transformer.TransformerOnnxWordEmbeddings": [[15, 3, 1, "", "embeddings_name"], [15, 3, 1, "", "name"], [15, 3, 1, "", "training"]], "flair.models": [[20, 2, 1, "", "ClusteringModel"], [20, 2, 1, "", "FewshotClassifier"], [20, 2, 1, "", "LanguageModel"], [20, 2, 1, "", "Lemmatizer"], [20, 2, 1, "", "MultitaskModel"], [20, 2, 1, "", "RegexpTagger"], [20, 2, 1, "", "RelationClassifier"], [20, 2, 1, "", "RelationExtractor"], [20, 2, 1, "", "SequenceTagger"], [20, 2, 1, "", "SpanClassifier"], [20, 2, 1, "", "TARSClassifier"], [20, 2, 1, "", "TARSTagger"], [20, 2, 1, "", "TextClassifier"], [20, 2, 1, "", "TextPairClassifier"], [20, 2, 1, "", "TextPairRegressor"], [20, 2, 1, "", "TextRegressor"], [20, 2, 1, "", "TokenClassifier"], [20, 2, 1, "", "WordTagger"]], "flair.models.ClusteringModel": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_convert_dataset"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "fit"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "save"]], "flair.models.FewshotClassifier": [[20, 5, 1, "", "_compute_label_similarity_for_current_epoch"], [20, 5, 1, "", "add_and_switch_to_new_task"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_current_label_dictionary"], [20, 5, 1, "", "get_current_label_type"], [20, 5, 1, "", "get_used_tokens"], [20, 5, 1, "", "is_current_task_multi_label"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "list_existing_tasks"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict_zero_shot"], [20, 5, 1, "", "switch_to_task"], [20, 4, 1, "", "tars_embeddings"], [20, 5, 1, "", "train"]], "flair.models.LanguageModel": [[20, 5, 1, "", "calculate_perplexity"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "generate_text"], [20, 5, 1, "", "get_output"], [20, 5, 1, "", "get_representation"], [20, 5, 1, "", "init_hidden"], [20, 5, 1, "", "init_weights"], [20, 5, 1, "", "initialize"], [20, 5, 1, "", "load_checkpoint"], [20, 5, 1, "", "load_language_model"], [20, 5, 1, "", "repackage_hidden"], [20, 5, 1, "", "save"], [20, 5, 1, "", "save_checkpoint"], [20, 5, 1, "", "set_hidden"], [20, 3, 1, "", "training"]], "flair.models.Lemmatizer": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "decode"], [20, 5, 1, "", "encode"], [20, 5, 1, "", "encode_token"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "forward_pass"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "words_to_char_indices"]], "flair.models.MultitaskModel": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_get_state_dict"], [20, 5, 1, "", "_init_model_with_state_dict"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "split_batch_to_task_ids"]], "flair.models.RegexpTagger": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_label"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "register_labels"], [20, 4, 1, "", "registered_labels"], [20, 5, 1, "", "remove_labels"]], "flair.models.RelationClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "_encode_sentence"], [20, 5, 1, "", "_encode_sentence_for_inference"], [20, 5, 1, "", "_encode_sentence_for_training"], [20, 5, 1, "", "_entity_pair_permutations"], [20, 5, 1, "", "_get_data_points_from_sentence"], [20, 5, 1, "", "_valid_entities"], [20, 4, 1, "", "allow_unk_tag"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "transform_corpus"], [20, 5, 1, "", "transform_dataset"], [20, 5, 1, "", "transform_sentence"], [20, 4, 1, "", "zero_tag_value"]], "flair.models.RelationExtractor": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.SequenceTagger": [[20, 5, 1, "", "RNN"], [20, 5, 1, "", "__init__"], [20, 5, 1, "", "_all_scores_for_token"], [20, 5, 1, "", "_get_gold_labels"], [20, 5, 1, "", "_get_scores_from_features"], [20, 5, 1, "", "_get_state_dict"], [20, 5, 1, "", "_init_initial_hidden_state"], [20, 5, 1, "", "_init_loss_weights"], [20, 5, 1, "", "_standard_inference"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_loss"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 5, 1, "", "push_to_hub"]], "flair.models.SpanClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "emb_first"], [20, 5, 1, "", "emb_firstAndLast"], [20, 5, 1, "", "emb_last"], [20, 5, 1, "", "emb_mean"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.TARSClassifier": [[20, 3, 1, "", "LABEL_MATCH"], [20, 3, 1, "", "LABEL_NO_MATCH"], [20, 5, 1, "", "__init__"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 3, 1, "", "static_label_type"], [20, 4, 1, "", "tars_embeddings"]], "flair.models.TARSTagger": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"], [20, 3, 1, "", "static_label_type"], [20, 4, 1, "", "tars_embeddings"]], "flair.models.TextClassifier": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.models.TextPairClassifier": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"]], "flair.models.TextPairRegressor": [[20, 5, 1, "", "__init__"], [20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "predict"]], "flair.models.TextRegressor": [[20, 5, 1, "", "evaluate"], [20, 5, 1, "", "forward"], [20, 5, 1, "", "forward_labels_and_loss"], [20, 5, 1, "", "forward_loss"], [20, 5, 1, "", "get_used_tokens"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"], [20, 5, 1, "", "predict"]], "flair.models.TokenClassifier": [[20, 5, 1, "", "__init__"], [20, 4, 1, "", "label_type"], [20, 5, 1, "", "load"]], "flair.nn": [[21, 2, 1, "", "Classifier"], [21, 2, 1, "", "DefaultClassifier"], [21, 2, 1, "", "LabelVerbalizerDecoder"], [21, 2, 1, "", "LockedDropout"], [21, 2, 1, "", "Model"], [21, 2, 1, "", "PrototypicalDecoder"], [21, 2, 1, "", "WordDropout"]], "flair.nn.Classifier": [[21, 5, 1, "", "evaluate"], [21, 5, 1, "", "get_used_tokens"], [21, 5, 1, "", "load"], [21, 5, 1, "", "predict"]], "flair.nn.DefaultClassifier": [[21, 5, 1, "", "_filter_data_point"], [21, 5, 1, "", "_get_data_points_for_batch"], [21, 5, 1, "", "_get_data_points_from_sentence"], [21, 5, 1, "", "_get_label_of_datapoint"], [21, 5, 1, "", "forward_loss"], [21, 5, 1, "", "load"], [21, 4, 1, "", "multi_label_threshold"], [21, 5, 1, "", "predict"]], "flair.nn.LabelVerbalizerDecoder": [[21, 5, 1, "", "forward"], [21, 3, 1, "", "label_dictionary"], [21, 3, 1, "", "label_encoder"], [21, 3, 1, "", "training"], [21, 5, 1, "", "verbalize_labels"]], "flair.nn.LockedDropout": [[21, 5, 1, "", "extra_repr"], [21, 5, 1, "", "forward"], [21, 3, 1, "", "training"]], "flair.nn.Model": [[21, 5, 1, "", "_get_state_dict"], [21, 5, 1, "", "_init_model_with_state_dict"], [21, 5, 1, "", "evaluate"], [21, 5, 1, "", "forward_loss"], [21, 4, 1, "", "label_type"], [21, 5, 1, "", "load"], [21, 3, 1, "", "model_card"], [21, 5, 1, "", "print_model_card"], [21, 5, 1, "", "save"]], "flair.nn.PrototypicalDecoder": [[21, 5, 1, "", "forward"], [21, 4, 1, "", "num_prototypes"], [21, 3, 1, "", "training"]], "flair.nn.WordDropout": [[21, 5, 1, "", "extra_repr"], [21, 5, 1, "", "forward"], [21, 3, 1, "", "training"]], "flair.splitter": [[22, 2, 1, "", "NewlineSentenceSplitter"], [22, 2, 1, "", "NoSentenceSplitter"], [22, 2, 1, "", "SciSpacySentenceSplitter"], [22, 2, 1, "", "SegtokSentenceSplitter"], [22, 2, 1, "", "SentenceSplitter"], [22, 2, 1, "", "SpacySentenceSplitter"], [22, 2, 1, "", "TagSentenceSplitter"]], "flair.splitter.NewlineSentenceSplitter": [[22, 4, 1, "", "name"]], "flair.splitter.NoSentenceSplitter": [[22, 4, 1, "", "name"], [22, 5, 1, "", "split"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SegtokSentenceSplitter": [[22, 4, 1, "", "name"], [22, 5, 1, "", "split"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SentenceSplitter": [[22, 4, 1, "", "name"], [22, 5, 1, "", "split"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.SpacySentenceSplitter": [[22, 4, 1, "", "name"], [22, 5, 1, "", "split"], [22, 4, 1, "", "tokenizer"]], "flair.splitter.TagSentenceSplitter": [[22, 4, 1, "", "name"], [22, 5, 1, "", "split"], [22, 4, 1, "", "tokenizer"]], "flair.tokenization": [[23, 2, 1, "", "JapaneseTokenizer"], [23, 2, 1, "", "SciSpacyTokenizer"], [23, 2, 1, "", "SegtokTokenizer"], [23, 2, 1, "", "SpaceTokenizer"], [23, 2, 1, "", "SpacyTokenizer"], [23, 2, 1, "", "Tokenizer"], [23, 2, 1, "", "TokenizerWrapper"]], "flair.tokenization.JapaneseTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SciSpacyTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SegtokTokenizer": [[23, 5, 1, "", "run_tokenize"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SpaceTokenizer": [[23, 5, 1, "", "run_tokenize"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.SpacyTokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.Tokenizer": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.tokenization.TokenizerWrapper": [[23, 4, 1, "", "name"], [23, 5, 1, "", "tokenize"]], "flair.trainers": [[24, 2, 1, "", "LanguageModelTrainer"], [24, 2, 1, "", "ModelTrainer"], [24, 2, 1, "", "TextCorpus"], [25, 0, 0, "-", "plugins"]], "flair.trainers.LanguageModelTrainer": [[24, 5, 1, "", "_repackage_hidden"], [24, 5, 1, "", "evaluate"], [24, 5, 1, "", "load_checkpoint"], [24, 5, 1, "", "train"]], "flair.trainers.ModelTrainer": [[24, 5, 1, "", "__init__"], [24, 5, 1, "", "_backward"], [24, 5, 1, "", "_initialize_model_card"], [24, 5, 1, "", "check_for_and_delete_previous_best_models"], [24, 5, 1, "", "fine_tune"], [24, 5, 1, "", "get_batch_steps"], [24, 5, 1, "", "reset_training_attributes"], [24, 5, 1, "", "train"], [24, 5, 1, "", "train_custom"], [24, 3, 1, "", "valid_events"]], "flair.trainers.plugins": [[25, 2, 1, "", "AmpPlugin"], [25, 2, 1, "", "AnnealingPlugin"], [25, 2, 1, "", "BasePlugin"], [25, 2, 1, "", "CheckpointPlugin"], [25, 2, 1, "", "LinearSchedulerPlugin"], [25, 2, 1, "", "LogFilePlugin"], [25, 2, 1, "", "LossFilePlugin"], [25, 2, 1, "", "MetricHistoryPlugin"], [25, 2, 1, "", "MetricName"], [25, 2, 1, "", "MetricRecord"], [25, 2, 1, "", "Pluggable"], [25, 2, 1, "", "TensorboardLogger"], [25, 2, 1, "", "TrainerPlugin"], [25, 7, 1, "", "TrainingInterrupt"], [25, 2, 1, "", "WeightExtractorPlugin"]], "flair.trainers.plugins.AmpPlugin": [[25, 5, 1, "", "after_setup"], [25, 5, 1, "", "backward"], [25, 5, 1, "", "detach"]], "flair.trainers.plugins.AnnealingPlugin": [[25, 5, 1, "", "after_evaluation"], [25, 5, 1, "", "after_setup"], [25, 5, 1, "", "store_learning_rate"]], "flair.trainers.plugins.BasePlugin": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "attach_to"], [25, 5, 1, "", "detach"], [25, 5, 1, "", "hook"], [25, 5, 1, "", "mark_func_as_hook"], [25, 4, 1, "", "pluggable"]], "flair.trainers.plugins.CheckpointPlugin": [[25, 5, 1, "", "after_training_epoch"]], "flair.trainers.plugins.LinearSchedulerPlugin": [[25, 5, 1, "", "after_setup"], [25, 5, 1, "", "after_training_batch"], [25, 5, 1, "", "before_training_epoch"], [25, 5, 1, "", "store_learning_rate"]], "flair.trainers.plugins.LogFilePlugin": [[25, 5, 1, "", "close_file_handler"]], "flair.trainers.plugins.LossFilePlugin": [[25, 5, 1, "", "after_evaluation"], [25, 5, 1, "", "before_training_epoch"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.MetricHistoryPlugin": [[25, 5, 1, "", "after_training"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.MetricRecord": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "histogram"], [25, 4, 1, "", "is_histogram"], [25, 4, 1, "", "is_scalar"], [25, 4, 1, "", "is_scalar_list"], [25, 4, 1, "", "is_string"], [25, 5, 1, "", "is_type"], [25, 4, 1, "", "joined_name"], [25, 5, 1, "", "scalar"], [25, 5, 1, "", "scalar_list"], [25, 5, 1, "", "string"]], "flair.trainers.plugins.Pluggable": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "append_plugin"], [25, 5, 1, "", "dispatch"], [25, 4, 1, "", "plugins"], [25, 5, 1, "", "register_hook"], [25, 5, 1, "", "remove_hook"], [25, 3, 1, "", "valid_events"], [25, 5, 1, "", "validate_event"]], "flair.trainers.plugins.TensorboardLogger": [[25, 5, 1, "", "__init__"], [25, 5, 1, "", "_training_finally"], [25, 5, 1, "", "metric_recorded"]], "flair.trainers.plugins.TrainerPlugin": [[25, 4, 1, "", "corpus"], [25, 4, 1, "", "model"], [25, 4, 1, "", "trainer"]], "flair.trainers.plugins.WeightExtractorPlugin": [[25, 5, 1, "", "after_training_batch"]]}, "objtypes": {"0": "py:module", "1": "py:data", "2": "py:class", "3": "py:attribute", "4": "py:property", "5": "py:method", "6": "py:function", "7": "py:exception"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "data", "Python data"], "2": ["py", "class", "Python class"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "property", "Python property"], "5": ["py", "method", "Python method"], "6": ["py", "function", "Python function"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"flair": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 46, 48, 50, 52, 53], "dataset": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 51, 52, 53], "base": [0, 10], "biomed": [1, 42], "document_classif": 2, "entity_link": 3, "ocr": 4, "relation_extract": 5, "sequence_label": 6, "text_imag": 7, "text_text": 8, "treebank": 9, "embed": [10, 11, 12, 13, 14, 15, 19, 44, 45, 46, 47, 48, 49, 50, 53], "document": [11, 30, 36, 45, 48], "imag": 12, "legaci": 13, "token": [14, 23, 35], "transform": [15, 45, 49, 53, 54], "data": [17, 42], "model": [20, 40, 41, 42, 43, 49, 50, 53, 54, 55], "task": [20, 48], "exampl": [20, 34, 35, 36, 37, 45, 50], "architectur": 20, "nn": 21, "splitter": 22, "trainer": [24, 25, 50], "plugin": 25, "api": 26, "doc": [26, 30], "contribut": 27, "local": [28, 30], "develop": 28, "setup": 28, "test": 28, "code": 28, "format": [28, 51], "make": 29, "pull": 29, "request": [29, 31], "git": 29, "commit": 29, "guidelin": 29, "updat": 30, "what": [30, 35], "i": [30, 35], "good": [30, 31], "tutori": [30, 33, 39, 47, 55], "docstr": 30, "build": 30, "write": 31, "issu": 31, "type": [31, 48, 50, 52], "bug": 31, "report": 31, "featur": 31, "enhanc": 31, "question": 31, "quick": 34, "start": 34, "requir": 34, "instal": 34, "1": [34, 35, 36, 39, 45, 50], "tag": [34, 36, 38, 39, 40, 41, 42, 43, 48], "entiti": [34, 36, 42, 53], "text": [34, 36, 42, 51, 54], "2": [34, 35, 36, 45, 50, 55], "detect": [34, 40], "sentiment": [34, 43], "summari": [34, 50], "basic": [35, 39], "sentenc": [35, 36, 42, 49], "iter": 35, "over": 35, "directli": 35, "access": 35, "label": [35, 50, 52], "whole": [35, 38], "multipl": [35, 36], "inform": 35, "each": [35, 37], "link": 36, "singl": 36, "how": [37, 38, 45, 50, 51, 52], "predict": [37, 50], "work": [37, 50], "run": 37, "get": 37, "valu": 37, "corpu": [38, 50, 52], "other": [40, 48, 52], "thing": 40, "semant": 40, "frame": 40, "syntact": 40, "chunk": 40, "relat": 40, "list": [40, 41, 42, 43], "part": [41, 50, 53], "speech": [41, 50, 53], "languag": 41, "specif": 41, "po": 41, "english": [41, 42], "german": [41, 42], "ukrainian": 41, "arab": [41, 42], "univers": 41, "upo": 41, "our": [42, 43], "standard": [42, 43], "best": 42, "non": 42, "an": 42, "18": 42, "class": 42, "ner": [42, 53], "fast": 43, "classic": 44, "word": [44, 45, 49], "stack": 45, "recommend": 46, "usag": 46, "pool": [46, 48, 49], "3": [47, 50], "One": 48, "hot": 48, "vocabulari": 48, "size": 48, "dimension": 48, "byte": 48, "pair": 48, "oper": [48, 49], "fine": [48, 49, 56], "tune": [48, 56], "mode": 48, "rnn": 48, "need": 48, "train": [48, 50, 53, 54, 55, 56], "argument": 49, "layer": 49, "mean": 49, "tuneabl": 49, "tagger": [50, 53], "step": 50, "walkthrough": 50, "load": [50, 51, 52], "choos": 50, "creat": [50, 52], "dictionari": [50, 52], "4": 50, "initi": 50, "5": 50, "6": 50, "7": 50, "8": 50, "custom": 51, "columncorpu": 51, "read": 51, "classif": [51, 54], "from": 51, "simpl": 51, "csv": 51, "file": 51, "fasttext": 51, "prepar": 52, "The": 52, "object": 52, "helper": 52, "function": 52, "corpora": 52, "multicorpu": 52, "includ": 52, "sequenc": 53, "name": 53, "recognit": 53, "multi": 53, "classifi": 54, "v": 56}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 58}, "alltitles": {"flair.datasets.base": [[0, "module-flair.datasets.base"]], "flair.datasets.biomedical": [[1, "module-flair.datasets.biomedical"]], "flair.datasets.document_classification": [[2, "module-flair.datasets.document_classification"]], "flair.datasets.entity_linking": [[3, "module-flair.datasets.entity_linking"]], "flair.datasets.ocr": [[4, "module-flair.datasets.ocr"]], "flair.datasets.relation_extraction": [[5, "module-flair.datasets.relation_extraction"]], "flair.datasets.sequence_labeling": [[6, "module-flair.datasets.sequence_labeling"]], "flair.datasets.text_image": [[7, "module-flair.datasets.text_image"]], "flair.datasets.text_text": [[8, "module-flair.datasets.text_text"]], "flair.datasets.treebanks": [[9, "module-flair.datasets.treebanks"]], "flair.embeddings.base": [[10, "module-flair.embeddings.base"]], "flair.embeddings.document": [[11, "module-flair.embeddings.document"]], "flair.embeddings.image": [[12, "module-flair.embeddings.image"]], "flair.embeddings.legacy": [[13, "flair-embeddings-legacy"]], "flair.embeddings.token": [[14, "module-flair.embeddings.token"]], "flair.embeddings.transformer": [[15, "module-flair.embeddings.transformer"]], "flair": [[16, "module-flair"], [32, "flair"]], "flair.data": [[17, "module-flair.data"]], "flair.datasets": [[18, "flair-datasets"]], "flair.embeddings": [[19, "flair-embeddings"]], "flair.models": [[20, "module-flair.models"]], "Task": [[20, "task"]], "Example:": [[20, "example"]], "Architecture": [[20, "architecture"]], "flair.nn": [[21, "module-flair.nn"]], "flair.splitter": [[22, "module-flair.splitter"]], "flair.tokenization": [[23, "module-flair.tokenization"]], "flair.trainers": [[24, "module-flair.trainers"]], "flair.trainers.plugins": [[25, "module-flair.trainers.plugins"]], "API Docs": [[26, "api-docs"]], "Contributing": [[27, "contributing"]], "Local Development": [[28, "local-development"]], "Setup": [[28, "setup"]], "Tests": [[28, "tests"]], "Code Formatting": [[28, "code-formatting"]], "Making a pull request": [[29, "making-a-pull-request"]], "Git Commit Guidelines": [[29, "git-commit-guidelines"]], "Updating documentation": [[30, "updating-documentation"]], "What is good documentation?": [[30, "what-is-good-documentation"]], "Tutorials": [[30, "tutorials"], [33, "tutorials"]], "Docstrings": [[30, "docstrings"]], "Building the local docs": [[30, "building-the-local-docs"]], "Writing a good issue": [[31, "writing-a-good-issue"]], "Issue types": [[31, "issue-types"]], "Bug Report": [[31, "bug-report"]], "Feature/Enhancement request": [[31, "feature-enhancement-request"]], "Question": [[31, "question"]], "Quick Start": [[34, "quick-start"]], "Requirements and Installation": [[34, "requirements-and-installation"]], "Example 1: Tag Entities in Text": [[34, "example-1-tag-entities-in-text"]], "Example 2: Detect Sentiment": [[34, "example-2-detect-sentiment"]], "Summary": [[34, "summary"], [50, "summary"]], "Basics": [[35, "basics"]], "What is a Sentence": [[35, "what-is-a-sentence"]], "Iterating over the tokens in a Sentence": [[35, "iterating-over-the-tokens-in-a-sentence"]], "Directly accessing a token": [[35, "directly-accessing-a-token"]], "Tokenization": [[35, "tokenization"]], "What is a Label": [[35, "what-is-a-label"]], "Example 1: Labeling a token in a sentence": [[35, "example-1-labeling-a-token-in-a-sentence"]], "Example 2: Labeling a whole sentence": [[35, "example-2-labeling-a-whole-sentence"]], "Multiple labels": [[35, "multiple-labels"]], "Accessing labels": [[35, "accessing-labels"]], "Information for each label": [[35, "information-for-each-label"]], "Tagging and linking entities": [[36, "tagging-and-linking-entities"]], "Example 1: Entity linking on a single sentence\u200b": [[36, "example-1-entity-linking-on-a-single-sentence"]], "Example 2: Entity linking on a text document (multiple sentences)": [[36, "example-2-entity-linking-on-a-text-document-multiple-sentences"]], "How predictions work": [[37, "how-predictions-work"]], "Running example": [[37, "running-example"]], "Getting the predictions": [[37, "getting-the-predictions"]], "Values for each prediction": [[37, "values-for-each-prediction"]], "How to tag a whole corpus": [[38, "how-to-tag-a-whole-corpus"]], "Tutorial 1: Basic Tagging": [[39, "tutorial-1-basic-tagging"]], "Tagging other things": [[40, "tagging-other-things"]], "Semantic Frame Detection": [[40, "semantic-frame-detection"]], "Syntactic Chunking": [[40, "syntactic-chunking"]], "Tagging Relations": [[40, "tagging-relations"]], "List of Other Models": [[40, "list-of-other-models"]], "Tagging parts-of-speech": [[41, "tagging-parts-of-speech"]], "Language-specific parts-of-speech (PoS)": [[41, "language-specific-parts-of-speech-pos"]], "\u2026 in English": [[41, "in-english"]], "\u2026 in German": [[41, "in-german"]], "\u2026 in Ukrainian": [[41, "in-ukrainian"]], "\u2026 in Arabic": [[41, "in-arabic"]], "Tagging universal parts-of-speech (uPoS)\u200b": [[41, "tagging-universal-parts-of-speech-upos"]], "List of POS Models": [[41, "list-of-pos-models"]], "Tagging entities": [[42, "tagging-entities"]], "Tagging entities with our standard model\u200b": [[42, "tagging-entities-with-our-standard-model"]], "Tagging entities with our best model\u200b": [[42, "tagging-entities-with-our-best-model"]], "Tagging entities in non-English text": [[42, "tagging-entities-in-non-english-text"]], "Tagging a German sentence": [[42, "tagging-a-german-sentence"]], "Tagging an Arabic sentence": [[42, "tagging-an-arabic-sentence"]], "Tagging Entities with 18 Classes": [[42, "tagging-entities-with-18-classes"]], "Biomedical Data": [[42, "biomedical-data"]], "List of NER Models": [[42, "list-of-ner-models"]], "Tagging sentiment": [[43, "tagging-sentiment"]], "Tagging sentiment with our standard model\u200b": [[43, "tagging-sentiment-with-our-standard-model"]], "Tagging sentiment with our fast model": [[43, "tagging-sentiment-with-our-fast-model"]], "List of Sentiment Models": [[43, "list-of-sentiment-models"]], "Classic Word Embeddings": [[44, "classic-word-embeddings"]], "Embeddings": [[45, "embeddings"]], "Example 1: Embeddings Words with Transformers": [[45, "example-1-embeddings-words-with-transformers"]], "Example 2: Embeddings Documents with Transformers": [[45, "example-2-embeddings-documents-with-transformers"]], "How to Stack Embeddings": [[45, "how-to-stack-embeddings"]], "Flair embeddings": [[46, "flair-embeddings"]], "Recommended Flair usage": [[46, "recommended-flair-usage"]], "Pooled Flair embeddings": [[46, "pooled-flair-embeddings"]], "Tutorial 3: Embeddings": [[47, "tutorial-3-embeddings"]], "Other embeddings in Flair": [[48, "other-embeddings-in-flair"]], "One-Hot Embeddings": [[48, "one-hot-embeddings"]], "Vocabulary size": [[48, "vocabulary-size"]], "Embedding dimensionality": [[48, "embedding-dimensionality"]], "Embedding other tags": [[48, "embedding-other-tags"]], "Byte Pair Embeddings": [[48, "byte-pair-embeddings"]], "Document Pool Embeddings": [[48, "document-pool-embeddings"]], "Pooling operation": [[48, "pooling-operation"], [49, "pooling-operation"]], "Fine-tune mode": [[48, "fine-tune-mode"]], "Document RNN Embeddings": [[48, "document-rnn-embeddings"]], "RNN type": [[48, "rnn-type"]], "Need to be trained on a task": [[48, "need-to-be-trained-on-a-task"]], "Transformer embeddings": [[49, "transformer-embeddings"]], "Embeddings words": [[49, "embeddings-words"]], "Embeddings sentences": [[49, "embeddings-sentences"]], "Arguments": [[49, "arguments"]], "Layers": [[49, "layers"]], "Layer mean": [[49, "layer-mean"]], "Fine-tuneable or not": [[49, "fine-tuneable-or-not"]], "Models": [[49, "models"]], "How model training works in Flair": [[50, "how-model-training-works-in-flair"]], "Example: Training a Part-of-Speech Tagger": [[50, "example-training-a-part-of-speech-tagger"]], "Step-by-step walkthrough": [[50, "step-by-step-walkthrough"]], "Step 1: Load a Corpus": [[50, "step-1-load-a-corpus"]], "Step 2: Choose the label type": [[50, "step-2-choose-the-label-type"]], "Step 3: Creating a label dictionary": [[50, "step-3-creating-a-label-dictionary"]], "Step 4: Initialize embeddings": [[50, "step-4-initialize-embeddings"]], "Step 5: Initialize the Model": [[50, "step-5-initialize-the-model"]], "Step 6: Initialize the Trainer": [[50, "step-6-initialize-the-trainer"]], "Step 7: Train": [[50, "step-7-train"]], "Step 8: Predict": [[50, "step-8-predict"]], "How to load a custom dataset": [[51, "how-to-load-a-custom-dataset"]], "loading a ColumnCorpus": [[51, "loading-a-columncorpus"]], "Reading a text classification dataset": [[51, "reading-a-text-classification-dataset"]], "Load from simple CSV file": [[51, "load-from-simple-csv-file"]], "FastText format": [[51, "fasttext-format"]], "How to load a prepared dataset": [[52, "how-to-load-a-prepared-dataset"]], "The Corpus Object": [[52, "the-corpus-object"]], "Helper functions": [[52, "helper-functions"]], "Creating label dictionaries": [[52, "creating-label-dictionaries"]], "Dictionaries for other label types": [[52, "dictionaries-for-other-label-types"]], "Dictionaries for other corpora types": [[52, "dictionaries-for-other-corpora-types"]], "The MultiCorpus Object": [[52, "the-multicorpus-object"]], "Datasets included in Flair": [[52, "datasets-included-in-flair"]], "Train a sequence tagger": [[53, "train-a-sequence-tagger"]], "Training a named entity recognition (NER) model with transformers": [[53, "training-a-named-entity-recognition-ner-model-with-transformers"]], "Training a named entity recognition (NER) model with Flair embeddings": [[53, "training-a-named-entity-recognition-ner-model-with-flair-embeddings"]], "Training a part-of-speech tagger": [[53, "training-a-part-of-speech-tagger"]], "Multi-dataset training": [[53, "multi-dataset-training"]], "Train a text classifier": [[54, "train-a-text-classifier"]], "Training a text classification model with transformers": [[54, "training-a-text-classification-model-with-transformers"]], "Tutorial 2: Training models": [[55, "tutorial-2-training-models"]], "Training vs fine-tuning": [[56, "training-vs-fine-tuning"]], "Fine-Tuning": [[56, "fine-tuning"]], "Training": [[56, "training"]]}, "indexentries": {"dataloader (class in flair.datasets.base)": [[0, "flair.datasets.base.DataLoader"]], "flairdatapointdataset (class in flair.datasets.base)": [[0, "flair.datasets.base.FlairDatapointDataset"]], "mongodataset (class in flair.datasets.base)": [[0, "flair.datasets.base.MongoDataset"]], "sentencedataset (class in flair.datasets.base)": [[0, "flair.datasets.base.SentenceDataset"]], "stringdataset (class in flair.datasets.base)": [[0, "flair.datasets.base.StringDataset"]], "__init__() (flair.datasets.base.flairdatapointdataset method)": [[0, "flair.datasets.base.FlairDatapointDataset.__init__"]], "__init__() (flair.datasets.base.mongodataset method)": [[0, "flair.datasets.base.MongoDataset.__init__"]], "__init__() (flair.datasets.base.sentencedataset method)": [[0, "flair.datasets.base.SentenceDataset.__init__"]], "__init__() (flair.datasets.base.stringdataset method)": [[0, "flair.datasets.base.StringDataset.__init__"]], "batch_size (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.batch_size"]], "dataset (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.dataset"]], "drop_last (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.drop_last"]], "find_train_dev_test_files() (in module flair.datasets.base)": [[0, "flair.datasets.base.find_train_dev_test_files"]], "flair.datasets.base": [[0, "module-flair.datasets.base"]], "is_in_memory() (flair.datasets.base.flairdatapointdataset method)": [[0, "flair.datasets.base.FlairDatapointDataset.is_in_memory"]], "is_in_memory() (flair.datasets.base.mongodataset method)": [[0, "flair.datasets.base.MongoDataset.is_in_memory"]], "is_in_memory() (flair.datasets.base.stringdataset method)": [[0, "flair.datasets.base.StringDataset.is_in_memory"]], "module": [[0, "module-flair.datasets.base"], [1, "module-flair.datasets.biomedical"], [2, "module-flair.datasets.document_classification"], [3, "module-flair.datasets.entity_linking"], [4, "module-flair.datasets.ocr"], [5, "module-flair.datasets.relation_extraction"], [6, "module-flair.datasets.sequence_labeling"], [7, "module-flair.datasets.text_image"], [8, "module-flair.datasets.text_text"], [9, "module-flair.datasets.treebanks"], [10, "module-flair.embeddings.base"], [11, "module-flair.embeddings.document"], [12, "module-flair.embeddings.image"], [13, "module-flair.embeddings.legacy"], [14, "module-flair.embeddings.token"], [15, "module-flair.embeddings.transformer"], [16, "module-flair"], [17, "module-flair.data"], [20, "module-flair.models"], [21, "module-flair.nn"], [22, "module-flair.splitter"], [23, "module-flair.tokenization"], [24, "module-flair.trainers"], [25, "module-flair.trainers.plugins"]], "num_workers (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.num_workers"]], "pin_memory (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.pin_memory"]], "pin_memory_device (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.pin_memory_device"]], "prefetch_factor (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.prefetch_factor"]], "sampler (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.sampler"]], "timeout (flair.datasets.base.dataloader attribute)": [[0, "flair.datasets.base.DataLoader.timeout"]], "anat_em (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.ANAT_EM"]], "azdz (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.AZDZ"]], "bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BC2GM"]], "bigbio_ner_corpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS"]], "biobert_chemical_bc4chemd (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_CHEMICAL_BC4CHEMD"]], "biobert_chemical_bc5cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_CHEMICAL_BC5CDR"]], "biobert_disease_bc5cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_DISEASE_BC5CDR"]], "biobert_disease_ncbi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_DISEASE_NCBI"]], "biobert_gene_bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_GENE_BC2GM"]], "biobert_gene_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_GENE_JNLPBA"]], "biobert_species_linnaeus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_SPECIES_LINNAEUS"]], "biobert_species_s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOBERT_SPECIES_S800"]], "bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIONLP2013_CG"]], "bionlp2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIONLP2013_PC"]], "biosemantics (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIOSEMANTICS"]], "bio_infer (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BIO_INFER"]], "bioberthelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BioBertHelper"]], "bionlpcorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.BioNLPCorpus"]], "cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CDR"]], "cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CELL_FINDER"]], "cemp (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CEMP"]], "chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CHEBI"]], "chemdner (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CHEMDNER"]], "cll (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CLL"]], "craft (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CRAFT"]], "craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CRAFT_V4"]], "conllwriter (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.CoNLLWriter"]], "deca (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.DECA"]], "dpentry (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.DpEntry"]], "entity (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.Entity"]], "fsu (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.FSU"]], "gellus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.GELLUS"]], "gpro (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.GPRO"]], "huner_cell_line (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE"]], "huner_cell_line_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID"]], "huner_cell_line_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED"]], "huner_cell_line_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER"]], "huner_cell_line_cll (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL"]], "huner_cell_line_gellus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS"]], "huner_cell_line_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA"]], "huner_cell_line_tmvar_v3 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_TMVAR_V3"]], "huner_chemical (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL"]], "huner_chemical_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID"]], "huner_chemical_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP2013_CG"]], "huner_chemical_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID"]], "huner_chemical_bionlp_st_2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC"]], "huner_chemical_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED"]], "huner_chemical_cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR"]], "huner_chemical_cemp (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP"]], "huner_chemical_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEBI"]], "huner_chemical_chemdner (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER"]], "huner_chemical_cpi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI"]], "huner_chemical_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CRAFT_V4"]], "huner_chemical_drugprot (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT"]], "huner_chemical_nlm_chem (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM"]], "huner_chemical_scai (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI"]], "huner_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE"]], "huner_disease_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIONLP2013_CG"]], "huner_disease_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED"]], "huner_disease_cdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR"]], "huner_disease_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_MIRNA"]], "huner_disease_ncbi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI"]], "huner_disease_pdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR"]], "huner_disease_scai (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI"]], "huner_disease_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME"]], "huner_gene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE"]], "huner_gene_bc2gm (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM"]], "huner_gene_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID"]], "huner_gene_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP2013_CG"]], "huner_gene_bionlp_st_2011_epi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI"]], "huner_gene_bionlp_st_2011_ge (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE"]], "huner_gene_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID"]], "huner_gene_bionlp_st_2011_rel (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL"]], "huner_gene_bionlp_st_2013_ge (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE"]], "huner_gene_bionlp_st_2013_pc (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC"]], "huner_gene_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED"]], "huner_gene_bio_infer (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER"]], "huner_gene_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER"]], "huner_gene_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CHEBI"]], "huner_gene_cpi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI"]], "huner_gene_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_CRAFT_V4"]], "huner_gene_deca (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA"]], "huner_gene_drugprot (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT"]], "huner_gene_fsu (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU"]], "huner_gene_gnormplus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS"]], "huner_gene_gpro (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO"]], "huner_gene_iepa (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA"]], "huner_gene_jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_JNLPBA"]], "huner_gene_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_LOCTEXT"]], "huner_gene_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_MIRNA"]], "huner_gene_nlm_gene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE"]], "huner_gene_osiris (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS"]], "huner_gene_progene (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE"]], "huner_gene_seth_corpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS"]], "huner_gene_tmvar_v3 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3"]], "huner_gene_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME"]], "huner_species (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES"]], "huner_species_bioid (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID"]], "huner_species_bionlp2013_cg (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP2013_CG"]], "huner_species_bionlp_st_2011_id (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID"]], "huner_species_bionlp_st_2019_bb (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB"]], "huner_species_biored (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED"]], "huner_species_cell_finder (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER"]], "huner_species_chebi (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CHEBI"]], "huner_species_craft_v4 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CRAFT_V4"]], "huner_species_linneaus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS"]], "huner_species_loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LOCTEXT"]], "huner_species_mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_MIRNA"]], "huner_species_s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800"]], "huner_species_tmvar_v3 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_TMVAR_V3"]], "huner_species_variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME"]], "hunerdataset (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerDataset"]], "hunerjnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerJNLPBA"]], "hunermirnahelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerMiRNAHelper"]], "hunermulticorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.HunerMultiCorpus"]], "iepa (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.IEPA"]], "internalbionerdataset (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.InternalBioNerDataset"]], "jnlpba (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.JNLPBA"]], "kaewphancorpushelper (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper"]], "linneaus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.LINNEAUS"]], "loctext (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.LOCTEXT"]], "mirna (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.MIRNA"]], "ncbi_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.NCBI_DISEASE"]], "osiris (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.OSIRIS"]], "pdr (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.PDR"]], "s800 (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.S800"]], "scai_chemicals (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS"]], "scai_disease (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.SCAI_DISEASE"]], "scaicorpus (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.ScaiCorpus"]], "variome (class in flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.VARIOME"]], "__init__() (flair.datasets.biomedical.anat_em method)": [[1, "flair.datasets.biomedical.ANAT_EM.__init__"]], "__init__() (flair.datasets.biomedical.azdz method)": [[1, "flair.datasets.biomedical.AZDZ.__init__"]], "__init__() (flair.datasets.biomedical.bc2gm method)": [[1, "flair.datasets.biomedical.BC2GM.__init__"]], "__init__() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.__init__"]], "__init__() (flair.datasets.biomedical.biosemantics method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.__init__"]], "__init__() (flair.datasets.biomedical.bio_infer method)": [[1, "flair.datasets.biomedical.BIO_INFER.__init__"]], "__init__() (flair.datasets.biomedical.bionlpcorpus method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.__init__"]], "__init__() (flair.datasets.biomedical.cdr method)": [[1, "flair.datasets.biomedical.CDR.__init__"]], "__init__() (flair.datasets.biomedical.cell_finder method)": [[1, "flair.datasets.biomedical.CELL_FINDER.__init__"]], "__init__() (flair.datasets.biomedical.cemp method)": [[1, "flair.datasets.biomedical.CEMP.__init__"]], "__init__() (flair.datasets.biomedical.chebi method)": [[1, "flair.datasets.biomedical.CHEBI.__init__"]], "__init__() (flair.datasets.biomedical.chemdner method)": [[1, "flair.datasets.biomedical.CHEMDNER.__init__"]], "__init__() (flair.datasets.biomedical.cll method)": [[1, "flair.datasets.biomedical.CLL.__init__"]], "__init__() (flair.datasets.biomedical.craft method)": [[1, "flair.datasets.biomedical.CRAFT.__init__"]], "__init__() (flair.datasets.biomedical.craft_v4 method)": [[1, "flair.datasets.biomedical.CRAFT_V4.__init__"]], "__init__() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.__init__"]], "__init__() (flair.datasets.biomedical.deca method)": [[1, "flair.datasets.biomedical.DECA.__init__"]], "__init__() (flair.datasets.biomedical.fsu method)": [[1, "flair.datasets.biomedical.FSU.__init__"]], "__init__() (flair.datasets.biomedical.gellus method)": [[1, "flair.datasets.biomedical.GELLUS.__init__"]], "__init__() (flair.datasets.biomedical.gpro method)": [[1, "flair.datasets.biomedical.GPRO.__init__"]], "__init__() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.__init__"]], "__init__() (flair.datasets.biomedical.iepa method)": [[1, "flair.datasets.biomedical.IEPA.__init__"]], "__init__() (flair.datasets.biomedical.jnlpba method)": [[1, "flair.datasets.biomedical.JNLPBA.__init__"]], "__init__() (flair.datasets.biomedical.linneaus method)": [[1, "flair.datasets.biomedical.LINNEAUS.__init__"]], "__init__() (flair.datasets.biomedical.loctext method)": [[1, "flair.datasets.biomedical.LOCTEXT.__init__"]], "__init__() (flair.datasets.biomedical.mirna method)": [[1, "flair.datasets.biomedical.MIRNA.__init__"]], "__init__() (flair.datasets.biomedical.ncbi_disease method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.__init__"]], "__init__() (flair.datasets.biomedical.osiris method)": [[1, "flair.datasets.biomedical.OSIRIS.__init__"]], "__init__() (flair.datasets.biomedical.pdr method)": [[1, "flair.datasets.biomedical.PDR.__init__"]], "__init__() (flair.datasets.biomedical.s800 method)": [[1, "flair.datasets.biomedical.S800.__init__"]], "__init__() (flair.datasets.biomedical.scaicorpus method)": [[1, "flair.datasets.biomedical.ScaiCorpus.__init__"]], "__init__() (flair.datasets.biomedical.variome method)": [[1, "flair.datasets.biomedical.VARIOME.__init__"]], "bin_search_passage() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.bin_search_passage"]], "bioc_to_internal() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.bioc_to_internal"]], "brat_to_internal() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.brat_to_internal"]], "build_corpus_directory_name() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_cell_line_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_cell_line_biored method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_cell_line_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_TMVAR_V3.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_biored method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_cpi method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_chemical_nlm_chem method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_disease_biored method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bioid method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_epi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_rel method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_biored method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_cpi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_gnormplus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_nlm_gene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_progene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_seth_corpus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_gene_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bioid method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_bionlp_st_2019_bb method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_biored method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED.build_corpus_directory_name"]], "build_corpus_directory_name() (flair.datasets.biomedical.huner_species_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_TMVAR_V3.build_corpus_directory_name"]], "contains() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.contains"]], "convert_and_write() (flair.datasets.biomedical.bioberthelper static method)": [[1, "flair.datasets.biomedical.BioBertHelper.convert_and_write"]], "download_and_parse_dataset() (flair.datasets.biomedical.linneaus static method)": [[1, "flair.datasets.biomedical.LINNEAUS.download_and_parse_dataset"]], "download_and_prepare() (flair.datasets.biomedical.cell_finder class method)": [[1, "flair.datasets.biomedical.CELL_FINDER.download_and_prepare"]], "download_and_prepare_test() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.download_and_prepare_test"]], "download_and_prepare_test() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.download_and_prepare_test"]], "download_and_prepare_train() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.download_and_prepare_train"]], "download_and_prepare_train() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.download_and_prepare_train"]], "download_cll_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.download_cll_dataset"]], "download_corpora() (flair.datasets.biomedical.bioberthelper static method)": [[1, "flair.datasets.biomedical.BioBertHelper.download_corpora"]], "download_corpus() (flair.datasets.biomedical.anat_em static method)": [[1, "flair.datasets.biomedical.ANAT_EM.download_corpus"]], "download_corpus() (flair.datasets.biomedical.azdz class method)": [[1, "flair.datasets.biomedical.AZDZ.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.BIONLP2013_CG.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlp2013_pc static method)": [[1, "flair.datasets.biomedical.BIONLP2013_PC.download_corpus"]], "download_corpus() (flair.datasets.biomedical.bionlpcorpus static method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.download_corpus"]], "download_corpus() (flair.datasets.biomedical.craft class method)": [[1, "flair.datasets.biomedical.CRAFT.download_corpus"]], "download_corpus() (flair.datasets.biomedical.craft_v4 class method)": [[1, "flair.datasets.biomedical.CRAFT_V4.download_corpus"]], "download_corpus() (flair.datasets.biomedical.deca class method)": [[1, "flair.datasets.biomedical.DECA.download_corpus"]], "download_corpus() (flair.datasets.biomedical.fsu class method)": [[1, "flair.datasets.biomedical.FSU.download_corpus"]], "download_corpus() (flair.datasets.biomedical.ncbi_disease class method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.download_corpus"]], "download_corpus() (flair.datasets.biomedical.pdr class method)": [[1, "flair.datasets.biomedical.PDR.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scai_chemicals method)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scai_disease method)": [[1, "flair.datasets.biomedical.SCAI_DISEASE.download_corpus"]], "download_corpus() (flair.datasets.biomedical.scaicorpus method)": [[1, "flair.datasets.biomedical.ScaiCorpus.download_corpus"]], "download_dataset() (flair.datasets.biomedical.bc2gm static method)": [[1, "flair.datasets.biomedical.BC2GM.download_dataset"]], "download_dataset() (flair.datasets.biomedical.biosemantics static method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.download_dataset"]], "download_dataset() (flair.datasets.biomedical.bio_infer class method)": [[1, "flair.datasets.biomedical.BIO_INFER.download_dataset"]], "download_dataset() (flair.datasets.biomedical.cdr static method)": [[1, "flair.datasets.biomedical.CDR.download_dataset"]], "download_dataset() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.download_dataset"]], "download_dataset() (flair.datasets.biomedical.chemdner static method)": [[1, "flair.datasets.biomedical.CHEMDNER.download_dataset"]], "download_dataset() (flair.datasets.biomedical.iepa static method)": [[1, "flair.datasets.biomedical.IEPA.download_dataset"]], "download_dataset() (flair.datasets.biomedical.loctext static method)": [[1, "flair.datasets.biomedical.LOCTEXT.download_dataset"]], "download_dataset() (flair.datasets.biomedical.osiris class method)": [[1, "flair.datasets.biomedical.OSIRIS.download_dataset"]], "download_dataset() (flair.datasets.biomedical.s800 static method)": [[1, "flair.datasets.biomedical.S800.download_dataset"]], "download_dataset() (flair.datasets.biomedical.variome static method)": [[1, "flair.datasets.biomedical.VARIOME.download_dataset"]], "download_dev_corpus() (flair.datasets.biomedical.cemp class method)": [[1, "flair.datasets.biomedical.CEMP.download_dev_corpus"]], "download_dev_corpus() (flair.datasets.biomedical.gpro class method)": [[1, "flair.datasets.biomedical.GPRO.download_dev_corpus"]], "download_gellus_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.download_gellus_dataset"]], "download_train_corpus() (flair.datasets.biomedical.cemp class method)": [[1, "flair.datasets.biomedical.CEMP.download_train_corpus"]], "download_train_corpus() (flair.datasets.biomedical.gpro class method)": [[1, "flair.datasets.biomedical.GPRO.download_train_corpus"]], "entity_count (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.entity_count"]], "entity_lengths_sum (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.entity_lengths_sum"]], "filter_and_map_entities() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.filter_and_map_entities"]], "filter_entities() (flair.datasets.biomedical.craft_v4 method)": [[1, "flair.datasets.biomedical.CRAFT_V4.filter_entities"]], "filter_nested_entities() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.filter_nested_entities"]], "flair.datasets.biomedical": [[1, "module-flair.datasets.biomedical"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_cell_line_cll method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_cell_line_gellus method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_cell_line_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_disease_mirna method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_MIRNA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_gene_fsu method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_gene_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_GENE_JNLPBA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_gene_mirna method)": [[1, "flair.datasets.biomedical.HUNER_GENE_MIRNA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.huner_species_mirna method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_MIRNA.get_corpus_sentence_splitter"]], "get_corpus_sentence_splitter() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.get_corpus_sentence_splitter"]], "get_entities() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.get_entities"]], "get_entity_type_mapping() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_cell_line_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_cell_line_biored method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_cell_line_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_TMVAR_V3.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bioid method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_biored method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_cpi method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_chemical_nlm_chem method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_disease_biored method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bioid method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_epi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2011_rel method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_ge method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_bionlp_st_2013_pc method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_biored method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_cpi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CPI.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_drugprot method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DRUGPROT.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_gnormplus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GNORMPLUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_nlm_gene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_NLM_GENE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_progene method)": [[1, "flair.datasets.biomedical.HUNER_GENE_PROGENE.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_seth_corpus method)": [[1, "flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_gene_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_GENE_TMVAR_V3.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bioid method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIOID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bionlp_st_2011_id method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_bionlp_st_2019_bb method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_biored method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIORED.get_entity_type_mapping"]], "get_entity_type_mapping() (flair.datasets.biomedical.huner_species_tmvar_v3 method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_TMVAR_V3.get_entity_type_mapping"]], "get_mirna_subset() (flair.datasets.biomedical.hunermirnahelper static method)": [[1, "flair.datasets.biomedical.HunerMiRNAHelper.get_mirna_subset"]], "get_subset() (flair.datasets.biomedical.huner_disease_mirna method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_MIRNA.get_subset"]], "get_subset() (flair.datasets.biomedical.huner_gene_mirna method)": [[1, "flair.datasets.biomedical.HUNER_GENE_MIRNA.get_subset"]], "get_subset() (flair.datasets.biomedical.huner_species_mirna method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_MIRNA.get_subset"]], "get_subset() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.get_subset"]], "is_before() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.is_before"]], "last_entity (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.last_entity"]], "merge_datasets() (in module flair.datasets.biomedical)": [[1, "flair.datasets.biomedical.merge_datasets"]], "overlaps() (flair.datasets.biomedical.entity method)": [[1, "flair.datasets.biomedical.Entity.overlaps"]], "parse_corpus() (flair.datasets.biomedical.azdz static method)": [[1, "flair.datasets.biomedical.AZDZ.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.craft static method)": [[1, "flair.datasets.biomedical.CRAFT.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.craft_v4 static method)": [[1, "flair.datasets.biomedical.CRAFT_V4.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.deca static method)": [[1, "flair.datasets.biomedical.DECA.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.fsu static method)": [[1, "flair.datasets.biomedical.FSU.parse_corpus"]], "parse_corpus() (flair.datasets.biomedical.variome static method)": [[1, "flair.datasets.biomedical.VARIOME.parse_corpus"]], "parse_dataset() (flair.datasets.biomedical.bc2gm static method)": [[1, "flair.datasets.biomedical.BC2GM.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.biosemantics static method)": [[1, "flair.datasets.biomedical.BIOSEMANTICS.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.bio_infer class method)": [[1, "flair.datasets.biomedical.BIO_INFER.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.chebi static method)": [[1, "flair.datasets.biomedical.CHEBI.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.iepa class method)": [[1, "flair.datasets.biomedical.IEPA.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.loctext static method)": [[1, "flair.datasets.biomedical.LOCTEXT.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.osiris class method)": [[1, "flair.datasets.biomedical.OSIRIS.parse_dataset"]], "parse_dataset() (flair.datasets.biomedical.s800 static method)": [[1, "flair.datasets.biomedical.S800.parse_dataset"]], "parse_file() (flair.datasets.biomedical.mirna class method)": [[1, "flair.datasets.biomedical.MIRNA.parse_file"]], "parse_input_file() (flair.datasets.biomedical.cemp static method)": [[1, "flair.datasets.biomedical.CEMP.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.gpro static method)": [[1, "flair.datasets.biomedical.GPRO.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.ncbi_disease static method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.parse_input_file"]], "parse_input_file() (flair.datasets.biomedical.scaicorpus static method)": [[1, "flair.datasets.biomedical.ScaiCorpus.parse_input_file"]], "parse_input_files() (flair.datasets.biomedical.anat_em static method)": [[1, "flair.datasets.biomedical.ANAT_EM.parse_input_files"]], "parse_input_files() (flair.datasets.biomedical.bionlpcorpus static method)": [[1, "flair.datasets.biomedical.BioNLPCorpus.parse_input_files"]], "parse_test_dataset() (flair.datasets.biomedical.bc2gm class method)": [[1, "flair.datasets.biomedical.BC2GM.parse_test_dataset"]], "parse_train_dataset() (flair.datasets.biomedical.bc2gm class method)": [[1, "flair.datasets.biomedical.BC2GM.parse_train_dataset"]], "patch_training_file() (flair.datasets.biomedical.ncbi_disease static method)": [[1, "flair.datasets.biomedical.NCBI_DISEASE.patch_training_file"]], "perform_corpus_download() (flair.datasets.biomedical.scai_chemicals static method)": [[1, "flair.datasets.biomedical.SCAI_CHEMICALS.perform_corpus_download"]], "perform_corpus_download() (flair.datasets.biomedical.scai_disease static method)": [[1, "flair.datasets.biomedical.SCAI_DISEASE.perform_corpus_download"]], "position_end (flair.datasets.biomedical.dpentry attribute)": [[1, "flair.datasets.biomedical.DpEntry.position_end"]], "prepare_and_save_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.prepare_and_save_dataset"]], "prepare_splits() (flair.datasets.biomedical.craft_v4 static method)": [[1, "flair.datasets.biomedical.CRAFT_V4.prepare_splits"]], "process_dataset() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.process_dataset"]], "read_dataset() (flair.datasets.biomedical.kaewphancorpushelper static method)": [[1, "flair.datasets.biomedical.KaewphanCorpusHelper.read_dataset"]], "read_file() (flair.datasets.biomedical.hunerjnlpba class method)": [[1, "flair.datasets.biomedical.HunerJNLPBA.read_file"]], "read_folder() (flair.datasets.biomedical.cell_finder class method)": [[1, "flair.datasets.biomedical.CELL_FINDER.read_folder"]], "split_url() (flair.datasets.biomedical.huner_cell_line_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_cll static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_gellus static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.split_url"]], "split_url() (flair.datasets.biomedical.huner_cell_line_jnlpba static method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP2013_CG.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_cdr static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_cemp static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_chebi static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEBI.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_chemdner static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_craft_v4 static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CRAFT_V4.split_url"]], "split_url() (flair.datasets.biomedical.huner_chemical_scai static method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIONLP2013_CG.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_cdr static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_mirna static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_MIRNA.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_ncbi static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_pdr static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_scai static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI.split_url"]], "split_url() (flair.datasets.biomedical.huner_disease_variome static method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_bc2gm static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP2013_CG.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_bio_infer static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_chebi static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CHEBI.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_craft_v4 static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CRAFT_V4.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_deca static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_fsu static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_gpro static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_iepa static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_jnlpba static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_JNLPBA.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_loctext static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_LOCTEXT.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_mirna static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_MIRNA.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_osiris static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS.split_url"]], "split_url() (flair.datasets.biomedical.huner_gene_variome static method)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_bionlp2013_cg static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP2013_CG.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_cell_finder static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_chebi static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CHEBI.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_craft_v4 static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CRAFT_V4.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_linneaus static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_loctext static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LOCTEXT.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_mirna static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_MIRNA.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_s800 static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800.split_url"]], "split_url() (flair.datasets.biomedical.huner_species_variome static method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME.split_url"]], "split_url() (flair.datasets.biomedical.hunerdataset static method)": [[1, "flair.datasets.biomedical.HunerDataset.split_url"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_cll method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_CLL.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_gellus method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_cell_line_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_bionlp2013_cg method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP2013_CG.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_cdr method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_cemp method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CEMP.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_chebi method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEBI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_chemdner method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_craft_v4 method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_CRAFT_V4.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_chemical_scai method)": [[1, "flair.datasets.biomedical.HUNER_CHEMICAL_SCAI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_bionlp2013_cg method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_BIONLP2013_CG.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_cdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_CDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_mirna method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_MIRNA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_ncbi method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_NCBI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_pdr method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_PDR.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_scai method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_SCAI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_disease_variome method)": [[1, "flair.datasets.biomedical.HUNER_DISEASE_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_bc2gm method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BC2GM.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_bionlp2013_cg method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIONLP2013_CG.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_bio_infer method)": [[1, "flair.datasets.biomedical.HUNER_GENE_BIO_INFER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_chebi method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CHEBI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_craft_v4 method)": [[1, "flair.datasets.biomedical.HUNER_GENE_CRAFT_V4.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_deca method)": [[1, "flair.datasets.biomedical.HUNER_GENE_DECA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_fsu method)": [[1, "flair.datasets.biomedical.HUNER_GENE_FSU.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_gpro method)": [[1, "flair.datasets.biomedical.HUNER_GENE_GPRO.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_iepa method)": [[1, "flair.datasets.biomedical.HUNER_GENE_IEPA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_jnlpba method)": [[1, "flair.datasets.biomedical.HUNER_GENE_JNLPBA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_loctext method)": [[1, "flair.datasets.biomedical.HUNER_GENE_LOCTEXT.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_mirna method)": [[1, "flair.datasets.biomedical.HUNER_GENE_MIRNA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_osiris method)": [[1, "flair.datasets.biomedical.HUNER_GENE_OSIRIS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_gene_variome method)": [[1, "flair.datasets.biomedical.HUNER_GENE_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_bionlp2013_cg method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_BIONLP2013_CG.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_cell_finder method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_chebi method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CHEBI.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_craft_v4 method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_CRAFT_V4.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_linneaus method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_loctext method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_LOCTEXT.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_mirna method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_MIRNA.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_s800 method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_S800.to_internal"]], "to_internal() (flair.datasets.biomedical.huner_species_variome method)": [[1, "flair.datasets.biomedical.HUNER_SPECIES_VARIOME.to_internal"]], "to_internal() (flair.datasets.biomedical.hunerdataset method)": [[1, "flair.datasets.biomedical.HunerDataset.to_internal"]], "to_internal_dataset() (flair.datasets.biomedical.bigbio_ner_corpus method)": [[1, "flair.datasets.biomedical.BIGBIO_NER_CORPUS.to_internal_dataset"]], "write_to_conll() (flair.datasets.biomedical.conllwriter method)": [[1, "flair.datasets.biomedical.CoNLLWriter.write_to_conll"]], "amazon_reviews (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS"]], "communicative_functions (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS"]], "csvclassificationcorpus (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.CSVClassificationCorpus"]], "csvclassificationdataset (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.CSVClassificationDataset"]], "classificationcorpus (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.ClassificationCorpus"]], "classificationdataset (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.ClassificationDataset"]], "germeval_2018_offensive_language (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE"]], "glue_cola (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GLUE_COLA"]], "glue_sst2 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GLUE_SST2"]], "go_emotions (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.GO_EMOTIONS"]], "imdb (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.IMDB"]], "newsgroups (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.NEWSGROUPS"]], "senteval_cr (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_CR"]], "senteval_mpqa (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_MPQA"]], "senteval_mr (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_MR"]], "senteval_sst_binary (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_BINARY"]], "senteval_sst_granular (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR"]], "senteval_subj (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTEVAL_SUBJ"]], "sentiment_140 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.SENTIMENT_140"]], "stackoverflow (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.STACKOVERFLOW"]], "trec_50 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.TREC_50"]], "trec_6 (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.TREC_6"]], "wassa_anger (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_ANGER"]], "wassa_fear (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_FEAR"]], "wassa_joy (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_JOY"]], "wassa_sadness (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.WASSA_SADNESS"]], "yahoo_answers (class in flair.datasets.document_classification)": [[2, "flair.datasets.document_classification.YAHOO_ANSWERS"]], "__init__() (flair.datasets.document_classification.amazon_reviews method)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS.__init__"]], "__init__() (flair.datasets.document_classification.communicative_functions method)": [[2, "flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS.__init__"]], "__init__() (flair.datasets.document_classification.csvclassificationcorpus method)": [[2, "flair.datasets.document_classification.CSVClassificationCorpus.__init__"]], "__init__() (flair.datasets.document_classification.csvclassificationdataset method)": [[2, "flair.datasets.document_classification.CSVClassificationDataset.__init__"]], "__init__() (flair.datasets.document_classification.classificationcorpus method)": [[2, "flair.datasets.document_classification.ClassificationCorpus.__init__"]], "__init__() (flair.datasets.document_classification.classificationdataset method)": [[2, "flair.datasets.document_classification.ClassificationDataset.__init__"]], "__init__() (flair.datasets.document_classification.germeval_2018_offensive_language method)": [[2, "flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE.__init__"]], "__init__() (flair.datasets.document_classification.glue_cola method)": [[2, "flair.datasets.document_classification.GLUE_COLA.__init__"]], "__init__() (flair.datasets.document_classification.go_emotions method)": [[2, "flair.datasets.document_classification.GO_EMOTIONS.__init__"]], "__init__() (flair.datasets.document_classification.imdb method)": [[2, "flair.datasets.document_classification.IMDB.__init__"]], "__init__() (flair.datasets.document_classification.newsgroups method)": [[2, "flair.datasets.document_classification.NEWSGROUPS.__init__"]], "__init__() (flair.datasets.document_classification.senteval_cr method)": [[2, "flair.datasets.document_classification.SENTEVAL_CR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_mpqa method)": [[2, "flair.datasets.document_classification.SENTEVAL_MPQA.__init__"]], "__init__() (flair.datasets.document_classification.senteval_mr method)": [[2, "flair.datasets.document_classification.SENTEVAL_MR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_sst_binary method)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_BINARY.__init__"]], "__init__() (flair.datasets.document_classification.senteval_sst_granular method)": [[2, "flair.datasets.document_classification.SENTEVAL_SST_GRANULAR.__init__"]], "__init__() (flair.datasets.document_classification.senteval_subj method)": [[2, "flair.datasets.document_classification.SENTEVAL_SUBJ.__init__"]], "__init__() (flair.datasets.document_classification.sentiment_140 method)": [[2, "flair.datasets.document_classification.SENTIMENT_140.__init__"]], "__init__() (flair.datasets.document_classification.stackoverflow method)": [[2, "flair.datasets.document_classification.STACKOVERFLOW.__init__"]], "__init__() (flair.datasets.document_classification.trec_50 method)": [[2, "flair.datasets.document_classification.TREC_50.__init__"]], "__init__() (flair.datasets.document_classification.trec_6 method)": [[2, "flair.datasets.document_classification.TREC_6.__init__"]], "__init__() (flair.datasets.document_classification.wassa_anger method)": [[2, "flair.datasets.document_classification.WASSA_ANGER.__init__"]], "__init__() (flair.datasets.document_classification.wassa_fear method)": [[2, "flair.datasets.document_classification.WASSA_FEAR.__init__"]], "__init__() (flair.datasets.document_classification.wassa_joy method)": [[2, "flair.datasets.document_classification.WASSA_JOY.__init__"]], "__init__() (flair.datasets.document_classification.wassa_sadness method)": [[2, "flair.datasets.document_classification.WASSA_SADNESS.__init__"]], "__init__() (flair.datasets.document_classification.yahoo_answers method)": [[2, "flair.datasets.document_classification.YAHOO_ANSWERS.__init__"]], "download_and_prepare_amazon_product_file() (flair.datasets.document_classification.amazon_reviews method)": [[2, "flair.datasets.document_classification.AMAZON_REVIEWS.download_and_prepare_amazon_product_file"]], "flair.datasets.document_classification": [[2, "module-flair.datasets.document_classification"]], "is_in_memory() (flair.datasets.document_classification.csvclassificationdataset method)": [[2, "flair.datasets.document_classification.CSVClassificationDataset.is_in_memory"]], "is_in_memory() (flair.datasets.document_classification.classificationdataset method)": [[2, "flair.datasets.document_classification.ClassificationDataset.is_in_memory"]], "label_map (flair.datasets.document_classification.glue_sst2 attribute)": [[2, "flair.datasets.document_classification.GLUE_SST2.label_map"]], "tsv_from_eval_dataset() (flair.datasets.document_classification.glue_cola method)": [[2, "flair.datasets.document_classification.GLUE_COLA.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.document_classification.glue_sst2 method)": [[2, "flair.datasets.document_classification.GLUE_SST2.tsv_from_eval_dataset"]], "nel_english_aida (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AIDA"]], "nel_english_aquaint (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT"]], "nel_english_iitb (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_IITB"]], "nel_english_reddit (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT"]], "nel_english_tweeki (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI"]], "nel_german_hipe (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.NEL_GERMAN_HIPE"]], "wsd_masc (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_MASC"]], "wsd_omsti (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_OMSTI"]], "wsd_raganato_all (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_RAGANATO_ALL"]], "wsd_semcor (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_SEMCOR"]], "wsd_trainomatic (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_TRAINOMATIC"]], "wsd_ufsac (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_UFSAC"]], "wsd_wordnet_gloss_tagged (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED"]], "zelda (class in flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.ZELDA"]], "__init__() (flair.datasets.entity_linking.nel_english_aida method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AIDA.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_aquaint method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_iitb method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_IITB.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT.__init__"]], "__init__() (flair.datasets.entity_linking.nel_english_tweeki method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI.__init__"]], "__init__() (flair.datasets.entity_linking.nel_german_hipe method)": [[3, "flair.datasets.entity_linking.NEL_GERMAN_HIPE.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_masc method)": [[3, "flair.datasets.entity_linking.WSD_MASC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_omsti method)": [[3, "flair.datasets.entity_linking.WSD_OMSTI.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_raganato_all method)": [[3, "flair.datasets.entity_linking.WSD_RAGANATO_ALL.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_semcor method)": [[3, "flair.datasets.entity_linking.WSD_SEMCOR.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_trainomatic method)": [[3, "flair.datasets.entity_linking.WSD_TRAINOMATIC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_ufsac method)": [[3, "flair.datasets.entity_linking.WSD_UFSAC.__init__"]], "__init__() (flair.datasets.entity_linking.wsd_wordnet_gloss_tagged method)": [[3, "flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED.__init__"]], "__init__() (flair.datasets.entity_linking.zelda method)": [[3, "flair.datasets.entity_linking.ZELDA.__init__"]], "_fill_annot_array() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._fill_annot_array"]], "_fill_curr_comment() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._fill_curr_comment"]], "_text_to_cols() (flair.datasets.entity_linking.nel_english_reddit method)": [[3, "flair.datasets.entity_linking.NEL_ENGLISH_REDDIT._text_to_cols"]], "determine_tsv_file() (in module flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.determine_tsv_file"]], "flair.datasets.entity_linking": [[3, "module-flair.datasets.entity_linking"]], "from_ufsac_to_tsv() (in module flair.datasets.entity_linking)": [[3, "flair.datasets.entity_linking.from_ufsac_to_tsv"]], "ocrcorpus (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.OcrCorpus"]], "ocrjsondataset (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.OcrJsonDataset"]], "sroie (class in flair.datasets.ocr)": [[4, "flair.datasets.ocr.SROIE"]], "__init__() (flair.datasets.ocr.ocrcorpus method)": [[4, "flair.datasets.ocr.OcrCorpus.__init__"]], "__init__() (flair.datasets.ocr.ocrjsondataset method)": [[4, "flair.datasets.ocr.OcrJsonDataset.__init__"]], "__init__() (flair.datasets.ocr.sroie method)": [[4, "flair.datasets.ocr.SROIE.__init__"]], "flair.datasets.ocr": [[4, "module-flair.datasets.ocr"]], "is_in_memory() (flair.datasets.ocr.ocrjsondataset method)": [[4, "flair.datasets.ocr.OcrJsonDataset.is_in_memory"]], "re_english_conll04 (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04"]], "re_english_drugprot (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT"]], "re_english_semeval2010 (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010"]], "re_english_tacred (class in flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED"]], "__init__() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.__init__"]], "__init__() (flair.datasets.relation_extraction.re_english_semeval2010 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010.__init__"]], "__init__() (flair.datasets.relation_extraction.re_english_tacred method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED.__init__"]], "char_spans_to_token_spans() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.char_spans_to_token_spans"]], "convert_ptb_token() (in module flair.datasets.relation_extraction)": [[5, "flair.datasets.relation_extraction.convert_ptb_token"]], "convert_to_conllu() (flair.datasets.relation_extraction.re_english_conll04 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_CONLL04.convert_to_conllu"]], "drugprot_document_to_tokenlists() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.drugprot_document_to_tokenlists"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.extract_and_convert_to_conllu"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_semeval2010 method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010.extract_and_convert_to_conllu"]], "extract_and_convert_to_conllu() (flair.datasets.relation_extraction.re_english_tacred method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_TACRED.extract_and_convert_to_conllu"]], "flair.datasets.relation_extraction": [[5, "module-flair.datasets.relation_extraction"]], "has_overlap() (flair.datasets.relation_extraction.re_english_drugprot method)": [[5, "flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT.has_overlap"]], "bioscope (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.BIOSCOPE"]], "conll_03 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03"]], "conll_03_dutch (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_DUTCH"]], "conll_03_german (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_GERMAN"]], "conll_03_spanish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_03_SPANISH"]], "conll_2000 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.CONLL_2000"]], "columncorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ColumnCorpus"]], "columndataset (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ColumnDataset"]], "feats (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.FEATS"]], "fewnerd (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.FEWNERD"]], "head (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.HEAD"]], "jsonlcorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.JsonlCorpus"]], "jsonldataset (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.JsonlDataset"]], "keyphrase_inspec (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_INSPEC"]], "keyphrase_semeval2010 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2010"]], "keyphrase_semeval2017 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2017"]], "masakha_pos (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MASAKHA_POS"]], "multifilecolumncorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MultiFileColumnCorpus"]], "multifilejsonlcorpus (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.MultiFileJsonlCorpus"]], "ner_arabic_aner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_ANER"]], "ner_arabic_aqmar (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR"]], "ner_basque (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_BASQUE"]], "ner_chinese_weibo (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO"]], "ner_danish_dane (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_DANISH_DANE"]], "ner_english_movie_complex (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX"]], "ner_english_movie_simple (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE"]], "ner_english_person (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON"]], "ner_english_restaurant (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT"]], "ner_english_sec_fillings (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS"]], "ner_english_stackoverflow (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW"]], "ner_english_twitter (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER"]], "ner_english_webpages (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES"]], "ner_english_wikigold (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD"]], "ner_english_wnut_2020 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020"]], "ner_finnish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_FINNISH"]], "ner_german_biofid (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_BIOFID"]], "ner_german_europarl (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL"]], "ner_german_germeval (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL"]], "ner_german_legal (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL"]], "ner_german_politics (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS"]], "ner_hipe_2022 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_HIPE_2022"]], "ner_hungarian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_HUNGARIAN"]], "ner_icdar_europeana (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA"]], "ner_icelandic (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_ICELANDIC"]], "ner_japanese (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_JAPANESE"]], "ner_masakhane (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MASAKHANE"]], "ner_multi_coner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER"]], "ner_multi_coner_v2 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2"]], "ner_multi_wikiann (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN"]], "ner_multi_wikiner (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKINER"]], "ner_multi_xtreme (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_XTREME"]], "ner_nermud (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_NERMUD"]], "ner_swedish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH"]], "ner_turku (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_TURKU"]], "ner_ukrainian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.NER_UKRAINIAN"]], "ontonotes (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.ONTONOTES"]], "space_after_key (flair.datasets.sequence_labeling.columndataset attribute)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.SPACE_AFTER_KEY"]], "up_chinese (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_CHINESE"]], "up_english (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_ENGLISH"]], "up_finnish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_FINNISH"]], "up_french (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_FRENCH"]], "up_german (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_GERMAN"]], "up_italian (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_ITALIAN"]], "up_spanish (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH"]], "up_spanish_ancora (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA"]], "wnut_17 (class in flair.datasets.sequence_labeling)": [[6, "flair.datasets.sequence_labeling.WNUT_17"]], "__init__() (flair.datasets.sequence_labeling.conll_03 method)": [[6, "flair.datasets.sequence_labeling.CONLL_03.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_dutch method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_DUTCH.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_german method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_GERMAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_03_spanish method)": [[6, "flair.datasets.sequence_labeling.CONLL_03_SPANISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.conll_2000 method)": [[6, "flair.datasets.sequence_labeling.CONLL_2000.__init__"]], "__init__() (flair.datasets.sequence_labeling.columncorpus method)": [[6, "flair.datasets.sequence_labeling.ColumnCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.columndataset method)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.__init__"]], "__init__() (flair.datasets.sequence_labeling.jsonlcorpus method)": [[6, "flair.datasets.sequence_labeling.JsonlCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset.__init__"]], "__init__() (flair.datasets.sequence_labeling.masakha_pos method)": [[6, "flair.datasets.sequence_labeling.MASAKHA_POS.__init__"]], "__init__() (flair.datasets.sequence_labeling.multifilecolumncorpus method)": [[6, "flair.datasets.sequence_labeling.MultiFileColumnCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.multifilejsonlcorpus method)": [[6, "flair.datasets.sequence_labeling.MultiFileJsonlCorpus.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_arabic_aner method)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_ANER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_arabic_aqmar method)": [[6, "flair.datasets.sequence_labeling.NER_ARABIC_AQMAR.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_chinese_weibo method)": [[6, "flair.datasets.sequence_labeling.NER_CHINESE_WEIBO.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_movie_complex method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_movie_simple method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_person method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_PERSON.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_restaurant method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_sec_fillings method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_stackoverflow method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_twitter method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_webpages method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_wikigold method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_english_wnut_2020 method)": [[6, "flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_europarl method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_germeval method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_legal method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_LEGAL.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_german_politics method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_POLITICS.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_hipe_2022 method)": [[6, "flair.datasets.sequence_labeling.NER_HIPE_2022.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_hungarian method)": [[6, "flair.datasets.sequence_labeling.NER_HUNGARIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_icdar_europeana method)": [[6, "flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_icelandic method)": [[6, "flair.datasets.sequence_labeling.NER_ICELANDIC.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_japanese method)": [[6, "flair.datasets.sequence_labeling.NER_JAPANESE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_masakhane method)": [[6, "flair.datasets.sequence_labeling.NER_MASAKHANE.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_coner method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_coner_v2 method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_CONER_V2.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_wikiann method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_WIKIANN.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_multi_xtreme method)": [[6, "flair.datasets.sequence_labeling.NER_MULTI_XTREME.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_nermud method)": [[6, "flair.datasets.sequence_labeling.NER_NERMUD.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_swedish method)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_turku method)": [[6, "flair.datasets.sequence_labeling.NER_TURKU.__init__"]], "__init__() (flair.datasets.sequence_labeling.ner_ukrainian method)": [[6, "flair.datasets.sequence_labeling.NER_UKRAINIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_chinese method)": [[6, "flair.datasets.sequence_labeling.UP_CHINESE.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_english method)": [[6, "flair.datasets.sequence_labeling.UP_ENGLISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_finnish method)": [[6, "flair.datasets.sequence_labeling.UP_FINNISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_french method)": [[6, "flair.datasets.sequence_labeling.UP_FRENCH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_german method)": [[6, "flair.datasets.sequence_labeling.UP_GERMAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_italian method)": [[6, "flair.datasets.sequence_labeling.UP_ITALIAN.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_spanish method)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH.__init__"]], "__init__() (flair.datasets.sequence_labeling.up_spanish_ancora method)": [[6, "flair.datasets.sequence_labeling.UP_SPANISH_ANCORA.__init__"]], "_add_iob2_tags() (flair.datasets.sequence_labeling.ner_swedish method)": [[6, "flair.datasets.sequence_labeling.NER_SWEDISH._add_IOB2_tags"]], "_add_iob_tags() (flair.datasets.sequence_labeling.ner_german_europarl method)": [[6, "flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL._add_IOB_tags"]], "_add_label_to_sentence() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset._add_label_to_sentence"]], "_process_coref_span_annotations_for_word() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES._process_coref_span_annotations_for_word"]], "archive_url (flair.datasets.sequence_labeling.ontonotes attribute)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.archive_url"]], "dataset_document_iterator() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.dataset_document_iterator"]], "flair.datasets.sequence_labeling": [[6, "module-flair.datasets.sequence_labeling"]], "get_available_domains() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.get_available_domains"]], "is_in_memory() (flair.datasets.sequence_labeling.columndataset method)": [[6, "flair.datasets.sequence_labeling.ColumnDataset.is_in_memory"]], "is_in_memory() (flair.datasets.sequence_labeling.jsonldataset method)": [[6, "flair.datasets.sequence_labeling.JsonlDataset.is_in_memory"]], "sentence_iterator() (flair.datasets.sequence_labeling.ontonotes class method)": [[6, "flair.datasets.sequence_labeling.ONTONOTES.sentence_iterator"]], "feideggercorpus (class in flair.datasets.text_image)": [[7, "flair.datasets.text_image.FeideggerCorpus"]], "feideggerdataset (class in flair.datasets.text_image)": [[7, "flair.datasets.text_image.FeideggerDataset"]], "flair.datasets.text_image": [[7, "module-flair.datasets.text_image"]], "is_in_memory() (flair.datasets.text_image.feideggerdataset method)": [[7, "flair.datasets.text_image.FeideggerDataset.is_in_memory"]], "datapaircorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataPairCorpus"]], "datapairdataset (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.DataPairDataset"]], "glue_mnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_MNLI"]], "glue_mrpc (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_MRPC"]], "glue_qnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_QNLI"]], "glue_qqp (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_QQP"]], "glue_rte (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_RTE"]], "glue_stsb (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_STSB"]], "glue_wnli (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.GLUE_WNLI"]], "opusparallelcorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.OpusParallelCorpus"]], "paralleltextcorpus (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.ParallelTextCorpus"]], "paralleltextdataset (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.ParallelTextDataset"]], "superglue_rte (class in flair.datasets.text_text)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE"]], "__init__() (flair.datasets.text_text.datapaircorpus method)": [[8, "flair.datasets.text_text.DataPairCorpus.__init__"]], "__init__() (flair.datasets.text_text.datapairdataset method)": [[8, "flair.datasets.text_text.DataPairDataset.__init__"]], "__init__() (flair.datasets.text_text.glue_mnli method)": [[8, "flair.datasets.text_text.GLUE_MNLI.__init__"]], "__init__() (flair.datasets.text_text.glue_mrpc method)": [[8, "flair.datasets.text_text.GLUE_MRPC.__init__"]], "__init__() (flair.datasets.text_text.glue_qnli method)": [[8, "flair.datasets.text_text.GLUE_QNLI.__init__"]], "__init__() (flair.datasets.text_text.glue_qqp method)": [[8, "flair.datasets.text_text.GLUE_QQP.__init__"]], "__init__() (flair.datasets.text_text.glue_rte method)": [[8, "flair.datasets.text_text.GLUE_RTE.__init__"]], "__init__() (flair.datasets.text_text.glue_wnli method)": [[8, "flair.datasets.text_text.GLUE_WNLI.__init__"]], "__init__() (flair.datasets.text_text.opusparallelcorpus method)": [[8, "flair.datasets.text_text.OpusParallelCorpus.__init__"]], "__init__() (flair.datasets.text_text.paralleltextcorpus method)": [[8, "flair.datasets.text_text.ParallelTextCorpus.__init__"]], "__init__() (flair.datasets.text_text.superglue_rte method)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE.__init__"]], "flair.datasets.text_text": [[8, "module-flair.datasets.text_text"]], "is_in_memory() (flair.datasets.text_text.datapairdataset method)": [[8, "flair.datasets.text_text.DataPairDataset.is_in_memory"]], "is_in_memory() (flair.datasets.text_text.paralleltextcorpus method)": [[8, "flair.datasets.text_text.ParallelTextCorpus.is_in_memory"]], "is_in_memory() (flair.datasets.text_text.paralleltextdataset method)": [[8, "flair.datasets.text_text.ParallelTextDataset.is_in_memory"]], "jsonl_from_eval_dataset() (flair.datasets.text_text.superglue_rte method)": [[8, "flair.datasets.text_text.SUPERGLUE_RTE.jsonl_from_eval_dataset"]], "rte_jsonl_to_tsv() (in module flair.datasets.text_text)": [[8, "flair.datasets.text_text.rte_jsonl_to_tsv"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_mnli method)": [[8, "flair.datasets.text_text.GLUE_MNLI.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_mrpc method)": [[8, "flair.datasets.text_text.GLUE_MRPC.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_qnli method)": [[8, "flair.datasets.text_text.GLUE_QNLI.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_qqp method)": [[8, "flair.datasets.text_text.GLUE_QQP.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_rte method)": [[8, "flair.datasets.text_text.GLUE_RTE.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_stsb method)": [[8, "flair.datasets.text_text.GLUE_STSB.tsv_from_eval_dataset"]], "tsv_from_eval_dataset() (flair.datasets.text_text.glue_wnli method)": [[8, "flair.datasets.text_text.GLUE_WNLI.tsv_from_eval_dataset"]], "ud_afrikaans (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_AFRIKAANS"]], "ud_ancient_greek (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ANCIENT_GREEK"]], "ud_arabic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ARABIC"]], "ud_armenian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ARMENIAN"]], "ud_basque (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BASQUE"]], "ud_belarusian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BELARUSIAN"]], "ud_bulgarian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BULGARIAN"]], "ud_buryat (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_BURYAT"]], "ud_catalan (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CATALAN"]], "ud_chinese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CHINESE"]], "ud_chinese_kyoto (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CHINESE_KYOTO"]], "ud_coptic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_COPTIC"]], "ud_croatian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CROATIAN"]], "ud_czech (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_CZECH"]], "ud_danish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_DANISH"]], "ud_dutch (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_DUTCH"]], "ud_english (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ENGLISH"]], "ud_estonian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ESTONIAN"]], "ud_faroese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FAROESE"]], "ud_finnish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FINNISH"]], "ud_french (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_FRENCH"]], "ud_galician (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GALICIAN"]], "ud_german (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GERMAN"]], "ud_german_hdt (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GERMAN_HDT"]], "ud_gothic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GOTHIC"]], "ud_greek (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_GREEK"]], "ud_hebrew (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_HEBREW"]], "ud_hindi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_HINDI"]], "ud_indonesian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_INDONESIAN"]], "ud_irish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_IRISH"]], "ud_italian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ITALIAN"]], "ud_japanese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_JAPANESE"]], "ud_kazakh (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_KAZAKH"]], "ud_korean (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_KOREAN"]], "ud_latin (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LATIN"]], "ud_latvian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LATVIAN"]], "ud_lithuanian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LITHUANIAN"]], "ud_livvi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_LIVVI"]], "ud_maltese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_MALTESE"]], "ud_marathi (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_MARATHI"]], "ud_naija (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NAIJA"]], "ud_north_sami (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NORTH_SAMI"]], "ud_norwegian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_NORWEGIAN"]], "ud_old_church_slavonic (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_OLD_CHURCH_SLAVONIC"]], "ud_old_french (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_OLD_FRENCH"]], "ud_persian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_PERSIAN"]], "ud_polish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_POLISH"]], "ud_portuguese (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_PORTUGUESE"]], "ud_romanian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_ROMANIAN"]], "ud_russian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_RUSSIAN"]], "ud_serbian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SERBIAN"]], "ud_slovak (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SLOVAK"]], "ud_slovenian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SLOVENIAN"]], "ud_spanish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SPANISH"]], "ud_swedish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_SWEDISH"]], "ud_turkish (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_TURKISH"]], "ud_ukrainian (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_UKRAINIAN"]], "ud_wolof (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UD_WOLOF"]], "universaldependenciescorpus (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UniversalDependenciesCorpus"]], "universaldependenciesdataset (class in flair.datasets.treebanks)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset"]], "__init__() (flair.datasets.treebanks.universaldependenciescorpus method)": [[9, "flair.datasets.treebanks.UniversalDependenciesCorpus.__init__"]], "__init__() (flair.datasets.treebanks.universaldependenciesdataset method)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset.__init__"]], "flair.datasets.treebanks": [[9, "module-flair.datasets.treebanks"]], "is_in_memory() (flair.datasets.treebanks.universaldependenciesdataset method)": [[9, "flair.datasets.treebanks.UniversalDependenciesDataset.is_in_memory"]], "documentembeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.DocumentEmbeddings"]], "embeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.Embeddings"]], "scalarmix (class in flair.embeddings.base)": [[10, "flair.embeddings.base.ScalarMix"]], "tokenembeddings (class in flair.embeddings.base)": [[10, "flair.embeddings.base.TokenEmbeddings"]], "__init__() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.__init__"]], "__init__() (flair.embeddings.base.scalarmix method)": [[10, "flair.embeddings.base.ScalarMix.__init__"]], "_add_embeddings_internal() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings._add_embeddings_internal"]], "embed() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.embed"]], "embedding_length (flair.embeddings.base.embeddings property)": [[10, "flair.embeddings.base.Embeddings.embedding_length"]], "embedding_type (flair.embeddings.base.documentembeddings property)": [[10, "flair.embeddings.base.DocumentEmbeddings.embedding_type"]], "embedding_type (flair.embeddings.base.embeddings property)": [[10, "flair.embeddings.base.Embeddings.embedding_type"]], "embedding_type (flair.embeddings.base.tokenembeddings property)": [[10, "flair.embeddings.base.TokenEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.base.embeddings attribute)": [[10, "flair.embeddings.base.Embeddings.embeddings_name"]], "embeddings_name (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.embeddings_name"]], "flair.embeddings.base": [[10, "module-flair.embeddings.base"]], "forward() (flair.embeddings.base.scalarmix method)": [[10, "flair.embeddings.base.ScalarMix.forward"]], "from_params() (flair.embeddings.base.embeddings class method)": [[10, "flair.embeddings.base.Embeddings.from_params"]], "get_instance_parameters() (flair.embeddings.base.embeddings static method)": [[10, "flair.embeddings.base.Embeddings.get_instance_parameters"]], "get_named_embeddings_dict() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.get_named_embeddings_dict"]], "get_names() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.get_names"]], "load_embedding() (flair.embeddings.base.embeddings class method)": [[10, "flair.embeddings.base.Embeddings.load_embedding"]], "load_embeddings() (in module flair.embeddings.base)": [[10, "flair.embeddings.base.load_embeddings"]], "name (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.name"]], "name (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.name"]], "register_embeddings() (in module flair.embeddings.base)": [[10, "flair.embeddings.base.register_embeddings"]], "save_embeddings() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.save_embeddings"]], "to_params() (flair.embeddings.base.embeddings method)": [[10, "flair.embeddings.base.Embeddings.to_params"]], "training (flair.embeddings.base.documentembeddings attribute)": [[10, "flair.embeddings.base.DocumentEmbeddings.training"]], "training (flair.embeddings.base.scalarmix attribute)": [[10, "flair.embeddings.base.ScalarMix.training"]], "training (flair.embeddings.base.tokenembeddings attribute)": [[10, "flair.embeddings.base.TokenEmbeddings.training"]], "documentcnnembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings"]], "documentlmembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentLMEmbeddings"]], "documentpoolembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings"]], "documentrnnembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings"]], "documenttfidfembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings"]], "sentencetransformerdocumentembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings"]], "transformerdocumentembeddings (class in flair.embeddings.document)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings"]], "__init__() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.__init__"]], "__init__() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.__init__"]], "__init__() (flair.embeddings.document.sentencetransformerdocumentembeddings method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.__init__"]], "__init__() (flair.embeddings.document.transformerdocumentembeddings method)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.__init__"]], "_add_embeddings_internal() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings._add_embeddings_internal"]], "_add_embeddings_internal() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings._add_embeddings_internal"]], "create_from_state() (flair.embeddings.document.transformerdocumentembeddings class method)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.create_from_state"]], "embed() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embed"]], "embed() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embed"]], "embedding_length (flair.embeddings.document.documentcnnembeddings property)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentlmembeddings property)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentpoolembeddings property)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documentrnnembeddings property)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.documenttfidfembeddings property)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.document.sentencetransformerdocumentembeddings property)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.embedding_length"]], "embeddings_name (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.extra_repr"]], "flair.embeddings.document": [[11, "module-flair.embeddings.document"]], "from_params() (flair.embeddings.document.documentcnnembeddings class method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentlmembeddings class method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentpoolembeddings class method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documentrnnembeddings class method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.from_params"]], "from_params() (flair.embeddings.document.documenttfidfembeddings class method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.from_params"]], "from_params() (flair.embeddings.document.sentencetransformerdocumentembeddings class method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.from_params"]], "get_names() (flair.embeddings.document.documentlmembeddings method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.get_names"]], "name (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.name"]], "name (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.name"]], "name (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.name"]], "name (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.name"]], "name (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.name"]], "name (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.name"]], "name (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.name"]], "onnx_cls (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.onnx_cls"]], "to_params() (flair.embeddings.document.documentcnnembeddings method)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentlmembeddings method)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentpoolembeddings method)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documentrnnembeddings method)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.to_params"]], "to_params() (flair.embeddings.document.documenttfidfembeddings method)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.to_params"]], "to_params() (flair.embeddings.document.sentencetransformerdocumentembeddings method)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.to_params"]], "training (flair.embeddings.document.documentcnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentCNNEmbeddings.training"]], "training (flair.embeddings.document.documentlmembeddings attribute)": [[11, "flair.embeddings.document.DocumentLMEmbeddings.training"]], "training (flair.embeddings.document.documentpoolembeddings attribute)": [[11, "flair.embeddings.document.DocumentPoolEmbeddings.training"]], "training (flair.embeddings.document.documentrnnembeddings attribute)": [[11, "flair.embeddings.document.DocumentRNNEmbeddings.training"]], "training (flair.embeddings.document.documenttfidfembeddings attribute)": [[11, "flair.embeddings.document.DocumentTFIDFEmbeddings.training"]], "training (flair.embeddings.document.sentencetransformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.SentenceTransformerDocumentEmbeddings.training"]], "training (flair.embeddings.document.transformerdocumentembeddings attribute)": [[11, "flair.embeddings.document.TransformerDocumentEmbeddings.training"]], "convtransformnetworkimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings"]], "identityimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.IdentityImageEmbeddings"]], "imageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.ImageEmbeddings"]], "networkimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.NetworkImageEmbeddings"]], "precomputedimageembeddings (class in flair.embeddings.image)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings"]], "embedding_length (flair.embeddings.image.convtransformnetworkimageembeddings property)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.identityimageembeddings property)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.networkimageembeddings property)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.image.precomputedimageembeddings property)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.image.imageembeddings property)": [[12, "flair.embeddings.image.ImageEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.embeddings_name"]], "flair.embeddings.image": [[12, "module-flair.embeddings.image"]], "forward() (flair.embeddings.image.convtransformnetworkimageembeddings method)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.forward"]], "from_params() (flair.embeddings.image.imageembeddings class method)": [[12, "flair.embeddings.image.ImageEmbeddings.from_params"]], "name (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.name"]], "name (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.name"]], "name (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.name"]], "name (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.name"]], "name (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.name"]], "to_params() (flair.embeddings.image.imageembeddings method)": [[12, "flair.embeddings.image.ImageEmbeddings.to_params"]], "training (flair.embeddings.image.convtransformnetworkimageembeddings attribute)": [[12, "flair.embeddings.image.ConvTransformNetworkImageEmbeddings.training"]], "training (flair.embeddings.image.identityimageembeddings attribute)": [[12, "flair.embeddings.image.IdentityImageEmbeddings.training"]], "training (flair.embeddings.image.imageembeddings attribute)": [[12, "flair.embeddings.image.ImageEmbeddings.training"]], "training (flair.embeddings.image.networkimageembeddings attribute)": [[12, "flair.embeddings.image.NetworkImageEmbeddings.training"]], "training (flair.embeddings.image.precomputedimageembeddings attribute)": [[12, "flair.embeddings.image.PrecomputedImageEmbeddings.training"]], "charlmembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.CharLMEmbeddings"]], "documentlstmembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings"]], "documentmeanembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings"]], "elmoembeddings (class in flair.embeddings.legacy)": [[13, "flair.embeddings.legacy.ELMoEmbeddings"]], "__init__() (flair.embeddings.legacy.charlmembeddings method)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.__init__"]], "__init__() (flair.embeddings.legacy.documentlstmembeddings method)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.__init__"]], "__init__() (flair.embeddings.legacy.documentmeanembeddings method)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.__init__"]], "embed() (flair.embeddings.legacy.documentlstmembeddings method)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embed"]], "embed() (flair.embeddings.legacy.documentmeanembeddings method)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embed"]], "embedding_length (flair.embeddings.legacy.charlmembeddings property)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.documentlstmembeddings property)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.documentmeanembeddings property)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.legacy.elmoembeddings property)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.embedding_length"]], "embeddings_name (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.extra_repr"]], "flair.embeddings.legacy": [[13, "module-flair.embeddings.legacy"]], "name (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.name"]], "name (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.name"]], "name (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.name"]], "name (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.name"]], "train() (flair.embeddings.legacy.charlmembeddings method)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.train"]], "training (flair.embeddings.legacy.charlmembeddings attribute)": [[13, "flair.embeddings.legacy.CharLMEmbeddings.training"]], "training (flair.embeddings.legacy.documentlstmembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentLSTMEmbeddings.training"]], "training (flair.embeddings.legacy.documentmeanembeddings attribute)": [[13, "flair.embeddings.legacy.DocumentMeanEmbeddings.training"]], "training (flair.embeddings.legacy.elmoembeddings attribute)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.training"]], "use_layers_all() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_all"]], "use_layers_average() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_average"]], "use_layers_top() (flair.embeddings.legacy.elmoembeddings method)": [[13, "flair.embeddings.legacy.ELMoEmbeddings.use_layers_top"]], "bytepairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.BytePairEmbeddings"]], "characterembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.CharacterEmbeddings"]], "fasttextembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.FastTextEmbeddings"]], "flairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.FlairEmbeddings"]], "hashembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.HashEmbeddings"]], "musecrosslingualembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings"]], "nilcembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.NILCEmbeddings"]], "onehotembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.OneHotEmbeddings"]], "pooledflairembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.PooledFlairEmbeddings"]], "stackedembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.StackedEmbeddings"]], "transformerwordembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.TransformerWordEmbeddings"]], "wordembeddings (class in flair.embeddings.token)": [[14, "flair.embeddings.token.WordEmbeddings"]], "__init__() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.__init__"]], "__init__() (flair.embeddings.token.characterembeddings method)": [[14, "flair.embeddings.token.CharacterEmbeddings.__init__"]], "__init__() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.__init__"]], "__init__() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.__init__"]], "__init__() (flair.embeddings.token.nilcembeddings method)": [[14, "flair.embeddings.token.NILCEmbeddings.__init__"]], "__init__() (flair.embeddings.token.onehotembeddings method)": [[14, "flair.embeddings.token.OneHotEmbeddings.__init__"]], "__init__() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.__init__"]], "__init__() (flair.embeddings.token.transformerwordembeddings method)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.__init__"]], "__init__() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.__init__"]], "create_from_state() (flair.embeddings.token.transformerwordembeddings class method)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.create_from_state"]], "embed() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.embed"]], "embedding_length (flair.embeddings.token.bytepairembeddings property)": [[14, "flair.embeddings.token.BytePairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.characterembeddings property)": [[14, "flair.embeddings.token.CharacterEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.fasttextembeddings property)": [[14, "flair.embeddings.token.FastTextEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.flairembeddings property)": [[14, "flair.embeddings.token.FlairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.hashembeddings property)": [[14, "flair.embeddings.token.HashEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.musecrosslingualembeddings property)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.onehotembeddings property)": [[14, "flair.embeddings.token.OneHotEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.pooledflairembeddings property)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.stackedembeddings property)": [[14, "flair.embeddings.token.StackedEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.token.wordembeddings property)": [[14, "flair.embeddings.token.WordEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.token.stackedembeddings property)": [[14, "flair.embeddings.token.StackedEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.embeddings_name"]], "extra_repr() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.extra_repr"]], "extra_repr() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.extra_repr"]], "extra_repr() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.extra_repr"]], "flair.embeddings.token": [[14, "module-flair.embeddings.token"]], "from_corpus() (flair.embeddings.token.onehotembeddings class method)": [[14, "flair.embeddings.token.OneHotEmbeddings.from_corpus"]], "from_params() (flair.embeddings.token.bytepairembeddings class method)": [[14, "flair.embeddings.token.BytePairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.characterembeddings class method)": [[14, "flair.embeddings.token.CharacterEmbeddings.from_params"]], "from_params() (flair.embeddings.token.fasttextembeddings class method)": [[14, "flair.embeddings.token.FastTextEmbeddings.from_params"]], "from_params() (flair.embeddings.token.flairembeddings class method)": [[14, "flair.embeddings.token.FlairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.hashembeddings class method)": [[14, "flair.embeddings.token.HashEmbeddings.from_params"]], "from_params() (flair.embeddings.token.musecrosslingualembeddings class method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.from_params"]], "from_params() (flair.embeddings.token.nilcembeddings class method)": [[14, "flair.embeddings.token.NILCEmbeddings.from_params"]], "from_params() (flair.embeddings.token.onehotembeddings class method)": [[14, "flair.embeddings.token.OneHotEmbeddings.from_params"]], "from_params() (flair.embeddings.token.pooledflairembeddings class method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.from_params"]], "from_params() (flair.embeddings.token.stackedembeddings class method)": [[14, "flair.embeddings.token.StackedEmbeddings.from_params"]], "from_params() (flair.embeddings.token.wordembeddings class method)": [[14, "flair.embeddings.token.WordEmbeddings.from_params"]], "get_cached_token_index() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.get_cached_token_index"]], "get_cached_vec() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.get_cached_vec"]], "get_cached_vec() (flair.embeddings.token.musecrosslingualembeddings method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.get_cached_vec"]], "get_named_embeddings_dict() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.get_named_embeddings_dict"]], "get_names() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.get_names"]], "get_names() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.get_names"]], "get_vec() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.get_vec"]], "layer_norm (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.layer_norm"]], "name (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.name"]], "name (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.name"]], "name (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.name"]], "name (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.name"]], "name (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.name"]], "name (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.name"]], "name (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.name"]], "name (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.name"]], "name (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.name"]], "name (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.name"]], "name (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.name"]], "name (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.name"]], "num_embeddings (flair.embeddings.token.hashembeddings property)": [[14, "flair.embeddings.token.HashEmbeddings.num_embeddings"]], "onnx_cls (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.onnx_cls"]], "resolve_precomputed_path() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.resolve_precomputed_path"]], "state_dict() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.state_dict"]], "to() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.to"]], "to_params() (flair.embeddings.token.bytepairembeddings method)": [[14, "flair.embeddings.token.BytePairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.characterembeddings method)": [[14, "flair.embeddings.token.CharacterEmbeddings.to_params"]], "to_params() (flair.embeddings.token.fasttextembeddings method)": [[14, "flair.embeddings.token.FastTextEmbeddings.to_params"]], "to_params() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.hashembeddings method)": [[14, "flair.embeddings.token.HashEmbeddings.to_params"]], "to_params() (flair.embeddings.token.musecrosslingualembeddings method)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.to_params"]], "to_params() (flair.embeddings.token.onehotembeddings method)": [[14, "flair.embeddings.token.OneHotEmbeddings.to_params"]], "to_params() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.to_params"]], "to_params() (flair.embeddings.token.stackedembeddings method)": [[14, "flair.embeddings.token.StackedEmbeddings.to_params"]], "to_params() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.to_params"]], "train() (flair.embeddings.token.flairembeddings method)": [[14, "flair.embeddings.token.FlairEmbeddings.train"]], "train() (flair.embeddings.token.pooledflairembeddings method)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.train"]], "train() (flair.embeddings.token.wordembeddings method)": [[14, "flair.embeddings.token.WordEmbeddings.train"]], "training (flair.embeddings.token.bytepairembeddings attribute)": [[14, "flair.embeddings.token.BytePairEmbeddings.training"]], "training (flair.embeddings.token.characterembeddings attribute)": [[14, "flair.embeddings.token.CharacterEmbeddings.training"]], "training (flair.embeddings.token.fasttextembeddings attribute)": [[14, "flair.embeddings.token.FastTextEmbeddings.training"]], "training (flair.embeddings.token.flairembeddings attribute)": [[14, "flair.embeddings.token.FlairEmbeddings.training"]], "training (flair.embeddings.token.hashembeddings attribute)": [[14, "flair.embeddings.token.HashEmbeddings.training"]], "training (flair.embeddings.token.musecrosslingualembeddings attribute)": [[14, "flair.embeddings.token.MuseCrosslingualEmbeddings.training"]], "training (flair.embeddings.token.nilcembeddings attribute)": [[14, "flair.embeddings.token.NILCEmbeddings.training"]], "training (flair.embeddings.token.onehotembeddings attribute)": [[14, "flair.embeddings.token.OneHotEmbeddings.training"]], "training (flair.embeddings.token.pooledflairembeddings attribute)": [[14, "flair.embeddings.token.PooledFlairEmbeddings.training"]], "training (flair.embeddings.token.stackedembeddings attribute)": [[14, "flair.embeddings.token.StackedEmbeddings.training"]], "training (flair.embeddings.token.transformerwordembeddings attribute)": [[14, "flair.embeddings.token.TransformerWordEmbeddings.training"]], "training (flair.embeddings.token.wordembeddings attribute)": [[14, "flair.embeddings.token.WordEmbeddings.training"]], "transformerbaseembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings"]], "transformerembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerEmbeddings"]], "transformerjitdocumentembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings"]], "transformerjitembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings"]], "transformerjitwordembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings"]], "transformeronnxdocumentembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings"]], "transformeronnxembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings"]], "transformeronnxwordembeddings (class in flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings"]], "collect_dynamic_axes() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.collect_dynamic_axes"]], "combine_strided_tensors() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.combine_strided_tensors"]], "create_from_embedding() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.create_from_embedding"]], "create_from_state() (flair.embeddings.transformer.transformerbaseembeddings class method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.create_from_state"]], "create_session() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.create_session"]], "document_max_pooling() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.document_max_pooling"]], "document_mean_pooling() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.document_mean_pooling"]], "embedding_length (flair.embeddings.transformer.transformerbaseembeddings property)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embedding_length"]], "embedding_length (flair.embeddings.transformer.transformerembeddings property)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embedding_length"]], "embedding_type (flair.embeddings.transformer.transformerbaseembeddings property)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embedding_type"]], "embedding_type (flair.embeddings.transformer.transformerembeddings property)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embedding_type"]], "embeddings_name (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.embeddings_name"]], "embeddings_name (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.embeddings_name"]], "export_from_embedding() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.export_from_embedding"]], "export_onnx() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.export_onnx"]], "fill_masked_elements() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.fill_masked_elements"]], "fill_mean_token_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.fill_mean_token_embeddings"]], "flair.embeddings.transformer": [[15, "module-flair.embeddings.transformer"]], "forward() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.forward"]], "from_params() (flair.embeddings.transformer.transformerbaseembeddings class method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformerembeddings class method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.from_params"]], "from_params() (flair.embeddings.transformer.transformeronnxembeddings class method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.from_params"]], "insert_missing_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.insert_missing_embeddings"]], "name (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.name"]], "name (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.name"]], "name (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.name"]], "onnx_cls (flair.embeddings.transformer.transformerembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.onnx_cls"]], "optimize_model() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.optimize_model"]], "pad_sequence_embeddings() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.pad_sequence_embeddings"]], "parameter_to_list() (flair.embeddings.transformer.transformerjitembeddings class method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.parameter_to_list"]], "prepare_tensors() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.prepare_tensors"]], "quantize_model() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.quantize_model"]], "remove_session() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.remove_session"]], "remove_special_markup() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.remove_special_markup"]], "to_args() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.to_args"]], "to_params() (flair.embeddings.transformer.transformerbaseembeddings method)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformerembeddings method)": [[15, "flair.embeddings.transformer.TransformerEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformerjitembeddings method)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.to_params"]], "to_params() (flair.embeddings.transformer.transformeronnxembeddings method)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.to_params"]], "tokenizer (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.tokenizer"]], "tokenizer (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.tokenizer"]], "training (flair.embeddings.transformer.transformerbaseembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerBaseEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitDocumentEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitEmbeddings.training"]], "training (flair.embeddings.transformer.transformerjitwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerJitWordEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxdocumentembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxEmbeddings.training"]], "training (flair.embeddings.transformer.transformeronnxwordembeddings attribute)": [[15, "flair.embeddings.transformer.TransformerOnnxWordEmbeddings.training"]], "truncate_hidden_states() (in module flair.embeddings.transformer)": [[15, "flair.embeddings.transformer.truncate_hidden_states"]], "cache_root (in module flair)": [[16, "flair.cache_root"]], "device (in module flair)": [[16, "flair.device"]], "flair": [[16, "module-flair"]], "logger (in module flair)": [[16, "flair.logger"]], "set_proxies() (in module flair)": [[16, "flair.set_proxies"]], "set_seed() (in module flair)": [[16, "flair.set_seed"]], "boundingbox (class in flair.data)": [[17, "flair.data.BoundingBox"]], "concatflairdataset (class in flair.data)": [[17, "flair.data.ConcatFlairDataset"]], "corpus (class in flair.data)": [[17, "flair.data.Corpus"]], "datapair (class in flair.data)": [[17, "flair.data.DataPair"]], "datapoint (class in flair.data)": [[17, "flair.data.DataPoint"]], "dictionary (class in flair.data)": [[17, "flair.data.Dictionary"]], "flairdataset (class in flair.data)": [[17, "flair.data.FlairDataset"]], "image (class in flair.data)": [[17, "flair.data.Image"]], "label (class in flair.data)": [[17, "flair.data.Label"]], "multicorpus (class in flair.data)": [[17, "flair.data.MultiCorpus"]], "relation (class in flair.data)": [[17, "flair.data.Relation"]], "sentence (class in flair.data)": [[17, "flair.data.Sentence"]], "span (class in flair.data)": [[17, "flair.data.Span"]], "token (class in flair.data)": [[17, "flair.data.Token"]], "__init__() (flair.data.sentence method)": [[17, "flair.data.Sentence.__init__"]], "add_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.add_item"]], "add_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.add_label"]], "add_label() (flair.data.token method)": [[17, "flair.data.Token.add_label"]], "add_label_noise() (flair.data.corpus method)": [[17, "flair.data.Corpus.add_label_noise"]], "add_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.add_metadata"]], "add_tags_proba_dist() (flair.data.token method)": [[17, "flair.data.Token.add_tags_proba_dist"]], "bottom (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.bottom"]], "clear_embeddings() (flair.data.datapair method)": [[17, "flair.data.DataPair.clear_embeddings"]], "clear_embeddings() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.clear_embeddings"]], "clear_embeddings() (flair.data.sentence method)": [[17, "flair.data.Sentence.clear_embeddings"]], "copy_context_from_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.copy_context_from_sentence"]], "cummulative_sizes (flair.data.concatflairdataset property)": [[17, "flair.data.ConcatFlairDataset.cummulative_sizes"]], "cumsum() (flair.data.concatflairdataset static method)": [[17, "flair.data.ConcatFlairDataset.cumsum"]], "cumulative_sizes (flair.data.concatflairdataset attribute)": [[17, "flair.data.ConcatFlairDataset.cumulative_sizes"]], "datasets (flair.data.concatflairdataset attribute)": [[17, "flair.data.ConcatFlairDataset.datasets"]], "dev (flair.data.corpus property)": [[17, "flair.data.Corpus.dev"]], "downsample() (flair.data.corpus method)": [[17, "flair.data.Corpus.downsample"]], "embedding (flair.data.datapair property)": [[17, "flair.data.DataPair.embedding"]], "embedding (flair.data.datapoint property)": [[17, "flair.data.DataPoint.embedding"]], "embedding (flair.data.image property)": [[17, "flair.data.Image.embedding"]], "embedding (flair.data.relation property)": [[17, "flair.data.Relation.embedding"]], "embedding (flair.data.sentence property)": [[17, "flair.data.Sentence.embedding"]], "embedding (flair.data.span property)": [[17, "flair.data.Span.embedding"]], "embedding (flair.data.token property)": [[17, "flair.data.Token.embedding"]], "end_position (flair.data.datapair property)": [[17, "flair.data.DataPair.end_position"]], "end_position (flair.data.datapoint property)": [[17, "flair.data.DataPoint.end_position"]], "end_position (flair.data.image property)": [[17, "flair.data.Image.end_position"]], "end_position (flair.data.relation property)": [[17, "flair.data.Relation.end_position"]], "end_position (flair.data.sentence property)": [[17, "flair.data.Sentence.end_position"]], "end_position (flair.data.span property)": [[17, "flair.data.Span.end_position"]], "end_position (flair.data.token property)": [[17, "flair.data.Token.end_position"]], "filter_empty_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.filter_empty_sentences"]], "filter_long_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.filter_long_sentences"]], "flair.data": [[17, "module-flair.data"]], "get_all_sentences() (flair.data.corpus method)": [[17, "flair.data.Corpus.get_all_sentences"]], "get_each_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_each_embedding"]], "get_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_embedding"]], "get_head() (flair.data.token method)": [[17, "flair.data.Token.get_head"]], "get_idx_for_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_idx_for_item"]], "get_idx_for_items() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_idx_for_items"]], "get_item_for_index() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_item_for_index"]], "get_items() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.get_items"]], "get_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_label"]], "get_label_distribution() (flair.data.corpus method)": [[17, "flair.data.Corpus.get_label_distribution"]], "get_labels() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_labels"]], "get_labels() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_labels"]], "get_language_code() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_language_code"]], "get_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.get_metadata"]], "get_relations() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_relations"]], "get_span() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_span"]], "get_spans() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_spans"]], "get_spans_from_bio() (in module flair.data)": [[17, "flair.data.get_spans_from_bio"]], "get_tags_proba_dist() (flair.data.token method)": [[17, "flair.data.Token.get_tags_proba_dist"]], "get_token() (flair.data.sentence method)": [[17, "flair.data.Sentence.get_token"]], "has_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.has_label"]], "has_metadata() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.has_metadata"]], "idx (flair.data.token property)": [[17, "flair.data.Token.idx"]], "infer_space_after() (flair.data.sentence method)": [[17, "flair.data.Sentence.infer_space_after"]], "iob2() (in module flair.data)": [[17, "flair.data.iob2"]], "is_context_set() (flair.data.sentence method)": [[17, "flair.data.Sentence.is_context_set"]], "is_in_memory() (flair.data.flairdataset method)": [[17, "flair.data.FlairDataset.is_in_memory"]], "is_span_prediction_problem() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.is_span_prediction_problem"]], "labeled_identifier (flair.data.label property)": [[17, "flair.data.Label.labeled_identifier"]], "labels (flair.data.datapoint property)": [[17, "flair.data.DataPoint.labels"]], "left (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.left"]], "left_context() (flair.data.sentence method)": [[17, "flair.data.Sentence.left_context"]], "load() (flair.data.dictionary class method)": [[17, "flair.data.Dictionary.load"]], "load_from_file() (flair.data.dictionary class method)": [[17, "flair.data.Dictionary.load_from_file"]], "make_label_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_label_dictionary"]], "make_tag_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_tag_dictionary"]], "make_vocab_dictionary() (flair.data.corpus method)": [[17, "flair.data.Corpus.make_vocab_dictionary"]], "next_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.next_sentence"]], "obtain_statistics() (flair.data.corpus method)": [[17, "flair.data.Corpus.obtain_statistics"]], "previous_sentence() (flair.data.sentence method)": [[17, "flair.data.Sentence.previous_sentence"]], "randomly_split_into_two_datasets() (in module flair.data)": [[17, "flair.data.randomly_split_into_two_datasets"]], "remove_item() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.remove_item"]], "remove_labels() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.remove_labels"]], "remove_labels() (flair.data.sentence method)": [[17, "flair.data.Sentence.remove_labels"]], "right (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.right"]], "right_context() (flair.data.sentence method)": [[17, "flair.data.Sentence.right_context"]], "save() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.save"]], "score (flair.data.datapoint property)": [[17, "flair.data.DataPoint.score"]], "score (flair.data.label property)": [[17, "flair.data.Label.score"]], "set_context_for_sentences() (flair.data.sentence class method)": [[17, "flair.data.Sentence.set_context_for_sentences"]], "set_embedding() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.set_embedding"]], "set_label() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.set_label"]], "set_label() (flair.data.token method)": [[17, "flair.data.Token.set_label"]], "set_start_stop_tags() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.set_start_stop_tags"]], "set_value() (flair.data.label method)": [[17, "flair.data.Label.set_value"]], "shortstring (flair.data.label property)": [[17, "flair.data.Label.shortstring"]], "start_position (flair.data.datapair property)": [[17, "flair.data.DataPair.start_position"]], "start_position (flair.data.datapoint property)": [[17, "flair.data.DataPoint.start_position"]], "start_position (flair.data.image property)": [[17, "flair.data.Image.start_position"]], "start_position (flair.data.relation property)": [[17, "flair.data.Relation.start_position"]], "start_position (flair.data.sentence property)": [[17, "flair.data.Sentence.start_position"]], "start_position (flair.data.span property)": [[17, "flair.data.Span.start_position"]], "start_position (flair.data.token property)": [[17, "flair.data.Token.start_position"]], "start_stop_tags_are_set() (flair.data.dictionary method)": [[17, "flair.data.Dictionary.start_stop_tags_are_set"]], "tag (flair.data.datapoint property)": [[17, "flair.data.DataPoint.tag"]], "tag (flair.data.relation property)": [[17, "flair.data.Relation.tag"]], "test (flair.data.corpus property)": [[17, "flair.data.Corpus.test"]], "text (flair.data.datapair property)": [[17, "flair.data.DataPair.text"]], "text (flair.data.datapoint property)": [[17, "flair.data.DataPoint.text"]], "text (flair.data.image property)": [[17, "flair.data.Image.text"]], "text (flair.data.relation property)": [[17, "flair.data.Relation.text"]], "text (flair.data.sentence property)": [[17, "flair.data.Sentence.text"]], "text (flair.data.span property)": [[17, "flair.data.Span.text"]], "text (flair.data.token property)": [[17, "flair.data.Token.text"]], "to() (flair.data.datapair method)": [[17, "flair.data.DataPair.to"]], "to() (flair.data.datapoint method)": [[17, "flair.data.DataPoint.to"]], "to() (flair.data.sentence method)": [[17, "flair.data.Sentence.to"]], "to_dict() (flair.data.label method)": [[17, "flair.data.Label.to_dict"]], "to_dict() (flair.data.relation method)": [[17, "flair.data.Relation.to_dict"]], "to_dict() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_dict"]], "to_dict() (flair.data.span method)": [[17, "flair.data.Span.to_dict"]], "to_dict() (flair.data.token method)": [[17, "flair.data.Token.to_dict"]], "to_original_text() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_original_text"]], "to_plain_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_plain_string"]], "to_tagged_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_tagged_string"]], "to_tokenized_string() (flair.data.sentence method)": [[17, "flair.data.Sentence.to_tokenized_string"]], "top (flair.data.boundingbox attribute)": [[17, "flair.data.BoundingBox.top"]], "train (flair.data.corpus property)": [[17, "flair.data.Corpus.train"]], "unlabeled_identifier (flair.data.datapair property)": [[17, "flair.data.DataPair.unlabeled_identifier"]], "unlabeled_identifier (flair.data.datapoint property)": [[17, "flair.data.DataPoint.unlabeled_identifier"]], "unlabeled_identifier (flair.data.image property)": [[17, "flair.data.Image.unlabeled_identifier"]], "unlabeled_identifier (flair.data.label property)": [[17, "flair.data.Label.unlabeled_identifier"]], "unlabeled_identifier (flair.data.relation property)": [[17, "flair.data.Relation.unlabeled_identifier"]], "unlabeled_identifier (flair.data.sentence property)": [[17, "flair.data.Sentence.unlabeled_identifier"]], "unlabeled_identifier (flair.data.span property)": [[17, "flair.data.Span.unlabeled_identifier"]], "unlabeled_identifier (flair.data.token property)": [[17, "flair.data.Token.unlabeled_identifier"]], "value (flair.data.label property)": [[17, "flair.data.Label.value"]], "clusteringmodel (class in flair.models)": [[20, "flair.models.ClusteringModel"]], "fewshotclassifier (class in flair.models)": [[20, "flair.models.FewshotClassifier"]], "label_match (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.LABEL_MATCH"]], "label_no_match (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.LABEL_NO_MATCH"]], "languagemodel (class in flair.models)": [[20, "flair.models.LanguageModel"]], "lemmatizer (class in flair.models)": [[20, "flair.models.Lemmatizer"]], "multitaskmodel (class in flair.models)": [[20, "flair.models.MultitaskModel"]], "rnn() (flair.models.sequencetagger static method)": [[20, "flair.models.SequenceTagger.RNN"]], "regexptagger (class in flair.models)": [[20, "flair.models.RegexpTagger"]], "relationclassifier (class in flair.models)": [[20, "flair.models.RelationClassifier"]], "relationextractor (class in flair.models)": [[20, "flair.models.RelationExtractor"]], "sequencetagger (class in flair.models)": [[20, "flair.models.SequenceTagger"]], "spanclassifier (class in flair.models)": [[20, "flair.models.SpanClassifier"]], "tarsclassifier (class in flair.models)": [[20, "flair.models.TARSClassifier"]], "tarstagger (class in flair.models)": [[20, "flair.models.TARSTagger"]], "textclassifier (class in flair.models)": [[20, "flair.models.TextClassifier"]], "textpairclassifier (class in flair.models)": [[20, "flair.models.TextPairClassifier"]], "textpairregressor (class in flair.models)": [[20, "flair.models.TextPairRegressor"]], "textregressor (class in flair.models)": [[20, "flair.models.TextRegressor"]], "tokenclassifier (class in flair.models)": [[20, "flair.models.TokenClassifier"]], "wordtagger (class in flair.models)": [[20, "flair.models.WordTagger"]], "__init__() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.__init__"]], "__init__() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.__init__"]], "__init__() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.__init__"]], "__init__() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.__init__"]], "__init__() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.__init__"]], "__init__() (flair.models.relationextractor method)": [[20, "flair.models.RelationExtractor.__init__"]], "__init__() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.__init__"]], "__init__() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.__init__"]], "__init__() (flair.models.tarsclassifier method)": [[20, "flair.models.TARSClassifier.__init__"]], "__init__() (flair.models.tarstagger method)": [[20, "flair.models.TARSTagger.__init__"]], "__init__() (flair.models.textclassifier method)": [[20, "flair.models.TextClassifier.__init__"]], "__init__() (flair.models.textpairclassifier method)": [[20, "flair.models.TextPairClassifier.__init__"]], "__init__() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.__init__"]], "__init__() (flair.models.tokenclassifier method)": [[20, "flair.models.TokenClassifier.__init__"]], "_all_scores_for_token() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._all_scores_for_token"]], "_compute_label_similarity_for_current_epoch() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier._compute_label_similarity_for_current_epoch"]], "_convert_dataset() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel._convert_dataset"]], "_encode_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence"]], "_encode_sentence_for_inference() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence_for_inference"]], "_encode_sentence_for_training() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._encode_sentence_for_training"]], "_entity_pair_permutations() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._entity_pair_permutations"]], "_get_data_points_from_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._get_data_points_from_sentence"]], "_get_gold_labels() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._get_gold_labels"]], "_get_scores_from_features() (flair.models.sequencetagger static method)": [[20, "flair.models.SequenceTagger._get_scores_from_features"]], "_get_state_dict() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel._get_state_dict"]], "_get_state_dict() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._get_state_dict"]], "_init_initial_hidden_state() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._init_initial_hidden_state"]], "_init_loss_weights() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._init_loss_weights"]], "_init_model_with_state_dict() (flair.models.multitaskmodel class method)": [[20, "flair.models.MultitaskModel._init_model_with_state_dict"]], "_label() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger._label"]], "_standard_inference() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger._standard_inference"]], "_valid_entities() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier._valid_entities"]], "add_and_switch_to_new_task() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.add_and_switch_to_new_task"]], "allow_unk_tag (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.allow_unk_tag"]], "calculate_perplexity() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.calculate_perplexity"]], "decode() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.decode"]], "emb_first() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_first"]], "emb_firstandlast() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_firstAndLast"]], "emb_last() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_last"]], "emb_mean() (flair.models.spanclassifier method)": [[20, "flair.models.SpanClassifier.emb_mean"]], "encode() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.encode"]], "encode_token() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.encode_token"]], "evaluate() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.evaluate"]], "evaluate() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.evaluate"]], "evaluate() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.evaluate"]], "evaluate() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.evaluate"]], "evaluate() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.evaluate"]], "fit() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.fit"]], "flair.models": [[20, "module-flair.models"]], "forward() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.forward"]], "forward() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward"]], "forward() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.forward"]], "forward() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.forward"]], "forward() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward"]], "forward_labels_and_loss() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward_labels_and_loss"]], "forward_loss() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.forward_loss"]], "forward_loss() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward_loss"]], "forward_loss() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.forward_loss"]], "forward_loss() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.forward_loss"]], "forward_loss() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.forward_loss"]], "forward_loss() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.forward_loss"]], "forward_pass() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.forward_pass"]], "generate_text() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.generate_text"]], "get_current_label_dictionary() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_current_label_dictionary"]], "get_current_label_type() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_current_label_type"]], "get_output() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.get_output"]], "get_representation() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.get_representation"]], "get_used_tokens() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.textpairclassifier method)": [[20, "flair.models.TextPairClassifier.get_used_tokens"]], "get_used_tokens() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.get_used_tokens"]], "get_used_tokens() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.get_used_tokens"]], "init_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.init_hidden"]], "init_weights() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.init_weights"]], "initialize() (flair.models.languagemodel static method)": [[20, "flair.models.LanguageModel.initialize"]], "is_current_task_multi_label() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.is_current_task_multi_label"]], "label_type (flair.models.fewshotclassifier property)": [[20, "flair.models.FewshotClassifier.label_type"]], "label_type (flair.models.lemmatizer property)": [[20, "flair.models.Lemmatizer.label_type"]], "label_type (flair.models.multitaskmodel property)": [[20, "flair.models.MultitaskModel.label_type"]], "label_type (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.label_type"]], "label_type (flair.models.relationextractor property)": [[20, "flair.models.RelationExtractor.label_type"]], "label_type (flair.models.sequencetagger property)": [[20, "flair.models.SequenceTagger.label_type"]], "label_type (flair.models.spanclassifier property)": [[20, "flair.models.SpanClassifier.label_type"]], "label_type (flair.models.textclassifier property)": [[20, "flair.models.TextClassifier.label_type"]], "label_type (flair.models.textpairclassifier property)": [[20, "flair.models.TextPairClassifier.label_type"]], "label_type (flair.models.textpairregressor property)": [[20, "flair.models.TextPairRegressor.label_type"]], "label_type (flair.models.textregressor property)": [[20, "flair.models.TextRegressor.label_type"]], "label_type (flair.models.tokenclassifier property)": [[20, "flair.models.TokenClassifier.label_type"]], "list_existing_tasks() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.list_existing_tasks"]], "load() (flair.models.clusteringmodel static method)": [[20, "flair.models.ClusteringModel.load"]], "load() (flair.models.fewshotclassifier class method)": [[20, "flair.models.FewshotClassifier.load"]], "load() (flair.models.multitaskmodel class method)": [[20, "flair.models.MultitaskModel.load"]], "load() (flair.models.relationclassifier class method)": [[20, "flair.models.RelationClassifier.load"]], "load() (flair.models.relationextractor class method)": [[20, "flair.models.RelationExtractor.load"]], "load() (flair.models.sequencetagger class method)": [[20, "flair.models.SequenceTagger.load"]], "load() (flair.models.spanclassifier class method)": [[20, "flair.models.SpanClassifier.load"]], "load() (flair.models.tarsclassifier class method)": [[20, "flair.models.TARSClassifier.load"]], "load() (flair.models.tarstagger class method)": [[20, "flair.models.TARSTagger.load"]], "load() (flair.models.textclassifier class method)": [[20, "flair.models.TextClassifier.load"]], "load() (flair.models.textregressor class method)": [[20, "flair.models.TextRegressor.load"]], "load() (flair.models.tokenclassifier class method)": [[20, "flair.models.TokenClassifier.load"]], "load_checkpoint() (flair.models.languagemodel class method)": [[20, "flair.models.LanguageModel.load_checkpoint"]], "load_language_model() (flair.models.languagemodel class method)": [[20, "flair.models.LanguageModel.load_language_model"]], "predict() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.predict"]], "predict() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.predict"]], "predict() (flair.models.multitaskmodel method)": [[20, "flair.models.MultitaskModel.predict"]], "predict() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.predict"]], "predict() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.predict"]], "predict() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.predict"]], "predict() (flair.models.tarsclassifier method)": [[20, "flair.models.TARSClassifier.predict"]], "predict() (flair.models.tarstagger method)": [[20, "flair.models.TARSTagger.predict"]], "predict() (flair.models.textpairregressor method)": [[20, "flair.models.TextPairRegressor.predict"]], "predict() (flair.models.textregressor method)": [[20, "flair.models.TextRegressor.predict"]], "predict_zero_shot() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.predict_zero_shot"]], "push_to_hub() (flair.models.sequencetagger method)": [[20, "flair.models.SequenceTagger.push_to_hub"]], "register_labels() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.register_labels"]], "registered_labels (flair.models.regexptagger property)": [[20, "flair.models.RegexpTagger.registered_labels"]], "remove_labels() (flair.models.regexptagger method)": [[20, "flair.models.RegexpTagger.remove_labels"]], "repackage_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.repackage_hidden"]], "save() (flair.models.clusteringmodel method)": [[20, "flair.models.ClusteringModel.save"]], "save() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.save"]], "save_checkpoint() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.save_checkpoint"]], "set_hidden() (flair.models.languagemodel method)": [[20, "flair.models.LanguageModel.set_hidden"]], "split_batch_to_task_ids() (flair.models.multitaskmodel static method)": [[20, "flair.models.MultitaskModel.split_batch_to_task_ids"]], "static_label_type (flair.models.tarsclassifier attribute)": [[20, "flair.models.TARSClassifier.static_label_type"]], "static_label_type (flair.models.tarstagger attribute)": [[20, "flair.models.TARSTagger.static_label_type"]], "switch_to_task() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.switch_to_task"]], "tars_embeddings (flair.models.fewshotclassifier property)": [[20, "flair.models.FewshotClassifier.tars_embeddings"]], "tars_embeddings (flair.models.tarsclassifier property)": [[20, "flair.models.TARSClassifier.tars_embeddings"]], "tars_embeddings (flair.models.tarstagger property)": [[20, "flair.models.TARSTagger.tars_embeddings"]], "train() (flair.models.fewshotclassifier method)": [[20, "flair.models.FewshotClassifier.train"]], "training (flair.models.languagemodel attribute)": [[20, "flair.models.LanguageModel.training"]], "transform_corpus() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_corpus"]], "transform_dataset() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_dataset"]], "transform_sentence() (flair.models.relationclassifier method)": [[20, "flair.models.RelationClassifier.transform_sentence"]], "words_to_char_indices() (flair.models.lemmatizer method)": [[20, "flair.models.Lemmatizer.words_to_char_indices"]], "zero_tag_value (flair.models.relationclassifier property)": [[20, "flair.models.RelationClassifier.zero_tag_value"]], "classifier (class in flair.nn)": [[21, "flair.nn.Classifier"]], "defaultclassifier (class in flair.nn)": [[21, "flair.nn.DefaultClassifier"]], "labelverbalizerdecoder (class in flair.nn)": [[21, "flair.nn.LabelVerbalizerDecoder"]], "lockeddropout (class in flair.nn)": [[21, "flair.nn.LockedDropout"]], "model (class in flair.nn)": [[21, "flair.nn.Model"]], "prototypicaldecoder (class in flair.nn)": [[21, "flair.nn.PrototypicalDecoder"]], "worddropout (class in flair.nn)": [[21, "flair.nn.WordDropout"]], "_filter_data_point() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._filter_data_point"]], "_get_data_points_for_batch() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_data_points_for_batch"]], "_get_data_points_from_sentence() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_data_points_from_sentence"]], "_get_label_of_datapoint() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier._get_label_of_datapoint"]], "_get_state_dict() (flair.nn.model method)": [[21, "flair.nn.Model._get_state_dict"]], "_init_model_with_state_dict() (flair.nn.model class method)": [[21, "flair.nn.Model._init_model_with_state_dict"]], "evaluate() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.evaluate"]], "evaluate() (flair.nn.model method)": [[21, "flair.nn.Model.evaluate"]], "extra_repr() (flair.nn.lockeddropout method)": [[21, "flair.nn.LockedDropout.extra_repr"]], "extra_repr() (flair.nn.worddropout method)": [[21, "flair.nn.WordDropout.extra_repr"]], "flair.nn": [[21, "module-flair.nn"]], "forward() (flair.nn.labelverbalizerdecoder method)": [[21, "flair.nn.LabelVerbalizerDecoder.forward"]], "forward() (flair.nn.lockeddropout method)": [[21, "flair.nn.LockedDropout.forward"]], "forward() (flair.nn.prototypicaldecoder method)": [[21, "flair.nn.PrototypicalDecoder.forward"]], "forward() (flair.nn.worddropout method)": [[21, "flair.nn.WordDropout.forward"]], "forward_loss() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier.forward_loss"]], "forward_loss() (flair.nn.model method)": [[21, "flair.nn.Model.forward_loss"]], "get_used_tokens() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.get_used_tokens"]], "label_dictionary (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.label_dictionary"]], "label_encoder (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.label_encoder"]], "label_type (flair.nn.model property)": [[21, "flair.nn.Model.label_type"]], "load() (flair.nn.classifier class method)": [[21, "flair.nn.Classifier.load"]], "load() (flair.nn.defaultclassifier class method)": [[21, "flair.nn.DefaultClassifier.load"]], "load() (flair.nn.model class method)": [[21, "flair.nn.Model.load"]], "model_card (flair.nn.model attribute)": [[21, "flair.nn.Model.model_card"]], "multi_label_threshold (flair.nn.defaultclassifier property)": [[21, "flair.nn.DefaultClassifier.multi_label_threshold"]], "num_prototypes (flair.nn.prototypicaldecoder property)": [[21, "flair.nn.PrototypicalDecoder.num_prototypes"]], "predict() (flair.nn.classifier method)": [[21, "flair.nn.Classifier.predict"]], "predict() (flair.nn.defaultclassifier method)": [[21, "flair.nn.DefaultClassifier.predict"]], "print_model_card() (flair.nn.model method)": [[21, "flair.nn.Model.print_model_card"]], "save() (flair.nn.model method)": [[21, "flair.nn.Model.save"]], "training (flair.nn.labelverbalizerdecoder attribute)": [[21, "flair.nn.LabelVerbalizerDecoder.training"]], "training (flair.nn.lockeddropout attribute)": [[21, "flair.nn.LockedDropout.training"]], "training (flair.nn.prototypicaldecoder attribute)": [[21, "flair.nn.PrototypicalDecoder.training"]], "training (flair.nn.worddropout attribute)": [[21, "flair.nn.WordDropout.training"]], "verbalize_labels() (flair.nn.labelverbalizerdecoder static method)": [[21, "flair.nn.LabelVerbalizerDecoder.verbalize_labels"]], "newlinesentencesplitter (class in flair.splitter)": [[22, "flair.splitter.NewlineSentenceSplitter"]], "nosentencesplitter (class in flair.splitter)": [[22, "flair.splitter.NoSentenceSplitter"]], "scispacysentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SciSpacySentenceSplitter"]], "segtoksentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SegtokSentenceSplitter"]], "sentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SentenceSplitter"]], "spacysentencesplitter (class in flair.splitter)": [[22, "flair.splitter.SpacySentenceSplitter"]], "tagsentencesplitter (class in flair.splitter)": [[22, "flair.splitter.TagSentenceSplitter"]], "flair.splitter": [[22, "module-flair.splitter"]], "name (flair.splitter.newlinesentencesplitter property)": [[22, "flair.splitter.NewlineSentenceSplitter.name"]], "name (flair.splitter.nosentencesplitter property)": [[22, "flair.splitter.NoSentenceSplitter.name"]], "name (flair.splitter.segtoksentencesplitter property)": [[22, "flair.splitter.SegtokSentenceSplitter.name"]], "name (flair.splitter.sentencesplitter property)": [[22, "flair.splitter.SentenceSplitter.name"]], "name (flair.splitter.spacysentencesplitter property)": [[22, "flair.splitter.SpacySentenceSplitter.name"]], "name (flair.splitter.tagsentencesplitter property)": [[22, "flair.splitter.TagSentenceSplitter.name"]], "split() (flair.splitter.nosentencesplitter method)": [[22, "flair.splitter.NoSentenceSplitter.split"]], "split() (flair.splitter.segtoksentencesplitter method)": [[22, "flair.splitter.SegtokSentenceSplitter.split"]], "split() (flair.splitter.sentencesplitter method)": [[22, "flair.splitter.SentenceSplitter.split"]], "split() (flair.splitter.spacysentencesplitter method)": [[22, "flair.splitter.SpacySentenceSplitter.split"]], "split() (flair.splitter.tagsentencesplitter method)": [[22, "flair.splitter.TagSentenceSplitter.split"]], "tokenizer (flair.splitter.nosentencesplitter property)": [[22, "flair.splitter.NoSentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.segtoksentencesplitter property)": [[22, "flair.splitter.SegtokSentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.sentencesplitter property)": [[22, "flair.splitter.SentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.spacysentencesplitter property)": [[22, "flair.splitter.SpacySentenceSplitter.tokenizer"]], "tokenizer (flair.splitter.tagsentencesplitter property)": [[22, "flair.splitter.TagSentenceSplitter.tokenizer"]], "japanesetokenizer (class in flair.tokenization)": [[23, "flair.tokenization.JapaneseTokenizer"]], "scispacytokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SciSpacyTokenizer"]], "segtoktokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SegtokTokenizer"]], "spacetokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SpaceTokenizer"]], "spacytokenizer (class in flair.tokenization)": [[23, "flair.tokenization.SpacyTokenizer"]], "tokenizer (class in flair.tokenization)": [[23, "flair.tokenization.Tokenizer"]], "tokenizerwrapper (class in flair.tokenization)": [[23, "flair.tokenization.TokenizerWrapper"]], "flair.tokenization": [[23, "module-flair.tokenization"]], "name (flair.tokenization.japanesetokenizer property)": [[23, "flair.tokenization.JapaneseTokenizer.name"]], "name (flair.tokenization.scispacytokenizer property)": [[23, "flair.tokenization.SciSpacyTokenizer.name"]], "name (flair.tokenization.spacytokenizer property)": [[23, "flair.tokenization.SpacyTokenizer.name"]], "name (flair.tokenization.tokenizer property)": [[23, "flair.tokenization.Tokenizer.name"]], "name (flair.tokenization.tokenizerwrapper property)": [[23, "flair.tokenization.TokenizerWrapper.name"]], "run_tokenize() (flair.tokenization.segtoktokenizer static method)": [[23, "flair.tokenization.SegtokTokenizer.run_tokenize"]], "run_tokenize() (flair.tokenization.spacetokenizer static method)": [[23, "flair.tokenization.SpaceTokenizer.run_tokenize"]], "tokenize() (flair.tokenization.japanesetokenizer method)": [[23, "flair.tokenization.JapaneseTokenizer.tokenize"]], "tokenize() (flair.tokenization.scispacytokenizer method)": [[23, "flair.tokenization.SciSpacyTokenizer.tokenize"]], "tokenize() (flair.tokenization.segtoktokenizer method)": [[23, "flair.tokenization.SegtokTokenizer.tokenize"]], "tokenize() (flair.tokenization.spacetokenizer method)": [[23, "flair.tokenization.SpaceTokenizer.tokenize"]], "tokenize() (flair.tokenization.spacytokenizer method)": [[23, "flair.tokenization.SpacyTokenizer.tokenize"]], "tokenize() (flair.tokenization.tokenizer method)": [[23, "flair.tokenization.Tokenizer.tokenize"]], "tokenize() (flair.tokenization.tokenizerwrapper method)": [[23, "flair.tokenization.TokenizerWrapper.tokenize"]], "languagemodeltrainer (class in flair.trainers)": [[24, "flair.trainers.LanguageModelTrainer"]], "modeltrainer (class in flair.trainers)": [[24, "flair.trainers.ModelTrainer"]], "textcorpus (class in flair.trainers)": [[24, "flair.trainers.TextCorpus"]], "__init__() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.__init__"]], "_backward() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer._backward"]], "_initialize_model_card() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer._initialize_model_card"]], "_repackage_hidden() (flair.trainers.languagemodeltrainer static method)": [[24, "flair.trainers.LanguageModelTrainer._repackage_hidden"]], "check_for_and_delete_previous_best_models() (flair.trainers.modeltrainer static method)": [[24, "flair.trainers.ModelTrainer.check_for_and_delete_previous_best_models"]], "evaluate() (flair.trainers.languagemodeltrainer method)": [[24, "flair.trainers.LanguageModelTrainer.evaluate"]], "fine_tune() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.fine_tune"]], "flair.trainers": [[24, "module-flair.trainers"]], "get_batch_steps() (flair.trainers.modeltrainer static method)": [[24, "flair.trainers.ModelTrainer.get_batch_steps"]], "load_checkpoint() (flair.trainers.languagemodeltrainer static method)": [[24, "flair.trainers.LanguageModelTrainer.load_checkpoint"]], "reset_training_attributes() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.reset_training_attributes"]], "train() (flair.trainers.languagemodeltrainer method)": [[24, "flair.trainers.LanguageModelTrainer.train"]], "train() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.train"]], "train_custom() (flair.trainers.modeltrainer method)": [[24, "flair.trainers.ModelTrainer.train_custom"]], "valid_events (flair.trainers.modeltrainer attribute)": [[24, "flair.trainers.ModelTrainer.valid_events"]], "ampplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.AmpPlugin"]], "annealingplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.AnnealingPlugin"]], "baseplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.BasePlugin"]], "checkpointplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.CheckpointPlugin"]], "linearschedulerplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin"]], "logfileplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LogFilePlugin"]], "lossfileplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.LossFilePlugin"]], "metrichistoryplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricHistoryPlugin"]], "metricname (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricName"]], "metricrecord (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.MetricRecord"]], "pluggable (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.Pluggable"]], "tensorboardlogger (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.TensorboardLogger"]], "trainerplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.TrainerPlugin"]], "traininginterrupt": [[25, "flair.trainers.plugins.TrainingInterrupt"]], "weightextractorplugin (class in flair.trainers.plugins)": [[25, "flair.trainers.plugins.WeightExtractorPlugin"]], "__init__() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.__init__"]], "__init__() (flair.trainers.plugins.metricrecord method)": [[25, "flair.trainers.plugins.MetricRecord.__init__"]], "__init__() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.__init__"]], "__init__() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger.__init__"]], "_training_finally() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger._training_finally"]], "after_evaluation() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.after_evaluation"]], "after_evaluation() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.after_evaluation"]], "after_setup() (flair.trainers.plugins.ampplugin method)": [[25, "flair.trainers.plugins.AmpPlugin.after_setup"]], "after_setup() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.after_setup"]], "after_setup() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.after_setup"]], "after_training() (flair.trainers.plugins.metrichistoryplugin method)": [[25, "flair.trainers.plugins.MetricHistoryPlugin.after_training"]], "after_training_batch() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.after_training_batch"]], "after_training_batch() (flair.trainers.plugins.weightextractorplugin method)": [[25, "flair.trainers.plugins.WeightExtractorPlugin.after_training_batch"]], "after_training_epoch() (flair.trainers.plugins.checkpointplugin method)": [[25, "flair.trainers.plugins.CheckpointPlugin.after_training_epoch"]], "append_plugin() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.append_plugin"]], "attach_to() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.attach_to"]], "backward() (flair.trainers.plugins.ampplugin method)": [[25, "flair.trainers.plugins.AmpPlugin.backward"]], "before_training_epoch() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.before_training_epoch"]], "before_training_epoch() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.before_training_epoch"]], "close_file_handler() (flair.trainers.plugins.logfileplugin method)": [[25, "flair.trainers.plugins.LogFilePlugin.close_file_handler"]], "corpus (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.corpus"]], "detach() (flair.trainers.plugins.ampplugin method)": [[25, "flair.trainers.plugins.AmpPlugin.detach"]], "detach() (flair.trainers.plugins.baseplugin method)": [[25, "flair.trainers.plugins.BasePlugin.detach"]], "dispatch() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.dispatch"]], "flair.trainers.plugins": [[25, "module-flair.trainers.plugins"]], "histogram() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.histogram"]], "hook() (flair.trainers.plugins.baseplugin class method)": [[25, "flair.trainers.plugins.BasePlugin.hook"]], "is_histogram (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_histogram"]], "is_scalar (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_scalar"]], "is_scalar_list (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_scalar_list"]], "is_string (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.is_string"]], "is_type() (flair.trainers.plugins.metricrecord method)": [[25, "flair.trainers.plugins.MetricRecord.is_type"]], "joined_name (flair.trainers.plugins.metricrecord property)": [[25, "flair.trainers.plugins.MetricRecord.joined_name"]], "mark_func_as_hook() (flair.trainers.plugins.baseplugin class method)": [[25, "flair.trainers.plugins.BasePlugin.mark_func_as_hook"]], "metric_recorded() (flair.trainers.plugins.lossfileplugin method)": [[25, "flair.trainers.plugins.LossFilePlugin.metric_recorded"]], "metric_recorded() (flair.trainers.plugins.metrichistoryplugin method)": [[25, "flair.trainers.plugins.MetricHistoryPlugin.metric_recorded"]], "metric_recorded() (flair.trainers.plugins.tensorboardlogger method)": [[25, "flair.trainers.plugins.TensorboardLogger.metric_recorded"]], "model (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.model"]], "pluggable (flair.trainers.plugins.baseplugin property)": [[25, "flair.trainers.plugins.BasePlugin.pluggable"]], "plugins (flair.trainers.plugins.pluggable property)": [[25, "flair.trainers.plugins.Pluggable.plugins"]], "register_hook() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.register_hook"]], "remove_hook() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.remove_hook"]], "scalar() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.scalar"]], "scalar_list() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.scalar_list"]], "store_learning_rate() (flair.trainers.plugins.annealingplugin method)": [[25, "flair.trainers.plugins.AnnealingPlugin.store_learning_rate"]], "store_learning_rate() (flair.trainers.plugins.linearschedulerplugin method)": [[25, "flair.trainers.plugins.LinearSchedulerPlugin.store_learning_rate"]], "string() (flair.trainers.plugins.metricrecord class method)": [[25, "flair.trainers.plugins.MetricRecord.string"]], "trainer (flair.trainers.plugins.trainerplugin property)": [[25, "flair.trainers.plugins.TrainerPlugin.trainer"]], "valid_events (flair.trainers.plugins.pluggable attribute)": [[25, "flair.trainers.plugins.Pluggable.valid_events"]], "validate_event() (flair.trainers.plugins.pluggable method)": [[25, "flair.trainers.plugins.Pluggable.validate_event"]]}}) \ No newline at end of file diff --git a/doc-page/.buildinfo b/master/.buildinfo similarity index 82% rename from doc-page/.buildinfo rename to master/.buildinfo index f6c41fb41b..5f949d8b26 100644 --- a/doc-page/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 19d7d8a16e3259e984ada8c5994402c7 +config: cad7fd7001227b5673f9803ba08f4c73 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/doc-page/.doctrees/api/datasets/base.doctree b/master/.doctrees/api/datasets/base.doctree similarity index 77% rename from doc-page/.doctrees/api/datasets/base.doctree rename to master/.doctrees/api/datasets/base.doctree index 3932bc69e16a135a45d9dd62f94b32d216dd75d7..eefb932c3c51a8311db7f40b50160ee0177dd833 100644 GIT binary patch delta 2725 zcmccci)Gs{7M2FqsVo~=5*ZE6@-vHaiY$}$(~J@g%uN#wOw274(=1F(Qw=Q)Qxnb8 zjLl5Ul8jPP4N}s~4UJ6=Hcw*=XC__SWWip`$qj*All>)FH>a^)=414keo>!Moh>)9 zxFoe`^2T|Ro0~);DKL4nzr=bn`~!6u_vT`$C=Rmy#XZ?liD$E)GABC)M&xPoZoa7% z#!9vkJd@|>b8p^Y5KO)i+>?DQxi&YMc~D@)W_z0eO0=^$@pDoX2Aq>+yf`<{_O2$= z6`LCZ{mD%WAJRoP`$hd_!jitH#4?kczJaDrzLUzaSuW9@h0LGS%KxTd4B&nY_Yd(;!iS7oIJmuceCl#dh$ZY zYSJRX%?7gqSr~nhYk|!h=RG0MJyx3*xs#U;fld+Gd~ET4GIekMu+*IyBk4(PZd`eV zToVth-X}sMfZ(EA!MXGU=4{ddDF3dWJLMqg{LR-OzuCV zfn42J-#9}~WG_7JwfN9&asqeZY1hpbcW08Rb+X1(-pOnF`8G?Pm1Nvp{op?*x`z(G ziVzj7ouZK;o#i9Wz%W(LmH`N+7xFV2Z;faCAV)@|0-ZcPR*sQ>JFt{vVnnlWySyS} wFgXzlH}$&;<7aXV05;~P&sArX-kz_?n8=3iEJ*{#yW~}$7Te=389y=u04Mlc+5i9m delta 2776 zcmdn?i{-*E7M2FqsRA2W5*ZE4vQzVo<4sHS6O%2Cj0}nyvM4+G+9&5|@@~Ga6~;=o5j>M;>2q&h zXAn%j5!{m%Ou08Vnz>VA#Ct2w&2Bc77_phjiJy~#aLDu$+C0;{ntV^lY@QWpOlDe` z)GfN%C+aT~dg_+iJTaDu%+w7sQz+4$g}g8U>AsP=ip;D5)IIq@7T4qjIV_v`GmbE# z_-iv`mKYP+t^%36c|p#4ezHy2e6B_i)kWZPM6E7|{E(guG;_03(?2py*c{kq%8U{~ zlP6A;+I+5)gABuf<&y8_klqvI#hb@uy*}>E3;GYE2G8b+6NSig3&cS6sg2~NLaWIF zGx#Q7JMFtUZx%ZXqyJ>Z8|tWq|DJiL$xBLLqc<(GBrl-Ax+g7S+q`4(esWFNuv%&| ze+KVn&SeT{(GRNC3RYev)8Ne;R__xbD|1*)-msc?^8bB&)Az|UvTgo#pcOS8fV0W5 zLm}j)1-R*(7aZG1UV5;cE+EIqv-!$tA0Ea4%*2p>;|zI;0c!5b+pOe;IYj^DoY!2N z_3rjlY6hs(1g8wY`x4yP{JHj3gs9+D9a{!4sGXvbA)VzTK3VXW@m5d94{~J1J;V#s zFQ_mIE?d*z-!Q{m~#Psbz)0xPO`Rz8Ej5Tc7T=id{@h*AQuElm&OU94P E033Hxm;e9( diff --git a/doc-page/.doctrees/api/datasets/biomedical.doctree b/master/.doctrees/api/datasets/biomedical.doctree similarity index 66% rename from doc-page/.doctrees/api/datasets/biomedical.doctree rename to master/.doctrees/api/datasets/biomedical.doctree index 12c8007affaaa3000e7976267d30b76e7adedab1..c4c0956f9b0daf3eb203430eb3b744a6ea97414c 100644 GIT binary patch delta 70266 zcmb`QcVHCN*1+HF&g{4Hc{QB;b6FwI*u`;9%_#c5J@ znGNDFq5jh&29F*(x?bOE18QWZ)Ty1BQmanA%mH<4)$U)tZuS0|bq3UYy4KTuYV_-$ z(r-YW>NRVpRO>gQ@5|LPM-I+9FZy%yge!*X|Co_=-kzRYS!yB*?O0M(p`vM6=F4OH zk7m`+xP!T0TJ8~$x##V90!fngxlbrYBdKW1tR@Kx8@JEn%=+8o$(oqhA-AHpl@O^_ z)`mTaxnKDV1f{T@TIM!Mm~W;@m)kn=u%0kOk{m=~vRWrPbA|GyhyrDmPI2b0s+^}M z)aI&JY4&TGTRNpUK_Ippq!+S+H~hI@)#*v7y0HA(dKZmC`=XxAZT@S+d4y&z#6D{B zGtDiV<)%05D`mZ8sTAs1y9XJQa>bUj2=bs0Hp@zHX3urEF;a^k?I>qmZ{y5ep5Dtu za^+@OM>_^`XLTA*FRoV+{M@tMA3Z&b3cYp%*Wa`|Y&USakX?#pzn*hOBEm~7@n=<=rR3Iozr0w)cszWp zUHBIvDyiKyx5SbGgn*d4;iHa4T?nN>@BD-k#Ig{TJM`0o6b00x+t)0n6;01QweD9T zvMGbPmK>ra=~<`NIdl7LEK6ukY=iWy@3y#d{o95XbsFBR$F{Gg^a2$*beB8Vw)>T$ z$lMKkPKy8B1=+Fhg;bU@R*-Wo2U?qpwp!+uVD2YJ%MoNO0&VquOG1Aw0w{6nSr=8U zTTh}|zg%n|(N39HE|FDIfmy#?RM@SL4Px%O8`a1y&Pgfv9jw<-thqJSq&c-&q{gtAlfG;Jo-Tp?AdLFkK?dQh%UlHK}aEVEzL#LW@M#3 zf`d&>c01Vey0*FSheeoLH1o;A)`UHZaEcI43TpwZrE>yNV?a4mBI2ql)5xmAEQ$k- z>Myi`2{nXCMYU8XPD#+bu3)DaT}84g4Y4uLG!RY@wB#}&U?owZG-&&r@G-?gSaTYT zd0yyVboA6(BdLXOf{tt{6jx|1kp_-#LPpW3!*;jzCBYXxg#JY9q%lPLU|pt=MIZn+ zQci?C>NFch4H7=2*emm{(w-e1E7;i78bSu#9VWP=8$SpgMhkyYLcaV;@bI7a)o^)Ovq&(;qZ~Z7RMhPM*5Gld59l|m~1FD39%=I-A zw&z8Tv09Tovsbu7aIGTTL*EGB5(&fE#7f4FFzY+vhoaFJu+0>Ly8$X|C6r^k^M#%; zr%&l7IqP|14NFYh?1FUOlLf9R+SSGdL;IsaTlO0$t^wCuWSxgoR~j)zZ*}s8w5VrW-27DD-BA;T%z>whW05 zxZBxKI`Gf60@P|((L8_$u(Z*J^ThTY33ML&+Fd8NH6?Dk>Y0ol5bNkYHXoy3x>p;vl^G zxtk1GG0i;+XhS2H35mruKbZQZ;Yo_sLKr*y{G7qYK0jd^3~P58B32%FRBOK5aO?k} zf?hK*9XRtfEhF0y@U~^jNsJ})zBfpkm;8Fr;E(Z=7mm=pB%%TtP8>H>r}#@411M*G ziob*jEbWZJ3K&qP#CT5C)3gLFlC1`-f>=`Rtbw$8RRnm>P_TNHeqP6iuKr5Pi=rw} z7q4LSMYQ`rAF|o8KMiSYaGEg#dR#O7X3ENH7&=hF-F*ICgFH=7*Sq(Apt&!9zpA5*6;V^s!_o{Y&_l`mtlJgsPja8*$eqs(HRN8TS&^RBLmB zY%#VcWLm1(Qdy5m#st1J#Bgb-E3^t4Zx~pxst~duQ;)>Jta8Rq)Yb&7BGVYlRH_)O zQkiUBveCf?ofcg1eTs3n4*mC9#tj6g(;7vkLt;Ini6kFx7Q^y}#+yQ{&iRdv^GTki zZa^c`1^;`_NI9LPF4b`YW;@Rt-B9KQ<1U?6OHMWBP;|y6p^nfm&Dc+j)wy^FBWY64 znF~7^>rpxfFWjk%u@a@Vv2b6$=L|1)H#UngV_7)Y!`PPKT!7%$2<6l@o{R;=>cr~1u)k*-EwFsHaY{^+2VwZT#_p6RN2xS0%gaRN`oCu+9hpH) z4`w@PoC5DJh;n~*oC?CsMaG9j`6jTbl??US(51%h(J?FtuP!sbO=wU+f&ZecgYovN zx(Y|3yw%2B9YgH-%y^EdXcwk}8PE6{uc!I`?$xID?A8XOnGHxYc7X<87!{pfuy_lt z7li4MxZOxv&J7b75=?Mll$W@Xpb7 zAFXo~psZ~9VU)Pk0^_Uj&OzN?GW9!JFHvjQeB4-C#~+8CAaxK{Aaq4o{)2G}rKf}& zaN0Seo$Xp}90aA#>I@e_*zyal%S6`jZjxk%S{ICV!jQqYnDfk{4-Q^5Uejqs(-q@; zgfLUcEqmQqhcIds0xsMz_9jZOKo*nTDv6VcNhE-Fr&hMwAIER27#|4vFB>b7$7LxhS#y z0WkwUZ74>7tNg@FY=SRdgKy4-wT#+GZ0PIZ@ z2N4T*VZGalrLw9$Y|Pvp#K^P`Whx7a9mN@hXr~GmW=oLXStJczoRX3$+L@!IGzh-! zDMrn5xQs)3i)YFDbGkZYt@=+tkdn%J9@Yak!3X zm)|Exhyw7)g<>^|a_GAnfg!;JH5ZFDh#d(ri!ohz_<=YnB5G*q!hxkC=`^q=p9Vd}RGL(ZcqMQWvo85HFiz6N~5f(h>{x*sKbNTP5uXhMoJj#SEQv zciA7Jf!bJ{n|NPrt;5~^x44@y)P?0`$aQDirGqTE-%CBbVJiIk~D&}DEqq>2QCvoHow$U5<0 zB#E>WiVOAW>|6>i5!9$44T|)X`L(bKuRSHvE_{T+Lz5-ah#eMNktT|#h>?ou&!<3n?I zXwyaNM({0Fen3jpSjd}XMIY%nAvCH;RWLt1?k7F+(;7tu$S`T5q&F6pog#fsXfY6` zONS%l1J5WE-ma;%1Z5MIOyoC}T#8S^-)mkh?O|W^BA6+6{r38dRIzNEbeYy02g2C5STENkN zOL_}#?|mjw7TnaQQCcu$N)Y^9B3-f9(nDmI)R;e)iq?DzJ{^J?R7ir<$>!mXp4BUkVT$L7g2znMcwO z2A0!YurQNgn&Qef7Hp49e!tS7l0y>N3bUy+OSg*&uuCv4(AkezDVZpth|kTib_dk4 zm?$fJg@D6W6ZQQVDC0JLL-07Qa<{3tdg*jNnEa-JkxQVwH|;24qTHYl!2?jLw5bnu zo{pMX;9)J(mrhcu@B>hfyO<~!ZF#!>W=~V2$QcY5&o{tCoxw2cP?Hrt9&EZr7+<(d z2&h5ueLh#{G1`P@Zbq6ur$h^NvY`SP0!-RHb^h4O{4u7fk#U1JQsxBHR-%r)8dy5X zw3ZS#R5^cm&*ax~nUdKiyT8YishUba-^cREkP~)A6*G%M7TqzGterSB#1cac%6F(JD zH_X{qp7OKI!IGCfa+%HS8KXIY^K>!JJBcc%3ZQax6u9P4Y63P!B);AZ6 zhaf|vM&`(kaV}ZwCT7x+nvi5NLvF#o_`c`Olq~>$@RcQY!KNS4!W?+1}>JSr->{N2dArxM~2bp*kVSg84(t-$bNVT%OeNO0Sk9!BPL@6SD*BR>*MtN;kEHJe^B9o@M;tramkiVMai5crGc>YH9ZHYH=X7H zh48%R%_i9SmiZ}y7igo?BC{Jt%r>`(n00e^Fu!kh5mXOheXxR=ixYx{3V@VF=E_u^ z=AAG*;Fk~0CkP`DmtF-h1h|S!y3ejKM^3tV8?9MozC=`!g=%p?xzEf8DHCt?yb@P- zdWR6jFW8Rx4&!RkO={kd|2b-| z9f!RWSG5oGk04TyLbvg9#zAuo}Q>K8c4=N{dw2>dHFv z%;y@&i^=Zk>Wb~yyNTR8Hc~0gqWUN*@p@-Pp8V1t3;X+I7VqF z7h}Wo9Npo`G`UY)ngO!Dj-73m>mZLMn>i$-4{-3@7$0V9SGgEW=`MGO9p96B$#ec6 z;HiCO8`cSg3WxuWkV%UX+;=%)@hEvvJPIbVA$gA8 z@YgGHce1OYAc=s{X+x~5U709T(lp*30J(?AK7fVoQ05K!rC8tkafbX>TwI3SlJIb* zT#C~4x7Wy>**S(WXVqM}f2><|dtW9kbg5iGZevOq3kfB|`b9G70yq-7u*8orp5{N{ zs15)AK-O8msJm3|L1}sw4hXMAEIbJESL*p^{wkUBo;jdAw39~rWXu9{u+PS1+#5F0 z%)VPi*4j!lJ1_kAHkq`biG@3}^gP+h&OYI&3xDj;v-sP)WYW@R7!G6i$R!D82P71W z?fjJv$fN~Lqz%-zdRBZVQ(h3|^TlcBa7bxT&XNIJj>~uD7$S*92N=5 z<%HVj2Ed(&J&X;Akc8;;v@A72AcoIedqH4!B&(F7I(qEU<#RO~~E};`r{*d$S z%$11$5NIG;Tr5wt;7yA@j%sYEV9B*)%b{t{?%h&FmSeW~psT@B(N5g!;T2EyTl{R^ zM7%K4QL*Uk^?dBMQ0|KqHW*g$1)-OO0c?4K#Ra>HTfDKMDXEO*U4moqtrtisXBirc zyjsyh8szxC0wQfNy0RsOGSU?ilB-%s+ub38iOs8xp2L@C%cNLzhP#c`Eu9EP(e|uR zOA}xXr1RW`GP<6zIJ8^S>+4x`rj4l$EN9}9k?|V%V;{R3TSzYnVm{jfT0U=yJRim9 z;6JvsP}dh)un*HMG8>X++4|4Bu9||j00ewM@q8?t%AV?AvBJ)dmNKy`3zfTDD8H6f zg(~2V>}gp~TvSM9>&93LcAjs)q8E)CkGI^W_ymgAjiuZd8^Zm`dfevIEL#a&KrZR$ z5c~*Vlee%RReQ%0dCH1A*MH{FqEML2k`FsgFk-%iHjU#qCQ&>M6U?H;qmVQr9L~1r ztbwj%7E%fp<}&0uA$y61w8dPAv40c_MV~Fx3q{RVSV*~9R1G{7?OaI;MSzbjycN4& zbZP@F3L&ix4A^8bQAR3W`08d0<>fxOz0EQ@HtuZPO^Z87!+Fad%U(*z!NRFf?`KQ@ z*lhgzFBa08rHW*TEDl$Gwah1k6vhen|6}ok?V=?$R>7WJ9c5KrQO<=(*7Z#Jb=IEqTCYE zazhkKVpU663(jEF^;vZ?yAyuv_wmRm0oL#YA^qW#igQm|EzEokU(&CbXuS{{in>&= zQW86r4aimq5j7;29Y$8R2C0foO2%fNlx|v91Nc6Lu z8a5H;Wm+jGRJHE3e6&?$hHLnPkVylq=GfWl@gZ>pF%=H&hQ|@aIN`yFID!}wbb{E# zF>wSjM0&LAe|=xIQm+4nn_gl)UJpgGL6h_%nQ=-SkqiZu0Ba!q>27|u^+m{^VI3K9 zDTR-0%Vv`T7*ml9kr-a*SxI}2g@o_sTS@qGLMd86 z-L+Po^F3!iw{{=|1+{To!0L_GMbyG<=uWGPed|`7fQP0NV#8JAZPr{W91vcbFz)cK z0@gj&m~+uV*s_!J@V<2dAu2Hx zB@OoeO-u`JSX0@qM^;;5rk8!smdtK_W-vod!Ip+|p76W5qYU`a?qY*2=6F;PzBAcK ze=I@awfZ5!V%tKQb*ltOO|r!tt_Z@7ayHUUEG`rxeOfAbrlM^O$<42EcnMDU^Vl)YjG(de^bFiFM{jjclZen~G$Jl-T>v*?u9cNQVJ% zzp0JVI~fvs6}d@OzlAMk>JkJ?n(ZQ?zX8I_6{D%ujwKJXx!LkfwigWLA7^dIs1IF- z*dnj%@whu|sBIL*AyBr0I+|>^n_>J&+e|WM?r8MfBmITO@ckHD%vN3y%8j#;A~2Ux zg~OW@ZIsJ|aBQkgC-|;;i{`ILON08eY(auEFkbk~Y}mvqVn&6%Gi0meQp{lG$PXHCvFBSr_OgvPO4oR_3~A6SbZBg*R<6 zJM&49eB0KJVuX;OS~Y;x1meQL+P`d(Z*$@}mjpW>*eJU`tWZ4UY7ca-s`}VwU`YL&F_B#P1rCX}|5_R3I{RM=YE9>96zlo&^8kbU=DNYGLNQgreb9e-|5C&Cwq!T(O^vFrX%1#&!Go_^O!ZbC}@d zZ9CB@yRG9l)})J&z`AwC z-|(%K9SUnw-qDAh5FCUbuZ884*oTtCYA!g5!`gmo@UnSUYei^kbm;lhY0*KN0fn^D z>VxgFqb$YjDhAMA10r_VG*?P+IY_ggkZ3+_4`YVULH%28d)6z-VTCHi9g!EbH2Hol z?Vv;#rk+y-1e4CK^FxkU*a5+E4$=)RPS{n+p}@~iIHKMJ=3Qh>MMpP^EepYmDm$vg zLoh*FHAmDR(79+rO~)^Bff<4e-XWS)$3b~hgb7bOUxdVG9GxQa6U`;|H+7IEy(*I- z(+S<1J1S73OCiD1!cmpdMqID;tsFHX4ru|l``=`N5SIWSbaYIn>Dm#DK$7`Ie&`)2P}q6%GimDgX1Fkoy5Auqm%OJPQ=`ik?#(O00-Gra5SD3#v}R z^;au^Exjc9wcU?(dFt%FLz^Gd0=mU_Bp8Z$a5Bj;NR6v5k`8%uR=%S_Pn_ z$DLX8zA!->!TDQ}`adc3yjO#*6K{8Ojxl==0v8v95>bD z{FW$ZANVEUe1{;5I*_%4DD)S98!*U%qc>{WzOy-{|gb=L!Rzqqq+48J{sf0}BV#@bf5*MuyiLYhKw1$Rk`KkMI>U2MErali<(@^0jwt*T#Z zi$Xdt6|MkQITXq@6!nNUUgIsMBxo}^hewIpSyRR9?o&vo3sg8DoOHa5OV+D|;)9{3 zl)JHc<@&^UxxbcEtQKM?WGI=$+SJ0to!?Y>r>asbRz^pPLOS;l(p>_qp$;W`p5ILA z&bD>MRf}Qul!S==Ii5Iw-%uf~I;mXf_N>x?(j9r>a!r+nglQ&V;s3<;oUfZJq@Q*o zZ3ukRQmIG@Tv)gVyV+WCXwProPE(@p{;Hj3PFscar_Mt7k=uAsx()ks)jFRhXooAQ%Hvl!z}oDq!M+=Q1y}PqZQI&m@tAxhqjkh`W2KHk`w#Ls!IfmN zWIq{t1L*u7p=Rg}Aax|UYjly){cvRrE0bWl*+q)YA&gJ$UG?CY)uofL4Y0dNT{i+Q z!g!a9)OA(N0rw$y6>w zt^>x^b=9C;{1pC{$GANNCq;Z0Fm3w`Li*l-$aZFBUmxo{FhOJ#)I_nS( zd$=}{W#n-Fcfr>(U6f-6u)DwOjaYZh9!7Ilq_t*cN4YK$X2oh*czd+VLRnMB!Y?w{ z8!o4|B|q*}S1Za;SBT+T^85*_-zU0smOVGU=K7W5^lA-&g6^QWIxqaf2d=1B3)D_{ zWvQz@#f>;}^G7bynLq8vc^mMY%+OV?%-Ecz^jg}`7UJ62C+l7JD87V0FNDMmF51iO z>YoquH@FnY&vi|Tos_QKM2jk1E0xQVrwJxlveo4#SxnU}Wrr*3c@xzMp5NsBR&cMN)?j@HBt`s$K zrLG+uGPy~HQwy^ZF1G~BW%r#JUEx=|o7AtkP{^gcg2_hp7n-x))jTdp@VkdOVqEI` zvTo8;Ak1ZrE4j@ux`MkI#c*K^AZ86E*9s97Ho1!12Kd-#Eqk<V#3NmZ-OzpE zNy7MFD57(SyEwbG&EJSM9ORCCs!Sa*TMTxOqPT5z1${kc$QoPPC9_a(||S|R4cnQlKDG0XkGxZFskfO(F4b3~BQRCUaE_aq${!3UJtyE$$d z{#fW<9npm}@U@k0(uqa>${z<$|I}TP;x8e>6D)nL`_H1CTa#?TI`=p#7f`Y`lztKt z%EEeXcbC%o$%Cyr{Uiz4mu}LL?5HYuKY4$r`#s8ONtLzW6k2!v*E-fsg4M^}q~(|p zmmybzra!pLQZ1oM$C{jSmsl{!-H7-RC1_ zVo?1OEpmsO50OdG>Z*GM#khRGsfp~dz{ET5^)Y=n2_`;v-xFBMNuNn5!IEsA(kyR* zkjxGVo_&NsR9Ic2(Nh+W@EbyT*R!I>MHy&0F(`V%dbzRvdZ+lt!Pj0-p5HdRFN;!ni6PS~o`~L#7O_6i+FN8MstAH9Uccj-v+fBuJ>`8A)a0lj5ErRIcMG zN3p6Zl}Zqqt5L|RLz+ZcRTI+uoF_FNAq%SDrv2aZo`n?Cawp6mf%#Ifm1m8PeM@zr z**6Sk2o_;$cTXjXt{k&`h{ps&dwIMumc|FwddJZ}R4_wuY51eBry9lFVfk485KkGc z6E_{EW9}fF8}8{8R}*MeaC84Q%9Bkp_f92)omlDV3BAU9(qhaVghy|BNI4nq5@$fx zJD#c}4OOY;Ek!qJIospWG4i@O9@6HYDisGa1eb!t^E_2ZMlQgVXZeZVF;IN5u6;Kx z@pPbS52*ciib44fsBe8kGip>7Jkx&XkY@?S#<&dHk)ub!q{jO)|ffqf~D7~W)zPzbdhO8^J zIL$G6e|pNY<%>My;lf>AYfruBA+7R-=?kW!jPLyAnNG1Y9<6K-^B#My3M{9B_!N9D zc=PaNMVHXYiuw0VL3mg6ej2f%sm)m5vU^E!Tdk8}of4FBdA$?^Az`G}!|h&gWR}f) zcrl-M5P=KGok{83Sgr%)C3^F9#*te|-scFisL$+lV8{%@sq$XZY`J<p8d5T_Gc#LMdX^r)4H@k^<41o*CT}-hZmg~&&(!3?LUV5pO zH*z+l`T84eyln_lu`r$Y(kX4d>nOeS*dcE(__DKiyN(g}_oo?AWilJ{T4BUsZ+(hx zoRBxto2Z%dy`g&MTsqAA9u*D&6{gVCH;B>*0RF0T{LIxO)nr8HVds$^KX)SFH* zDkr$sc&lng4X)NT>h@2)uaf0c>Aa)fSWE7xnNal$?=~HK*4a(7CpvQ`oZ3qpMX>M` zt$P~2(d(Yh1ElT=$o-09L@d{b<@^|mw%bnX8ZqM(xo2v07a$Aa{7P~|}v@#5*>UF_HcTMeit`AGjq4_D3mu1)rl z23e$JLaO4^>$@FF`ADfQXa14sBV~YCxDQLO=qsgl;KXu1om97Sc^_$fRpEf}-h^HZ zSok@e4a%2m_(%gP;$DaMYWqm55qwza-Nxr;XuEFExS>yPF#WRy&46J#EN<;1Wq@G< zORMNBt(o#-iC`;((GIae&$nOQ;HQ-0w`;JQJXPK zGk^NQ*NmVRVBxVkt(5Q+&47rT3f+F8*$xZ$W#9egD_Dy-cu}`Q4!le=V3^JgIQv>0 z(RcYDJ{O$6>)RO{c(X70_rfN@--2KaEoP{2mM!|v+QNT%pWT)v4f54yBh3CX>}VUG zgSGMct1K}2DZjPjVGk>DvY^RdOj|%cX!h$QS3k)9CGn_HPy=5@u3-1mgEW`6NeO?F zwi~qA@7GDL;pqhb*to<6tb&v~XTIR?$o5b0cZ0)8{^pTR!B=GaC;LeWv&QsA!VCml^h!Yi5;TRo?1#Y;{7FA}r`1Uo5b=6DX7 z*T!##zgzqDw)5_GrP;0!Jg29hz7vn4NzgdcueTHbQ6E2TlUBVwuYwtZOT(W2e%dB& z7_)9D1}1)-#yLXQs-KPY({^ejtKd8FYhU)0HUu#6bq4IEdPd&$7R|_xIunV7 z$7(a89`EYK-@$YJlrxcl+@+M<3Cne1BNq7!PDXvVMAwvqKlHaHbWnA0E1+{L4qWah z9iQPFe@z&@TzX)?z`D4#W1!2Y)G<$~WfOOK|MK~e2)t|_Z!6kpGXW07N{iG9S zVYYS*uFo!7zYSqbZ0;d{L9+GvH@e17J?JN$poy%4XI$yu`AG+8_z7Cqalb9g_;D9F z_`P565Y6E8G<%2PVEm01q(cM?%fIX|xENr+q-XVFmub;Dx(4-Tz%$qUPg1&gm<2cg z@JF71)pq)V|D^@$Fqk1Y2@)UBVl>C(Kk{2x10gUWYh+eQI4uOeHd?YRp*?xL99jYP zN`dkbKlIY1uj>rZ@+|e>yjm?BbqC0&pH+gHxe@{eS@khrKqsp{>kp6?6hci?Py^4Z z?-vWuj!YKli>xOCr64aU5H(fiS?kGi0n(aZ5lNBGJO7aifu)r74=ssm7LegV)j*C; zX8oW(&EkdN>_&l_l<_P?;5QoTv$fCa8GFlff$3B@Cf>K3 zW@44ekm-Q_Uk55v`Z6c<-WSj=q`dr%o^_`lp!MP~TQlsMZ)qJkgt4%5KL!di@xM<7 z^j5dnDO!Jytbz~5E6xN+SCrg$0)4dZT=~~PCmmZKzd^D!AUKO+VJz2!O}HD-uA9Ac zPtU^He+Fj6#nvo*;C|pwGdpt0See}w5`2Uc0$kW3YXSxLai20K=$Uz+nBc_QSZxyj q#Xq*v{<-8?=k3qKVsFCR?*9WSy3jTN delta 71777 zcmb_lcYssH^Z&jiFL~)N_2`$-q#qpt4-N(7s7E_G2M7Wpy(3i=RFHOXO9w@zD9sZF z6yZ=rDGCaLAW{?*MBos`M)}R#ToTB8`Gd(X|KzXz%x89HXJ>b3_g(+A`Whj z8gDfW7V3=|)Ng2wtXiW|dOuUQdiAP(s`lwutzX@~wfgkNzdp6A)_lBr?HaXfJl?lv z^*VK{_p4nyrSH&ZMyB*0HZc2w!IzsS{Hm+=$Qao-{Vj6KicJjJ`EQq#5U}#F-u?Tr zo3FWpxgVPUpdwbVj~0kziaM=&Qq!*NbJ^|4-Q#{=cvzXew}e3M9Y$No zk~2Z?&;77YPnvYzJp1YwU32f%eO=G)i24V77|ouX`(5fhT2F_V{gHNt;Eb$M6-(3X zs%?x5T8k{FhcPpET@yiMTNXb^Z+^NynEQA0Sp<3!{P$Z+2{iZTF3RX>e01*)i#KH- z?&!#!(rHK{7`cOb_D!gLtA0O8kFG;*?;%TcYKsJNn+=~rus9CQCb_Aj`{=bGuZ>$k zgv?GIT{KsoRE*x-lwEX+EBC{xEn}6vxxx_4?Ks_)DD)pQsuEmK>96dium1h$hAU|4 zVfSxa#oWNGCu0@cTH6@R-TL}zk%(R`6# zp5FMm5Yy#cxf`1gQo(bpzF#kaKDTD~*x|~(yYsnNFKcwz8qD3kYb{~;ggecedoFKA zENHWtd+a< zR+CuoJyWxLD*yfX#)a>SWcWF6AhkGXkq3WWF!Wz1H zB9dUJAk?6YH^s*k$}40+g34wgVAS9W%bdbVN+fs){jN*MNTTZs*sJAYW3XaqXj)mA zMe(9W{e;$#QC*lAnp>{xNTR=rvdv5t|cn0|Z70 ze^X`$1(hMH71oXx(kLd3B8(X;q$I+@$O4lD3v1EOSrvI^gP;d}PhLIgPi-kWQecUR|0g0K3O2Mxy1RyvYr;TlsvX5@Ggo4`UH`GCm z_sr*S3ttdML|B9u3a=BMqr^02vSh;!V(>QX5KhOs7Ux#+Lt#EaeVz@5pi@5<-XbH& zrvxh-_JvS_O;6T$g75N#6S2XL)BNvK;TFNULNpa2fI@yr2!WkHE)-{`a{7+Y;>$QR zha4616A}U_WG58?P|=jwX_a^1>@z|h6_p`sA^85h;3o_*#Q>Qw?vn6q>}-R)0#NB! z+HAv7-@PV0Mi^EhN?mRU6^UNkiGBQ+VCO3ZX#KltdI8jI6tS~A0YVR@HfFv46^gN= z{|W!aWZcLo2u1D+Q^*=C$ohqggl%cM>4fbVrO%(u`ODf5_84_7H3Cr(x=Oke1jPZ7 zNvZnQc7~2D&8?GQf=f3<(>rVXb);M<3cahaE`{QvQH1eDb&pf5#u1J>bw;+bn64lf znp#4q%7yqa^aOOz5c-}yECg(&b)yr5nNvwuGF!e|j}0uRi(TS!rX$Pi<|fn~fFjmY zJUFUrbE9rFJYGZ7j|1>cP2JClbpqnc%2oz+uB&^D5_7k@ZBMhnV4Zn;16|A5?IY~Q zWLVNfN6FP#1UaXHPK3(oI#QBQ0*x@3)joeaiVx_^k#AtVG)$WtUg zd61?A&(G5}N`#1)rESyIg=yKE0XrEyi*zGN_9&pq@eNRBiLOQ>FqpcZ*NuXnD>P$a zGW@ktcROKxzO4%j*61owqC{}Evje;Fw$1`A*6GG*dW~Zv&1<62Ia_oMDP9vr==;9z zDT>2H5Ll~kQAhNe$r{;JGFU-3m|}^C@fEK$fbSz+<;1X7f2^}H-0c_$P4~ocopX6Q z(n=~ymhCcL$6ld76|a{iq`?+>uguB|bT~|Dr2QG5^-T zbZyvkQ}mf|Yv%VZ< zpobBR>_!*8nWgpC8$w%M2fOK;XjwZ5J$vZeQGD@XQGlXKCI-{}8NH27IiMc{gZk;; z(H`%;2IwiZu*wb=w~dia9;{Dh{|?gMee~EJMFB)f((cZSL-gNMJrmMK>Gx~Hb{wPs zmfXDv>w~-r`eGDf!{_Tev(+Pp@F$ucAsxMCz z|7>V@w4JRzJOXg>b$xe2#{;r^ozRY9yDqHFLcN7eI-nm1mK^P&5P*A&^>@hvQkLua zUUNfseuaLQMi>mhuPgPh5IeOC8YRxsMgS*V0l^C+`0&ba`dWm65CurTuJ1`@(9>k_u_-t7UY35- z;AXvs;-2Q;f1n!$o>^by9|3^Z z{<7-aYcXyo=-Md34Y5d0wUBWbbF}r>N18b?P;l1 z1;d9_P7GmXJc%>RrBt=xNnB@m=Ltic`Lbst11Xc_uooH|NSP#Wyr`+68X-C;$EaN( zBi%4lJM5KdVW8xX9F`%h9SXHE3?R5TAhBWEoQ8HVkWxEDoB(fjGLR-QrJvZ;UIrUG zyIVH^O7t|uN$7TD8Au6TL;zIoYcP=p%}#SuHg}}K!p6@vWP){|p{RCH7&U|#6bb~` z!8F3)A`L)90HpYIBKnE!%ou|edWG7ilqi~sLFNna)WAb2Jl|k%Y;!M zs_KXc0Na}edQ}I)l;L+4*uZxTs#PK~ED5968t5e*3O;P!V0ev^6mv7|*<$!y72`Ou z6Ym@7l^h7`=S3Xd!BCVi(s+Kd>I;l@gUg7S&}Nt6iZM33P%i$#%ufxJQjRdb6N-Fp za1xwY0RSX;imF`7eS^fVerK?O?kmH3A_Epiu`Bn^mcutk4R{n0v(L}_Y4r)imx%}g zqDkMiRs&>i}{q$)ms+3vW7NM3^{cdgXmF(=H97d5I&Mb+6Fob02Dwf zx(lLE6B-+{3`eJ|BSVUCkOPpP^ zV&cWb1n>>8Ljlo8hz8&)Bks}mgX9V{KS0Fp@OEXf0%626-ne^;NZJs_#+|@kU3^8` z4=&aaJ5zdEfn^BmfN$!Eg~$lk>mmX=LvAcPKtH&X5G>;^@J}PL1i=N^)&sU?Ft4fD z!W0|4xr0_{Em9^q4$G>x#}Tl*t@zKQ?`?#5AwX}cQY@pJ=!ZaOk#fl-Bpwl}sOEm& zEnoH)zoB@z(%T9#4^-?c-t!UrML{q!^JLM*^1BL6;r;|sJ^#3lVmNO#N!&>3z&FyI z9bxK=;&@eb;IPeR(xQU`%MjKE$6gbwP&zP*kUd)@)n{{r3?@pf`|F~Wwd&`r1Iy-$ zsw|#yO;hHJ{VAjKVJVQZNGzWSjE`-ZF7$`4OEe}D&hyWu;;)Gb$k;0zVd^UJUjhtI zN%Pl;V^kR+C%0`qDTwea2vN=OT*(?Mu}OxPGH{Oq5-nbh<#LniytpJFNmZq$_O??Y!R|AiX{k^2^AqI z6hkoee-;A-SBk)hZ1#1WVU?E?pwtzO5XN=h{;QZl7}HTHfKrMjg5c#Bkly@VBY1I! zPy8Vsqv8X0XBC3Ga8FG8PqaXTyW(M;dC~t04rCTtj5FC5pV7E&wNX7VIp3WIBjsEn zB9fgm8;#IfGE%k?BPf6R^--v2h5S-Thf-0&^FmlY)gOh|O5;Gjccht%vb~YKZjiU@Qs6 z`x!}(k|@})W`OZ;!uV3o7Mp>0kg+OJt8|t>!YGF#M}=X=mW0Tma7YJ)DW~ce?qdDN z8+Q^_*JC@+&uc_$nry06oS5j^(aSZ~ZE4eqc2II+=Kn2gYBi_yl;eJBrv zt6PogeK$_=Tt?_qY0MnGCrg27A^OZ+#-T)ffM_Tr3enf z5dhgy9wiKk|LrS`5j-uOa3G$S*bf=IP)wlo9iRZx{J}eZ*w;o!$U$7k;yK8>$Bk#G z>=+lo9i-GLBl!#}kdOZH(GSMPs+~FR!mTdRlTZbkt-NZK;KF4iw{mqnn8VlZnYAOd{*q%#;Zgo-?V>w|Otl8bWiB zh!j96q(klqg2GdRZ$_FZC*8^&lLB?yOf)${N!F1u@uEtfaWtoiNCA|RLUFqY0-G`! zdGd=Olc&ZDErnjBxlfD~9$%KvFi{>X;B(oL&vD9VHp|pnm2+|LxwybY-uUCtqjO9_ zLUf68E40{@Oc*6$06UXcV~)W${>rW}^`~ZEsEi#DO1*^V{WRkp(=Q3AX@~rErjvvf zd|1su&QiG%tlS$fiMsl!X$Zlo6?j0^DYyB;)a=Z85M%KZhfUQ~r#`&zK00EmnUIAK ze}fhtTt|8u4jea`wDP?mB%d^GAP5P~QLWBsPrrCc=7Nc|1PI-jm-!|)n`g1hEN{Bd2@d|Q9Z7@G z?+?@W1lJBt#9Rt5Cpq)CsWibspxRy2TMrzjuy601zGr!Z40X2UOFzXrJfOop z6?TK)pOpk{H)}MA>}G9Y+YpJ87II?Hd6+bSFn9p9A}t58-9SK}+Nd3A)=rQpxs{?z zzmO+wo-C~+8oC`jGF2)J=t=FgBTe?p(u~Bgx4kNnwlDTBl{&Mm#gfR_*S1W6Ig(S` zlf2myY0oPxK!Q~{QXR@Hq#yuNq}-(gY^=U<&NJE@%cbs=K1al7;m6fdQDWmR?A`{+ z$!kykdn;b_Tl9`Zy0M1jx&Y#rBMiMzvX!<^GQg(IICx_#Z+Wlv{eb2MJY7_<*~Xoc z1lNJ)3lSJVm@1SBD2yQH?2#-mWS2BaJ7Cn^Es=IUAHrwnR!b(R^oiu9I7=An!4x}n ze>|5t`ME^e2aQVMDR!H~QX0j1ru{Cp0PELMYqO@`tUWDJ_9z&Kt$tP_-NNOKPo0y} zi3;IRRcb4(m!wG)S3~h#Sg&z-;WqiQR7BG3mzntzUlcRbN+gu$oo*zXB{&;2tDp7av2b2lGigfXCl3lXJ5teX zgu)ffq`mzJ3?K~sEC`7hVM-OV`i2TuvSU>kbR2%a`s%Fr-gSnE{E<*sm=xW|W$?p_maId@hW8wxwQ`Tf820tFFULUOy ztAcsvAbda8e1qbEyxW}9&A!m3%It~p1YDSG2C4u+0hDs#(78*mg=Pa=_KBk#1YR-Q zRe2j%f8uO2X%CbiWpDwT=A%oC^US0rVFU&chLpD{2!KS?8=+jk`Z;FOMrfFr8_F*= zlQu%b2qIg(+-zk(?8cXG8?4lbP@LzfRc6vgXpEFQKjVigGTx#^sA)UR>2PM9xq&J; zaf$=Cm`RuGIPA?_Gwo>_h0~aA=F@~B1Sok#Y)k^wh4jQff^~vdJ~8j3gd=R+ob|Y1 zE)3^Sn_Frx_9y&cCT)5u*nrp@2wlX&#LR5YPi7n2xxpgC+Dqno+7weRn@Oko4@-gI zZ)Vco7>B8P9TU)@b)+URCEvVTo9C=s=DpBknXUbVf@s&5eT;4+27y@jpim##Nl~Bt<$@$=BZOhA)XS|U~b9SeN#l_Mp zOGdV5gC!N3w6?@qpDxI-kk&3yDfyX_5hir7OrSWa0s})kTg=)^)BW8n+o-S%VP!D( zvd9z%<%_EPAr=EH>uXWpN#tJIVjwM8MX?V)Zy^tq5108MaG@bsH@0wbP#Tjh6OAebX7jdO{~!mA6`6B*RqAwK&+M&KQ43ZL|EU z&GWq-miH4906*`tkZ!su&JJVtTGY2#8nvvVHKP<~NWgG8VzH>+3ARbV0zo(HrKWsA=C~Nid zYR~)0R&{cUT=5Z{l2+1=RfH>`5ZdxOLbE|Rt1}eDM^><^i!wRS1C^|#ea#3@rbq!x zH7n_MFMjX789Se5b%dT(PO5Fa6}#1=*uErmO|_CPE{6sDM%Ysiw{@|{8d(d$kSDE_ zcWM}i$s2FAz}2Q!Rq-;QdL~N5jKUsjWBr=q&{2fs0ao>6g-9#_pFU?LE#V{B46(g% zXoz(VCFX`f1u@Sid|pYZY8Bq+$x-`A_WG2XkC(sX^OE{ zHw_M0yW84Sm7rs%mW0&3)_jM9*^zIo=1`4+^;`7v*cuM*nuWfze)#_&#kt>RglEoR%14-q<{$I6WzKU}BfHwk z(FNLHu$ol|fo%)hg7EGoE9oFGD&WSiRwGouVx@dKgGFEfVaigX21i(T)hdTpLT9g8 z)qB!h(-AkUq|cB=1VH93E2(fxL4ecY)!m*N&e$>)N zIuwiu0CQU#shFBS0J5j3^ti|iLf(yOFUbAIU=6Tej1t829v3p<8Xp!wAQ7cZ&4x5;5TTx0RM@}q% zE5;yRZC3jOo5tqOBFwU0+HNB)02HOU0L=Yuq$?o`Le74h3-B8N|Ecp;h1|itHd4N- zKyTk~n@SjxfNjTXvl)NbHkaaN${5VKhym&7DVxZeCD}9K+SfLhcIa(+f*yJmA%H?i zMY<2Nlwj`n^yrH;+@UgzSI)+ZyG762NCnvn%k39!sRYaNnE|@DuQD;gvsZ>bosG-ZuD$<|G{U!#g(8E161ThK+4( z_&wXD2a1V;J(6JXeH-bSAP#!SXy*=78~O_N#;T^1QnJcEMFhNn{GSl>#M=p&JJv~&u)OHlI-eF%5jGO6}6KRxhVGJWIO3b zO9X)-f&}$~c2eO#hpAfKF2c1^cJ*iGxRRfgv6FJR2sT4(J8Ua&C%uUmhLPDEi+wCy zscerEQvB8Iq#Q0P;KmJ1l@`>pQ{HFcJG`t{6MO<8r-v~UmejLro=*hebR#<{n^ShP z00q>hq&$2p3>$kO@U*=GWmJU`tZa3AyCd{fr7FT| z5uUK|d3!I_>@$3>JqX>0+NUJc2hd}ry{1G+93$+QJi+dT$0pjj_n42ww?0EI6o%?WJmfGqoNuF zme_lexntv!p_0SQ751XqE|#~-PO7Ql9ghM^gi3RMSYzKz^s{CxumkP)!yRWPJhxG8 zKgRuR(+76aHgKpHci2g{Ktf9Hu)E>#PCIFvJB(m~p1bWG=$71Jw=hH~6f);)pTslg zANvw9XMvQ^D8+Hm`e1B4K{6uj^&OTl5aOSkOG=aZFhgB6-IPVO}5g>$fK>XLW zlkADI<4YprK5)kCc$GjWlq;oGci7-^VTaQhdzd!ukQ{&}@Y%dwr8P>ZTS*E6g07>L%pZYwKddnWF*p)c6K(+;f7!9J1(m1 z%moxnb4;e#S(t^xb6y*V7b-P&^rZA;7{L!EnmU+jJaTsWmNa84*nsSAPz=P0o$KVV zgC*0^iK-eP!eVW$KI=i(iXp5MdiQo5OGGu1Ir`%u*wf$9g{q%IBm~1IToSs#oq>*8 z+UiajnwYu;WDAdUoF?mxzJO=-;~YkKalE4kS?4IskQW>|+UmBOmVmlZ0r@XE&J)xH z^j^|CaoDaWq`&US*4C;*Hd(8l@I{W}6hRkOZJnb#R9QiDQf%BawC(%+Dn}h{t!}D00c6-r(Un|MIKjW+G%mQlR%W$5B`G`5LHp z-y!PQlKT!1%WCH;17iheN+QY>g~vtbdexpcS0TmZJV?a`tjK?l+E^)am)J_X^TFGT zH=IuO86xNTgxg7~w}={)i{e)pYx>)D zs_!J7E+BSaNNwn>K^UKajhB#C#%a#(>|i6OEmVzXY3x*&gmA4^G;xw%JwRe10kAUN zN&Q-FcUC3CiEE|Zx&d&Yl~Y{}!YMw}#(9(DWfj=b01*5;Dtt!GW#kuV_d>zmBjgL7= zSE&?yz|Lq!F*{y1zz<;lfGdlr+4Ijh3u~Lb(*>H@BT@jRjHXzeBQ!kiG_iRHofg(w zlI!A0O+1V5yy6^08AdTu27l?4VBa-o*~G9`9YIIs(f-=ac*dW3%X$6(K?)D~Nq;*@ zmt}(nUl*3*lTGa0MN9|q47fU8644c$SY^*2lLTe&JA=CHUieB|%o9~S+O8L5(%R!8 z!4f9A`;U#3GZTLPQD#9C8}PW?=*m+;z$7Z;vTmx!o(1VnGC& zIsZoAU0z7GP@)2!{56H*#pR&(*46CNGU=2}fn^9QL6LHDJ4!kjMYvjCwop2sBcyeZ z4KS>-EX9_mFz(0uYse?b>=bN<*mfvWTdq#IEgGhn#NPlY+ggsZ#WONPCOuH4-~-Ym zU8D(0hlg3fZB4U=EG%A{AS9+m=SvSi9L82sB-Tb_{{YP)gjAd(yNuU;Xl z#10OTFF*R8Q=~mq9VVLzCm&p`&7=Le!*Cebk86GU;(0*$_tNwvkC6T(tH z_{i{6C+*?;vvO;SLcHurFSgpP^U?<3~Ffa8+(aQHVEw z{2Jz*8hL#XCf}6J6oojf8U+QiLSq2x$jJ$D*(G|yxqb)9y85LND zup$^8uA-Fn1Xi^@&18pPhV^dOV7rEs1)y)hMOsuuu-TC^E)(cVyP8m}7=ZzVd6$rt zDfNj@v;2Cl;-Rm$6szPaZPV0r&f~6MsT2VP+%5m;NoRze%&PWvC9(YO?uP78KbPv2 zJ-z_?_F30(iuZ=Qpg>5~O)d$p4Ri%4HOo<~Bg3#yQ;K`WLiv#{_37Kq*WCDy)F@Yr z#29laX$O5q*g4jfk%$AxENi-}5Uii%>ZZzKIoWnoT`wm@7Er()@<2ovlGzKdxqR&J zS6u%k;!A)i2UQ`K>zF;q)ss>>gONLf$%^Al$Z@Sx4Iqv^Y>kWbl1LQWwAS?)#R6f3 zGHmrgPd(4E|&e8hNn zxfW0=-ZoLN$)2^~)FW^|IKe~#sEhAjxq1wfGUU2AA0$vc6lGoZJ!GX)Jl@u?)ytf0J zcgwrAtf=Z&b>PUWDZa$G~sU4yHyh|j~8HYPp5cin0|o}KH>gia#yD~ zP84gk$6b7(cO2Arx#LW?-@4sB65|_^VSw{K_gsq8;89I`R%?yBC$uf@PS zR6{o@vx*AfQ^a#mx))RI%unKrcXdlFb&Wd{E~mTOY8!iICe7H206+m%DaPjP?)P*T zV@KD!8nBcen#K-7y`JugiQ%6&xlMSp!(E9ov^h=tV0ST_uJjl!H;5(?dun6{BiLg6Luc8O69$uNL_InB~|NSTS>wsnh8Z%sT)SKC6f zbQJqwF3r*$;p~U*Kq$pOwmr^}J`3*glzvq30r6W>1~MnN`wMqzmY41s1?l^=tsI1l zpSjzU*`a_>2(cQr9&wvhn>#o(f?)oEW==%x1#8c{D^hg9#@(RjPwL^yIH$ae?kQAQ zhOouq@-MVZOCiQq-6}}3ZpO3WiQnB_$OJ?11~~Jldj`RlOsO!1i+9}DaG$hj_|o#% z_uRkg*rBqHz@mm8yoaFoXF&&@NBx~r-oa0G*7YP)RO1LK^*u#GdG%LM#4+r5sh&}Z;q$!uk2FsyieW>F zHuIDSt-NbC_rzI3ebvI#n#{8y3IJSmZzB!uW8NNY%OH<|ZGP5+A0C~KZ?*Kv^kix0 z)y`*V7RUTQBn40k&6x`jiid{s>49-9e(^ca0!mMY85U=JD3=@JX+*Jj7)E4)(Vl{h z>Um@1nZ3ez&-00pEs(<3R4pfZc2XRGF9-70;#P;^0Dungv9|5sokz2ML;$o|Nb~YA zf|H$JnAxiLgX?1C-z3 z*+MZnchX+(qqU#k>e;Dn?UB1_){bI(Kk+o8s2D~tu;&lp5aN654L*xw?PmKE81C2w z20$UbDTa>Fgsg8o7qn;YImZ(i-wHd1*g@EMl5FQJxOUdFOWVYMT_u}1iy^EDmf!HC z5>1@NuHW_~hphX_?{Tbq_!il^S%CPLOy)&~f_#-t8|$yag!`Th!u~B9JBwY>d6Pfz zstb*jB+Xm1R*lLnYt^h(bKz+G+SD(&A^p`J=9*!x4!w0=>emTEGL@lTPxMlUdKOz< z2N5RQygRi0;HAP|QX0oQMZspP#(9lUskoPPF^j`&p5!e^(%S^Q+DUqspqDzcXEBb? zXZ97Pz0{c}&tH+X|!Y2#f%i7_$wJdf|u&fAI->!Vml zyLbbkWd7T38V1YFYk8B6pwpDz1W@sI4rOC_wH8Np7Z=~l$W$5 zk7DDvPp8<1BQ)&k6`6A?+MZAG$6rv7drtG*L@#MOH6jF1$UutO!w5komwWToc=k@6 zVri#Fy*A~V;k zYz%1QZHYniuzqTzw=u=WoZ*oVyah*JO(33?&+qUKA@k${_%co0MV`p}L#t1{pl#yz zM@c3IRDUf|t3GV%DR049cFB_}!!ka2D}U!*m>50}+@roHTelAz{3A}Gm+Cgzv3b3j=bhLMf=mq1&Dzq6sW1zQPoRIKurDUol?ElvCZO zO1zO<5Ue$PgA;^TYM4sY_7x{aXuQ(gz^C3F=j?8#`JN`TL)cPq?kOL&8lelD@s_U} zbZ_Bn6Khw-+5OweN6N7<7wiJ_yZI_mRKvz&LP^!~o^fotHp@pjumpsDlVU_{*A*rY z@}1WT7`VeR*he~{RA3px2H@RczD0y_xpw$ipX!v7TQ2VDl6nL4OjSrp-_8hv395p!m~?#q_>zA0e}K_ z5lqVPM71-#^p-D9_2AU4KGJpvhfUh%OQCc;Z+rxNK9&FTBfjc8eUqrL3}KU@(=J~M zWne1ASm2%_w#avn&huZ~8vf_B#0wUx!54 zm1R8Xb^qlfRc*Rl{!Xm?J>SIW>y6pMkfM-x&-a<0C9QFkg%5Q8(yA}o@t!Sf^^-=i zA{2Hx{FHJ|z{byMcjW=MpR@;nh@;>~pPv+lv2kbiU(jDPv?Em}*{{xcd1vhj_({jh zQ2~52YG)}wsir$v-`^XqRPev6J&J#|BcbR%_w!!8SkXFW7im*ubyKdwH*| zZ0IM|VJrB6_-zT}7O-)u_C=vxt^A}iYebv`pJ&ia$1i1U8RNIIb#7NTXxZ7{UfYP* z`jU*uA_8FM06(ehHjH3n^9K40hc0C-9Tdl=Z$0lPJuen3L|M=r9qK1dxe69c9q0c| zJCuAl!QYkQ)|?{3R)W2g{FGccWQ!^}e*EUaOa3@DKi|$zz|IObLu?U-FY=QTWUeHK z8It2KxPdcraU5e$TH+^d#K#IzjJ;wxEk;MNuC2j{!*AeRcspL8eqpVjeh-Ux3zx#9 z_4p0`Wt5x?Z}_%nRX*|C+1j)IO!#kWydl4QH_a6k0e}KXPk(ZD4K|}6WgYMrR0pJg z7RLeF@28FSh!8*_Z3tnUMG)AQZ^LFk@=ZLm4?IpA@-b4l*+-uAzd<{9 diff --git a/doc-page/.doctrees/api/datasets/document_classification.doctree b/master/.doctrees/api/datasets/document_classification.doctree similarity index 68% rename from doc-page/.doctrees/api/datasets/document_classification.doctree rename to master/.doctrees/api/datasets/document_classification.doctree index 1922d4db3541bec660536b7b15add206bbe357fb..5a72440da58f4ab95f55e946243711c9d7348921 100644 GIT binary patch delta 10801 zcmbuFYfzNu6~}olFRKM6%*Z)hMwu#)8(EF_?>rw#`gTuv7=Fxd?sUcUJ`8{lbCo&+q)t z|D5w&_T|Lhu+BYUyisW}w(?EHVy!A$QL!R(Nm5CQEjc~SmYkZNX)DP{O)Iu!Sc+}w zC68HCt&3Ca#mV-PbjxFD$dcEuLFC~UWO63POh!hQ`GhzIV#bJ_aWudgI4L>6Lt=lhJWX+l-N!q3 zrY2a?2%`vyCca{96sd7uDSvG&u?_V;Xc09#&#u0Lm+0nCParMYWcQ7~j7YSqv&TSV!NPstlB$9Wr zGCp~nj8mOA!rEvulfbDIvdf?^036FAE0Hlk#&~rq(to+u*RkVBpu?wan#e0BogTEk zTtR+^Yr1OT=7+-ZYGTGsVxcf@CjPLwmh>wg)cvcTJdac72485zHi;V`HW2$L6pV+x z8_DOmHZ26{&EL5PTT-@>U7@I^kXgM+GNENRsr2>$F4#{hv4y;Pf^hN4QKE?2uSqpr zI7t5LDa3WamsAY_GDJGkP;psei(jO#2|4&=kb!szAU+a1U= zu>sMKAfW=0rYfce)=r`;5ziW!7)RF**RQ^365*!=dKV)`^6KDEN%Y3JkvF-pwbLaK zJDXN{JF+eDL*7?r=*gv+<3mFViS!rO@@N-QlLmnK&r!_FaZrLmTq%?~)LVwgTg7~# zdmg2Vqk8rIOhLY8k`cFy2N6I<=nueUSt`tR)CcOT=}SXJ2`MTOX4InXF9pe6gy|*O z4w@)GFxS(Ch>=o_DHVC^zPP*)2ugy^P zM>+?aEG+yporm=ra`(^@bmW|U)bg;yX87U&HDDcvU%yA&5axm``z5`vyH25fT@E`s z=p3Z4%VFagT8#9yLL9$H{b9jAnn~c?dHM}~sEN%G`WZDMEv^7bcOooyP1eCXl!O0u zTCF$xtN)9~s^B*7Ot`siY$_ioIxerjk5WQw~8fj@XE!rXgw9I^<* z!>vwWAC0VLlrJ^M1}6^#w@H9z_8(u6Y() zfcD-+n9Vkzy_bYY_h7u9DveDST{nH1_uehin=SR%D&yo!o=~dtQT|l83a7; zWUJu(c2+=ib$Yd#9ri`QKYE{)!dJW4B|jZ9^et9|X><)~+|Mpytd@(*gyAo82iSIi z*%41PAqnfno>tZ~ayLM(&DY-;s@m8;kUd!>+RrdQQFL0KhnJ7Cr}P8%o0F&kQ+x6O z+!yLju^f!wgBXw+&tb}~5)itbm;`@@j zrI4hyU01Tkjy!LbUJOT#%Hm;V&;+juQRX80OhXEZG>FP@hBSGhuR{h|3~BFE>DaC K7`I*7&;Ad<^)qJx delta 11032 zcmb`NYgAO%6~{S`JG^C}JWK!;3yKj2K^&tY)s>Lg7!rbsHfdB|gXLwwM5%}sNTSp< z;?j|IqSgwDHj$=Qdc~b3YFK0yEp!>RHl|&sChdwfb&0`LMPr?wduPzVTtBdH{o<$d z-~avp?Q`zAcj(;}`Qh$JUZ*rgxA6v&T2)q5F*SGE@|66-8EI)#3Z@hkr54R_Oe@Hj z{}tG$q(7KupK71_pd&qP`i!(9yInm*y7|bLIoo1as*`=cwThA~n&{`KC`_)*|4ETE zr!h&b8~rdtDb}bZF;SQv+G2MiDysEyheHhfzm@tFMfk6et5-$(B>Tvhs{N%k!J_ll z&>(HAzZ{?;>WT6dM7{Oe z#DJlps5y-T2_ui!8G3N7>e_E1L)G+I%{@?$nVisrw-tnuw%9zixwFG+V5I%zQ4DLT z=xpwcRulgchDm*J`T0+R5i!U^K&u|<>^u|bbj4ZK30*BjU2t}b_b?}^ng4zX-=JPX zbzEu>Bdq;?@=!D`d}-DyK93>(;EE<$LEac(cOp55x9JhLC6NR?4Y!DpA{Jmave%>? zU+3qwL1Ks8R!|X39wBfbjcoHbXuUOqyz>931t({b>IcjL@^$v@&k{c;_{-P zMK$LbxrKD-E&~7PA!qIzIY;@3$Q8fsCn50smt@W`jM@_zZd@eKBKjW`4uihSBn8o% zCIHe|IAVnK;!CfR2zT~-&XePiIY1JJWv}V2TSCHx ztAVDA-=*=n;?NZO3XCB%4YA3fK7t-GVzM=cVwec2w+tG`(Fur#-HR8Dr&Wm85p8j~ zs7;`r-Jlbhmq-nXoKB)Qkp|s0pelua9WnCFAimg33&o=O)F0U6bcuyHL{0{oIOOdK zKFXrcA@;*vZILvO`iVo&&_A1UC{=nfB<}Pmk{8QHcl?OPD5S`%(PRi;L>c0~@tsEX z0*7gfe) znEb1+(-36x#ULxFR$Shtu<|Wh?v=M_J56mc`&YO#M`l(EwzuhgWZ3XgnW2%^)XdCL&xR{djbpXXtyFan5(qa`^NDt@MgnKJ{&|s}DELy6l!K z^aVu9LSOvGe`qNtYPoooHqCKfDeDcz{FjDfl9sY>`!~%TyuGxf&_~;|Sr#U839Upl zCo+FAE|w|cd>gL>HI(@p6Nrprs5{J%Dt-_i%}OvV?#O^NyBY&zP$9~5#;hC949{~L z^dzth3>&Qi$UskHX~3wN>=$0~i)Bx<6u35vVb7ToA$6^AZpQzcu5=3nqJ8CK~DfN{xi|@CyxIKYe;OF=A6k}FlaU8Q-21C;I{edU&B4md`cBs57U7A3ph>nRo2zE~5*9AC1a7SJb5| z7Gb^21K`tt@)y0P0i;9BA7e;!ceR7X+DrVZ34jO48@ z2|~W7%r}*g)DIGtDCHXyCP9k)!IX>GXeGq``(0(e0?-+&IbrX(nfQ=&}~(<;H_ zc;zPId+y+L2STS^`LQvO;)^?}^qC9<%OlEm6EOTmMW*8U=}w0cH0NG0 zV6GBr0*1R1EPG0^gqfH=abl6&B9VDYfiaO&MW%>YbbZlXqPR?(bd)K_OrX)N_==F9 pDx-w_Ivgx?KHDqr#pm(mN|Fga?s6c@F~nU;ZkEN+(x|ku{{g4POiBO% diff --git a/doc-page/.doctrees/api/datasets/entity_linking.doctree b/master/.doctrees/api/datasets/entity_linking.doctree similarity index 67% rename from doc-page/.doctrees/api/datasets/entity_linking.doctree rename to master/.doctrees/api/datasets/entity_linking.doctree index 71541315f16a8f472a72f66bbb611e02c006bcb3..75f18b547e6f14a95ce6208d005bacd3ef968f72 100644 GIT binary patch delta 5157 zcmbuDe@v8h9LM>79*(>7?%?2#6v9D*luqN09|r`wF@=#U3|kafd57FB3PcE`q$_j7 z5w*4TK;K$!&YWv8v)Fg+<0K5rYOOg1%VLZgm9w!-iFEwYwCB0Qaq;9I_j&IB=XLMT z>-+h9p6}g}pKQ}pw%C1!e&=9p2XlK`8rz!Mig)G&a(%AC0-r0tu-F$U$}jM{i`;%+ zVIa?w@2Ssi@VgoUh3>opml$A=Nzp$hj}<>G+noln-{3K`8eV1v2fuoSIpdmr&$s*A zxNiiqgf-y z&X+BxiSmnJd4ML#D}P&I7QsqW+?`VWSY_9P-e3JrTJ)Y2&DHYFy>@YIm)|6xh`(>4 zqeNL}3C&TpxViUUS|Mr@i~Pt-W-%PR-x!fbIknYdV|S}wYSHT^b`Fxnmchy;k}}1m6DxFZMc*)_lA5SiWL&J#r1@rw zD5zG>xM&vb(_UIJwX*k@1kwCkQrv%=C{v8jfG*^fuais=!(!BreE6(mXe-+k7rimw zn#OkEDkJ+OG9gb)Wm%XV&nW9Dj69pjY=i>UhnsoJ9N73C6YIuh$?S*N2zRI?%OP-4 z;huL;{2WmHjJZ@l!Lr*+2?q;VDPiJxt4a%&5Y-%DK7Ov08ADSS_H%OM5Q1P7ynmqG8Y?7F#6T9AEGsftns23cbATtNv=wo?C zO{U;Mww91-5nFVKZC^>u^~5l9;_4B0E>@GP@^jJ{g>r?km(Q?elt!P;kgEA^3mEW) z3AWRz36}FGyFd`e7rC#^vS~d82j2RdRap2lPlC_KbT?&_Mk{ zR8*{~i2i)T^}76E<@*{Gnd`PeZM;V2gcnjMn>Hjo z=OBT1J_^^-(+DY6O{qsZpxs3Di0{4(57{-y;x~2JQ;-(?`7N-MYafvzkv|ZC41B*2 zp3;TEra4&4@KX-I+cag)ABF3L%@;o6jMI>UJ;&k0$mT=khwKJw-=TsmCs(UH?0ow> zF!Q1StitRsphhcu57RW>BuEaT!5ZwaNSn0=ZD|s9;nm5_v` zKPuaj^52L$K=r8XwKWWTv!wr-%&&5#bfTbYeyvKfU|WfFFmf`(7q|K?WJ?QNQuonjvCbFz+yNyG< zV{3q`{miLnSw5r^y>>H8J&e9%Mbsz>vNwMcQm2X1+V$&&$5s-S+SGQvWOJ>NKT`p> zYFVp)ec$aAEpcSugCT+z&8GHhrIBoX|CT=uvP9?Vtpu!YQz4(^M%6}NH0eispUvRs zq6_@^cjeOjB(eXzkVhy+I7%$nTmw0ASK3VYZM}W>o^)A4*Q-01u!Zg#$fNa?U;lpi zu+-V5pE^Es0PJ}2Ab5=OU`qH$}1OT{WrqUb5zETbUVesH`0}-K>c4 zVelUz7cD{7LM5OmusnNyZ74pS-pU|4!_aP4Yn_jbe~sOVS#L1P$(}4$a7{RRfLW=< z^4B$HU65%I_qVC{zZCRX>6GF}9Don2W_`tt4WZ>%-PrcHCqf`l>haN-eq{ zJmZfke}iliojA-CJJF)bdkU2-yw{}Mvxv&`s}*urqJZZTm8h6rqzqCQbFtWVlh1mm zBA;s~4!D&0q{_R Z@{n2Hh2A#hHNp*A+>vUrsz>>N{R>bVK5GB~ diff --git a/doc-page/.doctrees/api/datasets/ocr.doctree b/master/.doctrees/api/datasets/ocr.doctree similarity index 87% rename from doc-page/.doctrees/api/datasets/ocr.doctree rename to master/.doctrees/api/datasets/ocr.doctree index 44fa111d725d8a1285bceedc01d174629ff4a986..21e69f7367226c8d2b37452eee16d1186fa5abbc 100644 GIT binary patch delta 1185 zcmaFV$a1BTWkWKfp;>-rQBIL%vVNLTqJg<-qJfFIWn!9ziD{~#g<)!TJ1*#U-gllN&uGH(wIg zp~TPjlA-MU= zAs#+dS4nL4xcG(KaQc5haPyYSGTNkv(`Ls1JdEP8Q+ha)GfNUnGV}9_r%c_)00C1~ H8214H8FX~u delta 1145 zcmcc8$nvO>WkWKfVOe%+zHz*1iGE_TrIC?Al0j0cVX9?{X;LDPN-{Gru`n_-HZ!(J zF)=c?G)gry+dPG_j+u0AlO26rH+Qfy@-g~N=2uteNXbvuEl5mH1&WJpJ}azGu8~FJ z>|}TXXsg@i4-$!FYMuN+f_rjQ7XRi)QaU`7eLXZ#y%VHfB2QKbg)R1VXJqup44{b~ z^<)IlW=Eg5EMz#uFx_?YlE7pkY%cLm*~&z^k(&+E*N~xYvSGTzX1}a(L2NF0S^bHe z=mQ!#*)NN4b5z}aJ<>fgdEp_O$p!~lH+Qd<=Evr$S9@-f<58fon+*;)kfC++!b8D) z*j!?9@f$hev+$7D=9QNvwaEw@M<27vn*XnfPd&o`0kKnhIFmC=5=%1k^NOcT6=U27 E0GLx+vj6}9 diff --git a/doc-page/.doctrees/api/datasets/relation_extraction.doctree b/master/.doctrees/api/datasets/relation_extraction.doctree similarity index 55% rename from doc-page/.doctrees/api/datasets/relation_extraction.doctree rename to master/.doctrees/api/datasets/relation_extraction.doctree index 1c0b8f07d8d7a201d552df216f2b34669303f7b2..1e425d42ffd1054a2630ef1aa62559de7ca8db26 100644 GIT binary patch delta 1971 zcmezWo9W?iCYA=)sn<5L)H7O{(grx_(0n42aVn3!88rdgPnrW#rprY4%F z8Jn4yB^jlp8l{YO{h;I6GztpVeGQZZIh*@l2jzDnB{CUtqJ1 zp$#);aGf&|W+l(Hll?6?HrH64W}7U8S|1$lSk{cf&2ks440LDk7~u-%}N-_?0)-E@{(EhW{3W{7(s44$&Q7r zOp(2rcluHc<2YtrXC~9Q>Uqu>#)&M9A;Wc>7cMo!NDR7bmXYVOzRAj)1UE0<@R*A% MkA-dK-SdeN05ao-B>(^b delta 2088 zcmaF(o9X{=CYA=)sb4m-)H7O@WvAvF$D5YuCnj4O85txQB&8arTBevLB?74=GXoO~ zBQs+&V~Z3MBXdimR5LUEl>Fpk{ltRI$p;kWHs5A^z+_0W8Iu=ks!e{NXgK*6m)Pb= z)`Luw?Hx5ZfClRpB&MeVWi>Vza6Dop-{8%+xVqWM*6zNUS!fFfW87p1M|EUZX>R6| z{!YGk-8V0mGa=to!INh;$WLCN@RB@#ZGNCQnH?pZH!svYPJSSHOztq1pS(L%V6&N_ z4Krq7X>2}WBFIXnTMexE*%{-}!(U_bRL7s>hQEQ8`(_EW*o5Y=B!!%lRb7<-ha$^c;^yUW{))Z(5x{Q7DhfEQ0 z^1PWn39IK1=4p}Z`Gz{r&D|ybSUj$=*`S)-B)Ykwu87>^xnY{?=Dr473baq|Yv7*T z>A^qwS?Q(C!Oco6n6av{`E>hXa?>Kvg_8p&%TC@ITD|#DKP%QKk)342LS7EqykXia ztVVvAd6k(wBPWAge0C1+=Dc}kSdIR*Ac{=af{fn$Vd-hC`CV|$5=vbBVX5-wk_}(D Q$n^9BMT5=ncYk680HHpc`v3p{ diff --git a/doc-page/.doctrees/api/datasets/sequence_labeling.doctree b/master/.doctrees/api/datasets/sequence_labeling.doctree similarity index 67% rename from doc-page/.doctrees/api/datasets/sequence_labeling.doctree rename to master/.doctrees/api/datasets/sequence_labeling.doctree index 7c6545234e78f1d94573ebe11c38728c5b75dec8..04d751d331b255ff654e4542383f6fc8adb14cfb 100644 GIT binary patch delta 19821 zcmb`Pd0drc7RP<}<#LgWEFvms>b;JF;DXSYnmKMGxRpDx2q>bKj7vo-&Xfyjnin{I zn#rlrvL?;t4j#1JnrUXzhS8kD2$f_^Ma^Zhrm|_C`>@F6+ui@IaCc_iMtWjc8lGPs_E{abk%cubpH;*tmaYq+#$I_jDcGS@5i!b0Vk}6JK32+z-BcLY(SZy*wd~q+Ob4^c$*aG0N%LzV8gps5DQ& z{$aGC8J@G{r}S2gQQlidCEDK~YbPmF;1N&f%D%=pCM!w@t>=OZT417JHAOs z^#=?L9Ek645k~f)$(N2Vq40+m8OIv36Wu2S${YsF=XAVVA$&*a#B6W|e0W+2!WT~o zRWi+|4A}ayprNf&@K6ajv0C^WrNFrZLu&*RcJ`2iu&!Ll7SQ!?;d+bK#U);FN4QE> z$@>xf&o@GM9mdL{!+m~@-6#odm`Y&JOd+N$SN!H@ZI=+44~tt&muxZ63#Z43bBJ}c z7*pfL>6B>foiEPD5eZ_UZA+M|amC2Z={Q0hPBDiQFaAQTqDapMr(*ILakJWXVSx|M zn;;IccIjUD!!&U%(VbLa&FxT1^@Eia3s73eNyw$S_RYCaxpo z5Z-!Ij4&+HWO&5Rl;mNwbPPl>m{1Eisa&LNC4r5b3%h#A?V)I}=zy9%s)o-U6w@_} zTO-~RV?qd#V{XlY$1aE(%sFf1VqT>Bx+U<$MVm`o&@3Go_UYgivRV? zKL!YZu2p(5{`R6+DO;R8UMH^aK>Pxp|DQNqQ08@+KW8i~UMf9kl(cK?FROP-)5_kL zEMM%6cND1;SyuK%8@_HxBBi*vtc;+-DiW}vTzOD&u2&x#A@aQ87gK#YDKZDL~3a4WiQBc31#CIVj31Iat@(d z_+Vgz4P36t+pHP1I8aU@mdi9a*oJETgZCvyhZ8y? z3;hu5>UUUQ`3JI`%3^*RWa$dRjhWm9W=u{E*NKM+SG1y<~)rxO;tT>g8{e$NI;evqip26fO_zwzrmX z(oV8mdHBw5QnDcn3Rh##x51|yVgvK`Vqp5)%21!RH#hH2nc^S|*8~R!S8!LkvXm_0$`2J2->p#ASta~!r5_S`Bz83}3hI+BCn+a>q^KWLx6Y-R><%QsrY@wK%>n)Gs%46D z;zJ>7B4xkjRl|#gpk!6Y;7GNVZrZK8O6sP*?0@xCDQ%UX8#G#I!jExk0J1~>+~)lZ zcq&eaRl_N%*xXDL*#{D-IoW7tB>Z=yZpSZ2syD3}G-#YU-XAlOMd}H{E5Q2Go1iT9 zaLWeg#GZNd2m?bpuxgRo-H)^mfX$Dq-x8Ma4Z-8%17M>|EyhFns-;Of@#=E*vmoLJ zAgEXkf$&H*3;()aonX~(!DhOC$l#RY=lTORHn=@Rm#8-QvP8Y*hkp$ez6T0>u{8xp zzO24TSzR^N*P%mfiuu)U^%-lIODU%d$g7UCg?H5$Kax;GMv3wV01Oah<0cO9#XWO z*3v#2pplzjJ$GS{Mv}M5GKdP+z9xw318A5WM}=suOpZ$;w0LT1V@w}ypH;Vn{(k7j zkaoN@NV`i(OYZhR60{DuGEwtAqvh*_2Zw5;>+L2k+(Z95r zYnI&nKr8P^oJ%pTR?D^`uU++{U>PzPXW!5|QDa9ylj_Zc4GFplZ}pHJ;JU4q;&-w7d~0#PGf2-NE8eIG{}dic)H_BI#RZm7 zCgx7pNsl(Ye%BM0&D3W#4-K-k5~v3ZP_tCmAZr(UrTJa1KFmiv#|phSZh2fMJtyS$ zdg1ud#c`SY=`=Nr}>2Lv$R6y+DP)2lW`4LS*!;mJ4?uxn$Opa>%y`Z z^h9dDc^x*8!T(NKz#QAB&&JcQ>%Q;v__R~8OD8RsIdb`4o$@pf+29mP=-Ie=^^qG= z<{LTS&dfik$5Qn1CM8CHsF(TVIY;(AP1A=XPky5RjN&IR5@wG96_t9!)5ZN~^b^#K zZ$e?0D&2Q|&7G_{uZI%S-uq4vj^5D2aq~?*m*D6dTjmbPH8aKiH7eS!Yr2wKli9NI>2CJ+6}sx zUO;hsqct(Z4AOaXx6bBNIGezfT+qc>*1W@bez(C?a11Vxg{xj~*dW{~WntwC!`4d1t)Z)j4Bm;V8Lrr1B>ODgd5U!_Hu_MJ zz>pz$snobZxr*dTn!3waVHGKUKV2kX$N;Q4;74{n@D@w{!gmedlR++5*T2vc3%p!l z+(4}Rt8tC084UZ(&@ub0k#7|)_6t9R5eU&$x*c{8HDASn*IO&l zu&?|`JMU+ZedZ+-YDP(F$(v>nOf<}{?ui36+$oqYA+Th~y(`wmbucMU8IBQ>`3~hb zdn{2?>wolh!fx8FqW23ksZAsmKaDUc{R5d%+pX2yxra$@7I6To>GY%gTjI-b)jXBftBTNxDU0gBS3tDXiRYQdYvq2p)&UnS$fyl=j3e6i%%& zS6lNw_5w{GzQJS25d7jIn`)^>m0mLGhyHAEB&J+3d-`m8dDxHNFb_E3=F4(0ZWU~s z*q&$n6Z}u1w1Zt{C-YryYI_$gFr2hEK9J zoJI7SY`ffcU%Y>pHBQxNB delta 20030 zcmbuHdt6jy8pk{L%M8O^2wZ_w7*rG#QCv#8ZJGC5=*rCj3>6j1G*R=?mYP`DIJ~=V zuG)67)=Zt?L2Z+2t

n0huMl`fpu@m2XXEyx#QWgN-Wi_GeKB_gxFD$wz@_@~!U%qlL)&#Y$Gam?bgUGuk@D&l(< z;;zcyj!3WL4@7$X@d!n)5OGHEJi&1+2m@4W873wN5Y*(}@k}jAIIC+5vX>Ev7XSG` zy;VYHf25;_l_dJQ5~9#_tG1%I(E@j+`X03UMOw=Bn7pyL3Q9499Hh{rXcz#rlQX~Q zGU2vXAC^H<2N4fF40?VHVxdKk$sj|7C`r;ZhZ=sc>QOiKS5MY=hE8t%xsb{TP&M1J zsoa|KdQ|dAQOUtddL!gl(2vGML#`J^xPb{X^v7Mu>DTr2>ZL^bAHIOUEv;}YuBD#mkPlnwc@Ft;8$HhpM@-ufzhwsHytZ#aiuyUNiM6h{}>!3Q838a#Ces z)M(f`Pai4iY@Mm+bNRF^J!US?qfkJI8kQ~5qca6k2(xCH{vQm33$JOy8rFRC}&+< zoE|J&^#5Sk+PSr%CCPuT*N}UMs9$Sb;PX#x?(NX0gg9_Qt-=TE_vv{F;PgS17Y~X9 zDh_pSAc(*eHp25G`t}%laTxP&G)XYD$kCG7i>fL4eUFfREP^BUL4`AV)XRj6%h7}9 zoSskXH(d~2^0*&Gm)zu%=#n4)B)a4-S4Ed>xhA?~?RC*5Z@D45h&d2RZGnO=`C>JrJn9| znmth3h#Zy}mKIZ*Y>*lnO0&J{4H~k|VNk;ijbU?W`IL9k z1hc`(lA27LAqNr0XfG8CF~T0ZVLT?Y3Bmx?^&5-_3m|AoVywZ;c|k@e83w_WXhTCx zjuQ!x63tAK<}1d*k3K{3B-RIwOB?=Vy;;7z0h1Jj$>hXqSHV!ZB*R~d*xw!IfhtuE zlOn|Pf2$i_F@^uFRU(B;kv1a@)JW}z)#w^1NM2-OT$9p0K#^Lh}{1%g@3k;Y7 z0Yx1yRs{OJXGp;~Yl=WGG!hKrX=E|eyqXn}#I2SY_{ANQRv0!S;!}tuJsczkRP~%E ztV_1gH<+IuOEa z{PUHO+YFKBE5~*i_eh%5Xb%~G%5V-1@;d3ga3JVG?6P{Nv=G!~G-I`qwMQ%8W&Z z-%%_oF3temuHl>{PX{s#COK@qX$(93%ym8d(8!O}{QU&wDTDZg;?uSA=agB_XU3iw zpBah;6zdnvXa!)R#43EO)Krn?ds=_K2d!i#Pe_gdv>%3J94Qk7v~M?2hJw>#;_mZz ztBJeMopuvs^y@S-xG47C~|zP3q=@p>VRh=RQh zO!FgXEi^Xq$?ouGCD%F%rZqR2u)6MUYhv%}EaISf+NV9S~v#b(#r%CKITd4^c+P z&N*HkW-`Hyk*2WYn7nzV#+XhqZr>ei!X(nXc?@5CEsJ8jsXNLE`PEcF!6Z}I<fDe9+mbAL-(+B~qy8Ftt~EudIQe_QmXz3$??S3HhM9 zW}c8Ae8YSO<6616PurUvqE{W$oQ_d(uliRj^D*XCx3@E6GHfOUsE}wRrTURs$4z#U z{-d)ttm|T)62Yqu>uKh%q8iy3V*@}ntdHqF=1}3kLFS#I1rGlDw->|Bv8>agN1M@^ zDTUTS^D$=p`{Nk`Svkh+B*~@CJ>Wowc?vpFy|>6LC)LK9wIsTgu`QS{ty|xWnrg$2t1l?4!c;EYdv7DSuVr+ z>kv6cu)JgDcgoJ5Z@!Dw9Vlklv0AR@gC*v8mOeyfV~8%E3Zl^dW3|0jm{AMY{Caxx zr)E7ISZ&@HTC(P9ezV#98Y97@Pf*UDU(ZkRf5G_qfO1ySYKNKLDYwF8CVg7yVqn)+ zb3SG~7~qPXW}{fZKE2BvmU8nJ58Q9=gt4qbaOUq54~hQ%)K{XvUwKsY_d}11{@(kI z=Y#GaRCdZE?!(uzuOTVnZCqRKXl=h}(Paz8Z8@h1JK zws5nO>n)fZim3opg_anz3h3`73k{ZdaGETSFvi4SRy49`VTs*h4!vEOH}P(aWgNzi z0=R_XipPYX`7AtndZ&zqCr@3SjKd`qX<_wF!Dp+x#rDufjb7r_` zC;yE?*-1c%6)KFepzbhd2td_DZ93*ZPI}X_8IzE3-RY0%$z=9+-NdPuNYU!tT+2|5 zm2uU!&$IAVf}RURyDGgTP@nvsV8HTl?*&#cS(8OpkXl7LD=9j6K+kfafd=qdSOiwy8xo+a!m zS8ilG!4k{j)!Dr$Ba0x3P)Ys`Gq(K}1I9CipxR*D5sMJPKP)|F@iNsv`?ln&+Xxln z*ZR&$%L`193DKIq>7f^0Ov=4%QLrU*$U1A87a_I|{=uSWZOHhk8QW>U*-~V0=;K$GGZJz}Vr^4A zZVr`NQ|WST-N16~DVg;My-|x~DXo||>Td{_Zh-GqR@4d!&+$jcS#{#V+WSUp_Xr`h zvD?a1%~8=-OsW|WVgV9k#lNDBs);(5%*EeJu-Z2ll(9z0GOJa!w#9Ik;R40oNP`Nj zsA=VS<)GSDo>x|{Yvp<6AN8y}uWZ`L%JWJ|Gb_(4pEbAgyz>24R-RX0Y-2^`m4U{| z$*gI#7CB}L-NrHHxXHs;$q8L0uMQPETO%c#A9S<+%);U9URF%98A;QkD&C1ghk;mJkkc~%}WGUi)RA!CL$8P+VYqK>9gm6Bo0 zLMv*Coc_2Mxw_1%Cx=#872m^2!o!M4Ym7RNYYGd%ctbE%WRl15)fynZ?p(x zMy2I8R0QEz`8J!ga5t<*YwHlfGjBB7cz(arYTJmYVK6~J1u4-)?BuqkN0>VqVr;E2 zvtUaTTW`2h+7`CCmV1{Qm2BMGtE$>C-kw2|M%8UbXi&|DT5Dwpn<)au@aS**klA%@ zI`KlRm|C_-&VEuI8&74rHLziveGwt-F0Ax7Y-17g0iZAwLRWuz|9{`oR)cwWbvqQ- zDC#KjuAwgNZ9iiO$Ctkfl5Gm|-$0uhsCVBIVIH}=w@8x<{ZKRs5n=?z02``S7K8z+ zD{3YwF7}PEImGnfD9;$F_%TmeusRZ4M%j3gQ!r@8C8J1NPK zlp?wl_HNKtZEp~v55Cvgt1w3`HQO<{BkcEl-pf816UhTz;fE>L$9}FP+@RN#?OH@P z`UJQEPX^lWl!Oe0fIT38NJKKE4HL;Qa8!xN;FrX%WFqCq+a07}sLVn-jJHRVBw<){ zq8?*s&hXM0ksNz7#6Q=Jv#-IBBqiHUugRHW|0n`Aw!UrW(fabcc1*P9(9h@FQBwf+ zV?uvyB>flI;|YD+cMLJ_mZ_oPLi+{G{D%T2i|^}GEVEZeZ~-Vn!w3rpx7XU&W8w;h z6ECkPEB4rpkg&l%gH?XEZnX0#KXtR6NBK4%+w+)Lc=3syNBKV6>|e9WPTVfLo4tyq z-fnw)OjM`h=^MYlwDT*>dcg1l_Bs(f+}*?WcaXi^foS$GvXXl$dmk8h!v1E2*-h!w zcD}yd^eif9@+Jg?C}GAqdmoGm(Ae9D+$xvm-+^`flKrQs@YL{X&uHMvat`iRPu{ zg#3Ifm79u+0ddeRr^JC4t+Hkt;UpsvqPdP zGT-!kD7K+Rgb*r32{ndCO-8qS@pp?%PVCA0L%ethGMqK0S(i;yJVMt>yST zW=BmyxA9JDjuCdxkGhQ>R*q0@VN|;aZTwac+xTb&zKsl@P<$m+UK!O5)6nW0q6U*X z-D*~YrnylE5Df*2urosQYHSgkH*hPec@#AjR&K*Fl>WFoS(28cgw=o>y&wWP^9{ZB zDDwclS#9>0Q3b_ZkPo&W5gYpRQEWp+U6~|3IFCm)!CcS9_YmY-9rSY0-=frTB|j?c zstoEyd~olwsB839l&&E{jL@zi3J{DTK^UOAHp8R|0R%N!dvTEl=)pWyv9#R>8}3C- z!(=z1=!Bh$hMfMH56dae-B3I;&^EA8Psc`UG-WHXE*YetH9lVyeK<~)K`|t7CB&fu!W=eVHzJaZR6m#fpqJD zrVCI>cFdfHzs4`2heJay=0}Z$ncW@TiY;dPpj1BxzX>F9paWC!EEKY6kV6lXk{zfU z_JS}#VN{61gZTEx+-tO;)%c*J9ZXDfgf4%>j$sZtqtotD4%Eswd-Y`iUnSnS`~7GK zYQqz6ZQ^ixGecZ^nL@mAcj$OW_=cxp4w|*T>8QuF)=fnbC`6JTdQNj($1t9+6#KFq zX83N7BkTqQ+OP4DKi|QxCA+;4#i9T{-88hwF$)tB`64dWP=Vo2K)f2ZE^{P@-qFmP zH!$1rBbz(aS%uMmy%{M+&}i=!_3j_m?=OZ*0xs; zn;36{I=9bK_OfxunU|MN*V$vImI*j=G*p+bJ;_Qo|1x29m^=<96Kz@|7 zQ-s)(;d0((j7W}lV)Bvzz6<8YIHzEEz!3`6i|Ly*+sjlU56YHy7SBfFVR2b!OU8o> z6`h#bPlzNVl&$Q1h>0Wd8=`xVL-NIH__(_BNCaQ7udX=gml~i3J%~^GTz442($Luj zGx8iJx1E!|<1fnD4O%vFhGwMfgaLg6Rx>AmNzH;*sNoM0VkX*c{tKErvM zhGGN1iIofCi}y8$;ru`V#wfDk%~28AkUz$Gk2!h-&ELo4+ycV_+U^5k zK8tnfooUWiZ1`)>Mh$;JO`mvY;X8Aj7cqW-E^X37?Zl~rf_I(tt!qW^;^emV?J_4X zfJlrJ;oe4LPkc8oZS7`X(snxli1+V8t3TvV<_xuUD$iw`BelP`R=}GBhUUt z*$9Is6j}$dkDQG$hEj-d<+0O=;SNX0H@fWNdvve8be6}&>p~d*3f;ak*GyV;mWsP0 z@0*mbflT3gKSF@HqjQbISRWGzRBwJNcB0kA4X>%)#SPEmaB;&s>U43#D;4eH8&`kz zxp=Yrr&2Cn?4DNE#f#m0%DYgvLhx2+#4V+Yc&SDbQle3rqPn*Zg!dB=up>P%!n2uG#KG>h0QQo zF7&}z*MIDCg4_wNOhl3q#3xU5)eLaxP3jI1FiTZ&-QeaF*Ke3MvLBOQ-f^kP!kO+= zI56EcJHn2n#dBSJ1I3sL(k*pG>9M;))YmucoA*USjb zYcGh+o45kiJg#95akauUj~Y@J81lZW0Mk77W76Rxmm26xJAWQ^$7%d-n0{y2h)QyDv$HTX}elOl8SiMVZ)G`;V4&leK4EFW|d>T&GNA)DqKBqLsNr z-vP}Ve@o`J1vekSe{wf=?>_GXzx>mqOY7l<(w)oZTx+%Nu53>AkI~IjzyoGCPXQNM z-8=OOPaaq*4Q_^LttYgck%mSePB#1q#-VY{ zL+2<5lD>?OeSv(O4#fo2H@r;Dw7sA~x?brCt z=YMdc3Bj<5`Bba{=KdrSLUKhU#I>s>AOwY_Z(;4QIGWrW7`qx)Tn{4zVT!}68}6U5 z=D~W!FCuA(#{ijsi>&zij{9c}EBLDARkMfITMhI-?X#--55MF*a%=S~uEiz7ZKpg(TK+w}l}JPf9W891jkSho?|Y^&X5D3F<=MHReHWM_>p*TT|SD#KQ%vM~~r4 zKr7LKkmE5PBN@HIWFrF?dvc+>)3cw251YrsBljb(XFA581f*zom-6I?E=F+9#FzD4 z$8aWyyP}k*G|5PdRl|ZL5e6HY`i1q>$QAMidQgh|0d!L*L!|#J5t3AJ#q)SvlMI(9v4e5$+1@+8`*8}8pQ(16p1&qK*D?k=_B=uM`Phzsds8&IwYBAj3!xG zv6xv|s4ikU>Qs6;cUEY;JfE1N^P;%Juz|Mo$6~pJ4~X51B1=HuN@5;S(dFfNM2g3I z3FAL#LB1DxR@bW&T}O>lUS9;)@j*>5cOCh4yqKJl2>~hul}>UEznic)n)Bp%1Fwzj zX%pbd^o9|50{t6#wU{h3C`zP(yQxTnl`TXXOl#$xf^i`n*4WKkUW_I6I(mzz5_Ef3 zlJ^?Md+^Ss=tG#}7~jKt7()X#FNM$hduK-&{COGT;O`ud8hj4@{RHnhOyl@`dFwQB z@L}s@Z&>QE{lZpv5z57|0zCK4B{iwIRDVWjcO>i&r z77ZYI3&JVD8xo!AJ&Eq6fCxQgXNf-H^iuC>3>j#`)*XDSykRveuHus|UOu}lvkgTC z22Cim7P@cup2xJ6BjoP((gS;RmI3*B-Wj2D3#w)*SogX2zY?SCq0JYf2RN}$R(lvvZW>8>f9FjK1J~ zEz}M0F1_`qmsh47w@@QrC`4Z|nw}5(+j|SsU= z5tKoX)0C%s-(3}>A7f|{fTBu1^u~z`MHQ<=>~NuKG-}gUh={T<@%3n)BR;GZ&2z+y zb)r$Lp#j*cVzu%>qv){YfV z;!~n|qL?=X#RyJfhEFKI8t$Y*+!KR$A zr;C)>F;1k!@(Iys$3Zyu^U2Zv`qPMM;k@ALpPLc=2xBjWJ;X)uBGlV+L~`tV3r&vU zDC_2v<|NSreB7H^MEuBVs@elDxTxD4d;z*o$ zSdeB526C!bjGj{(-nC#${uT3s#qF|jOCX?O*S!B--_XyLRF+65`YvEq|eWZEnLEYmvJ#+c^lVyXnafsj3Wv}?~^eV`&z*{tJXy_kP78741e<)2%sW9VCxup zsUjOz42@ZinSTTjs}-qSPaYGI4Fwr7uP|vuhzLEboe;w(9Y0Krxr3oZlkAugFmPs! z5P<_tmx>%nUyk7bQ0M`eVWGbpM5?WhDYB>uyH`aV`MCFE;z}$+50BT1&S2sOark?G z7_%5N{9N-YAH~Fo6N?&KB98p~pT#`IjC>(FpICI>A&&flJlx2$SP!bbF>51?{KM1Y z$d@{c8F`*YK-Y6Pg7X|C`RHOfF@Cj}uT;SBA0m$axgT+(A1Xo2B|f<K0z#I2U77q+$`@b;?IQBS(z5p?yXLK!a$YNJY zHQ6!#L;S*=*={(lh}{%=lM@eX`?aw=m$+$&#pDtJf9BUA-V}?Pbr-@MsuW9Kg#PVf z7vx)G-wv%=afLs$$CfBu7)VfrSjC38*rHYJ7VcPH#g;|K^3>vbOl*mQ376+jEl!k) zjg(p>l#eY@Fri0ND#h~DqFj~O)Ey@vV*J71wQm5ER>19DuEUF+JB0^7~ZzvnO``OUT&xYQyLou<1OPO_!ZRucp zE;ExO65-!Lv8Y9#LUdl2n3xvJvx=?5Vo_Tp#EkpmVg-5Q-B>l5Rx>sgCTGM(+9Gjn zu1F5cJ1BAlB>|O$-x%V%NO!XwdM~2CSe_Y++8q&4Emn*$t(U~|8OL!!B*G`zv8WYp z4!dM=4&5db+~%IVIwBiRtc^u2c!!A4L!S*I8ufA) zD|VpSO8Oe_*q9=0sD3db8&>@kdl}c)Bp&5Qo}BM{)X+LrZdsGNFn+E>gOX?TACU$`BEHsO*X3QDSg(94boi zW%{e_<1}!nblidnOjuPrj;EH#>cwGF%OF0X_-c4sKkgES35768P2!49N(&lABu1OW zI8?kSE{C2XYZk|Y#`IPqIR>_gLj{dO?5!Q*{OcQ0NfF60qe~nrXoQL2d4#El$dFdO z;!xWnIOd^=aVGKXvL-ps6@eyW$B8sq`zD$uK!yB(q#}a88eV zS#k;DjN{QeaYoX9u_q7So*l<08%^I52~u`m9BR8npr=(NF)Oa<3A*zOBeJBy;<$?? zYfV6o9*!;*S@J@N!=L3y_-`@w_&ceck9j{XQj*bPtH_dZJ5Vg)IS~^AR0wKUT>wEt z*6oe+S2W+>9nO``<$Up=*b|38vq6>A02RS2n#~T1yeM}#4u3v_B9;-S9XF1Lvw`c| z`P(@BDGi1W1*hX$u+nz9{5aI6O2%K9{bSt9Q2)TS8-6p6@0rNHjT(7w8Wh?F-`hk4GP!yTT%2ZHc`QbZ{?EmMPka%F+CdqB)sq5^&%Y&K zCHEOg{cu!|2eZQBagY-a!@y+>7^gh&FgR6b0lFv-0 zb@I`-x7&T55Jmvivpr3>$l8iNY)(OoB|a401InqPT2iBqCS+$-IHOmOLx;A;m>`uHv~Gz)O( z=Zgvr5@A9KH-!TOd?#}=jocxENrVjZMTG{DEL|^`IuO5)F=`D(<8c9@4hu)PJ5ewM z-^sq$G2KZzacM<1e(h@uGpGB0v~Pm9fdNYd8(6puWdjm@Lh0L*b76Fw?B(UYsAM71 z^5r*Ck*Za`9&mNFui@u>zMxp^>xzjNAF$vyQN3IzgokFBV?ao5+w(GlQB2@&{NBD!1=iESy%Iy7Ubz5WgZFq z+4lzGBg|#aAs(cmgI@yz(IdOTkt@DuFsE6??3eW?zD>$($fh&0DX{N`?@M}=;kNN1 zVuqzZ2m|L=zHiJqiS6I|PC*D;%cbc9nG+dm>GaMQFowvJsZI>CCecmH z?8vzzjy`bBT=tn6asJhp-lp9{=1N?1EZV|ROW6Q3^GY+)+`b3B7umzz4O&~v-n$tp zXj20js^4QMimh<@w5pNpOAD%T_`a#^gcevO3R!pl zFLM%P!}$k?R9QFvVNizb6#rI6rtB8~5Rfg)wc_6DtClJGhjn_{Py9bkE|P8GACjBP z4)G8Fej@wDn)~sUwz8|XIOKdt<)q_o)FgWPx$)DM2^D!c4Po{S$*$H>Tl9RXJ0 zJzQqXjhpz7l3~t1qYCBuIYXDxvI?Y;F$$~4$`nWn!^qiyGP^nZUs(}fb$TT194~Xk zBxyPviIg|YoG2@zr?!5iI7pZ+8|KJ?v|$Oel~L8qR@BQWU+$k;uav#zA6l%DY50dF zU(2@f7`Ix-OvHbKES~?T;!QFa-uU`%mL1@K6S-fKvfoui;{PPfHQNRbAC+ZeVl<^tLVO>}nvjeez7rt+tgO42 zp`0&%7ZggK-jg9iBF`lNA|A+4=Ra|B0+sV1G6wSO>wgdf*FBYOa3^2Am9++X0Mu+6 z`7A0A+W5>--S;AgpU6B&Shk-t*|WWAPx98ZXx;MhE9UlWm9~q2zIRjy1 zXTMCWsX%FWzY{Koh_4*xhuT%d`xvE3kNLRdZVl~6`IYfFKOD=z+&P}%JhjwsJ`a@N z7orJFVK{G|%5Zj`=@-NQCbPn?E&s5n(ytx=@OlA5zTFar{MzMy0sKFmS?zbu9*aDc zy#Xm*L~nX@eOqD&9XI=pHZxR@VymAS$BV@8@IwZ(5>m^m^iGT;4BF}U7Bd^6D(^(j zEvj+_$Af-FHip7(JMPzkH`98j{AzG|VGO#R_8W(^RYqarSwC+?QsF8@o`N%pUQEyA zYotz(fuR@tY>`pvLt6BFzXp*0lV6dQq3V9W>bKgK3pBItFe5GggBfX)dw$*cJURJ+ z-znb4KY8qT9y8IA##Y(iKO7$Z<>zH*C`rfnepXg<4%~Kxk(T}s=plo`N+IcN?H`E6 zRJDX27(cLqzb)A*vt%{gG8_L5M%b@)^A~K$#?v2dLn1$CXj|WZ655bBGC;+CiZ&!l z!DV|B|BkkXdfpM_KM8GA9Nl?M{H@_esQ(GxCe}y#3;Atil)sSQ@?-or^M%%1h5trA zUad>?AIU!irunyV!Gc+uRb~(Mb^ecy460KrhTgtU@#ygkY>WM|#djydQ6Q9pGwD<8 zFM}@a{j<>lkJ73KdyWKJn1QaFzk{_QlHd06AAv@aCx5EH{|`KhO9wF&`wn3!rVL{! zJ{rzYTr$Rg0gqyGssBVo`l&n^Py*WN{$@tJZ}nV;pVfQ}ejI5+N!KH#E90%9WP$$( zg!9#)BJ1yQUrDqT|())2_?uE>-`V&AZlwE zh+dl+h`(=PAXaT-AQtRmAl}*MKLrP3S9t%uzq=hNA!F)HgQ4$_{vA0%$jM7c5W9lQ zWq&0Ox~_!2>qSOirl@&e@yFZ^LABeJ(81Xe)dQ+s?vfF*SQ%)$X8#R;8&dXJkGkXa zzUw~?hoQg)C>I^yqnP!Sp%VJizb68fZ3hE3SXlHi`;K47I0 zyPB5HKzX1-g2K~xg`BK_WjJJd0Tr+>qWs_oH+@-^6O?HJjvImJ+oFJS96Y@UN0(5# z)nvBo?F6;Q@{x6pk(W1kg+M3|#2aAcj`r zFf3X?Ibp6o=adcSMg|PQ0!8^+!i{l8{m5x@z+5a)99=@`GG}V_B?HQFCIjlqEC$s6 zat2hlN<2`rmRDIr^pb#$hVTfz+4R)`#eA4s@HG}A!Z9I~i8Va>CSV=Xtv;Zl+z`+c zi`(_(RW6|4Y}CPMGkOsgH;yjRjj?c~7ripbh96{*<$T8=3q8UhJM(=&2G+L*UJr2p zz_${A42U-b4~|}8z7_l{7B`@rE@IK5?=~P;uLsD;rksEl(C4>+_lQ0e9}~-0&>OCG ze|UOB^dAA6j0DEyhXIGNxCz8L+~7&T*L*S9Vcm6dEPRx&{i3l6l<&g+@t1&p^Wa>aD(kYRtlqI4(O1Zgai}18uzY*Ek^&sdIQG=D3@axQ>-JWDl!3P@vZJbLKL4=FGz^uiS>h4@=^SnPmqwF*EI?f(sOx}p!<#{ zn1b^Mr80>KYG%Y9GUJ1U`f7Pn5Td@4?4cgKOs48Z3JcVtmf)4XmL9dzw194J;#+SY zS;1IU(0d~(`eI(t*CufU%JCeZqMzy+xO~0SNN*3rL&`BARilEOAY(+(UM#MHoRrKaw5q8fPUOj2y0*FR zONKDmj|+NYZJ1kHP7XR`Iv=2Xgw>6T=?vEnGa0TCWenFFX~c{Rj|HI)TM&f|C6us@(DJKyGUz<-s&~(barm4VhtG>~_(ISYJ`VqR znL)bi3WId%Rp!OHH-o0}zxm-#kRDUV(yUbio1O%@7@0FQc*F1=^)Cuvjy9pRo51CF zL7g!8N))#J9{i&PsorB-pIo*KZj6iSyfF1i={M}IK%jxS0sWNsKjLX8W}ioZrA=_P zk?8!+G58tMl|N+5UlF*`HTWVA{ulLvg(Td(ez1^)eH#P|N%(?y@HQUU=}m%#B;3|F zSV+Q3zhI#!d@Cq89f3JCj|sLnV&B`6gN4jnKRpH5Tg`&ld@64_I#ZT6tNYCPDkkYtl;UyU`!vFQygRA_%PN9lwUBgtiEDk{V<0+dTT zG=QR<&XD&TI+S(?O6H8AJHk&7gEu2%XLo4&H24-DEG_?HV4Zu(z*_o>fz{#-1IzM# z@IEV2de6)Su2_b6({E2R#2meBRDCjGVwN4a+k_m)NJDFij?mja83ponsLPBKrhH~b_hIGfkP|Jc_rz2C6LflAM zZm27CO9;u7AqPyNdxkUw<)`Bp)Txpw&8>i8mT|y#xjk@*-S&n1?ltDZeYEC*2 z@_0BMDc`a8=^N6))=(MIY84${V2Gb28s7qLQ+i~4g$7?+drp+2U>1V?w2{#^;7A zO$n=x#CLC*4d{D@x*O5x=0QxOzYR4}qZ}7Px!6FX;h}p>8$G3EJ?~pO+fUDo@Fq={ zg;qnv=+MzNhMImoF%+|#ONzO?b_8Dhwv*^DLVI|d5HuXYcWJ1%J!!iA)4CCO#@C@y zd<5RR-c&^|4RwaUH<+yBrJ-~?(WX#)(0>~mXT*pv>-{+``@8|ndo+$vN$$C*$n3gG4x$%Fh7XJ=3%WYNXZtu zM`NaKSR?SY4s+nZB9S&>$`4M}>uVFXgnz-oG0YybPW_Qis~dzhgadA2i_HxNTvIQs z#H8>|I0FUBVI@D-yhdSOn5Ak?V)(^B?5@3mi1nkwPzx5k5-3S;Xs-xs6O0W=`Yl!U zh*yD&H*_ox^R+P$?}yG|v(YBQ5r@CJh4tl?*QHk&{VJ4N`;2~JHdfq2<)E<6{KKo^ zVV@)Izd2d5rOJlf?h-KshL?tQXlyWqpe12uoB$+rS=e-(o&+Y4zC3Im(wv%;-RH|( zxR#hVj9VS{XF~%q_Z$klht#x4oGt^CR;R+;pyko95(iGh+kXfXLg?o|hS6R#{Y$fp zVe}XR`e5}_*dc4~;rnasH}K1xxZZb zD~z6NKp(dJ%?S2-9p=gt9Q~g0Qk#W;$N$F3BHY7*3`>aeCNp=2^&o4l!+$2o`(Hw&8-1jqTZszd3}@<@t_u3%|-s(z<@Q55iP{`pY^`1EnvG3yn9h(yflvz8q}d;yp7Yj5(oK1*!`w(| zYWNsZE(;$5vz6f*cZ0FZn}=V=w9P2f=1|r?+^vBD$>&3vIs->y)!Cd-($3IkR5)t$ z5hol+!J3qg4yT37nDAebiv5tx-f`h+^$kX=n;Tw&RUmo1Fx-5SG&VknobK+_l0luFwke#`S7J^eY$R^ zlfvHD!mSLg^59=gmCs+{RmszD{3g5ydia!rCE0VEettROT{wSqi5&9&3IE!3f1x5q?^oZ6g(+r*d;7F#x z=VR~+bk0JHf_@5ep1Gzp64~1yY|n*i{|z z(9FzBX!t)~93Fw)6&VGG z)<#V9Ai7V6OEWS0>-zB3o`_fGM0NfvS5mP*Vmv}(p6UFtGG~}`Afg!tBT6BUM82p! zNl6a#4n=%nDk&dOeiIR82DgtyTyiBhT!z#c`Szb8G!Fd0q3v%Gd(4E#z}pe~+2e~l z5zc~U!2NE-JN8%K`w^b(uepCl1hL04k0M;zwvL1Q2C&GEolU3nhVH;V9nJrKTDWo(k(wRGd$-{`j${Zpy z8X695bx`CVf_};3(8!Vh`_Kr-87Sva%nXVbyZlX=E2%#3!5Y{~dE{wtLrI&fBZs3k zBeHOUB5mY!0ZX`F7Y28nu%C`m%LoKKrY_o%Gk>4v_<_h2O638fn9R zu(xNVFME90H?kXh>^v~C8GAf9G;$<+)QpP!o-y_t6DeBqPh%suvcE1IABjrjRGo=r z)|5zV`0}gBb@dIDxMpN^Bs1ixD&lMPWx4Y)%}(P>x0`8tku6uuy(r}`4E#1DXa-($MeX0W(|aFc<)8zWdwNK@t1R& zBzZuCmyzihcfI+EybWA?&3Vv?oMI_R(mw~mzJDWi7|1x9gwpihwoaaIPR{n7>kgt> zeR-S(F9VtDEuV|fvBZK<7PfH4M?M9Uc||gg@Vt?Hh-nn8n#zyb8v-T^ldnT`TnHx` zP$foM8S3x1B>69xuj44qUeH=4Z)i`-pGMWiJ#70@j=F%C*MrMq zxhv?(j!8D|B&2ER}aQofeE;Ca0IA z7!3I7TKP?+y><~KRqc>BhUuH-bYHju^{w0GsEb^AoTwfG;PoE)H6w&04$6Zut5G6h zJ9vClKFoM6VxC_0tlh7WNSQM=9f$L({X_6bjLc5YOA20_{a@!!FAq4a~F7DcUK zzn#7$Duw;_(sJpy%U4Rj9kg2dZQ$Cdj_kK{*Gs=G*(m)ssz&>gdlOy9kJG|h^<7j*QAe$D>ct4Z_&_SnrY`YC(t5fq(+ zsaN=+4oocfA+8D0w9!KwgJfzIYsv*snO9DhQsxXiM}ZCCbsd>eXusi zu?EW88W@SC+EdJp@n%Vz1Xzix>h&i>kcM|2*0+_NWo z1bfUm7=4_vX#8C?ZAI~>eg3e-c;3-yy1K~!HS?tOTc6X?Z_l2I&bGsuT3ZtRU6n0q z+LKy2*EJRlrSZ?vmpu*Dt$iG=W5&JqS@a@PIXc2`&!bTn=TZFHl9FDwbSJ=fbUCZG z0h^ZMQe*7=iZta` z@MuWPRxEq6rz(bCC&C@yG&L(`q8VHs7c;}#&|h|un1Kk@a79gLpgfK;8=A93GLcTz zk`2k1$Mj=1v~IQZgAr>b8%q5qW;*-9Pa9*zfHi81L_xhx`oZm;F{{~c7w(gO(C0vm z7`vVxj-jg~d=M)5K1K{!{wHI^fOYwl#CXw}7%^bw|0w;|_oDRMi|ax?cBTE1GxbnKxoCGwU9HI|iAEI}?r>(CY)_NNa0B$^#X4kosp#7q>dC zQeMdC|HkN2$$biaNj5b$PAdRgBdD6VRK3Qd@cu#6V<0If_YsEIYK4~R>*D=dh z@ja%^K@GVDDe0)NCrf=5jmUx$$9mxDqKI-d#H*^I;xDF(>ZXc8xZENz1IlawOQTKw z6k%xSc*#4oE)U%vs_?Qgl(~Pjq7+~3aBAU*&kI%9z`8ia4CY?yWW`(N_$|{FUD#ib zWhxG_F;!(N_Oi!bxr&YKF*si#y5d!}g5FEW`|4K(itencd0!+^INw~NP~Ad$tyL>U zIs5I)V#PP603HD9&WZ(f8fHK(ex@nf3V^)cibST4S^X71vLOy0pg3)ctoGzgak)EO zAEx-Kj=+Qp90CVMDNdu^iZ>vRI-%5UAa0zZrBGW0tUlQ=RdEJ-FIJ@0 zU3}n&`R^KqiWTF9n-yY(<+D{GR#^A8Da2OCVo<1<+8^yy5Tx4MlTQ06hTaDi^h>G_ zTh~;cVEFu`Lc!F2@Po!-Gxv#2YOplJ}}l2&X&X)^MI(nlG+D0K=uy8!rQHK=jr`o8*!oy9K*?ko2|RXVV>?<4foJ6BlJ0XROS<=% zBI*9vm$Bnnyl*`%HX6IWMD(+$PTb34A7ci?m%coOnH90-Mx5sNg|RGAL&(zDo9G(j z+%hU<B15N^n4+?VeCuE4b5Lk zZn*um6avY+*d8qPI9tSdS(55j<}xU6?fSSsmrs&rZ%6;Q*83FD@cw7TaX(FnC z4%s)39pFAQDsBQ-QPY~OaYme2BivKPi8aEGtT?eo=$8{G)(Cn{oQT z`84e>zsk*1K=+n$`_Z^^WMFISI2$9{a_<}`hSHYZ;>^&ZR*#Kyg8RMW_8764e}_vJ zqZ*C27`l!~S@aqchl-@UJ}Ct+{`fUg+AVDl9GDPiVMHZ9)8ZzgEmL5@9Xy;rGp>Y{ zJUeDfwljIIWIHY9Nw#A%U$ULMizM6Wv@Gr(77#eMCe8vq3i`4e^!p~x$%uN+ZIvv> zeMj6Ibgn3!SzZs;?u`pH!Xx0gWHCKY;w^?}G4E8|RkR|i&(Lil+(v8RERFN$;*6EX zD=x?FGK~el-P-l4WHA$ON*1HPC0R_PJCenm`(3h_Zy&_{fhm&tFzovx&ag)i3|rnw z0K7Dd#|C*qsW%3>Mf^`_?NAEzI2YG=JF?C?{tKd-<(mKlY~sh$g()9lVd|-ibp&|X z#h4x!QE|}OjUd#nu{Nit8 z(c$!GOZJ_mee~O5@%}~}rDJ@&n2eVtnS>MLb3Qp9b#{rUF`f)P8|EBcTkNQbXXkOo>!m7M&{I4cq1n)Y>hZ}*X zw4VgecLPj>hq7>oR|DfeN7n(oHBmD5Bx7*AJv12--|GK~mXK6=lz$jz6y@dP;^){3 zl~mpo2^sgP5;8Zxl8~vK9$&^Lq4Bfgw_& z56@@h%6QaaWOc;#f_H1;soxuj`&CUm>b(5A)Cr|-12?wB_YfO0J0(2)cT0FY+auwz zdY=@{zWgq}81)GbH#_9*ui3SD7braw?_q#P5Zt>QAImzykylN_11O&hreqyka&Be0 z8yV-E>;uR}ESlL2$+`K?KU(GXY&5a4aFU zegdv_$(awT;XVHLSrL7lAI^0ew+radY;4Df`oHe``uocP-w&@R<=$+ zt)z1nNM(`cMo3NJo!Q#%6%6oT}RG!pbQu&`fB$c1;n=lp|oG5cUGVrSeThec8 zf-T%1o?tkW4T66rNy=A!X^Qd%UO;(0#v;H=9DRXaRQ7&)!et|t5=jy;*Xi=@8HqTd z#D!x)$>D_wZ0V$UVS>1Ha(k(SPt7t3p9w1@d}3Eg_|*F*L2Qdm-&{9Xfwn3q}{YTwuwXRDt|IF`w#aYvMkAL035SR z#HLL~by!>zZ(;lALx;pg1`YNgxb7*9#?L$P0kUb*16DRk{OB7`+P@D1&(K6MAGeK2 zMCRijFex$-GhGI%-jzm@!ILIh_#qGptWf6hlrzR-%}N&2tjP zEc`=mqL_uh$WMI5W_Gi5iH?}vvqNO`A3N62WMNI&NMs1^@`z>bMOAjc*UCX}!( ztmvG033Im#Z_rQ56Rp6hH1VS^OnHkKIZd*NJu|Tu(UEX02xVal4`w9}M>={(pkz8? zU*=?}$DfiT^x#&{Ni=LD1i|oyiL2PuKVrFLAg@+P26AkbWFTYKB#Nt?_TMCSK~69` z64k~;JFxsV(Z@)PAG%utV8=c@06dFZ`x7Uj)ki7Vk|*CKx(F-GDTfl9nnVjIEu|4} zpL{AYlFjfBU625nbx8uC!(|Bow=0PjY=$3rHL)cY0I6Yp70-g}W~kQ%ocC(ASNf?Q-o^;%+0h_Q)b>fCag6G2D&( zxi{1fN^O!(S$uFt&h_&t#jx5T=~K4t&&4T8jG(_bCy5dC8`mT;f_8LI5<4*O>LqQ! z;PY*M`ln=5RFW;(7)k#}*(#SUD?+2BWFwg6g(it9Y+6JTCWT2HfpQ#)Q8`BesLZ3W zFLMK?UzE}FCWRHIDn*jv3R4g~PfN1m=Qr+PpOdtUp>i=-f?{R91jVNs35r+RBpLIX zu)?HF3@S8lv>^w&Cb^MbUd&AbWNFfdJgTJ5Dxa5RPu{IaVo|5l{3K)Tud~%jm8SCn%BMf; zuZ;a#f`wt|(flS&P902yta{Fn?pMR#bAwn=UyggWw@ zT{7nD4v86Yb4V_>VIO2bZ-?X&7^AHvx3p0*+by~HZPIc`c1gZtB!mw2PM&WPAE11e zvu_zb@l7sg6Po7%$ztl>ACxSn?pYzpV(QKcOP|sb^vYU&c z-CW5_E@XZBWNZi=pO`Ykh|zpAT{4uF!nYT7YY$YVDOR2!5KputaO)2)!c5{lek?6R0 zj|70(0W<)FXAyKTWdvG%l!6_|ze{Ot5(PpjxO~v@{P~Dc6uv&4a+jg7{DOqSXO|=t z(l1LWJpEZhq2g-FHcS-dzsh)jBc(pvxS8@VW`Gg}LMd3m*xM=ezAuB$`h!O);=+&o zS;}*a_w$UdzesU|?SG}bLW{~%$bOYl&xn*8%u_`vpID`qnGxS6mM%bSQc<_Q^8#76| zK(c*As+dfxqf#-+w3fxe=+rZ4Q=mdN6n2U5`@a8;OEuP&Yn_q04a)*33k`F|d+Jm% zdu}U86|?7LU8lGIoufLQmJ z04W%V2ZUn={RgF428=88{(6hFe;!)t~5=xhSzEM0WmELK}f4(v2D+!cN z(ril^F#WPKeXj8n?@Xqt(7ImHm2Nh#rfL~gS5$Aa+PZP6C ziXsi2T{u2a9GixB9!jAedGe!zInV6GG-KK2L1r4>c|;cMg653eG%>D?)TW8aCPyzp z<546*bF7&J&DvHHG);@s@X6-MkTiGV*d>Q8=s9*xGnQ;B2T1t*JQ$4+P-d6WL5IF< z53NU}8ObwH_Bq~#2uGMu!Yt9;`$7W5Z-xZOqnQ#Qd&?w1231Iad@@f05+7L!=piqp!>P> zK_;;P%Hl3NM!nZf35vK|>EbzW=6BM?!`t zf0=HHi8tKT3eLVuze7(H{kmx`nA<9cS(;b=hfH*x9Y)H{=s6C%9hLM1Mgz5kIV(jJ zGu)II6nWkm?#c-mr{L#=RB#8<>@NL|vynPo0n_R!6aF7)?L89cP3Ud}N0?Aw`ND_+ zfA6nUussQmkxDT=T$U@v^spvcDW->Z3Z>{;_v4h0F|I|2`U$j8Q!cO~*?&z@6W=RY zZgfRiX-C>*Dc2)HCVxRg#t@|yiE5>^hEKAUhcRla=&dXyXYbNg%*DCN^CnRs$v1qx z$-o`vt|WRTmFrw@Dp#0VdBKt_?W2}13!)qwgI2G6U~c~20+O03zr}QkDV0_*pp`Pk z+K~9mcFK1gaq_aG5_5<;N1IUEw%}T#M19&qDf9+wl5H!wThjOx7{N5e}?Y#=9br`iR!7ZAxe2^0vgDKbe}tTb~}~yvL0Ul>b*+Dm72sD{|R?uoS@}Cr3w>CYY8?!M1^m7MA_E;V=wdM zg+KI@GK>lT&lM%6)~?HoymE+g0>7(D)Ya%8(7K_N3A>3jzbZ?RF_#&2;~UCluEvM& z_*8kthQ|(GzEZw26CU5aQ91}71>XNEz1d^dd*x&Hm}#Cdj@}mhHrt*2Y?E=^RFiWg zOPgfaK!{yNKMPXdzH=i|l3`{~nz?3pktdEB4d8}jMyMmXaiWD0_y5#8;~(b!-5O&2ws4E2PF8$-B8p>cRZK@J2Lnl*-meJ5( zMf*p*4ZIDOesC;Q<>Dy(_4jyHDf_|j6zR3xG*wIX*RNG7Pxg2wNA-r;z-6`SC42l; zr?ND~&xL`FZ?1CwAZGpALS-ao@g|bnN_B~atnjufQ$ki<&Q1_ltWu*#GVrh}mXwcH zIc)E&a`ZHA1I5EtO_}IljZ)3RW-yKwP*$kB8hJ0|gODPw164I;NtxAAVdC@b0C$rrK-@TuCtS57p8Cg4E>us?(+* z6$dAus=SR$P82qo)#M*trXE6UGwH5#F6xm!_L-*mSsbAZ9blY8rp8QDX(nzK&Z9R$ z&X^T7wEsZvzX=0+52hR4yGHd;bdFAp?;IVMnB2KXQe1rZn53BQofCV+Cd4IlQFQAb z-K|GrOl*9#F!!Kv#6gi$=3cBd5RL+&6x@Zqa@B`3onV(sX2gH-#5n)VyO=hf=!tP; zMp&i~)I?bv836+OiOr`kXhe2$k1MwDTdJLMJ7SZc+G2;iJ$3E0C+N1 zWKZ)_YP^v3Qs5j}EXf2I{2K9os6>ouA*f-g%Dw*JL52nAkU zu4bb4k&2-zmel-9Mb7v&bEjzz$&n$HjI)q91&3UJ^S?Tz?~6L*lfyevRX@Aff!5$_y&Ju%gjc=AI`8Ado3--veMwy0Fd0>_=xiKU#4$K3xP}~0{ z(*a70Ltu%j&d7oGeO*kM_sU6W?<^;Xj?MalM)QxTb6sTzu*#DZ8>hi5mTzHm%m`&> z3)+G#e2U{~4SZhJKv)Iqt;_0#MoOXu9SXB{y8ag>^yrke8tp4WC)vw~taRi4uN|qGIL(Q4`!Z`dVlK%ql{A@}g;^?r&NH&wxz%aS)4wzV+a*~K z%t=BsDxc-DEX;MVluQrdI`an0v;M`*btr|7Wa$pNjLBc=a$r{0C0MdLE6CYE+%>M- zvM`Myjss8*OD*`JLeZWqx=zcD8XE4)qU*H$rF!KGQvr@Dmw!PUdd{1SEt2Jf7A$^ZfCt?7&Q7L3v)N8$P2>mX5B_YzzJ&u zOCDrhvoRF$*z+vZdErbj8$#)_orfWRXH_#8etsjtu<9QPhN17WN|^5Nm}jS1k;iK) zNFp<5M!d|cJqckRduwcTE|Eynj zK0_!tDEkJ+o;V&bJ~Z13`!b;~I}`gZIo+XuM0O`5QZ`7Gq#T%%eILoFE%7Rgm4mx7 z`wT*tK*t&EV5q^#T1mF6h1saX{CSj0n`hfV!Y3x+%v0FdGW&=T4eswGN$J%!`z2C? zd1U;Sih3}=N4AY=6vBFEUpFFUtD%yV8%Ch5F`q2`oBQTuO!iv@&V-`DC`=odecXtY zOQuRvzMPJhGLKyUn|^21rVK5mK!I3y$>|MgvyD2=AB!YWGpbE6PTyB_uTRyA?AJ(z z<`Iqp@i|DpL!g_On!%XW+3k#|*6&+M-qBmLQR$6$Cd$p4wBJQ*GT!Aqc4VJ2MRIGP zv@RKucl;4a-b=@`F?SQd&6C-=7-ypIHHWolviBJgYxB>NSoYVlf5njJ)p+9-^`l-l zOo&Mw1u`t%iNUVDmEFOJye}SRtA#8?^iQ*^5LvfY+@8;}wU{09g5A8PR%#QNuOLrc z^DUw0o9yrKcEi#7raF}k-Thx<7EgBCZ|wYNI5!3 zlJb0h4n7DfzprqBByG++vnF~>wu?qxz>c7(#=My;{^L`lG{lXLKu$E;1G@sq#nyLHWSpJmqcB45vNdE zlH`+L-&Wad{~4!GiNL&{b1Y%(FF6N{806I7B|&f8%lQrEnvZi@kt;89FLGmvZ(@!We67qy z2Y15Jf(NSHV@BkCr&N9ff@(}ICQk|uPbnD7;fJS60ydgqf<->4 zpe{4MEcYeGW%!bpQlKU8hYOc{8`64lE}H;Cr)selC@pR_@v*22 zk4U2absR4$6r9S%&mZZ_Z2p*VHkX?}ek|qnpCu`iujQiWkMnNjI`AzYQgSNW5{})- zJ%lyY?YDBjHzKI#BT3K!Pjk_eGdS@g*A7#<@Lp8#cP_nC$v}ypndgaCdE6>*syW#d zlHG*Vyr6rdOKtOFkevg8fO}bNEK!Z2O6_HrcLb|co)&Cy$n!EME6iNRK!S6g%GO{c zq_jnzB^<4vm&=^2kxw2fkMfEB&!%~fFurjfDr)hGo>DktsBb|^`*2Ch5_ujrIpvY? zI4b4-m^^&&rxdv0|B-76Qs!q!QZCNIO9@YM^USbjOX$mvyBD*^zcgX8)C?zRhNsaSaPf4NbzIo_?MO+5u zeHgJWeU^ugSU_nR30Z=?A!8+Z$4|h?JLoa3dCz^Ghw3MBFBAH*Jv93wkLy`~guNhT z$8t%^t#fcv@-vX}=CiHAf#l(5^&AD_zn~#Kk(XPqc(5R^t)b9BO+hr+`)lxSMP_}I zX9GFw^6-niJcT_Q^0>vnk5mh%cSuqO@5w{uEDE0nzSy5A=eK!wZMA4U>p!$9u*V+CU;*Ebv z0@}XL!%p4v$&Gh;&M@$wJZ%3xA1H;f^hnS7HW`%*^8LuTuIW8Ugk64xq0Dyn`OJAp zSEu|b4(vm%|NN)VCX(Tt?*mrO`6(EC;|)UYkKe8hX0_&ivJg38Pt>#uIFI<@dwvcQZ>-=aY^n>6KWU&J=i%P2PHU@+3r)1kLv4 zw=*XP-bF~8zUfcB;l+XcGz$_vg^HVbIDaxmT*lFv{Chm#aZcDNdPm)%{77=+n3)x+ z`J_`cIdLTaN1g?2Jeq&ROn97pJiiOZr?~+F9iS5VvYJHS%%>kZ`xOm?IcM_ey|dil zVePs6qey+L$)0W+Xa1WS;(sy!K2C=`6@Q|7ZQC5)T*~)0n=|l1U8ve$&VPnE^@VDT zA9Q^(;hIhk4!`EF$LbEK?)qVN_lh#m&f>0S)@0NBwk=@fpZVdKT_z$eYF(BE*5q-= zB2O|!}*-Oi7OQdQK)pqKc z79XpI40lq`|KK{w&dwSwsjjcKhpx_Q)a4(PtB&|yXy!!D2Da=5?dqwG81!CGbx$N9 zJaG>a-%#yFHk7Mf;d)rhmu7I%M@_f>@F>h`tQJE}x2Ec*n8?lzVtb&v%Fq>W1*xC2 zsQE{jdJxXzb@Kw%jo@jxx)D;i9%Mm@BfU9yb3-fG8>8-HfGZ4)SKncB_DIH<4^SQS zM2e>-&C=EMfSE=Gg^;RJ`x}b4CR=@kh{cB$17=r~zoyU>C7 z9?NOVTmB_Dnfy9^P=bj~aEL)S&U|LZW%D?f{m9)l;ku3I8}! zO;1VWi<7%!)R^LgvSrN=)u_v(Ybl&rp?) zha1($nS~#%QRiCv+c>1-v$qWL%Y@1=EQZQ&K<7oRS&>?2}f-@ zov03}J;;-m8k>*nX!#L!UnArD?UUExe!}g)HFsk-C$CQS=D8b1hr-2ajuNu@n!vu6~HIVsW_c zBs#5aFZlPidNszNYRS|zrMaNIRqHNL{y-gv9%=b)jVryjJHH#Oey;9r#CBS~lx(N+ zHQsi3K6}ooonZAF$#z`-QBOmIE>R?2|I)}){e`+U%y_RJk0$8bX0~hPK&lRY0`S0G z^OY4**{0f)g|l1xk!UZCjQl#gHT`<{y}AkA8K!Gk*+7#I?d>$?i1*!cnnq}wqbxk(oV(^V+T1uHiL&i%J80&ualu*|oc7fO8OhIS zftr!%!EI1z>XVWM{X9V*rs-&57};M$YId;5w>L)fIj)FH2g>JXr2f+2d6MR=nK?bY z>**jR{Z8gemJR89T;oX|wEe=7bg~uxZ#|+<)gbo%18vBJVf1&fq9B*lq-&Z;iKIJ( zXKH?RuJgg@MBjp@@M$wmcMCGV%|usnx`n0;p+t!p(5zKq#?yj|)|wp5RJ61Cr^QfG ztf^;4ijL$;ZHQ(2+W1)~CnQGdlF7uYih6LPorVZv!u2y_jTL4fqE>k7tag$O*Q{nj|1?T7-bzqa_X(Pl*21G|ie@@{{AGsbwWaXa z+ZCE|m~x_4geOZh?xc8En|9E7fo6|I-BGG^GWcwdqBhq~k0KPOsA3 z!NinWvV20_uu*f*H0f#+>bz~5MM#nKP_tK4ZC7XGFmEGEk7)v#4_!Ec^&xsBM@VBn`;1W>D~CIC7JQI$c{X;Ea3mN%>%9wHg+p74niXt- z`XvQ4RvH+-yx=#a<8>er zFEl+Nt(4M5SZL<1f*$1Dwft20{)>Wbm{7%2c+#?{1cps5=zuhvUeLF^AP~VGs4qCw z2{eSy=M5_hE+A{f4rKo-+QOq@tgjKmn(6`-3u6mb7R*PeoJ!mQD2t&OyttRi%sI2| z$UsYdKS)?-B#<|SCF=`bv&glk1{=8qK2Y;*K`}E^pDj}8dbG8`4^e^wwU+Cw7>?ds za29DU9bo2>f-LKo8EnYJ&~J6qu2_+!U!3RC_p2x9u%^B5ba7@xi8)Q)ib zNx>(`S(BcW6ltBwuWnja!7e#hkYompUl#PG?U|t#5wO=*yU|Lz`Av2|wL6?~*6uXO zXiedgt9Bw{X`LaXo^}Kaa!0+iVwro;Tl>ORh-^pvwDfK#Ve%8KrH6&{ zkBdUJ>)2o0$hEX-&i{3yLL15+cO__9u>k(5T4(mx%na>2#;qt@`w(G&gioEkLic+u zWaV*Gfp!bh7xh4Cp}zPQ1qmR{0t;I}@h93bNM~TkOeoR%5N8{;0yfa~YD6ggKsP+C zvG;Xl;Mze;k81rWGd6`0owNf?6SvSo?<$mF-}lgZz?+_0!xF416!q4kTF0Vxor!Ag zY_{_G%K&ZNl2phP`XSml!M;ev2<<#vKxY_;%-H(psgc^jSi|DH-b>gVqaLpn>$~=) z+JmO)U4KbO;|SME_xwuR9YZVToVG0)ON#i7P2FKog;rr{Xd%xkwPFYjS)j#~dLkcZ zD5}y9!GtYJp_rUos%3t@b+L961`eLgjomco@`aLOg?2N>y=uwu)zalv+R>N{#*;a- zMeD|I=pgYMwH{>G9-1NAD|9`{l}*};x?reuzOcJSI~A)ypuBFd0K9L9_9zSCb9ZT9 zqLo<=bd|7~TMKJG0>HEb+K;EBoYc<`Y9F&K{OpJpGymdsB{Fj&8&7EKlfs=^H;6o@ zrMr3ftkdPVR-BI|oY0;?Bo&}+e)_0X6wDbDUScisg7^8;=FLqJ5;cs zga-?~!jtc{sBf)e8tM9y(jgjFWev5^`O-U}CfT^c23uXfkBTWy=-&1^drVDN%ZRU| z0-bf;E4Ns?kq5^tykVWQj^0AW8|F7|I)CPO*F1Iph}jHKR!0y9O?VMqi*zjFUGmeR zzB#BR!$-U&fx5+*T^u|ar)6{@Bqmz-aSG?U^{ZlavzepiC+SvW9E}5?vY-dDa~qeI zC+ogIc^gOOdJ}QulD$&r0on{*-O2{2$!9Tff6URL;@XFNtO(t-WCO2qb@Z}l-f~*z z>%@>2qS5KF768-&K4-?bytyt0;qc6o2>slQuQ`4x*7;+|R9x2;3!SBxU3K;9*Nq_D zvR&KJIhpR8$1iXvjpRH2^hyVyQ^zYuDfaJ2SeOSLuq$iBQw}BN%xtDp}fP0 z4lo(HmIoI+;7pb73pOL_x!NT>r zVa#59H|mD5NV96QPMm}Nx?LyE!SZ+OqSz0n?AM_tUR1s9;QbMu77@n?eYu-Z3%5M2 z6KmmKXLYDrn3IHLToKD)*=5}xjIUENgMjYizKN&>fxeu9@B^UmUqtXD^u19~dSAD~ z$XsslLtQ#T77mnl^d3!}6B&4{g&rzj8pLMKF>T)H#Oamxoend-s^xQFq}CCpyw|lt z;?<5wvrf2bssFg<ro^^v5LV}}N$)L(B+CI#v5^Ne78u>JvZFh!(#i~hq;C3F$`W*CezOZ3f1 zMxvfBig10~ia5^t47BqiUjHl8&aGrUW;c5+AKJHdh6gEnS`={V26dXAZfE8n8!7de z9iCv8qd)c0PG$~MFSVX-_~9}2(_t~~EL2{ZdVMj*yQyeJ^g(oW z9x4XuQQyN4`T?F%s}CbxTFpG9f)E68*@qDn7MnWpHZOK;lq%h za7B;mtctW63nAdfHT^~m@*)}9=-xs3w z2Z*#Qq^p0WGQG54ln#hqZ0bzyR)-1voo`^<=HT{7mKWJ1oJ$^;KL5|Hmubkt2DKF*49Vre{v0)Hkv~Bj55GF zr9~d0a$otun}+v9m(AjkT}?hP-EdSxUuCF#!vnZ-a}0lI0Eg`B%LXnqRFL!DGr)a` z>aF{Pr+I@bMS%e(zAvEW|DoYiEvAs57cDa= z)4q*`r~ymbPpByWy3(NOjs}8wsO{nkd@JPY&kdusAhx2&V1u~4Aya;~(J)%~Vvpr* z2Jq)-z+c;;Wx&hO#C0tkfqDbwNNH*~AKq4Ha0%=JaZ8+Si69@|Ir>X4kL7 zadA6r_`PgR6n&f+ApdmK(6t;9N)A71m=0@lpd{rr=M4Tza@S=8uGC@fgFg&=1fD!} z)6i4Hlz>qO6F*59_U+$>Pc+#+q)<-G5;$Xf*z~r%?ujAO^?(Tx$M(!HMl*5j&|%AJ zxl~_yppbkAK0=NJ=wB|mNFhK|pX854_Wpn7`tsxQ$&bC+EWZ);S>g0@I=M<Ug*DCBrlS~yCj3t{ep&`^lI|9GPNT^JJYmyxlT-Jr*m{t@+K{8 zwu6aeF}a2~en4b&|Ku0WvGg)0YjQ7~@bgwDSY=~cvbii`6pDB1bYy^`mLn{7WC)6n z3^((@%FhctJ(rohsVp3+EJqG^48OG_lB;Ramv&SGWkYUqwiayw5G-<+$;qEqezA+q z7CVO8YXw?|nuP&$Ws>_2OODmzL;;dk)_<3wJQ+@T=#u0O;V+__`L*Uzra&i~xot}_ zEDMuGNclebmSPc-en^JM66IQUCBtb-N@ng!hVRHyGG<>gY|EwOpNEoRTP`Il9ZPPY zB#kGNVM&;Bx1NRVAsVJBNC$cT_2fQU1TXi$W&O$>CGX`tH%>`B!)@Pn^q1<|@alYH~Et0b03gcES zT&5=GPhafK;GUB~@|Mqxv$YI<0Fy2keP!&Zv74}9YQOSPUcTN~$L)eG>|x+HMlJiZ zWI*kimSGR|`m&sq{s7!e>LvZVw>atFxuFLMyVC}J&WHRGD4h7wR9m1 z#m0{`O`sIOf$W>#LEaBFN;S*um~n`rFZHL4uqB_A(B;#{)>=dgP|sya<5EKTou`qP z+)!u5chhRf|GRATM3(Kxy!?x%{+jNqptd$xp|G+neom=^h&_zqfDSl-lWv2j_H zT)u*-rjPi64@>lI)llvoXwo!mB?DA4*AyV13o`k@)+yDZA(0@qp{cT>@@>&3t=Fau!c1=6>1q+c36QdsJ*d*yr8+MW4KHIVZ=trRePJpmmNB| zSc(HwJJEDZ8M?kE6C8-7q5FG^={F^JoyC#+rp*NV+NnT|0j4*U3Gv>CAsl+(>F?T{2Qh%O4+tk9j%q0Zpu<}-<;*hO?b=n zx0XR`r*0^>Q+4N=N;HGX=(wbzynd1COSi>fv@)wdFv0Oq>@55FBhv&84gg_FO%#7@ zf~}fFxNb{Lr?oio_HG9<@DBO$3AXK^2`=Bj$1YVBD)wk&c0V*u^@%YQ#P3XQbzrx%_c3k9Xnf?^o=QAixRa%2$4H}Z~D*! z>!Y@r4sj$4icI6QavrDx0f zOHDtxF54q@_`7b;O{L{M*JDe{rx;njm{OS)-PTuP<*TKvk@r+cnc?lcEokwjnNjkH zz?5b$Y5UuXDYah&F9TYS6y5)NWXes2m}6?Cz}M(Vg%#9Exv%7YR4?U$l3dmxCC8T+ zs1cJgSW);3Tcp&ez;kzWOzBvuOzgOrlA;{BKAx5W=e67^DtEJ`lv8xJwSP)ke2PG3 zZ%jFI{pNs_cAAw9jl7J^6!qEEwS!YU4Zpx4DQ6S~`D9p%25*>xNaz*?GJA{uZ0)F& zaJKZ6F<5SxodO3`iH`$Dq`;{GN;V&rvQM*$id?_AD!aXVLY%xcH^ocyP$4jT$Bp%4 zk#&0ov5X-VvgLi_Qu>v9k#_a6vdsEr)^I8pN7ze zitf%ZNy!f>Q#Hei+zB(MyrU_;Y+79P9i|$d_aVv#=RDrKhOxKAD=DU zVrEaX1-8UITm$uFz|Y97qr7m1**-HEw95RimYD%(ch4mi<&w?j3mU}`1O^~5+Mxa2 zw`Qw`ps*aj!+g#q3e4wj**ndXG?G7=UFeXiX#VZLnLT;e(fiB?wYb1`swo$=KR)cx zUizcv_cf}WRKBU|?K9@NS|E_YyLjpCaJ;r3zFv#k>**D<;JTrb9EDzY&D9hKYur6e z+RND(-QBz*aXaQEF%AvM;=en&qO0#YMc;rzM5^7_Ek&ow(T z)HxbtaPTLNt$zw`1s`*cONF;rP1PROcEX22Y?Xhmo;pFpAa?LGT>i0c>iZss^N00Q z=a!B9063Uk*qq=a|JW#XkD~TjvsC-a&ZyYbon@0Dr`8B)lL}hn;$E{o;3sFcPra{2 zVK^mp!4C5TIXONRJUA6#27qhI@~f%0%LW}}LeWWUdZpSus;zxeztgNyNHR)#;hHbr zgqCGa)f7tujoF25{4N#t-S$oWUgzHT8gkaqRJ%v@es-!xkBT?Jpb2I1WbKI51dT?` z9Ts~w0wj;t(1YegmY460N-Zr5=!)#nXh4(phQm$k{w%G3>IZVY+|+2-YvMsNYRH9? zQ)g)zH+Hfsjqx3CQ&acZ$IZ-C`1S_HOAfr9I$B94yqjuwqN=`^3fG-bf#nPBxu1<* zoT_Ej*?~+!iG5Ap`f=(qEfQ}B6~ZF>ED7d&thX;u-B=ceD6q(jv8_y&7Mv7qPr)V~$WoA7n2mO#9t1qLmI$?2O@W3+_1>|koK1^I@itf!p% zSi|fTp~x_*SGXuMdB)b%x64F5miKtE;<;V@*-ZyCfL>Eh|1I?=&4QEjba8dnd^+fW z2W?zKo_H|zwB{y&C?rpyhw!7VDaRbz__g0tS8374#4*4;gf%?}TPH{xKR%!OrWRN` zqtcSu(h;D3C=S>6k5u?Zmf9SFn^;3`f8U{!hdk7zlI`sT$kQLCHr6sYoe3t=$>Lprjg9llzeHD_aV=akMb zZM8C2EAme}FH}%I-2~B@%=JQL`P;y>ZpspbU&XZkil&_yo(4xDNa=2`ns!u!s+9qc zBrRSL;eR+KO}WkPX#F%z$5xzRXz6uCqqJl#)QsLTb^tv>9+RAQNHcU`hjJxl$FwxNPiL~E zeV}pV8(EWcsfs&ybYR*@Envu>H6||!khc#_yYa$!ijeP(O|wriBVJF_;?6mmV9VrZ@c@g>otUP$b6pmd1Nd`I@VzDI5%b@W=Fi^$Bptr+kh~;RK0GO{eOcNJ zli|ZMJ2VVpKAQp@g5*Op(+bN1AyEEnZdyrMdJ)I~LO8!X=GS>?QCfzxoeP1i*%BZz zU4>RukmfqY!r>Sp$9$ajm6ieHY+~9x}NOiN(p(h|;e~ zny$qmegT*$emP3_U1?sL@=I1v2C2R3G`q-n1gG7aZ_E52oq4ZDr+;rfG4& z?I=6j@|SBJOY5%13ny4PDNCC08BD8_X9qcu$0t#7`Az%ytaHtM ze8LXbnsUL7G)+gwoy40O1B+rbKIi=9Ha=x&qJak6?w~^*Wkcyh$EXZ{oOY%xW2)Mg zH`Ci_nbO4fPdBN?i}UGo4-7@nVi`- zUCUm586ar7;RfoN*@bTTer&sbTpaU#EnQ2DzzL;OfnkLFcxbw-hb)7*Yl;>C;1tyo z&!=P4-8=~ZTvHBzJzZ0vfS@<~5pHYXPQ(;9v>A=k)>G5_Y7x~HtJ9O@pxNoLjYBQ| z9>`I z@4maz;Y$cK`TuZtx_w<+-k+}N_&Je&Zz+m1ixK1K-tO()X56{qOeGg>9iz^EO% zc=*=Y^sluL8r*|UvhHg7Kjnl#7By1p$r5j-@7EBRq${ijcGk(mZ>6`^;F-zAchW1D z6I!#}FrmKBsLXNWhm4i0+)Mw`iv`_^4ra$6q>t8s7C;>?pL>`-Ps_vuDkrer|D;!v z|9zVNiyLxVN-b*@+`cMj(TJM@ex0|a*o%E*ZB&I7RrHRgKFAWtBD1EzomKEC!{bmdp$*YHfYZC#q}qwCW1A$h89r^pEcm)-+kEfww5qdA8toN@7?v~BGML?%Y8fO9r`*LEvm1*;lzJ0+J$&qEXfM3ws5b=b z4Pj3Y*hUGV3uQ!6PBM)lu(btanT}N*M*YlN=ac;x!H_E!}n0IK(kDzGWFL zlxL-HTjB`Aa(j5s!j-HkjYZ5tEbCy_1bif#lpL{56*@X=wpD5-IBP{#VQjp*Z5 zjIED`uaq8jwBAuTq-y`1y?wt$mbM{#_jtdO-4m{5O%V9)tSk4h;4pJlfSJ3u#9JBbbf0kJ43E3=isimnnVlUe?J0T>bt)sgNGwSSR3-4M6hu858 zwRE(>7(NBxttb!eyosrmJjIH;TbhZ>_b}n2c__Q{iKWm^vt!FF*}?}-N(l?u`sJ4D z+6eU;D_LgoVM7ZoBf}SZKynq3sCnX8@teIg_QXwl*^1*yJzf}mzHzPL){qu4Y*TRU z5OFt&^A_K8No8 zZPP4tcPHfYBS~W9J|?7EMuk83fO*Y*Z09d2)mhGfUfE)+ecYxrhu6QT?)B?*qBSxhA2j3Cto?wbd z_r#5Kx4*S)wTtnevSpJPvY(4_wf$U-;TgpkCV;WOSVG!uXf}RS4*qX7X872VW7`gH z_FD7InAR;bV_LLsoB3Ls7A=Rwwuv2*+4{A(RxMf$YMwPDChN7lKCRjU$6B+@ay3K5(fdi-#lZb6 z9y#QaX3FI#>ab4f6;bi5wwrRWtP79!qnv*#XYM zQP+A_6=M!?Lwpg@Q}b^-fR3{?U_p;kW82NF1IE!w@a1(*l8nh>V{!2T z&bQT0v@k0=tq!|5>y2PxGcQZ*D{PwNU>_7h_Pwkfa-jwua16+H;!%ZlQ&0A)EFM!> zHyg23vo7-h*PfZ4(cjs?kQ{y$-_h8+hACpkHO>r&4`uq@veB+R^FDf~97{Z5$rqjx zZGrIE`;cxJy1B4alz7Fd=HvN zwYcqq#S)@F=*E#p3P&D!Mh5L!*mA5y94W*Uaiow5mn<<3hJZ5kV~q})tFoNWEp=GN zEsH<9d&$zz&ZH&rI61g%883c+kj#&`1$uhYqS-wI)yZ%07WW_IDrz_Uf{GGPALIrU zo)?xRbrNqKWW^;(QR1IKQZJb4-ryv~`JedkAlvy}LJLq@&#qfqi%^B6ehYTfZFKzx zc;m!jBd{MQ4nW(wsKCR;&_jyWiZfIZ!w#X=3a#i)=dS@9^c%kR44P&Sbr0F;Tn|%3 z=X!@+txnBbmQ{A5Zj1#ZNWMzRKv_dv+%z^hLNMSXpMnYPS@1(kh?sPU6R*`Fhsy9{`n#4!;xvVLcdGTS zC{8Ehg;Y#J#MOGE4O?*6k_B;5J2ax#dCypY^97UE+oI1L$Jv-O)p=w7RhY>pa*R$ofBo@Wf?a2&dAjLOAaL zij>^5R1I;%yrW^vXcjx9cU_kA$db-3J_h}jb|j&vSaOKX=x+#Pb01qQV$fl(yYz>- z?y7N^>n?cC%t;Jme|-N4!mjdzT)yCmpmvvd0<}IcdvzWm!`-3T9LP#yd zLEUwKfQ1U&-!pPF@f(Kk$WRW)6e;lG#iYOm@L;m6!x)4w+OWt6FlA2ES%*1j2$2kZ zfdn@tXS|zViDf)VDX-ciUE0ZKiZ~NGjA4#m4!(b5NMXyq6!$##FPK#W$ea z5cU$sA7Kj)X>-)DR{$`8-K%aL89pA7a2wWdLyyqkWk74x(fL4o50Qad-mP22z!GTW zJ1xS*g-7_P2E<4@#vGwhEnH>B`c~NU1`Sro=NfwJ5k8~?BCTl^-^TXU@{r4d8(6c# zb3NllB;1ehh=d0)MI=1nLc&{7t|Xi;URMZrxom{Xt7DxUe%S+Ve=9WehE)ZmnRwJQ z&3sz7f&f@+7JMWiRD7-w4Ui(Dol_I7t=QlwC)C>dK&Zd5Q8l41a6(=1j0~y1c1P`m zYL6)*RQsbYs_*TFoKj_xrVTBvLF`c@>t8||D{Texx^a9tvuHY6CJ`l|m6}*Dvw~P_ z3t9skc9iS3tfS;G6&NRbvr(O_Glki_S>vLP-N3(~rNc!$>#!KuRm?lem*ol->^`j| zVIDas3M}$wgzr_Awg4l+qY-}Nd68dL=qf^?XXhO=m4WPk*C=Q@M6k)jf5@GOd zje7`Mw`Qe{LPEq#M`;KNCf*_i^%KBdf{BfN7y(hj1V5JB-5SNNx3s2)493>gQel9; zVjQMqh*uDMtCe+x5W;5k2A*t4gs&?_v<7Nb!;CnV_mfzSk1(q@#BkBFtZUlST%*!P|X3j02bE7TAiKiVBO7LjaLL|_%SX>Lyox#(py9t z61Exe4%eU;D_OAM3R$$gyMnTC9U5{-AQV7cincmye0z)w5v=k8$q6oG*{e8YC``$rEFta)Pg zaqb_z2EX7R34_?B{?>4&Th}X?ov96B3;nuYjm4QtscF2FIEb*L$dC#u@nz+4&X?uT zA$Q|=DbrfVI}WBV&Dka23L)asqxCrQsYJ#HV>r;XOm;x7s(+L^4GA!ekdniDZl z88`u37wo;Fp?1PS{gV#rpLC^uEwl9}JN1Qk*-o1j!}_IKy9Gx_y3Q2GvCLD`W{RZ> zZ~jqu1JB4C!yRnERXpcyE~8&{;G_I-b|Kw5NC;r20rug3hxgI{cj6rEB|&t9+|gxG zR%;e)dw_Za#K_tJCduQCksPytNFM;N=H03eGd;ZOTnYYB5GAGH8v(~!19dDP!(6IO62 zpD0i^IH6z`?%UYz0022E02=4<0(21xazttIsXi>QTI&grnq4%(A^ zhn(Q@9dyE@eAo7A4(rkO`MLiIF5q_*0l(o8@V^FGyNIn$psJY};{UswY~NC3``bo_jR*`UTLN_rnK_?D8$?aYO+;fn`Xf@r;6t$h-x|b zjz&Q)rif~}E>wfKa~zLb^qU3|gXt5kX-LG_KdmM z=RE6cEGG-@biw2P;wK7aKT;_Br9xSF#sIVkzfQ_}KqdP_g|ai8l+B%O4CNi!c&C?- zxJRKZg{Ai@l>HEUrKapGPT5&6_7h@xF$+vbAPJ#exZEqa|I;bULE134QTwxpa2Gp*5r7ZVtGZnROV#6t(fQ(XFP za~iqC%r<2$sms^g<4$o2oHz@-pcbdN1d6BJ=mfSFCGd{tW+;~54eJn{x?_sy)cus* z!`nIAY7jO$;^RWIs- z#CNUl3+s4cnhJh#in|@FPw|Dv4V$f2;TKhboz4Q}T41SxhDTD`YdJ3Tz*7w&ELbr=YfC$J@9KA1gQr(vrKmp_E0}8AwMR=e%dcXf* zjkL>}{Hm<592n$@fHTD34CAn}t4NhamjZTK%&nGN)@L@(dTPnM- z8m3?|w~e#KYtS7CqziZ0#^vC1!6SM}!X?(PP}B6E2;6n-&+9(0CB&|gxK#$OvK)6>`s;Jh#ggdG93eA>pqEU+!htrH$9Hb29C|};paW`i3DsX zqD%tz6Q)SOega^)lh-a_+rEO313b{^{dt{rpLhnigNrm*&TwB3o>92O6KAxB9H@UA z*XD;Y!$#|1@i7-M*lHWK2`ug-MXFLZS!coQcE)y?-Ci8;6)pOm<&x!d*5g#Qo~mdq zXHnYMLguBDsz5tu0kjmjcSY4c3FiQ41|vs(&w7?l-?q(BI-9fNr`{o=^(+@ppbEt( zj-0XUiheT0C}x~Raje09kgbD49wGJBGI(L3pg<&)?2c z6qd*!~vz;jT56bw*>R^%G|Y8~M<>6|xP zI3l!`I0dltvUFr!Zd8mBCxVM(S2bR5L6My-AWn}E?5c)s8W~!To&C+K(Try?;^4cx ztpVb=b8N|OYhC<>HT(W>G$(S8wYFGD7>yQ}s*n-ZGGVW^rOxccg~ji+)(>HrLH!r` z5eiqJjakqEpN8U3=lE=Ymjb#-4H|YK0cgDn^eMJtL`n^huzT;f)^i|yog;ihfqGR9 z^_~WVO$Whx`kiN+4qEF7dbaZv=pHy;(@`vc-pLm+{5*>qU~1{gmdq`^>Ul&s;4r5! zOy4YG&N;5b2Le5C^|K#{GU{*}35%k`*LWULq!W_P1G!0u8!$yW!EoMHC+s+4-Js|M z6Z`WFcqTF5_em9o^8V22mBHuP0&NSRpad>MP!C8mKz#i?&BP#<2aj>IK@_qmyz?R8 z1UuA(k5xo0P!sXf^Bz1_itzvlG%(?Vv4d`kWdeZ37|-#Ou&Pt!Y<3&)3?n?S_YDz) zN7~v8YDht>{5F6_L7w81)<_ES2;1LS>g64<13wB=WF-5%8U$FD?vl-{Cf1Som2kd_Wba;J8V@aE73 zR$7=8S`i_sDL6-=;2h6Q5Ct#bJEGu4Oc4byx>0c6ZR;weAVk8xhC_JJJHDQ1c<>_N zGSAx<{Aty(z`v}yEb@^(#8dtv5AjrbY!C534uyEiv#3XQ;q!n^w(mtQd?gOygSlFq z*ybW9AH{UqUgQ$!d(n-4_Z0fwd$F4cnCRCVD-r$rV2bG1=c0YkvK1wkr0^l0V-6JJ zu{i2m9rdkL|3mrR`_}P-kjuMByE7+Yx;c+>funzir_w_3df7xLgPLK*bM&s}_(2Zvi}+OpW~ zO+v-f7r6&F3L8^AxM3Gj7b%gNW!P(q)OcNj6h7J`HOmyycn^!HhgLQa-?7`V$ke+L zEBenm2@aE*{A|@&UUzeUvEn6GGT6{W2*o_bZwR`i@*8Sg;wFz;C4UZ@6Pg&i6r`5d z;>{5|9bXd_%U@!}r%l!DI7N2#4rWt^H4DLgnYG}l7;iOm=igY;691=^%&&pXRwd=dZ%{fu$k{cqZp7s3{NF-aGO6mc6t)1Vo2QXW;X*xvvslmWhT8@SA9A8a4wytl)3Qy61mE!iH#Rp4=tgTK zpK-deIkg~%rvH#buE=L9vgLc|-WpD}`J8MbXeipA3K+w+1n7yJP$)>A$Vr8QYY>u} zf(sQ2E__)NoPsy-HBs;;rig+!ofIT%n(f(0ku`njsQ<`O{}I*yP`(;r%M-+)D?EHv z`3i-vgdirguqBH6D{Nq-CS?QuvW>+wwpFFm4q}rlEO$7Zq}E>n{M|$_`U*Ftg$Lm{ zSJPTHNo;?Ghf`lt+SP)JrYrpPLK48i;{gM&PyhsWB|#rvWf`3XKe0EwL-Y9(h-5ye zLm4!mZvrjcH{0+)YYRA}+Lm3qWD6B1UEz@|pb$l}e6OfXXGiQMna-7%!biL5><9$L zCGKc^p%#S-S5&6cw}EYq_!-a)&j>6?>7DGg>54Zi{;N+jaWi0v;nod6BYO-)+v!^RUYkyXEL2#uJQoRt5-RbIss}9CM90w zj*SZ?$ZkS)n#+6WL3RXyL^CXWJ5ROJ5pxfV2YI4H-IPFP~a=s(68ItzHl&^Y{B|=pcf8sPK$f4YCZX2 zS4$OHOb6RA@uEV%vkLwGQs@WIv{M6qo%Gw|p;Ko7Bc$IhqMrz(o9qB!TOBShN%9u; z*Vy4swicrQHBPcK2t-Y?Ulo%5>KQtbEaIA-WHm5FB&%`Fm1L{B*fu#x1{;>f;@xe1 zz}=uoRvh?H+Rj`$DYmiZ5*=;BVBHh#7PQAT5 zJ_T)hjXV!uMfBKTzvVY&v=ifXB3(Up_)f2i;zWgh-4T?Uelgd$$i;YWgXs4^d`BWT z2UA49IZpbK{j7l6sJrWxF<_ad<af3?HupN8z zL-+(WB6E?R!DAJ6_&->Vg>`bfc)SdXtDzN2um<0x_$M@hQ`Kjb#WGs^L<`sWO!Wr5 zLR0$^%*fQ%xXw*&wd*f4wJl-eUt1RSPK!{n@^wB_{Sw7(+xY8{ z!biKgJ*$Y#J}jaZo6mtej+yHA6x*j_kL!xLJ)K^I6%95t6^++vsw$=cwrFw<*HzlQ z-*v9dsYx=q&=yWp+4e8$Yni9Iu$y08ia6n9)qxuv7wj)i0HWb3rHKk!brf!E{w5f-nLA=cep2?(^lNBzi{*~bSoCXtUOpI<5Dn~Z(xsk$L;$RAwq4|%b( z*aFdV8@?l2ZpReSa=RNX{W=(`v%`n-8?r7on?Ezmw>4oToG@Xmz`AVi9g37L9%1`N z{GHQRJOaPBHO-3bqzq)v>FBQ4?Z)&PrzrbnqTQH64()4%UnfnEcG#@S{GqTvRge5M1MF!J#l0X)`>yNbm=H?%H45Un$$-VsjA zDUP_or=fii6E}RbZ*Z$g@tUUju&%J+eu6(+GN5;iIOztTkiMjztDO|*-{2F{cL5?! zNIwBKz_D349fAF#t3>_>uh2-o1Rxp7?NA2iqg#PIp68>jXhD9)+2*0543}HLWo<|= znvZtBp_-3Q!S0fQyof1$v>V7NifClx3$xQ5u5Eg_<*EAsm;Wg)Rs(v@gItinB9!07kkIdt=n><>Z=j`;G z>Q2AosncX30RqiBdt>L_218$finGpN=0a3j*#43qA`7^Vkk-)`ak5x0~FQlAwYqT`=3$nw!##tVX`A0XL3aELJbbtcqy@~SoIdCW;D;Eoy(9%(cG#$4`bh9zPDavTNM_S zB}IthEh48*At&5+P>%^qV0j~^W};5)bBoo?2dj_(2V#(%RS=MR=$E_2$yx4YE%2yh zUwloJ?1w3$WWQUkl)V3eZL?#Xz%lb6BxeL)WuBlSXYMVn+pS2=6Hq)Mz#6TxThrN` zjx6L;yETOznwrj5Q8Cv;A7^nYj^tDnK}A0P*w#+`hUiwG&quc?#G8fn)x;aE5O4I$ z0CVE~g0G2qzha7r_p6h5WL0~jPIeoZV5P{a9(B||=BR&+>VGJU%WMH&u*(&sHBorL zJ4<48=N654@#ZZypqHjK{Tbz@4E{A2nu+?c*l$5e(M?TVX;z^Ti~0&yg*sr)0I|_+em<_~ol)I{K2!?N$3ZqN zl-9e=cgz`IPqcxH=>Rg21Igt;2HxhE6Hj;4ha7u-+6*}`drk-|8QQx8tUx$`umktn1=(%9u5RHh+=p4D42jUhW=ttAjhSC z%Z;{NL1ghiDCBs?>jz=Z0P&eZj;}Y_qCt;fDFg!9b|7>X@%yiB10f=02O`G($qycO zCn#|4H0oztIIHuGtpQw&WCsF;>_CFI*yh5q3P=56O8v>a{xDuYXkCSR!W>6^C}gj{ zP_`|C@pD6V=@cN&q>Th?{heE3Qu#0=EZ88L#5eUnunHeo8Kp=Vtq<}jzs1qfN zq8q>|L@b4rIN}7tDY4BqP}JSwnacB(2rMzBKE2z2|IV%vc(BX{amH~ETw)fZ~D1Bwhmmm zOHD%&dwoK^)h=76xK^pZMydauQhyEB?;!ljtHN7*Rcd&53;W{cC5dXtrU^OSn6i(dfv67@%Je*)A;x4+k2?)G2Y<75BI0^R^v%eQT7xB@U1ZU){^K2+>} zmj}mgay3r}ZmyEyQi5YuZ-ZJU-+%O7Na3U1_pf@JI{+21h}wo-2Rq>ijyW%_8V481 zd$_b}DrDn{o9Tc!&IG31Rr%a=?{c4;8mE~6wCd@|P04s~E%O30NcfE}5wN3h))MTd zx;Ht1LV@Kq7IEJ8u?P>}pSP_OWk3?|xY>M{P5WDuDFnx3B%6QHHeB4VaBPplG53!n zxLz~%E9V%tOf$9hcga~3fi9(V$nyeRq<*1aZy&F_cfHw$wBA+N{+7lNvE(l2)-Ue; z+jtkbrQF6b`w9%gM@~ld7a?qm;X*j}7yGv|D|)Wxkbep15VWT3pXMAgE)Looh@gO~ zU0C1iwm|XkyZm;Jjabyp)c*oRz>CnEmcTo5Y?@(;9Ghk(+$#j)H*04c#`gbV^J53^ z*_I;}F&9aXT<+)L=oc0K@0X({23 z^>BRT`*0zP{Avp}sw`G?L$uvGmku4k>Cmu8wiLLC)lq*&37-uu<}JV@O@vlBN(eJp zkAG~j@bmw(0g5ShE^!D0EhGU+;20yUzj^H_QG{XMAi%Wvi7hlF9Whl)dVC3wiN$;F z0`ccCz9aq=V~Y4w?Boy4e}F%0g`9%hWnw@@{G?+XyF1^eV~M?Be`(=!45*c)yeZt~ z)S%Up`wm)(w@bKt`bUY@xs{#y6&Zd9lJd<8804-Yi)Ev37Tg{rWnNaA~GAb1cj zNUekhlto)-U$evq~mo=k#xLXN~2ewgQK2~Xk01bck7J#7q%(b zhcFysTq4Xz1YnH@FGOZe63*uofe2XXvoZ;lAM3K!=)*5W{tDqM+<%4*R=PnVObocCR(qoF)q`&7-vNVW4^Ol^;UEdv)0$C;4>IC|uvg$?K=4oX36A)Cs-uur zxF`fK6HJ9)Jf~#5M|yg6*hiG{Oe zizZ=5`apY7yvQf1yM z?R!*6-$nF>4^$e1&F~4F9p)jz&zye875ZHV`k^~{CifEV zGnj9Lv+C8Q95L%Yi6q2ci=(7g;@JCqQV5~g`celm4<2!flL5c@*@JHPd8FaP8qyH) zBcNmjewqH{@k;+I0}e^v%KLC zRI|K^02_{b`$K;na|mx16_gbj;%v%?pL_(c7u!lJ5In4DrYz2w@BLz-{txg3U~6W~ zOYvh(+e_ucT`*Mq5W@qUoV4a=x|@3DD4hpfiFlD)vkFtBcUD3B81x7Kh3w_B4pO0A z@36NzN{hv9&_$dhe)pgZrZJP%=m^g5s;^8{S-;Lwo_G|HM!R4l7nZ_ru^~Z7+&4dPh&vp_;x-n0TY(20QXeYPZ|NZ= zhU`UD)Y88N@N`5O?)H$z3;lU-y3~0qibb9+=gk&;rD?H{%pxLE#ic>%Az+{gIm`Xj zJVh8w4Ho2P)YFf_m*m|7ec%9c-GY9)u54Ft>5=drM=S5$oOqfiE&S?*jKC}+iZT!Z z{)%yMJcYwA*xbCG_{&4S!Ux|gOp?ZceRqHsiy!j2yBab-6zmBwoqJIbH!dF5&Fdy$ zwrPe}6imnnG;Eu&V=X@L1UmSZp}t3)>0@;Y=$v!)!tM0ASh;*vRoaI|o20e&jH286 zj>6m6W^BRI^1+J>u#x?-*>~uJ?$jj=vCr>MwSB#G>|CYl&ST zAC*yuM=E912WsL)%`QX{zE4n7ThT=T52>xdg;Us@hP3k<^a!W|-|iE$6zCah=%YDw zH)bxp+OUa=Fi!AD7z7_{l_Fs)=73;9NgL;Sg(@$W;VJ#AxS!2QAcH_q_B)3v~k=^#?lY52X6>Y-3kLMfpUQR4UdUhA)S}pK;k!qF#ArYJN86 z%pI5A2j)^!^BcfBc6+EaNy7&M;oGf!*o9%ztm(D(LL>BT#Ce#aPX#`~6n)@sDSony zKD*|JUrnN~d2PiMeaUGcekO)KKJ)-n^a-1d_(>D`WJ;?;kfN`StjE-5{G%&|KXjx2 zBuq^!o(_M<9DzS{ANV;;(Jj{rM2dfIhktJ1AG#gXhPVIGoraZ8 zLW*wAn}I31>FqYA=svT-c(9Z%+8T}bywF8QXCXB`o37b8f)|UNz(1ej6#{fK#{fKl zPN&Cfs=p1qhrsy2)Fg#^LXE2B2F)=!SRu|9I(Alc_n4;rCzPOv14x9Mk zzHZujziT=sX%~6ZYmlN{(Q7b8TV+?{2En!XXYe2Jhjz{#z!cx_g=@jITc{guTcEuZ z;w?zgHh__sqNVJsn4;x{^%$<%jDI>~zz4#b9bU=4gh`4^y^Y}o3SU&mxf{*ff5a3` zQKQkBA|H7(jty`lSk%hs=@syEns7fri5Dx)?bL&9J2$<7ZYc;VH>(9K_EV_=i>z86 zf|jeI{R|&DUttP|{Jcc%)7{piq&0dqOzycEM@!vxs%%y`T3V|+b;^oH)PYtaV$ zEZXhI6kOK*=l+(?uEE>PzYVSY{&6EdZVm!_UT&P!PJi23^D)c)(%gaH)aels(6zX! z^_RyicBa%l0=vV#xQ5sQKH8U!4gg-TZzSRz7EwENyVcD_tw?Id3dT#X>zcZwi2fbA z{ndYShtOD6bjAeffUbioBX^=yi%of5GU&Rga-9-~*NlrD{$X_{O0T+C9HdMCf7WUG zhSW^2YK+L$3z3X)BB{7&DkLAP<{#?b17XO#odZj@KuQRoh>epGc>_~qMBey^?d+da zH@pCe&<#dLHit-tB4svci2L5Maz&tWk$r5+JTSU$Y!V*~hTA6^RpFC1Ql zSVTR%-c`3o!)wSa={07ZCFSX&-O;2uRF?)}KGod8G*lIZF%~Wlo-Jhyx^}8;8fj17 zlG^BARpq*kw02L}dv8k}^s0({)G%zex}#ZT)To+Oj~aESpuZ&jAVxT9!UkjGG-|Ri zMWZH*nHEa*!aNO{cUbHkX}SAwiC`J;!2G+?{J5s9`CKVMH_f$6%IKNw%>6$aJ@v5R zsB&)tV7C2XJ}ip7Bl+sybGF0Bk%xw}=RM)$sMouaQMb&shGHB(e!`{qEBCh~z3`T# zcdPqblHQM5o%f_>Y~LcuPb^Ri?n`hH&Px$+lMmSi><$;)lbFIsyWqYFD52oa!xw77 zoroEH41q_EcHztSp=0Nq*+_~8%wZQ^cZYCVRTO2Gy**!Arn{}mbpa6J1fWQt3V=%b z!qk`njwF5aSjhq@FYZU$!-MQ!B1Eh=1YTg@lGr_H}Luq z0nXenmuSm6D_RcWp9O*#^)gr#RLXqHgGvLaBFi~iF`Q)-4{+>Y>BAuW4h!-CmF0Zr zT~)6}jLrDa5G95@B~c4*f*8@xmD!kT@|5-bP^ur%2p`nq73RcT5wEQuO7H95ab`Qk zi^59n{tu`d6wGb*|5UAzWVZQOD$sqT%5{~@5Ah9QuSli}0AN2ob+T@qTV)DQt;I}| zPv9Eek7r#fW$J!%E6XTI^&>C=f>in+oo^qrOF?N(3f`_2;r07dZ#Z!yM(R#FUn7MY zv7B4_4xBZGv7#UQ;oAR#ys|HYlt4HIzJIfHnN&B#*#U1(0cgw=o>*0jlyR)~UMtmL z7gk9(t(_V6=CXT3Z*bIBSS$0%K9;9qdAMFQ#4C(t{O1_Uiv_q)cHw7IRk-Mm3SewluLj7+bMt@s zcuqvTXgsgNRN}wv&CjJq5xwz2J)T=Q@mI$4z0X10f8oq_AJ6{>9H^sPqk>N(`Te!h zP~CUV+=4HqB3+U5nPZWc7FM&;PmntyI~ASyG5BRha_7JMmo}tD$XG=^r5Tj5i;UYE=M8adzAFP130aHm+iMz)ii<+-F5I$^%a||{<X-> z4YFl6Z>!XqJNb&=Xa~8LUEC_Y>b3TdBZQBhflM08gi2f)A#H%7upsXQE_6zE43bxF_*$_<&$D_|m zes&1jHS&I%|NJz4)9QgeOnXHb9$5%G*|`YpLDkFG_kvY`M< z%si9!p0p~Gw&>L`xs4pKQ!=_{lSBJpr&OR%Q(?eN6Z*&N`>S&nE=n@P=lU`afwPCF zISnS&TRX-hv|}8b(yu=I@oOF2$uZq>x{@heoq=pYek!fA5l7==0R| zijSlYepwZ=yL*0-Ch7~+Rd#kyGK-6z(Q+=_8Cd!oOi&_!ll)oGZvcJ$3q{wei}u(5 z`a*%9)CI!XhFek)`#51>Fxz-bYN$W|Liy8<@diL&kv8Gqdb8oh8yjV-$+@(-lN|xC4 zIbR}rzWJRXF&i#3J0`XCCuC@^Ibg&NO%Q9g`@ayfpnR8()O*g&y8)3>_pr7aOQDas zFROM~>Kmrch8i?l8?e&VeJi5~>)D3G(p>!rbzKxi!%$U@y;@G$hYYpn$9fhThU=%P znqUj>gD_8i&Y~XLTIpO~;9#B%_xVB;Hm13E1l)C5d{nBXU#2buqb^JQ*o7&d6H|05 zrm)guQWI>0!gn4zm^}#~d;!tu%;zL*?C^1^qA-(PIW9%P0T=JzrAYC&=Ul)hVe@M8 zXQ}ZCZe?uBnoJW7`h)81OVO!G5rf@p?o$^jo|zOMu7;%$A916N)Yq^yH)@#TMh)=A zm~I3LIXQvEb+YAypR@Rr(pHahP~Ra3VXWgR=}rABulP8J1IfX^D&!PY=8Y-498A-P zsGB102fo7M|LoUNALa4}*e}AH6<-X5&q!>~ZY0J+u_nW!^l|E9C;&n;mU9huKj5JB z%I*loUhUh$MF4WofdBxo%uo9zgnQ^&cEBre+gac0;zN}HbR~5|o23I^9W!Bc*6`6o zUmf#C)A3_+l#l-Q1x)7YRPXZVdEwjtDPL*t_X@kTt6xY&0Aj3`nSWHoWpT2QCPp+E}Q{v5QM?*~LZA;;u;J^`EPtbB*z-A~WB*yg`|P zH%^)PRgsz9>S81_yVNps;e&l zDH4bv;pGDH9#HjhRwmncQyS5sMo*B=QkZ%`KCjZ+r-LNU}I{nf?DfY@Mz?lq~MqCkd1Igbhipph_m=vsCgfh&+m zfz3$l+tpXm9c=n7sj?5bEN`*3ccoh5+XB}KZ4e7J_iL-sa_WT0rD7}nd+K*20=3+$ zzoRZfBA^Cn7Xd&MMSvM|Z4JV(2I+*=m?9Ba{r?bwS^^9He0a}rwMS)#3;u1?SX+`4 z>aaZkVVeaYa#(?50}9FzU(?vST{Or3+CzPO+B!?0WR#x82vWfHXp z1ylQ0U|$T%(6NgTq;C3~surA{ekBhLXWxLk4U4aIg|l0^86hk$GsByme<)SaKT?Ar zr{8mJmiug>lyQW#tJNXpXtiz;y^&%c7mgt}lZtGT?f8O$QQSy5$hdwoOoo2ZuN zYm!hdy-{dYSMz+uinc!hh4dhGcF7j+Y}_(M^TJ#XsbrWF<%kuu?D zqn=pokYl%CfijV%nN;6k1-Jo1JC=;09y?ehw_UfmPRFZ3m|Hz&oH5Ig1yu`scsHRv zJiw=O15Y$7NR}U89`n7}&XXaw2gy{A8GQx&u3&Vkc#CETM`<)F_|s!fbS7^<=kF{Z zHO!!Rg&RTj_feLjgKBQrK@}}OpAGNCREaQe6rZvZBr@CcF#^^}o~Z}l_oQD(mP zJv5G^cZgfNcktlRDLh5jgJ2reuemAN72tNNTU+84)vYZnQ1i+v!s&+G+bS?wzEs(4 z98(-&zreH-PF094t}WxD&7?dIqlRJjRe+&|Fyr9xb90Rtga$gA?tU!gDwlbS7|)aw z>PDb~Jln}P&@d~=wZbY$aVb7Hrh(c&cRtRu z;JmwdiKk>w8j>rHUmd77v~%j92kFJf%j{E10O==CmzClcI79}-ZQ>dV#soPkq`M&$+f(pXS0_QI&)Px`D}EEP^M-^l$cuZ z)ubLN96uf4fYO;%bG(?(wIKXyp@O2+P@LV4Qyh|+y>su4=ug?;iWUUP~-dy0*CL z1y_`Phc8T#tAzEp{fxVyMoUGO`zp~&r2LlH~Sf%N2prF z*}Yj-*KA~*0xejJa4o79*%qN2j4AcZrUtw z-vW!yR=fFYL1z_fj+zx!&2c+7l$>xYri7fZ(AWmX;t=nCo|T6CTlh0Q?)FSnTZEp; zt}QlkO|(=cnTfZCOr#ovBd4SL{s^owYQoDH{VK_3&CN05L#~tRj!?07-N6*8x`RF= z$|xf-!mCwnY@M??PL9ep z_lQc7V3TG&RT~j3MOPbFx8Uej<`Pkx6{G5jnvtrWs1~W}2^T|xDR4eL_AtA_SPsTQ zMrZhi?uI-D9Spr}aiWdc*ysRCu$tgXR5bxB0od7qe&us*&1S~9Ncmk`)AFXEJ-nLm za098DSliBgPF%~AshYT^^qrG=7OEze@DyrW7h(!U$TgAJz1T0-^E^~Vtcg@r#2PN4 z0apIElUo{(M8bEMi|UHUxcEe(RRklal35cY__XYvW44JIhq+WWA(!Tu4PmxdKd@a( zKyhck9amG7E^dHvEK=1-Z}XCYof}3e`~# zd#H}O(ADhV%!teD#;QoUcj%NHczmj!ZirOXQiX7an}S?foI+*%>nGK#9-GJf@jp4G0Y>Tpf8S;CP5fYNp>V*qHxI&u)tPbK$r zlsrO}>~u3#lK;DC+|eK$MU&UOa9}m|2L(Jh*6QFksxmo?b)5!Wr7H8x*_qL@avw8a zexGYb8?YEnwPmP$yS8LHSZ&E8OKXO}rrL5dK0MWy_u>`RmT(Sesrm3wZHdu?U9ATF z%yG^!G%ZfQ-Onr(`?y1?j@!#pbR9S6>Qt`LGIM}=ZHh|?!IuCyti0ZjQkB;U_$^&| zeL4^-ueYOA<;9gy<>h%?E*)g{Vgscl8J}w=RkGJTew9BAGIPBz;p6eTY!`c8xxIgG zv52e$SsX!80aGX_z)l+QKv0Y@yp>cu)aEx3D{EHb@zAJ}iicmZs8BtV(P`yXbL>6& zW~`{j?VxCKq)-nkr;@6#dhxtub9aZ$dCF$NY*rPPw-eq;9<)Ex>nMaG$&o^llvGJY zQU!1sM$$E4#u%%I_?vs5c5P6nfrFyM09;RDa0`}CVQ?#6Q5f6`A9I9GgL9gqN4#&6 z%ouLYaUuWN;n2=*!@?j+vDDS~<=|HJF1_I?cD8W{qD^acdhDy4Xk1@^W(Aal0&4Bj_ zG=~SqMs6QX9`O{73fP0FB*#?Ns0h3wRD?{JZf3ZEQpab`bphowAAr&TZ`aXBpro@D z4a(xML5YD6er!&XV*_R|*`RpJBs+yPuOLm^Zul z`Sb*Hy;#SKB|oobDcaAsgze{O`DyjyRJm}XIW^g(gy44N=O>k)cf0sGdouX>aof*a zh4S+qC4NqwVz%{sAPc6L)4kjAVYr)DvZqt^{J(h$jm^$t3f1%5;mkX8vGFIEGuNyu z{^nV!w)`FN(93T|FiP&72OY@|Fq>V$Uzlgsk@5LGuH=Xkdsf_bUD|apHU1xN0nGqi ztgNckvz1kq`gvtlrJmwBLscq&eodI zkZW4B3SzEAZRCp9F}!7t*$Pf;dv}gG#XBA!iE}HDJ)`2*Lp+5#)(>C`aSP0%KE#m% zqo3ymd3>%}PaNj?iC_n#Il*361e2I8M6gCzzT!d-tS|QSa%rmIX?cFWnPWTF3% zELd;mr7XwH1jx;JMS$EKQ(lzszX>M(XfUCjPNRky%gt@#K3*&>bU(;bXrcSQ7}|J{ zcMp?jlx_$+{-fo><**neZ!w39=U536Te4)AGJ^-?j9bms;yBMt3wXyAxUUho>$-nm zEyeYA8{G3YxIdKxZr|GhTsYpIkVkO2G6gOivS-h-WZeOkPoj|49p(t{0kn*RyMddE z9fM?^qQO0&z-=HjxEXjw;AV*O!0oUSI-q62{d}c)x9EoVYs?AUzC4A%?IsksotQ*} z8-55z%kS+^=o)V(7)yi{pHEI zDSW4b*7mJOX5Z->l=4A|rVmRreON}5-U`!mgW1bvE6m#)pm+H*-tQpMuRMiF^s`N( zADBdwD2$i#X~X+d%cYNjMg7WT>s2aSZWrGmF}6%LD^_iyndXq- zCK`~OO({x|1IAhP#6m8{oiuRN{<0k=y`c(c_TnYI*Ou)1Kr(xmIor4|Rz<)j_$?g) zFKvSekg+NPxDFKoUkltuGcXOUpj|Xa@CyIcyJ*tDTHIn9g92XTeao1jUV^4wG_PPj zO(vS;rCl`d#M--PPB`Sai2PP;sPj}IcnZ9aJ7~xd>OFxqw1Y;TzAtcv9d!82>kcy! zzO)Yh%<=wI`cYowHqpkJ|LlNelwWu@}Y)gKsB!{7LgBah8`#4gYsMh3f3H zajN0}j7c=|;l4jI3yk zk3;xwde*F2YY-H$vf`k^aYa+tudFz?aO(9%B|EBftEfuwZ+un`{wMt534ETS!T%de z%un&*BM|O>ydvEFRa|kOB4<2j4t57WO2!_9-EH%@Lx=%OcnUJWGmpHGH=7Br76InX zgKc*6UV>@i^-Q}WfJ=G7bybi6X)^cMadGmouX9_9hxmQOg8OY2JnfJm3qS(Zu0s#ydtlUgV$AIk)m{cJXyxSZdxvGe(H5|g}9LyOChgF4DjZ#kg4$EPPB1Iv(hJATbXb^6e9KHXo`_c! zo5x%pT+^gxP&IX7@0O#w?6;Bw=8mB|rPOSxJuh z9EQ=)G41UA7MDVU2NGcWOP2;|vgc{o!S@=!kw*6J_o%kzQ}|lI#j*Y16!9`mOXIW9 zw0xMLnij4@H7)BC)cYiFV0knWzKmD+uO11%VG{)mbP{C)CTKT@-Y1Eu%92AP;kc^y zNI2dh$9<77qxGu^XHrFYD%+bQQ>(&hg=5=9V+k}EenS@g+iY@WO9=!>oDoq~y+6_v z%jbmmaD!+VJoYPS)mrgn90tqoUtj6_BgzC(x}+qTe@ml^`#=BMyw?yprOM0o_9(H` z9tJz^r*}^Veh*EbBbmbB;`ioZQN$He)pZ?D!7!)*dE~Owee1YnUQ#-RY@BwNmsohMW3)`4?a?&iUQ^ z3rrLniST4Po^fhWKJbs(ncf;QAS2B=xY!yz3retuTQ^blaBIVF=^k#%uTTx8C8}zO zD^b#A|4)LBv+c{{*_`?urJVk>B22lrhBt8&3H5!R3t7u$nNAPXY-ijCxpWsxlIW;Her z+dy(13dqTc6psL8rpLDYO_3X3=8wdBYm& ziIdwBtp*}K38b2=v=}Xt_FEJB8SFSU!c=G`yk^o0jYnV$`DV zs%8yw39-J_t?}YE?gR?487YFnMX#b^$Xt)<*PYWR7I#mNc{C8BQeN=h|_3Rj{~`BbCwVU|_j z=vGbsm1Pa^UP5y?ET41xsGZ8I23a)Asht{#Db!AZT_rmKjUq4#_nJ=PH&E|ud^O%q z&8(){scx80w^K9Um{?2JY<;EelyZA@-ed&08Po@}s;NHMz-p?2=vPfO5WRWMPy@kT zq4@|8OniJ0Zy`QDgjdAJhpLrViPUOmO?2Voo9(RG;xI3qNO_Q@Xi|oE2m~C=xM^vG z%<2G@)`v{HBH+8#6an7`TuSzMoGX*rvJIGu3pp|4SFEp^;r(db?Wr-nY;qPSt0*iA2@z)gg<6 zs$DRJs0y|bRZC7;HAYsKp6*s%F`C~6d~LPv$i)_Lq9xhR=AFh@mow`ITE=E${*qC{ zg|-#Fa>kwhEAC)vXsRUIeVqbs4{d49LtE?@bh}h1@_IT_+Pe5#qSRrn?f6|G5_2bM z5`!y<#1d~I5^uySBJsxR<&ik2mn(^X?qy9CdwJnR;wMy{t;|tz4*M zyLGUVw!O2Urss%q9-WuzVpZ^Pb-C>O!r301vtMC$7tW^i2hM(h z!hwRTQJj4Ql;De}Fh|iJI2%&~-V_7Q9!A4BXCLF15@%CuKo$pQt6>Up7EB|~zC6&% zHL`2SBOCD~K7Iqzl|Dvjw5Y-B*e>v2#R;uqVlcDfs?5r@T3p#ADUIPmu8$KjPxjGzuM%>SIs_J!14OP8vs-ZevE~N(Vsi7*)7i*~Y z{V@ENZr@uBhxYw>P=dWKu0%2LrW%@o)kjzjJzvT0Bdh}NJ!lRm;LY4VBH%APh1&NE zm_h^uyF%@IOsZ<%V^cw_8B6VZt>qKz%Vb!?Go(n`kM?+( zT#uxxVa9U~2@W$r655dV8W-bO!}ExoInA<D^XLPDuSNwY_yO^f}fkL=J;8PrU%$Z zHBzmbnjf|Ciuh5xW_kR0Vp9417(E&I(H@oP7$SbOW+_*TA287$A;%6Xj+D3ft*v4( zD?*WEU`ORP!aGoFjyB|51T|KJdy;*)SY zMsWHv*r5MA7n61rEA14(E-ndfwV9IYRZOV{zonV-z;a+pl2D^W~Yp_#JsW|+h1 z;+0R{3^n^!w1zX~4sISXg{NqyfIY;N!CuXje7qv2>DI2y8)RendSc}9`R*s6@gbZ3>2Yz`Mwhd%1ux zgj=WaHuv2C14r@?eB_`0Ahj*5Lw(Nd4^ne>N#cGe2OHskhT53;m({Vk*B^7fPzv)GLmaGmbBf5({`9+OB+XgVp^1(cebg#cxB^o_6H)WLHnf zncHC5ph7J@Fq*Q_N{4>wog1w>#-p{=){jio$Z1xQ7lAZO<|&$HnW#HIM?#S+0z@f0H1dvfgqFke+R>rXCOiHq+rf#za( zCr@O{YFn)9g;ATu1Ga)GE=2`Bwbg#ZHxvX>dLzz~;l=gj<#)|UBc-<7vDIp3RI9Dv z@St7}$1(N6YJ+sq#QGCbCB`#dx zDZ~ZHqqtBubA>ukyzUlYX5%}X3turcnhW91^dH^@qy6ffc)!5pV*1)idr0MAFY!aTg4m@pr&hzaxSxYr7k<@%>#vasx~$*g_Wb7C!jYGT4Y zJcXD5c@z`MX5Lvkv$0k=CvO##XeLYxb5p?ar(r1b(Kdf~afE4CJqMTaf`{v<+ImGD z9hJTVR&6*Fe9-}`mhpj&#bMONvABaPSG{ePqOkzwgvD1VBP_ngE5hRIa>-rEU$KNcyIP(%i}M=+;$o-k^;@8s9?=><=Ou# z&z7`MKQW&v zRvdOIDmc&f^pJGT;jJ%Qb>M~8BQFD$S1Iq#Lsi_n!?NM``!F|ocMD#T zcel8D7vE~&8{xI40}1M_hMgsv9xu`Kco|Llt%ljJT5iV`{PU`HSiFMwYw8n3Z}Aj@ z=oK5HqfDY93gaE_wKaTAW!4+kVDSZ0tX^n1vn;VwGE3DCIGe5xDoB6RYADXL3<_Bn z3xjYA9aQk$o7O`jvMzgEnz(?k6P&WtzU6F6(m|~VTW-k@~-!xO?!c7Bh?3N)o(f^s2U{Xij!PI zszIVv)7CFntYr6(VC&Z(U>||iUqQL3g8D4x;6Z(e(~90eIeijZle&1njuhIoIQA1bj=pI+!{{_Vs9SD~8OV#jT6-?Ne5_D_B_7fm2C#|J;f+>ef@QpbS6@_=D8uCebS> zKYa@GwFNvm?2{Or#)z_IPWs$>UyLnPX0A6-Vy*oeisR0`r>%#by66p*rETCu-UrWE z3&e7+km{{Fc?#8A%j>D8WeJn$dMk{#vEYfD$*jejE6R;uSY5<6rd`!SF69Nc)>B>P zCwXp~h}b2&{|E!5BMt%fn0LV~*kgX1OR&eBfE?npDHmmr|5{0S19h0oDW5vb3+k!% z?V=p}wUz2QCvW`Ps$u+GPxY6#Vo{tz3whbp!0{AaE5pN419us7Qv-KReYm0q?wb0g zyAQP?67Yc1$M*%Q%3Za639`w#fRN_m%`tN7w^ou1?yr7pEfY0Rrw%}ZJe{WyLb|p`3(K|9W+SlRbLH~MmQu0IY{Vy zh6!8(kgM|<%EKM*BHYU{g>a9ruW?^_&Z?PqGZe70;;`x07EN2fGGb2A{LlyQZjm#8 zg`Q*^G=Wp0Dz^!#kjzsw723dy5HP=0jG2iE8}N#lu%TQg!27b(Tu@KGV67Fqd9j50 zex5?8@3v9j$s`)}Fm}-r>ZzAt*6J8jtYX}ysNkC%_Rsk(1p6m8>_0jr2s=m!_CL7f z|AigyBG}6@g_d9I-s?94Fs@sqLZmkf#@qQiSv`E&2rD#mUI7N>zogOSsl6eun zR9X0^b%U^25o!@+6u1RHax|=g>JirISr{jCM-|3Px(fCztS;u1zDwR((PzKd2KUi& zmW%Php`a62Le@7>%UNsTxAbyWqsy=oa#sVjoW+%>&Q0eA6wEQyxuFv_YRGpMZ>}k` zD)}mU_7`{Yjr0yh^EjeixxG}C^AwFJSO?1>dC8cW;`a@_B1GRP7txxA&kfPH4c|@D zAMFcmn?B8KxLRNa3?G5HQvAWRD;)o8<9HEVi7QhsE)gM!64;2_j zd#H}z?vIqGEBl1(_gV8k@#8T=Hhj&!*ii37%{<%RD~h-x+FMna!MmT+Gvu-xC$)*e zY^wJO16_Q@=Sau-SF!_@;)q=TPmC{C_;~Sj0J|fFy2}CKYZtKsGRkB3!08Tm@LR~@ zTOAg!R~8FqF??~NVQ!*)JJwgtyA0FGx%Tc?M}hRFk0XWN^cj<(HgfmRP#d}XWT=hY zJ-IC<+rCmbUOGSk6%13Ss=J>P;hPEr6MRF(SG;hl^Uksq z9VTH+>Je5es`}<6yC@D`k_m~v*+xV|MSl}Xbydnp8Z0PRbN%F{!K$_}I z{P9*%*JtBpTx|zI{y5He(hnSbHb>@o^=eqOGs7XEdg_lr*Wy^{9sS-4bs6 z)E2mLlZ*@UtUBfx?KKB)If~ROsfJxNOuE*ygP88!6aiX|Ud9nC$dsj}(>j0eC z#XUouc#Nf79ZoctA9wUUB3@yNi4LBlg!8)i1vQNq8ZkzERwn1kvN?$n|0$i*xL`A) zLSxPOV#Ec-2rz^g;o^qi^I#-0qGe;nh!*n15a20(z}rEK%pO3CrnV4| zRp-hSEgo#7tBiykUmat3W7#Ulm*agNpNI3}Vg7)`3!b8R0frGTCgD>NFDBy^@nUl0 z@^}H~Ck}Jg74*64jlF#1#4_$5;>9ACqInU39`Tjj5!*<9x7*S`GWM^fNunt)tbj?9sjr;(MM<2eQ>35lyd{ zs>%>Yd33DWA7gxDg(I0JKDV2`J49Sl=5ZRZr0^7qi@2sLE~1%4$3+ci9S0%UH7YixO4ERQRu%f{Mc)A0S4Iq-Q8-NvO&2s(^lpr$@@h1Sn?cnmPtlcM zQG-v{DJpnGVf-G?Oc=joV|>;jL5x8{82`*A{}W@lgD`eA zz{YrU2;<+U_|lCk&16~-Iyv#p6t+jOG>+|kym-Qvr)X@C*x1%-rm;=OE5a6b>nwD| z_LFPj;}m7%_qwSt-0Xl%}=&EYA8ZO3LRe%msM#x{)gXu{T-=Ibv;GQ|p8m!g6r z;EP%izf*W-!nUZHir;w-31SNpTA;dxO8{H@-1zc>7;YngU9D)Qf;hWbNf2kx^40J> zC|m=rVO&azOmVv@4KZ$_xIeK)%c~6UcwsAjdXmgeCJq zLLk@VlK&rMxQ#$|wZaDZ)ey)B7Wf)PcY-49nwpj&J2zL+{3Dvn(SDuVPiXTLjrNZU z?UX@iIia14SA=$M^U@t&RaH-xI~V$fyTHBl&ccdv&?1QGiQEx{`81w_PV-EJSCD*z z^2RZNhCGZJdxG3|E4*PzhnFsA+6nR$m-2!)HCI!3K6!S%uV)45>B$?H!eBzmP4HuE zw0(RND&sy5aP8z{o}zsW+Gz^u5zI|KeiX0B$B&ld<4JPFP0-yg8&W^t1jE7?dAT$! zJj7D87sEK=jJ&wwCRjL|{FYyelT5oB8-CDSjSatXNN{Wj5*i!+hf8Q^{{aG?Bgc00 zL>ng{7cMKh*d09HTn!FWU|^5$rzgU1=^lJ=1@z$KTc{p9S3*5_H~|ZROs6h;kd}D` zc5a%_nI4z`U)Hj}q|l*-oOQdev-dcf%5go&Z6{oLipCY}q`~6A78=(_6Ba@ zH`1`t{T?-JykU)Rx_Fx3Lc_*AE!42_@fK=!Yv)>U+_5s*UJGR_j2t&4nPt#Gtp*J^ zZ}Fo|&F@^O*=0RY^J|-$+*&ob47N~%%WbHh2A5T`;0piMgUfAT2o5g66;57GWhSX_ zUD5u^Bvhbr4h=4AWvRhs9fuePmuXpiaM?IZ4KB$J8eD<_IJlIbpY~nxm#zr>wi|tM za3)RmV>pl8rb2?ZGupyKErA_xNrSqj+v=SH|)bYF9>Kaf9-P zF@Yv@7&W3MbhKQz+1Eo{&$O$qgiCqBIWqeJAABDqOHEO2lLznhc|EtwllS`4j61Rv z%5zW^cS!-)jkQlQPtjB)-T5h-Ff%nOoAHV&pUqjNE1v{_7{^$hxA?2dA0L9StaS(~ z_XAse&7H2M8l?GF-_7D_ZUwped7eV9eppv239gTQ~m1R9j^ zK1<(FLQGedi`Kxgp7aHbW~>O+xpFBq*fg7M>FmaDpTY&CSsbx3gN1QP01n_Lp= zRbzF<=RdI4{KB6^PoL~+h+OtGL}OGoMPp2eC-DCI4qq*LJ2vh{C@e$|wbgH7wu;oI zXb2}oWo{Xff~ROwz&QMAUw+C;%uJ+Mg;zw1RoUf5>d%k+CcCfz8uz=zL%djG!7iRc zEO@dbgQ;w4suVu4Gc!54`IW5fqMHxb~3O@J>Q5+ndf zXkO$3m(aY33-UOWX6HafRdJ-7Bu zq9MLM{GMB7+3Z=LPmE^T6}m3v1xK}1n=r2Bxe47#Eme5m;ETSRZBT@9prv{D1BQRQ5eWgUxze+Uy ztBfW+RDSv`*P(Lnw|xi1X}n)^fMV|(o+?VFRwUYUl{AQM-C7Z~50|X%HforswcK7~d?zuC3urR{+(MfHY{hBGEi21& z-@+=-bv!F+pJHpj(ILSw011V`?Oa0YK@w7bqqv`EAf;PurF$F_Q0mztkDv6l6^FQh zbiysD)2I#~%EeRmT^*@n>vU_1Ef1XX{V8lbI+F;WhM4u|n9RuQ3TMwLnk9=q^)>OF zMBzZe)u{0L5F(;a;Q+5d6KER1XaiUHubu`FtyL=pU^`>(V@?!WV?ObjFHc0F0!?I^ z2IwB?=~N-1O{6^guh|(Q(ILlqfGTbHJb<^2ng<|5XdVD8*mGZ?#g)zj5ViZB@x>WY zZPe0o3p9aO9}(OpT3UYNjPGBfEl*Z2T80~9XoqkVN3#vDegS-RB-0Q$_@!@?7{jfg z)?oxo(Xk)i+TwY6@P|++8rQW^Q&m#{3*4GV!FW3>Rka$ov{At*9TH^rEpqRV5XA9M zRL&3&aw*Xp?jw3@^`VeF#Pd@0JZG12%pt)to>OHkJzOC}`YtHzNj==c)GrX19Jj(3 ztc;&+rJlBot9Xo_=Vw&fR#f2vQVO?drL-l?1%u#Z$b<88S#4E&*9?A3w|9Mh_BEET z{@2$^?GfZ^R7e)Ip%%{o)@PmfrN<5hQ&v_QS~P7=(X{dM>}!jXW$=_gS}r>8OY=^~ zN8?N$%Ab{j@~iW{`NHDQqnI2XVY6qoA_VhR~* zzb)*zGkwXh1!4)miC(2yh$-|c4R|);z44RflfU>L7n^uSc-bS@*w9ukOZ3+i8@Pn( zo+G^@T2|QA77k`<6VSX-j$x;e09b9r3##29A||Y!O!K{-{3ud#8{Ul&)ze>mTOUkjf%<^ zl`iwYo!rv+Z(H@Lpx??A_zNqrLeOZZYF9^z@E(!-!==}soQlp}J9A1`Bek78x^aBE zNNWeimQ?Uqfmd(G9hl)(MEMVO=fpG@+~}dYwo?z)y-bOn9VHHMEAjt*sO%AeWC`yy zRhLU5r`E18t{tEpIkm2sP^Pr8j?$*7(n=8oUu-JQ^;dI6ZrOxMrI4HXeO`w1v9p&C zYwS#cJSj5G+*mr7$0Q{lvxMr^{j9i(d`+XAw2C%v-fXDkumKlKuV#zeY~fw zYnexz6s9`MBxD^{5VDRG$depZoUUH~8yoF6ohk^QCPkj!MvL~cMGTzdlwHQ^X6<>* zby8M4E0Sr#--T7Y_WnADA+HI4Eoa#U@&0s~80+sS3V4|X6AE&j8Ht^*#ro5o$z*#< zoWEB@5!^3Nbk9zbk5=)g$-CnGv0@U}N$(7fcRa^Tx98YY#ozh=d5%j}{6m~}z;pB$ zxAEf2d4%Kye{<)p^rqpx?I^%JYxbW>@b~eE$GIvDEjUkdX(BNE5iX#oKl7@mjd7&C zJW*JbAzpNdO9JbVPW(a(;EcSB|R=+^*VzMI_9; zb&>hGv6a)4Ao=>>FnCWkI6Vsf^unvMWi+YbAK@&6;CryW4W9(~TFBf~{}ZA;FNkW# z)*V#s*qTcK!)6<9t?M-gb&x%p!FMF@-(H_AqW}tKNup z^sly`ADNrNyM}rm1Nv38dEfzjM4A!VfmbvmvZF)kS*-}@-{SfmEfvM3L&%jKvOJvb zUoT$Z9;3;OS9l6dB)-r=O&lL!5n<1`Vv@@ev=hTPPm-M2{k%Uy)@kH_RAe#jYUJ0nqZ;{j zbx2?UWq^bxN(ONWji5k6BdAQsftzlUSq|;0hL8tGP}g--Bd8$!mL5TkY36TiOadi1 zW5|`L@l$-q5)6Aa_h-O6AlEkc7kC?DX&k$%tawT9@^9rSGyu65Q)mDJhS9tH-5#GC zDdV#I!;NP;s?O=N{4Q$Jp69?aC;Kb{1NA2Ne&oG-?-U6^U0zlx%J58RPXzEJNeXph2K#m zy~6KEq5A8Ij_MWud%=HLVcpYFRahIiEl@l6lzSqK=oAhUV+qw-wK_rh6i~JCifXOe zoyrTSkJ|eEE&(;I34C9^e^-BuT+_}!MzlvwI<#oEr8P^@u@%NjM+m-C?fnmm!A!e~ zt%03XZ224#j4hB*Y+cJG6k8yn*y;;8a5CP-=3pP0Fu*?>PDCu|?C)pX-l=S4C3Jzv zx)oGlWN{TLvRZU1iL4fb{3)@sVK3WkdlTDkS*xqRzqb!s#-l8on@Ul3h^Jtb#T>*G zin2a(Z?3Y zQ5pr7BZUI%SSOi~W94|jZx~n4c2aS*k6RInD-Mi~t3F^Jp4`x-GZas8)fKNOuDW(E zFRrHbDIHhv=3sxB-q$}`PRsL$4v!g%%Iwg(s)2NEKmXlg8q-dJzRby$sVK?o%%h~PXRjPG2qL2h z&Et`g&+VniIKoq?{doaXC^Eo6YJa}T^#_cPz)Bojoa8qE!PE!gJRd0gwq+a9^72!6 z#8(J@*;$P*_Tmk8j6_NpUu4R#g9Mx}WR-jfk`vq<3KB;O1xaYW<*&~6e9J%lHVhMp zA3}>gK&37eDzVN7&~q-{|DXyUFOGsKUK}YHFYq}_C?&^up)9Kz4Z{hy-yq1=Q8c88|_kF@cJ&Q8=c>!Bm~xvg5Jg*azFeS zcXmUr*8CS%uSxY7q7_E_m=DFL!;o3!t-rm!{O#J{-!RT zjx+t^#6E5TwfcKmiuUKVSH7QxT7948-z1JP#j3%74g7)!A-oJEFZo*czsqDh(?#_Q zE;=OGF8~RBuKSvgVU|kejJhH!i5G!{uN>d_abp&DofE^ z2=9HMEM>+|^{l7FZA`l&#PY5R>0*Zjkp>C%03YBILK-B9v}XyTWVduKb_W+jK1BOv z8||ZI(f&CIXdhB&cYm~bY78%I*~YwdV^Y_W06%%Hzmew~Sz)Swq<1l9ydqftC>PeV*ZC*7K)7<6f1^n32KVcVlOU|ZQZ$5DzCCUK+3EfW zk7&%4D&#V{sZg%lO)Z>0GSk0WKb)_V3EE#{;twPgf1sM;&*kZYqaY8)-!t7+ zOZpU9RQ5=iy0<|EyT=ydD1s|faoD4KNewGjz%15D*=hyMVvRz(c;xluhEn8x%Tp-w zzQPoWJTNd6d6&DZ$n*4I$Wj0MZ)F9^IjW6_$Wd*C2aFtJ^$`E?$0VN4*m6TmGE3Dwg-0Zw`cXIWG=Nvc z(?CvnJcU=ghPm+cqb>fM#e8lh4QH3~6dKOX2YYu|1M}uEiDqyZFLRNrjz3v!e-^2j zX;;Hpm-2$^bJTEldQJ(2E^qgHJ&#K7{eG|USdJRbu195@N;A23>hi+`g(fE{6fKUJI}+dWychJ0g(zn6HQn?cpWah9T; zx-iT!?Vk_&m!!BT4t@c2$Jo6DUc~pO&%J_q;sTkOHqT26zWki`+abuop47c46Y-p)N$@OI_-DR?{f2US;|AZvSMlfg3=)x|^kFUWM^xLkiZ@ z&lJbYSMLV@bpO3lL5fQe!5x4JFwC=0&O87s8c+5tOR#UA1cL4EsR+h(D1xo(SrXYN zp7LjUK9+wxnH{sFJZ+dq`&?GN|)r{(cg zbnU+|K6^m^tMv>_c~xEAs+Iio9Mla94noKIRbPb~vg>}>b5XGuSf;~+F!ZpLt7^ld zXZ_cvxM&Y1_EHr@{a&hqNQd9j6-4%PfM2a%GNHCLFos#E;QKQKU(JJ%v2QQg_n?22 zHxYAk{QhBZsW;YtIOsnl^0`LZrusK#3C~e=vI4&E4x(| zzB8u1TF>OBXy$+?sHwdkl@fF2;uSGxZZB$TQ@sB`ZrTGwY@v$m@1An|Zxae--VxW% z;e=OUi%qSg{*huex0c|(lci|5!|fry{TlQTfBa}%k_uUuB7*nXnD4SN-|2#R!LpcqTsuE_kt)xWJ31=HOf})f{}*OEm|dfG2DF za~wetY7O|qYnH(y63g2426KsJ?eU6O*1oq(hfcr2Hrk~*h&={V0R?!!qZY|!DVkPc zythUU8T*!htC-9bt1-uf-fGM-*CD|%2S{klaWj|Dm;)p<<`@e(aLnOiZZH6OuvK|b z9zPDP%Kg2|)=Fzm07JKe4jgiD9mG&iKY8{Oe=pobwBTKT9nWiW^Sl1u-T+#|2|9qA zN8Lo8qEQ2L2(?czH=%Y4uL!kMZm7`?tx50u-QFjGZsH{I3on-{gYzs!qZZ!l0rmp= zxDWj+MNA*Y5_+d2s*jo_t_E2MhW61r_`8{QHLP+eFSx6ZdQ1B# z&y8tMluz$y-`=OB zA$jggf5W)HL3zoGHbv?L%71`;xbtrp7R*U-C%1%xm#1hFz@yR_FRrg9K^43r5>)A1 z9tq%;{8UAPC-%YdD6uVp1fQ?i94p`12WRH<&Z4BZ#D;tgQI?5{bzMv($l@t9xX$dW z2G{kOM6)1_Npz~E!N53KYa+Zr+M8)tEO03=*sHH%!APE)-qj!4SG}uWOL)-rM}Gs)IynJ;jP-pL^u4e!4t+W=ouKC_8hUs>f_?|) zrucsluL$}F%Z0w-IsY^#!myX-NpXl5Nmcf9EJZ^Y?vMfYJS|FbQ5-zhSDt9?o9%%g z9LawIzbnjX`VG^_i!e0*sIRJ4`R%H|wokd2tth3+IxiQeR<_rKujwaiU4l;gF?=HK z=l$#vRR^w0KggmvP8~RbDb#@j8%sKH8U0iTE|ce{4qW|yyaU&=pX$I}gZX#|uG7k^ z;LGZIYi1p826g7V{Zwa8^i!R=%3v^#?IU^4P;ZWVLh}orm)e(!cnk4s5?&F%CiN?? zYAN{LKhbr#8ScW&+kg5KWxqdQc6b?o2IA@>mZG_O70SCI#YJ&&HDHPzfo=WdvawV8 zL1&C}b&%`l*3ra)rQEpN%+CA@HLR{lN?!xkQReEJc$djG%*3`pVNaCMBz}r;GMrYJbIy zCjC`4mI=SC8k-RnXlgX*uc*QASJW{2mr%p16liSZ^_MFu1x9&O@i{m*DzXPta}7-^ z2WE+pJedd*QTondJPW;r-ZDC{uyS!By(f0fHF8&UV1p>)xri?zMK)iUA~y5D4by}H zpAcadqEaHvBD^BPEP_3pmCXjOgo)^{2ooP0nCx1ggwd&_?!;%e!@*9Gae-|@^5-S$ ztYayfI#;E;^EA&wGgtkR0@)sMo~PsLD!!2k zTP{x|2Vl#xLx`_B{RRvPO?gBPP%Y+3%%@vSd?B-HsC=7*=VkqBfj-XSU=_9By0NP( zrj^OftYwttPp>HpFc4*%4A7KqidRJ0rUS~S>}s2`ZEFOUI=fiZiT=ArV3X*LnjFaDb}FZh&7_ zk&k7T1<_qRg}PrmF@?Hc zU=wz~*Xg62X{jkH_6zYdPKY;pSo}KbSy+Drf$N<$1dyr=gb;GzvG#lZ$ ziH#Kpg6&j+M&cE*F>+ve-LNwa0yn#JFj_`8hfm|ZlM%R8)J9F3jWncd$Ww4gCo@|H zU`uAVel_!IGMQ%TO;^rT7~1E{I`zgz$n%+jv7$56t_F23~0!p>Y0k^_NG*>M{zx6 zU5hQ#7JrCnB1>1#=UkTk(nz-72?t4!Erl zckB{ydo%T$E`izNSzaum`ZPgI1QAcs z5P_u>boFyJL=EtYAZn27*23WV?)-2rt?AEJ>d?BDC7N25XlhkPlRmUAx=+CEeD}?L z0xQHIykEyKwNS%&3e7yDcLJT{*x3;YdHtAFb0LfqwYE=#Q^D@(7Z@z2FvaZ9I+yZ- zlXLAu>+a|uXeOV}50t#1mg1hB9qPV{7eh-Kx96(<+AX+r-a37uH_PaxlLxul<4WXezg*-J>AUmjy z0|UZ2#|_brU+*yer(AXDOIcgt433I&&yYY?g|xg#xx4x7`l41Idrq1SOwHp4XDWkZ zxxvs4{a4@2s>ygO_t{Uf$FP9c%|}_YTUO`}MSA+osV#C!6{$MET^+>^g8#5D;4C(w z>Gcg0%NCm}FRY)O>iJ1#jR^ENCgjN*M+DNvMAu@*If|L#TFm)=b243vp;JE`Zq;Kq zZyBq;=S-mE?BJ!VeBnr@G1lSe&iDB8GwY=mO(Xb5O;a1;BLr+-GbP` zs#_2(k4`SttGy6_1}6&B?OrX{qhftyp6b;?JbgAcP}9g7EdLlA=;+;zHgT42;zm*f z!&7v#07g**lQS4@r#?VWyrKrC=it%}%=b{y;Ta(CR@GD&h^LK*X2HVyb&Wz0k76kr z;xM+G5X7tQ++0+WhuFl5C9MVpw^y7`FM{xj9;Wpu21gzx+vYlAJo+ zf4#WOjiSasDxcv_D~^{3s};vTSze8Q7-uK|{x^#>UK+A2#if*B&3v_q_rD=m$Ib}U zHL~($_KZNfk)5xW`D&sz?(^T6$!eLOr)ZypdRpe|fwz;>bMT6so|9i*@W25&b6kRF z=d8ebVe-c!w~ps2X!7K9gmU2B! z8!Cw2u%V*8i_Z_v58Ng8a|_7lhj|M5e827Ur*l{WB)D!45?VJm3cz8yUZ!<(>~!$$6VRm4*E``3S~oAp0$MlU zr2seJp52QB4UM`5^5eyU45MCwim3O{4vzC4ZW!UrQ#8)-fP`}^G?s8~jaP(o>w@wk ziuOzp&a`LZi8+DF^7K;Z8@UM9qu65%dvo9?^Qr? z9%IM(HP@_6mOYjS>`xm!D@WfJXkZ+$IWPr_<{aq5Z6OZu6wLv6TH?U#n438823`>d z-YAy?X}1T4x!}G3c4#cV=uKBy2Yotgj9n>tEO>HIgd|W;%kPgxr@JtIOZ;j zHo@G*A5a3WNb&nsFSyqbHFvQ9%ci-DdPCs~|J8FB3vAL)!7QBgeH`{~&xJ4H;UV;y zs6aC*G#r1E}-jBHF-gX(BuVJ0FxK(v)fLeGHdFr4&z%)Y+0Dq zu1#T9>vkOqC$?|hrYO68c2QxwiLKhUZac2!grcko6We9CYLg{3wGusOx$C2maA&BPtF9r|77mN4O-nJsM~$61jkS5EvM|;|SqF`))7M zGpD!~Z*$-{KhfTePzM{+X=X`Z5yh6lx9PW}XQ6Vj*fijY24 z9@3BR3*@;V-Q$_SGVu#9mXQ97rx4P=*hrse5{+~){9qm^5{APw=-8vap-WN0_~8h$ zSMJ$ob`kaXErfLK;R@+&hXj!Z34O(|8dHg=0tqtqP@t0wJystItQB{lCXEcy<8Gcp^teO$DeqP$ z(ewyoS7WFmsC@`NRzRP-e3%uXY6F)-gAZ|{9N@PQQTEwHdDS67qJV^m@&T9p|3rb? zh$ybM5K6|f;cDO*VoIv?+_gDv!+T~$&wu2RmjjJG|5bE&2n*+QSkA4%njx8|XgWMp znhud8G##Swis%qE!i^3%$l-lStr9x+^r5e$5>3e^nv%<_-1S zVqOcpB%0&>I+^IymZwm&3!gQA56)Pi4}CReQcbCeS6<_+Z8El*Jp5UplI(V-jy=#B z$chLJbgH?O92_trQl`IBv8Jps_4dYMG{2E5E%$rm**61ki|IT!jYqB>p+-83918yhf7HF2PK+ebe1BE-V5Z4xRHzpq&a$|@Z0EedH*D=X)RFcSr2<^2(Cws0UL}^V?YyqM`OST&>;L* zj{(gQs)Gm=bXE=x9sb5KV2@L2dP{g6l+1qC^3xHO(Z4QA3P)pL$#5?#B6@qKit-I~k#Uk3V#Y^GQ>lP*OCvqs4a zUqTz-ljo)uvfC)tl`3#Za99mT{9O!m6ag-P26BpAb1BfZDmtGJjDWQ?qYnDgzYV0w z)x}nAF`M6u#i7z)0}bTvUjkLdGA<>}Z+#PJ_Wx*ZBZ~QLj%RqlA;DH2t%(@hM(lM+ zzz~$sSn#kzVn6qtn4ug1XjVC9lv)V|cV+(=NP`^? zdGKSL8>M1C3k&7kjpbI*P=TlD)*IlZasNMfZtneTNJC6G+ zorAH0gVxk~-**ni3e`uK=5`&P0^A4hhl%BrqPVS3F~EiWtwO|3AOs))2qv@q2Zds9Em%C6Fj?;o|?F z;7axX(e~YeQ5DbQ-b)B1dz26ekOG7zorETWl+bJFz1_RJv?Gv&CJ=frp$TN^O+6(7w&ezi7j-%FCQ$t|;e4j{aL#4umNJ4yp_IvY0DgD?QY2 zV`5_D~PF@XNYl1%Hli=e(a0SG^zzJ70@osu%R&xyg3A3{$;es11XL02qHS zNaxu9-3y?o)eG`?S(B&L3zl&7|Lz5fbTj7`Ud*IQyIL$O8LiA<4VZ*2v;R% zRitEg1)Tk)#4(6z@ON>M1{wU)ON%2y)~?fJJ4cBG*;%+=ao)$+s4b%=!`0NGlMRFM zJz%a!!)ITzJGm2_{W+RuCQamyvaX(5BPd_WHP4yFGtkT-!=OCPhC#}Jp_#*Cjv=BM zexiM&JkfG>8CSY<2hT;6w-}TU+b~EOFhuz|jsePJ{B(C*g=y5P9>qdsc$6#6`5wAN^%L^i#0<)-4YWSlE6ItX=N&Ir}QbBq?A zX=`D5F&>&Y&uC&^UN!O15&kBAuCl9vW0(A@vTJmF4pxJ=@NiZywO!63W($KX)WT0; zZi*m};S;s+v0yDsw=}+0)s-8hg_kC{Ryr?mzT`FDU=Xu~@8ViUvxO_j*y^r_ou4u4 z%2|9oLLGv=3T=q*7zW|*`^eBi@sY~PL*du5av4?&bl@1N%$%23Iyj?rAS?$TC;zDC zs$86A_H{?fs`t7^#D9d6ah1HrMJ1!>5K|=}8mZ)gk)}#o;}fZ*^~fMbPbvwm|K=UmD$=;jbZ zt3_$>iy!x1(9qT2`7qB$9(0>Q`ltyysiEMh3~-I@y)z>>P~vC-=LC7gbw4b#3@=S&pHgI>;s_#py`8I((*`CzQBz*vxv}k|c}CN@ zK!vU(yL3AdXsuq_aD78kb(mHdfd65QCDtw?P%qOciS-ND*;1$0#9%Z`AWc$uUrMc=!P$+xZKV+c{XyxuZ@P+ zbw@Q9HUv@z1jVsma12ofj7gciaFEvUt%N-2g(F;Qd@l~aYghMYpZ-8sNv$+fMnZqTRR!^BX&~+!TJ^M9N z$;P$`r%yMj)EMNN?(D?D=TKgfI`trgkcmQ5Qm3vz z#5FP`$7Os_eLOFLuY${VpO;P4#<_UMo(})vcb^+zX8-oWj;0Z{;w{O-RA2LPg7lpP z8^pND!zsTlnO8YvEr?ONR9=F!fR`fI@{mn}?Jk+zVN^4xO@PGGd6oZ%02eR!jdcbJ z&|N$3Qa5isQ;6+THnuM*wt}&h_yy|!!Ii$tVB<=zIo+kMae)1|3>Un)Q*lV7)*mFn zE46G2rSBkfn>5`M=#bpgZ4`*y)9?61?&)_|Q88sRSI{v38<*=@XL%jUnXh?Lszb*iPtsQ*)bs70Ee!e zSU(#AT}?Y(#gZCrHq9$K;XgKti zU+KzQeh$CPTYi}Z-tva7yd^KMyrmPG&x%>g%c>2RMnfRfGD@$vnG?Vi95!_Vz?qXXhfG5n8jWJknMxrp-5qPq2t%7-er7 z@-JLVrhkFvApdd%iIaahicjQUj=F>R7utw=^FdhK;&WDY-{-U`5EY;0Vv>J(g+WaJ zau*jZ(9l|XimQxlI?eTg^E#t0bN3D%;Bb>ufiDv!&2mM{(Q`A)$h=OyBBg6?W*u37 zuA1af@BG=G_3CujC}*Sx>Tmi-%2m>%{7)4d2Kz8zXbrRHOjm-l0Y_83189tQlq6}+ z&O8HAZf{T?V8b9~z|g^pFDf>!?{srCQ3kX{Ia=+9WhC%Xxq3BO? z3{eIQ#c1z?`L}{Km>|mY{R=t+dY$7Q<#nEfU*>h5TL50?G2now>UnwPbxyneUT5z@ zS1tJD_l1S7zVZJ;J#we=B3CTE{y%n+>wxnUF0yhe|A;Ytx!6_Gd7Tr7C@W7kTICAY z;{TM`GsP`LQ_uX@vFl4*#T?FZUS=&g2h_@V<(w$^d{h~Zfgq^6R@%XMN*jXjb8&FSh4m1IMaJj3yJs$-qCB151 z8v&GXUb}pSYmYOPm!>-DMxAtyp_40pKF?^ZP4%h|cIDa7Sg{9f6Y`b_g_W zT|0!@_S_oSl(9)kZ96KUZEvlGWuA|?$keu%jkdkaG1Rsf()D^FKX}7r?xo(t9iez;2w7^JM}Mun!^#Ku!maD=Owwl-CL|GL12_Rp~%vQ=$6{0DO^ z=Lfu>=d4PrXZ3TT>IPh|f9{TT7Ur7ctkO8-cxsqDdZBWH^O*p)UhOFx$Cp%NIvGQl z6y9I8CbJQXWkQXN7!6pj&dqG2T`~0aQ6UzWZ7e=lEdGn{vKZ)fQiIirT*^IZ%B5&& z%%&(V`_snHnO4|7(53v>8YS&^wF{|{W^}Atfh-)=WbRWg+r4OsLD&RzE~{P_qtfH- zx*}I%(;iu-4MLVVZjWnoKvA^Jsg`BJ5?_0VSH+XJJSv|2(W9o6w$Y11K0bz;As>w1 z6!Oi&dQ-?Z8=olTo1Iov$QO4Y=-%9=1F$!@fwv%qeCrs*4EgSMZ?0;If(mlvA=jAb zAk=-2!cArnlQ@pczK301@zYCBx$M{SMILe0hkNHpwRG5%lTo3`sx*IS^2ZU_qWeJB zI|^HLk78|jXz~!Np4y`05VN5{Bx>kyFgG>yxA;U2{cVvA9r<|B1;v5k1#$AD$6Z66 z#nXX^8K6>YhcJlQ+IPFE2(29|zdGS6hj%R+AI=HF$5%dGwRuelYIL?I2XoC6t{Al^*DYQCc??$Y%3~e54(?%N#_H0dg*5)A`_&2X(_w`*y>8W+c|;gsb}s;!@9#5Sa@EzUXUM%TxrW4FLRq-6 zy}*T|xk#^%;itGsfj%f-|T(P~+v4yQ|dUCA6mw%rCHWZTdNWZP%Y zxaK+s@r)F+^vh5|SU--TAk3Gcg0L(b27|DS4BihWXQ+Nq9rKy}09Qq$S|Wr`Nq`xJ zVK!zo*x4X7*nM~w4no?&IN0^hP#vL7hUy5dGSvRnUM?jy!ES`unt=ANP61f0>b$^< zPzOJ0tJoXCDn|QPR>h1d!ZVx{b=YHuoVzVKY2k${@7RauT@Huy7B38T(yOvX-w4Wi zsbVs6Ww~<4GB3KK98PB@RMKx_P5RZ5Rdgwb;33HJLxHsmlFg5{CJX^xc1;oOH$(VC9rMw`z^yuJa)a{bfK7d`Z?Ys!CEERkV+c-B`jqIYW&s2-+A6;<` zbRG}Pr#+FWmd;+`n4_2b4RBytuz;^73glS#9?NwN{|AyzHrL8Xv!nbW0 zT-pK*t(is6hK-$xHZ)Y9(73R- z9*L%gPp@(w{uL-R&lyT*@2$|~(lU2V+sP3F^!{b0O+s6lj z70@gg5Ro7>5P$^w2kG^r1_w$o#V7lg)sy23AtrGi7w7g$j^@Ie{vabUsJ z3}bfZyLcCfJj~&*;jGN3j4cn%ub!9js z#z6a-K8%b!Y>YDUc4^_YoE2?oG;&0Pk!u?K;yHkB-@~d&qAeSCmHGx1?Is-AZ(~Cv z6+|0UXg#?IIjNtF8l(EjaQJ2YB9&Cv#8={MYO! zw|uIfKqK1w$qT$4DX!aAS|8?I$g6?9L{zWFInup$(1zF6VMuBQmgphxN8c?i$s;|~nO9AO753lCz z!wXQD+B1tA)G+v%Kod_hf!UNjfytl6x7%7yxs$^w0ScIXBgyIP%4MMVwo{gh!<%NQ zI6Ns!O-LK^oHQZ*K6bb$&zga&3$Nv0fhEX^uf!*E;w!TP!^3&dZ7@9KebS_K!>5LW z&3;N-{FJs7qGX1L9~9F^6&eH{kaNQH)y}7|ys0EI|C1a-=KmDb94?tid5mF9`@f4@ zRFZ4y_sde{^b&IRFwJ<={cXmAjRZkB``*e5lltc+;^eMyJxX?qXj@V~9IhuguX7SO zCX^3aTK0|5*ExUTnK7aY{ShGR%4pTsxE43kzROZRf3MJ!ou$XJroy}qA$KI`Npkkm z_&B)CiTrv{UO)x+2^)>2-sq^0#q4ijH!h{ucho_64<{#~I^;nh-Wgo`$0#ki_I@Y} z{%gASkD+hihcKa4?EUgE0!#&4u6;1CjNi5EW0h<7*s$Q*9dL#UWoF;V7&}%4K_m)w zN08y-EmtdfE>aJ_11E3VLn&?WSmobmp%~oB4B&Fnxv`hZ>NA}SIhfWTzWa32op=Pl z2+qQsT9?z;JJ$tp>J`7%FQfT!FP;VVPNzBda)_F-BZM5`TW|>&ewSx-v_8*yl4qnv zi)Y5FMT=)R2Gmtmo=UDAE4Nk98#v$QIC4bouGEZhTu>T2l73&SxOXwj=84)pi+yk7 z+lw}x(d*B^h!!ktjA+5a2B8Iu=9TouPCFPDEF8y>VUnb8nd}}*&eHKP!K`nY*qYUG zt$(`wBSxQKZ*3Z&kHzW*&YI(x?UHk9z#-(EYK~LRDS=^3=X4i?Ggv}Pc`hEhV|zwe z4aq@R`I5)skQ|R1iInHYq({lCmGxe--n}}VC8x>SfN^Reug^HOkXHm9@D&pr#KC&u*mV$d)7W(gpJ?nlG%j%L8ZcJE%N+j-qR*-|b+7XbXGzPbFEWU! zwY)pOJO#A&rSmeQDd`2w_r|GLNk6w?;AKk3dorQ6-c|b*j3_jX|rp&YVMi0m8lHH8JC$gIn*+J}v4pbd%sLu&vJm3r} z$aXOWrR2s&`e5fI-h^aExeQ{O(OrB6jyiwqn1V?8Mk_r+I`g$MGAc>Wb}nXolxfWe zb>Y=~1vU)6rwbT(m$+PkOK;-XEl)Srt2_7bOr-l=Hr+oKO!uaFh0F&Xjb5)+a>9c( zq{Cp)pkQIOcrF#`HBBn^K0Q|Z%`mBXC>=Mcaa>$7DGo7B3V8TUDm=$DsR(=`lZwbG z%B0?Hq0bFsQd{rWH#w_gc{4Vm@uePz(D+h4M~yF47{)ZQ`FG{1TFQ}YHbu!dTj@ic z?HF}6$OPf%Yn!9`a*RCPPw(KQ0MJJhG&mqz6QW=wSb_q?0Xas89^P7y(+1|K4&4^n z@Yavxe5v(0#B6=wOD}1sVs7fpY4}7fpBA*`VFFX0N1i67w`7^Ndd<+!As&$lr@PiH zkAVqMoZzQ8p%6uLA|u-Aor11&d+%HkGzo0k9=iGYcKRaca^4`&MeE4KPx`m&#h|A0 z{{fzzoSPY8rS~NaVz%0*95vss+Cg_aA7dHR2H_#lE`Bs+Uyh0^iXcIAkhj2u@EhUh z;g>f6EEL~2?5e-y49^7)WSiU4H=Rzk5#<><)|Oz)b)~Dt z;F{4@kuaHG0zQ#JC*+bV3A(JhAV)2$p6ag8C^VyPCFl3hmpEJ6ghdOw@KUjsDa{$! zG@;pdX|^SL=m~O-%NZl<_kt;YH^xF4QxK-UuDQyX>ZRzjouhdX3Q~vXDq|X)tERr= zdh4mq2McAJU}eL3Z~35{WaJ2af+lm7$*qN7W^%Fpz~olvDwE^I)tom8#O$nhkL-c0 z$>yHHryjX7zCVPsUGX1obWOO3mG;@KL#Fe&F+kUY z=zRG=XvU8@bMhLb^Q#PO>ijMiOvqJ5tld;j78|S&cmBYrD|H9q=eudB+c896;Vdy8 z>S=Z)TEYm0S8{aqg2+ANmB#xG1us)IFsBwbUhQEuv|(`R8!&W=`T>riQ`CT=Rc|0o zRuWV|WhEoWtHqIFD3E<|q|-=P9Dy755KbqSI2mOvmzA}Y`3c*EtYtO|^ONj6N^cy0 z6QSH#uJER#?}_Gf*=dfx1R*p>hbE*sdY=Pu!tm^9JyUylyqYgO!b@R5=h%T_nzz#( zhU&u#xHfyd?5XR`?qE&CQu#Mvea(v zYj1LDU^Z1*Pj`d z9Fp{Bv16y3b?fNBCwcVoF8^-$2oZ;5f-f)Oo_l7j^&w=*1Yh@J_+M?`PRv02rfs0i z=_k6>)qs_wOUnH%N8i=xTuXM&)l1E?pURlz_VvVDXZvEJ{{=}pCbuy89g}7EfHTPf_GS-wS(`bNY+qGQr17LulzXmOAf$7C@k z%Q11qLz0R~NM%S$U~(3d^O&@#0!eF3u3>Tmlf_jbS&qpqOm1V+F9DLlm^?cR)6#lP#F+#H2}MNM^Ob^fgS*VN$aRBy}-)50eit z>DvsFL6|&oKO|3MQl=#&4nKxn0$}P zlFpE2& z`Y=AxXN)`af~T&StWSZ2zBJjtH$2go3UA>PeNwMqA9xy!$stT0$E0IlNV?6!^fD&& zC8Li05QvGVKP2=ekmvDYUL@QY_Iq*a)E%We+Cca6z@I>>G%lHJbrcBsbe^v=R8VLRy{>vKHMSk$0 z-qQL01js;x(c2T`>h_r(ooB$ozqKKA1c^Mc+9qEEI?oPaQXLd}iu| zwIkQoPVq$oXyMuv-zOpJ_m=Tn!hlyWek&TkQO56IM!sm{e+T`h<~uXTd9o&XQ`0iD z6bs@&FW42z=@h$#zofU)a`YXso3jf_u+<%PU-;CdTAQu|K z7smgk>Hkz;C`bhbeOS(ig?w1ThuJBw4>P9v!XR4@%~u?LQhX&KUF-{obcrvb75xZE zdw_$Ye@a3cM6vwi&_!{q7rwaQg3-3DnjU%!b`pQC4$Z-Zo1JL41C zOh5VkuJP?dfPD|j2Vbs0aNP+ z3yM#q*8X>{*6IuO6N1q!*qiB-{TJy&I8a7<+z-ef7U@5fJjdC~)t5usiT5m!+_7Wq z0LMAGdWqgM<*WtwOSB)d-njX)g*OT z_Q)!*is1}sp&{1`(JaX{b#jCh$Lh%O*Zy849-xA=%<#3vYpiX zh_4wO+h4nE6{KS=MQD(gl%12+%1yXjeGsOL7rv?8#{94VSX3?f=LWr!1CCxJGUs@) z7{Q3i9ogP$j+f=?je4*6+h{kmc++SyJmJ6Q@s`^YX#*qfOU%Moa?UVYOGt4i%3+)I z&7vumH#&CTEos%@++sK|k={K9<@rY6KSLtpzOcZPUUmXU=R~Ql8qb*U=VDmag`rs);25Y!?Kw zT@#Ege9fS4P`0?KXk(i+C@m$fkbp@RS9$c0>}dJzPQ9x*%%G9g(|gGk59@bwyvMEp z5x}hcu_3$kCL!Xaom)!Wa|objG&UP}!N|+mBV^Ub$HvG~EntJX?XR$tv|^9m(ng)U zd+ELU+u}MSj=nMFLkobWOry=ickjbnKeb;EbBJFp>XIDmPpHP8+V`M5yHhRmpw(qC zr#$?)9wt9MuGg3CCJu^oPyxfQ)(*(4)p$@j*5(XBo(T~276Liejtoog39#gzOld5~ zI+ABahcwjSFoq$B10XENI+bCG17H~k!?8ZZb0P5+2J!6-LBs(;j`a{j5M4l+bjh)v zVHu$0KnLKZ-dnuO;N)0eR0SR1%hiwR>XnHg7U261nj2r^{aIc=rgwGxAg>>X#qVoT zA>|9&*Qw3iYg@;6i0dI36>_TDzb4Dv((X=<+j7U#dTp)Z6nX7yy_~%IwB9D}JHJIc zRKR_i*$KJPtar-_x$PO)Q(p9p-a;fyv8;o7U}D)Ochdt~7wm^~Qb*n^8zw3<(n)W5 z@uN9w4i`^o8 zs^9jgM#ZLDdeWk%szI7n2|@*YC)28v@oM3BMx8h}suKrLo%Wp7qXma19R~~g>a5;S zBw50!DMQYAJ;IikC_Fvb5ov=Gg|SN(Mat;jiz|r^cTT2;JoW~}kOTh?g}Q}hXmdet zD$@T>;R>?LIek`P3e*l${~m?S=k-a2DUb}y{vL&IE5sqnoRXDL;*FUJ(^oG2P|!YEjczr%8Z+@LEgW zX~JaR#}ezXUSnJ#3;giX6;X&^zxVZF+Wphyq4)Jf(aPdSZFnDN*J&E{QJdSja#`;k zloD7$LXHU#GMx)KDTt5-AL`r6wm z-!Pd=iDsdM8PH-lL#K!xdC-=$>!;xp z?fPkXYS*s-bJOZy5(Gc^ou^SZ^l^p5=%`QiX(ASj8xuSVqbpbdlWYF2e;|y8ySEC2 zeCjiOg=lQCkO_}KjF+cQ%GAwM=Oz-r&?~|Fqk2!#o#njwNGi`sv*{qh`sx4`d`ZNY zr%ubH!|&qZo#ok%!+5+`OJ4p;kI}q&bZ$m4N-F9rn@3Tfpt&?14Xh}0|D#tdVSKe^ zxxD(dJ}|BhO2}u1<(SBkZ@7m=Gl1EkC?lzH8)haoZpSB56sH8hEg9cN~ur&2}<2=D3uXXN==z=&dXN)r6)RGLoIsZQc)nTz&=buQXm7E zO^Fhb0zbga)FH3n6DjaYkqX@Ja0ls-qcrz};%CN{I^<0YU~>HjJESYz9V&khajz84 z8J6YHLPZIg6ysJ0(?Vwis;@?1?y9!jq`@GP`$B*cI@yjh)RJW~7HcdoBxm`*g$ip# zwPZpGcZ{PAB6|o%M=9`YzXD-mZS+d2NPM`vxRyRc&9hsEyW7NtpqyN*-&)NnNvjNC zwl7LaTAhleNvqTFiL^RxMp4}|aa*>r29+q>?MAN~dynHD{L7ebj;j6^HaX?5zWc5i zD=R-xP)2TTo>f{NY(J@?EY=AAy-?cil;fQ4i6z%ss)C&u+RoT)foMBJTRTIYv0r5& z{{M(LNF23TsJ)3GJbg#NJn)^Fr81|qyK`}4ES1Uk7gUy|cV&lZFB?j(w=27x_R0*k zHhlz1b7e1QysppiJu2R009ZvyiOUZxa+c+Q4Yc;rjE31HC>|Zh{{%CWecZq&vX2|e zKB9Rv1vpwb$%jw>;MY_ITl9C)LD>0X zXR58LG9@#oiN>r1MuBopf^t)iy7Z_nDKCNyIiG$rmGkM1`GYv0=ooN5Jrxp~0Vo^qJiN9KnC~0{wCv|L^n8~U_=J*R{ zUbI(pq1K*IRgrS`Kp+Nnbc~WOs?v#9c2k@tjq%&nyqp+3H}-X z)tPEV>AJ-XXRD468LzKqss$y+%UDnf#*B7TI5YkJ+<_q>vtaLLPDp|%hUbrzRnxTC zF^kQ@OV1)sB{?T3*FCgW(0bim3-^#h{gMWaE-&fA(|eH(TzD$#1hA>e*)$2thORpe zRwKIZ6xh&pr#)t=2J02Tpc`i}STS(&dZ;D1VDxR(xb}GWL@j%kJheU}LF8IYB&}JD zOOlYe^97d?EL;P9KJu~z*0LxX&^t$48s~8!^8D7J%6Ue8`;XU-fX&e-!HOJBX_>|ixCQN1;*+r zD=cA^pnWv+DSm3`De-OL=-E(z8ks8K6OBw2W>e%6bYudz5xFO`OElZf_0xod0(2!> z4L{AAewsBEO{X>5ZJ4Om4rVlV7d~KdEUt;WvZG`hEU$W{IsA0CKq@3@Gh2luEiHs8 zQU1z19}?#@bMFT4!)C)veDB;FC*Nr9zE5OY#Z>4Lya!)d_%?Iz)bt?nci*Xj+7r%9~>#) zYvryd&IDwaquaZ~}0Qf)LqC*9o=2TOr8^IPcvxeGX&8Fg#Tl)Vk5&6 zgK2&S@U7TrIi|BaQ#{TyA??Ek?b8fFv;jd|wb#11>x%OXOSBLBY16*(SBKrB#OEv% zt&A9?Z!tKL{$vh)3QL5}WxBzZ{=`p}rffwRG(}A{=c=WYYVeCoDc82P^RJ6Ruc{({ z?CFlxs?1eODU6buv^ATJv+j;^Rg$Mf{1~((I%v`rCBlErgC=8Ut6(0wo;?)0k69mt zP>V$`RvB8QZFhQnXKgO*6291_x)^F<$-xht%SL|BToq#wcZz3#ZM#11_IL1x5Y&BC z2{ps(HJ7eUiJOGHc^KE-5=Nb>$nWdkEv7Rl?dhI>ZqS|V>7oS2QZi>m2P0PXcaIk~ zD4uicHo!erY-j9gsbRAP@Vna0ckXI;c-@2L`A)FxcYdIILUa)7zC)k~Tn>2Nu&rke z+sb)0%Whly2D@Xlrw!X;lvFq_WnY)OvmmRYC0BSqyHi0F@(m9oGyAtZI>bFR?hw|H zD`taLWwji@0A?GYlr*URgqdkj{TZKVQ2lvs;Br8Bs1q)puO8+eSGeUn4~Ld7H4lpO zRk{cZU~GegCna8qjA68t4=6T|R^Bw|Y#Ute+FHgud2Ow` zoV?_6w~LEI0l999Gl^-bh5^i0LfJ?+(=apXCJ&!TH+l1l(#=-4J0nmxZ;Q2zA$5pV z7QkefFYmZR9D@!~&LQ?&L}l_9KA69P8t?;Qa95AR2j@7QBViPMk>#Sm;rT-O7Nolu ziVy7h20G@c!S)LV$05LRNjfs!4~SnF9LE*y5-1n15GCemqRf2DG?B07oDXMx_2v-_ zPD2X7@#~7BK0^>eKu}QdFlYup+!Le`eLD?{>NQ`DDc#{W=$KMr9E>Sl=BqJ`jn5K`8I%w&#tRm*r2%2{lUuP6c&_@3sl?KWy+{2@WKPIu+U3`n?%cMkiax`mgKMt&b`tAoP74_XK_(Xm8%KW1GZs)1) zoWQ>Ofc#@B_|>0T8>q!|3t)21-*m?vSehf6kW2F1Q-yN@NNc!p>Z2v(#ntYfj!^tj zN6T&&7Qh#>K)KWU3zR#pgW2I^?%QRfWllthec;QS>5g;2Hw`EUp50{>)!_HF?3-^J z{3_w#S1H`sZ|uE5j-TZo6c>WRa{K?*63ti%w*Y2ip{%4L9ZQpn-1tN)axW-KMZM>^ zXBJjbxw-BqMILK2QqhAJz~q|0^UhT?=aPGM@zY53)J|de0SftB`6iQn2AhG8ju;l)E$aN7SnT~ zX)(R|?QBPOw^q6H z#0-nNGN7s0h-#>YmkHpJmYT~4k-`UyAe-D1v@M2iHWs0qf2{%CNTnM_M(JkcLedQz z-73me>o>)yi1w7y)Q@Z3$#D}=Qm(1dOmxx|1DGx4n+WuAt>`VxOnv)pd?HP~U8JT? z6u76QunC1pE`R%-cUtnR*Vb<;E5DZR1L7MdJ^6?)EWkg@?&Jn{wg_EhnH7aR_bj4a zYsc?Q$w5T$-BwDju}B3m3GjcC$N9tGq}BF^rH>^T&nMTv=Y&;;w8u@Ggtw z&Mj_N+-+OLg;u-Z^yaU-x?FP4M0xELX`d40DH<4DKMWE>gz zM8=V^h`KRbNF;lp<<=Vu)fU&8?XYIU%tXCk1+$;hGJc0ULT=vSo>p>>C5gEXxWodf zb-+1`)H>h{3txTo^U6@dyL^vy3^y@qG;S^;+U*tGYnvBG_;v( zn3;UUb$lY5xn88r{PI+=;PBaF?%gH-V{tY8fwshNM#^UXW7y0sp7$TvmPVU-#+@cA zFornzLH@QBq31X({!UlkNsu&Jy|aN%yF@Xq1U-^+&7CRLIW&eyw8NK&$2FVrkOq zJbWUp!nFOAyB6E+F&DcopK?zr>tHzhP<(DU>sWor9Wa2Y zLllbQ$qcL!8BQiXk>O-6Eoumv{-)bq*m7!~a}O1BS<{f^%(MU|*Zj428FpsB4Vz;v zuTH8Y&!2aflFy%a4-gwHKFWsH89G@FEs0}$5J7yamMWb*ZRq5wqI5FtEzrs1hE5nI zrIV>k{W=-)w!50+ip+c4-7Rhvio{it$7CdxFo4-OC=;pVTg*%<`3|2*CEpdPk{<8E z&SarcJ?uUANl{`M6z5a0Pzzvk&EImzDmeyIu=^dNibYfnz_D`9HRvl17@UUI*kx*~ zuN6bk&FA@#x*43v_F0BIanZ8(6 z4!F-(YYe`wWTP zN?c|Lq6i3+BDs?w3iCxn9&{(SmnnDhEBpp^Cl@~k)BPD(;W)%7DbxMSGTp zVce5{O^>qytYc4^`RWwU7%MyONjl(5n|4_z<*RjCE-RhniFadBYD42TK*k#G?!b4- z8AQF1MEB$^&kv*Tc8iq(%$Ef+-w=#Beq8u}FsB!WICDC&(+bHOCwA)Qs}no-63l;h zov2}nq~7JDtLvC`m@Wk^lpNUwEJ2R!B0iBLyO>|p*iz>^_uRsc?1%5%OXRb^(9t*= zRz9`FFd5#}t1B3gti0)7EgZ{1M!rD&htUAA+4GxfAKG*aB7pB#&<6I&gypJFR)*i8 zeR9!H&?jS;t3JsnsXloftRIGWwun?s&bjHXp%#%k%1F&qP9FH#JuvQ9Yz5v+Ken0$ zqeY{a_GfjndTAeoQZEI$sh9Tp#oax`x7;wkEUOgl#%C;NyAzX_E35B_nate@FuW@A z``4S^;pPizAhxX0S-ci|c1%lOu8wK-S+0(0^;)jpsOrvgQx#AB*56squS(NKP(@^v z`!GKl<$io3qujr|D5EU(yL(JwqdfJyd$f3oF(%7AWdTgC`AhD2bd|6k+)}3e4!58* z_!AbsE?Lwij1_gHYnoP1dmFR?7wU@}3`+-s0fG1F%Ok(lsHgo5<_MpR62DlvNU=Y1 z#X435Ic9+$jG~+FfgXO`q%>zlYDOkVuBL!3Mx?nx5!tYT{6C3q2>Nyi@B z8{rx0(AM3Oy+RYJ$};s*gskiI^c5Qz5t<&YTcMU&9%TrOfE?>&Zb{Dr;z#)V2%bfP(eiLRPkr$vLlRXeWl@cmzn1Z&iIA0kwW(>t zUk2$&h9J^^Dbic(52_}rFeH(NQk-;Jl*cDp@JuLm)0L_jIx_^3ZVD%5LFy~zJT=4s zhD6eirgBFOPfyhp(eiS6&rmUz=RwMu2IV}4Aj+AFa@7~cRuxMak|@LHE*a(fD|&Lp zPM!xTZ#5_%VF;qURZ%W;FuayH$&f^OtBvwgF`jYa63cTjCUu~L2se*lV50lBqMI1! z=_7t*NTU0;jqb2`&k^BV6`;Tpt5hq;Fa%Q806}YdwHbn_mXHbctrm{13Ko~l^I$u) zHmLSy2%-vzIjL}PaD9R&L5yTrBHfyit{~S|^LWK%o(D;fH%QNC2qFy#68Is8AgbdT z)o2-7(=$lyXL<01io+oKG=o$7J}Udv@-!D`7@TN6YNP48*Rw=i<9SfhD+bYT8GiD+koXc|Kh(auCvTfIUp;S}NcD85^?TE%zs;TPk(-Y<9Zp8x=7TwNYd^izQ$dF|=SO9yC2D$AM4P{^Rq)Vw#d`l^D?<7^xbw0N`1PajO+m8$L!}rYKatvM7!1+KBN{C z>cTHBtCW5-ySQ9cEFny;Ed}9BI?oTC+~HA7CNVfM@hB!Vw9aElV&Vy4LSyS@o(oB@ zSETnbIFVkDq+5vN3{F(nTU6n^#w>A>XF!5)DuP!ToCvc2xcENoD7CBLsUoT|ED;ARE!{wCU+?N!C|dCh=tJ)_=yqcW zq6-M}c7qv$NCLtnxg!P~Xb#VSB(n^XGZ}(N0)kGb(_osY-DLT?Z|V1%#L=7Y(EAkvhCK&zO~@3S>vNWU~;<=FQK1KFf1}C!n462oxszLTIh9I(lFv-$FW)OGjs{`E;7fq_JQ-f+e{01FVC+RS# z#;j9=Dx;(Z)v^!KtP|F7d%Ha~v<~a!B)6w~TpjHFe4r@D+yRZ9IgKKOjP}61rRO@! zmgpSm^B&KgEM=HuU~~ES3B7{o#>m29((=a^dp*gaVmJfSp^sq*AW@Ceq`V+r@+ME_ zc#L;LJ4(9WEeng#5)QN?-S4*0=XpgeWu##-Bt=`ePQ6IFkRdQeSaa=2U2Q8gI4%op zw~!PeY=+sHKSJ2IPAv;`z)b$3_-tC0C`;@Jb)*!S(Une|8ND~i0rcMBwXvR2f0s<=$Q*ApcdPw-Tdt+PF=#0QqF>RzBrMh!19gujO088y6V zA*qJn@EYF!8#Od8tpa9LL(Yt9$N^MC=YeSva?E(o{eq*Yn(qWuGiQS5Sy8{hGC|T@ z?E{ZSGxkGx%L*4>eZ%zX|89%|JIywZ51%1dU0k{FAku3oto@vFF2H{RI|XY zxpNPCj)@tTa7tBEjVeuL2!EAU8&z6kA*o6$d6l;OjVhH<#t6))N}L&0i36xgmGV68 z1cy?UCI?jM@VxAjvhj4!GI7q5P}S?KQLnQMf%TGf$=JW4VtQ&V@d?Ay3%l2N&Ax?y z@RBj!&5TRNtbSHjRSo#jYuknRS+_QZNp)*u3F$X0Y)v@r9J#_{yeD2(l6?fQRJS$; z<4IcwHlFyBFb7ckasajOkvX13TQ+LnGxqj9c3`fjfkSk$hC^8m(^UP-QWnU+8;*M{<08M zwcD&};V?zOmmdC`sw%0f0UxRw=R;NFfP_(FD#{KkJ#_?!Qq}%lxN0p{d7cz4*Zcd5 zs!;Rw%J!Ob1Xd^oghkuyVq8x@LG6#_m~Al0&IN zO^~hM_~-`FBWpcl9b%a!pQ_O!qehDu0`HXw*|t7R&S?@+P3&M8+M?aU>a>4-FekO6 zX+$m7q2g7gfE76@&dR^Z>Ua?@G4NCqFI(KG0Z%h#=T!p=W)bq*22Yi;mTxjy$;geK zIKerQ`=z^HKLZx(uGcRDnB8E^ehj9q@5j3mgK=|g_Qcw`p(Et%NqZcC+B>#;v!{f^ zmXFj2FWoTpQRFjiE39nQ-Vk7qH8#lAtJC8mINX0*#{(PGwsji|OHJBRIu3gH1?XKj zP){q=u1tjqN`=6W?6QVMQc}%0fb4SF4o^eDp;WO1WZfPeBH84Eot~`@F_jS`k2qSdD{!i)+Wu<5tUQ(dgIa8#*fftA{zDrI*cuzAI!)at5Mz>jLh`BAMnfNFJYx92Cp zp;RmQu%l5cRMoKu_jusu@UxbHs;9kT)an(EK;Q8ZNQ%DWnuVY$T?wqxm%*wOFnHao zsszlaN}L&0i36xgr4D#D2o9wxy=beFoN&;yTf}Y*u)Yc#m7XdvgsCU3(MA=JCRs?V zmDXS*3rJgS4C3PhlvG#M2$)fgI5Vmd2T+X;9`SS+9Evs4%E8z8jHv|O$2nu2+C9!% zr*@As*QwoOKGUN6IN2<5A~b+G#iFg_g;+V-I$nfNwEMVdBkev4>rRaWa>wJI3n^?N z(Ik|=^ez_&uRY=UzT^(8iOqAjdo7UKZ``p_?Kf_*5dWkQ&EG@jo|%D*#1F`U&wAb$ zViOSJ$L)$+0F!_I?z=Pr*zIjDzw{PF%ONK{?}%y^3$=?`d6PPj8na0)`hNGkXM|`O zkjv3rI$njfvaSqH>p9IgskO2}41w!8P$1!BkGfybq&)Zqk4I$ljJQ%XMp2%@;6!=M zCVBKlPiwJ^A&BxA8)aBGjFzvx1lxwYct)hWT~U6F!HM#AMOlh-v_?Wix7&!)qG6&p zFI09r;~65}XB2S7*YU2R{27B2<##vXDrzh7GeZ#hcm3oY@ZBqD7)d9Cg6P{<3G{%A zT+y3pk;@S!=e+M}EM5D;{4f5|#?ipnJu!Hd3L@zmGe%6Ub7`B*4wU$YCrP`1v-G^- z@y1m`;dsvpWzy0*SJa!HUq$=PmT}S&*Y-X+celhvMkvmEN{P0NHm!5rf8H}s6MY$& zdTbvA@O3U;kUnOR%8Ed6U@UgI5lX$V(xzju*j3CSX0wcrhQ8j8&FXgO=?qT8!_jwO zeUC$Fz=K=C-!~%W$(z+;)46v&GsIq2oPv`_HmgDJ5r%+(`Cd6Yu4@Cwb28x)L?_Q% zNE*sdAa!Gs{n}_x2h*`V7S;coB2Qa(Jn0=#| z3C4^<=AgWGgr>ztSi~e<`NetDc*_CQpr2fZ(;^&74Z5>%gI@o@vr<&sVwoK^Xyq+R zQI#2j=!y?L9R!EcI3Bx2jpL@4Vm|V$6Fpd2BHG0u+JzxZq7ibyRhZy%6jAONKzZmj z&l6%IBS4gM49YnSL6rAghrM?WC8A?3q8N5KCQ!4;BNJSantQW4S2>zs*11aF2`B_% z9oQT;(2YFC5h1DMT%;*eHaZ#A{j2A@bPZMGJnm85SxuEJXR*EbND5603wg6MAnOs02nrwP-= z8=K)S=oR02z82#w7Ak`9ZB=?m+bZc|tTs12lf}ZoTyw2l^hW)ZA3Ql?YhbR8Rxa8G z3Q`|m>Q<%GlZH-D1k>ryp4QrNL#K?0(rF5O>_vr^4R3j>Ij+mTw>(|qQc)PL(mqT& zQYizNt&7r-N`J)6)X{#zCsOH8MX9vPuO4?{mA?9`XSFD~EkLE=7Qkehzy6;H3ZZ*_ zC2CmIl{TwxQ`(H%M)BafH^)S-dv44F;(@@7Ev$?bgw_AUGgS--%+<%rMG6g48(%E2 z!jNa;Hq}XU;WtPpt+6iBTS*(YO?6a8NGUaRo1xToUwNy;Yxkuc-fnTRC=b_Z7!#0! z9l950JA+cNv+3nKx);XgyUM5=Vzw~abVE#s5bxLGFoQyT(5&FT=qlRN+th0hCm51e z{*OW3%ndg9oL^2cZ&Ubu6jaSPf^)c-w|3Ma1n_9-Ftj~>TZHq13sf5wyfv_v_Te_U zBWgqqah379zAQV*|1$y6T6sM6t^j%G!&#P=wKEcE52DeBl~=B44-$rdZ*_YX+`+WXQ5n-XO!<(@|bs9I#r0)(cYhSOAmh zKQp{FEbm<}UbLu_FLXSQ?a~wPP_FD%H~s_>!1oNO1l`xiVB!}>b#Yu%I)fX3{2%J1 z8Cz0CZw%apOom7w>SV-}3ws#MUyV!7O5SQ(*bbRk$=f;Z8I+4Vu}7Go7mJS@Ue5a8 zY!=@$(h=iLDPM7isftSYM5?GHbE|o471qQbG2S5I-;r2vwrGrnd7#nI0+=lSnV=6e zQCwcjE+{VFeP~RKJooIF((?Ba?lS5rZlrpuExK6(sDZ1~4mEHk?@-}j5D9(lb|_V4 z?ocC58vF(sX{yWmRlPBq2PomIaEub^$x%mMukGy&D^tZ2ytN(qGBLs1Kdv1L#I;n9 zNl4)X1DI`w5@DAqzZEl6m)V9-q$lW2LG=V-dbkYlKB<&kH7~0;9!P8^M^^V%DjZQj z=srOlXL3-${)7cE<@jfGM*;hV>fU0q?JwD@#d(X5Qqk*%iq04+3L=Q_6+=be87lg^ zC>8ap4J!J=P!Xe~RCL%>5k&3rvgf{uqDVkuFPF@RWMim1x~v?Njo z0eq0>MPNy!n>>~4Xe!#UaxgE2FRGvHD+B^*Sp*uHUgK)JB5SlZ5a#0evgKe_hKA<; zJFTcg)8QYyBpzFlhaGX2M8+L+y%`;PZIT20@yFDiYNXDya?=LDgPiGtoobY3OpW*> z{=cy`UYX>4VXW<;Z2@w)m9i~>=O)f`uj1+CJn0O;|6oa{9XLyx;P>3A_7Pg`RQm`m zcB*{@t~Q#)GmA4jCH4gxPp_f8_R*_8&_9SlKa0YPLBGX#-c=_gB*sS@o$ ziLdfZNcJUz?0XD>WF0R_R|ju*@d<+`H}qurY0`pr)yF5e#2+jRDdIPSrr2d^h(rYh ziCT#vNYvl#Wcx(r%oUAUCi-~WE~T?}3{F%V?otPhXLt416)6l$q~UmawpZQ37LHt0 z&=tf=eI>wdFzCwOrAG2B_zgai_kdv{6S&glDwe&gi0dZwd=+sO?+LTUhh)8;Fl#J< zjl_q8A6YpX4o>y-J|s3V@&B1wBXpZ+v7V8oMeZXEK+c>_bRI+~d2?tBI??$^Z|@56 zx;=A>c4n7akv_u^bcEyTF5?Ktb%r6w|KTp?_`iaG@Sxd4n9Ep@hI{kz498vs@xcgq z(Tp>Ims=7uYoB_FfxYWo$yVXiRqSn7TJ4x%`!MM>35Nr5hY6F=g z)2oHt`-t(nNSy#KH940i!MNn&`y#=(=*!aL1g{g#Yw7Kj9wxh90qnYQc7y*<>>|H` zg?6SBT4?9&X`!71XoY$65N~z6l>M@L!v(UmuYDRcgGXeS4fW0v`IfBe@WJ9o)FS(0 zh9H`c41*z`LupW3@Q9u0uHoMI#FMNnErlO_L>b;uj=*8~HE0bShF`Z3WCv$>lf4_P z$>=nLr6J?n8Ni74{y8IRA`Vc?`=h;+1cy>}4h2+a>xJ$S@|iz!Ps&XlGQ1*ex8Gb< zYiYYxYiSHY`M(0lKkD&5D;lw~)LQinqV*Vpi2mvIjujkAL~HN1tKhyg zZ-E%X$`a85yOjzCFogdIMi$(Lil@29Sx8cYZ#V0XQ+5aGj&uaWQbS2~1Ou3n8aOjj z0|!u*j?@f;v(A~`_JX6RUVQ`VHPz=mE%sUxDh)hh)awz3@Ym}(qh8NjNUGNfUa!~w zM!k#=(gHK87iXrnx-16jsOPz{-l~FUqbluGRdSrh!L5bt(?2{yJGqO(LdQXbwb%CT zQc)py{S+0lfyWHcaOk6`u-v0ymlPG2$0v#k%fri=!B$xca=qTd)5HC_U|J2aFrV7j zwE!m1{D0z2HF+w}8!6ik%#D(+)Nr5ZWbu&{8zes}lO=p|vt1gzDcql7Y12JfCTxZ! zyxBc!#5o`%zM%H~`cSz0f@LH!=?0nEpGMXdQyG@Xq+4Xv6YazYsk83^po1aChDTM1 zQ2@U|LyXKR5Mr!(RD~Ffk_s_uK5B*-@VZHPIdrPGwBuQsIn~=E?g12z#~JrBX)(?y zmX=-ZXlE*6KFz; zOyXvG=ZcU$mZ6b%`s-2UNB?3}$UmGKk<&zQDD|V?p@rdy7Tm3pyxQAHwwUc*BkBjz zti4Cktj!Qa^9xr_3&Ej8v*sQfP2XJaOfirZB{};VH2X3H(cI<(njA_rQ*1PkEt>Cb z%fdq`YhMTzDc2F*7Zg5;dF%-cqAD9QPno#v8!?-ubJD@rtfHfa9L5JYpM zNb4dvlxY57r}@qb??q8KIDja191&}+4TFMv8Cw0}P;9rfHEv7b=|cE%}~JqR_sAuadJj!knrUXZ7xx2AZ>Dnp~= zsl9B}Ketz{yF80M(;xFEtj%c_XE_Dq<&tMDLhSaPr}wILk3DYF`heGmJeR)z(5w_3LG`OX1@<>~)m?K2$2VgXygAzX|9*%!w)4*Ns%$?96%Dk#M zprLc8L9`K4r$ICkpJ)(GgqI>=5M>u(9#}1t@q!rkI=!FL#1-m-nAUzuZTytl6ryBa z5cA?znBZ?fBF4}giC^x?+U9+^8jweOX`fn_c#k0{ zW&i{&c6`DRxPk)j$I@%5z*@hM;TC@|JQe&6GDy9*5c~Z~Q)}IbfQxBRXmygoDrss8 zT1-V4_4ca>qc;3vgz@uR)BUGYOqEoSoep?owVL}?n88|8g&8Tp$A4ACd}KyfMWmoy z_^)|Y#Qc5g04-?C9((k$1jLV+HafQRpf}MW`m>6u5PMBYnYdYR89EX$@?!kN24b|8 zhkVKK{gy9rWXhvYc$+y%5OO6TLGRXSty=ygcG{!1n{c`qJJ+6?f5~k=C<@X^~O8q${okN_lo%e;?Cyct{`y*6Ib4R!dqUt?oEw}%EOX8U{jpS%fp=}hM^eN zI>he%#yZ5F0B*ZDx5t8VYZR0b?XCx^1FP6FuQ}8I1ZDbvZ_ly^jP@*d0Cd1skIEddj7_V2fCjEW^#yNG`c|q6`5}VOs|-K;_k;Uk399FH(d6f3m2GtUmwm;TLa9a7Dwf%A3mUVBDR56aZ*X6 z%kzP`PFT5UXt~5P&?Qv|aAav7!N4>=ynR3oEI%>?E_G{wpz#6N(#YaG=r?OM8!mBB zjVv(?K`Zu%z>x(?(#R5|4SidII?i2N9#kXCeNbj;#<;Mt`ht> zNMm(CJ8t#QD!HWaFb1?{p2q-Yh$#dDDI$jUp^0g&w_(CpV9%SPJ# z66C()ttJjwNE-C^9JKt9<0;wqU2iin67#4*Pp*E~TP12D0(g%CR$?puc|Q}MS)!@+vX6}leasO4^|ISwBe)LuhlQjH z{l+S!6+fib0a=Zp9q@fQt4hXKlYtpki8G@raR5zz{_K}JS8ym*=~_UQ;6?iNqQxO- zI3rZ18CBCmN=Ho@0;?of_3PFO4<+aAj9E;y8EzGJ8P&1c?sMCjoFZQgTORr?->AUQ{T;hirylxY58r+K7) z)*;b=6(u?AD4H_#j@S41J|W0WkVInSMG||*ti5WFpsK@6$UBWB zb_b>3(yAb8+zzw5RV|9BYK>YoDzU3Zs8ORxDN6A>_uS`w?|Gg)(V;*8cysQ(=X1^- z=iGblc-~2FZdao~|5j^N!Vf;^t$#bb(ii^Wiq{OME|bgTam(Z~dGsHEfTi^2?=FbCSlz6Zh<6_b6X!@cEOv{K0TX zA>Qh@q~jq=RR#E#v0o~ZT*fZ_LM~%JQVIV*;zY>{h&vRHT$EY>d$)ffFCZ>~wnyhT z?`Bdhc&Wek&7_*zaX45c?jLR!oT%e_pRmUJhi3=@!>R9?i<}}k@ctp;;j0EA4c7pv|0#Z9BmXHIIYQkf#dbvx_a0w-JLydBdDyN$k|yz!HisAzI0Xw`4(xp42I(Ht zHb43l>=vt`7|WSfmF04#Rbjb2p=W{YEx%k&T)Hlo6PHf#KL*_kRj^nRPrsjJ*V+R+ zvAIv!$=OTra^LL5`yi>Fmb_ffUUps`S&C;qNP5g(UPwqAu?P`aJ&HYnP{Fe3;k6e8 z6{{L##_-yJoRLWZbC(CsUb4F)3Y`w~jBCn+)Z$pt85t&aa;HYf>QWU~E z)L-MK5V;}z+%h1x6OH2F0a%pMD0e+u; zt=VXWFFbHtj<3{{j^H1O(9AjI2E<3K0EKZN#)@A!5Mx(ZSz8e?BvBPVBMAG{nbyB+ zWNkmEI6tSjT$~_cxT4-bH*dlm19L|Vvzg<1NGDO;H-!1DqXDfVdQwupxi&n7&a;+< z^s;s0vr0JH@E*~&p!jx%Y}lRCK6#|UUyVmMbhPKM7jg7rPQ@KMlpZ>?fb=?61oD`z z1)}(bqK;N{~IviNck^Z?F9o0Wy!J+oD(nzR!~;xgMBR4P{IDlFGyX$UM+bJ5<`ieSF6sR5 zkp$#_N$_vN*h+t!is##h*e)4a_xQZKi&dbR1lQ=5QtG-S0oS3B0AD0+%vzBIT!%se zt|q0(k-Yh-&I#;UnoIEQt@Cw}1mp_|$ageJK)#Sb_(t$dJ9LN{G?(D}y3Th#NkG1k zfLEzMB?-tE5(Hm}^(4_pB6S}Fa=4)|aAkq4_MP(MKYdZvG0>gFv;aD?(WA5>&5P^dX0eVOcAaR2bJ13T5TsZ> z_qi$o_f`h-Mf;Ou*#ngat?}KJ%7JKwzmyv^CwHN? zN15DG8^f#lW50xe@Ph+$%kbr$1{P!$;7=N;i~f=*P)jNhOcf9h_7=xLYgm*hOFc7+ z0ME6HIP3M5B+lCYOFb^w(FE6)!ab1(TrDf4gsKj^rLs)|ygsy{CNwui84gtx6kh_2~q zXDLF@u*BB(T(VtLJy6CZFV%ExVJj7^j7k2vpwz#NNlIT)%GlXVs1X_2wHqBp`1{Fz`lSHJ9cR zY-dTf?-4q(ou#u~K@yNHBoMZ`tJ+C(3AWoL+arXIY`5ub&yfUV3kig+?x`NoT!QUg z$u?xQY8YgDca?NhQ6vG`LV}MihG{Ljl=nAia}lO(wwkBj7~GMEKIN#(Q+C$!KlK3% z>l&POaFm1xRb*nn$kIWi3qf!oR{IG?KCDz3I;i;t^W{q`&9ByTL=}?WYT#-f+R^ch z{WnpL8r9>35jv-d&gRAV{f-VhzxD2r5Pqd2w62>d_K15BINqP;%MXPGG6!KRBDTD5 zPn@0M96UQHnlX_9*H=(W7_5ye6FY*vNy=fEXU=LF2%JL`e8F1nv(<8$@wrMB-V}nk zP@Vdd8*5kd#BbdV5K#A}_*t&7F`^JPF>`pR_OjQc)dv7m=#d^+`t}YqCa-579i(Z+j+!J8eklIOD<3m&LEqzaZ5^C8IuF z`HH>{dSADXg;L_{W#Oug^e}D1H8M;~5m75jK&|+bj!1)Gs8u}yts1G)Gmi0Wni3Bi z$@Z$$>QzElS}pQvwL~SORtwBpE&Xe)^tWDK)wQCCs1+rkR!#cCRE<(mt5=L#mG9>m z&5kMYq*h0yR!0b3X?4w~)o&^pwYp-~>d(K{N`D^th^`eyM6DW3#vP@iRtJq* zMJ6~-v6>mi9;j8#kOrbENkFymwcXYk@?!eqBo!|~w9FvW)o$>IxCAj!j645)8!x7- z4yeD440w16A{XAq=R39waAfFLy|hKy1B%oOgwd`P7g4~4(0*Xp|@0c#caU)F(^xc{Fjqha8zqA9KZn#1q8NfgtiB@2_ZyMo%jpwyu22+ARdosDWHejt>Yj+eJ>2#(dfxr;F zgAgzTU%^~t5Xpfdc*4V16GAEs!M`XnV>6Ezzp$Cd%Vs7|0Aj0R_o%Q|J^{FKv}0oK zg~zL7fI5%hG`~)qqY+oN`zB-w5vzMDQ&gwz(Yh*2oD)anXa0&#EXtP+BLmN6JK<6 zx4$n$qD?uI$fyGG4+s_KiFgt2PeH{B2O(7;KJqIWh%fmSB+GGt7O41F#IDDFCAYP& z2_C+=pFa}M-#P!{zxjl$ZzQT(FDT>j#gr^E9#0AWc)Zs1D|u0_xyp{BH>RR@uo7Kd zl(W|t#jrN@kUT}fkUS+|NIvt(;Ig)_6= z_HJ?{A2;1m&%RSgM+fF=A}%f&@nM8=>mZvPV=^YRyw1Npr-m-91BbdP&KKWH4rF%1 z8{b5zMF?osYYGAisYiln5%nfQ8&XbLkCuXp)&nY4J&N!we2QBxlVq zz#lLz42~4JeCA_$fuzcIC6oRtLNCGy#~>y6Uqu+dPQHrplFE%E{{@OVb)5|UQdIdW zQ<;as>aQYDTznN_39u8_G2b&`E~1#rB&JbQaUJt7AaQC+A#vdMSSJU5%XM<#H(MtM zK5aOhb&>Ao8+)SjSS%)0ocw;Uj?GyJ;rDc8AXPC`mxJkbqw@ z!v_X_A*slF2lBRsi2vl~kwsg3gQ5O~c`dwNn%6-1Uzpcx6O!p{rw0G%6Gv$+V7)Z2 zgp)L{zrz4BhUH4}C7(N@3gRA8jrG#lZvE8J(jF`XrFQm~>Vop~-02;|#|5od9R@Af z@|hzT6GSv%AT}DX9-ldqwI|lgImDBy3|f*N>xumuuwG7oYKTle`vr4|icSB!{?5Pt z+!4aMDlz2DhZ1nzXxdB~3kAq#(sQajsxg|X@jojy{F_Pk6j7GWhbT7MVoLA{(G3wTI9M)0&+Zp^iH3F6oUrMvi1$sHk#!C@e9pz06ctbyio^BvvyEf(a@&18rho-Hs!Jndph;PzdVuJ!=(}L}XgpO?IAlnFz25}WhMc$BV;EgV456vZbe=m9eMCi!- z`){Pjxj+(-EhHG&w%Y2L%d~G*dkTMNyD!-mBXneYUl%#O-iRKoEJ;P)kZRz)q4P*5 zdyM81yzB8zd!Rbn5jyg&_pN+1=<3JgV^}Yeio7A!$9u)Wfswpcw~;Thp){A^?UuZs zCv@cP{#Lf&Ya{{LLV}Mi__Rnqf7Iv!YzfUJ*e;N4zaVsEyWm^-$o@AZ0og(VVXNPV zKSXk2@qLg>T&u_X@MlOW&N)P?xJ>|^3%98(#+bJn)VT16`8P;^2oED#`@?Pf9Hsg8 zqmFv=NqWLddc<%5F?z((JajFT*%O~qP^-K_c*K(YVth&{Z_?2bF2-dc?s;K!aeFn< z!>EIdAYD!@MDVJ7+y>Rd{)@dTX&Lyg7m|WmO~M=R%eN#1T!*v}1iB6}6cP93dyyh) z3DQGQ(St)p<4)H{M;sY^*Gb=oSiI)lAY<5G!T=xfd3l5Wh|en|1s5t4HxNfZ1O5>4 z>&haRKYopm_$aCMT_M22__Ya3f5hj*4RT)bvBE=#{62+Sxk1h=D4cx6#|jM}@evvx zcXYSy<(JPjXb$nVnx=-1XiDdwXp)r zx|z_VxYw!*aVcj&6T1wQfDw60z=%A)=0K@9;c#t`y9`Ot+r-6{4gFKzVq=xKax-+~ zM%nL2(ggqJ?zD|EVl`c*VwFy%TEcaA@rH4*p)ZPv6=^~JAt6A+T?UGVI#B}Zgs(|Z zD(aN7(Wuj}i7A|amZOI87G0e!N??w|_!#sK{G8eel7hqdDAnZ`_~S2!abfu!4`AUi zrdaCuZN5#i>audn2KYQbEwYByX=t=k^c3@o- zP)@@Fv^yvy?DJG7e2a?`uzyej_78j+gi^78Y%=zbjQ575w6?LSN@lqYJDKO)fi3gN zlOB+#Rp_$cs7rA75gS?c&HnKrEmGyp(jrwR2{44^1MV#$QA7<}lSDC!ZOwU1xRah| z=&~6{ve7Du$RV*x`iE%&5eG6wR0DbNW;u`@3R2XeEzyjay!o#OvqHqdY>oJ;jyTnX zIN6Li`yV0VP@{-A)F=Vlk`l0A;yW~yiv6;J5C;2YOrY~H+o5EY&A3Hx#w{d4ZNMDc zEGIc9R4P{LQL~D_SgDAw6{>-zzmo!p(jF_G;sy9xJg#nmGFraxbbI`rzrP{keKTV4 zcYocC3Q^iGf++15AxQg02w1835D%>ztkg~ZN=28wEZE5l&(-t??s45MeepC&MYq@MJK`M@;g8&I4^LmHYSzEY3wT(~x$yAgp3eb} z{J7@}3K4D2SPD4Vs*=UmJ;~@)cv#5>JTWn%1gvCAz)HrKi6|AFM3e7~lZek=Pg%m& zDQRW3uFBw+2}%Se=p{PJ({*A8BwOxz&jRy|-@BH~uv zHpnND+7NbXrPWeUeJd@Dm5L{kv}d>QO+2Xr>#GW3eLcN}bVA1#9C)Ug1HOr*Dop=C zZ!g7&youCf3(9J1$!*bKo201vlSpZ#gpzk^E_v}uqy;21tUTqDNZQ*v`>B5RJFP1noo^>$ie%zc} zf7oK6Ib+}48NYZNw0)_jvpBaG>H*Jq>wh+3W6gy}8Va9^b4Jcfa=yrBn)6LF_wZ9Hq{xS#Myfn$Fq5|tgE=0qjEaRf3W6~wkN{qO zYFnpavS-B55se4ecGgXdd#piXT>ZxyCpsI|Z{VoYsE#A?F=xGo^&1YVo8*W~az0k4 zUV}L98-+zQ*EadqlUY0-7x7FuPdV-Ctj*iTLmRtlvNuiA&7so0YbD*L7hFBVXNqDp z)CiC`9exPpIvsMo334rk-1d(kaaKVg>xfSd*^hyO(F~u=x+QPf4-yB!J-IDB}7R@B|>!T@svVHam5_IO@p%5??9kP9cJE0pP-SDBoy&KzSI z(depz^wZ!(Gg(1H5Br?nHzqo$=0({L=&O;$vkq2|=6ff0EWtCMhDSy>szfmlZO#|> zFCSE5Gf+o+pDd6spEnt<(a72F+U*?g$0_VmGJ#?rf5w?$JIq@=>+H^cB)rAOK)5Pt zmn9Ew7c;@fcw8T6SR`Sis(l-`eVo{r``*_o$Y->0h4GVpoE;g-FLq0tW(@1=oM2RCp@G10O#vAR+1p&o>K80(peVUVV(2;uHJE{xInMrcXV8%a4akgVm68+GCCuh3a zvVMf>H{bz~m)EJ>qLiV~saIX`P5!I#5W;#AWW3Mz&ht+3#tKRS=ad-}8F1|hRgAlQ zEk-%tWAjKk$P15;eJ=whZ;%AExOlPRQ&0sjR(z(Cg{8H9ELuUo(6;7#X=uBMJieJ1 zUaS};C|JY#QAt3p9o38+^07oFW0 zrJ`Edxz%!ycYehh?S%T%=PuY<^>@nFs!tRAQN6A^WmGR-rJ`1yd1{)kv7WKg3iqd! zR{H)FfMH`%Fw}|?P^*;_oi0YHs8t;STSqh&e6%k5OK0tjvy+^+VFyBqCmU(W!#rI(3+cf!B_KhXu620YBV zq(Ix`c{80|w9&g{Xn3pw;Mmhf5`;;+ta=(oh9A}%xN&$Q-C4)>7B4o-8Oz>LAlM?D zV0>VuMV&XCf1{GV(JN_#i9H;|^*8wUR_sNCH?`0Jrl*6vEn$9|mcKvzn=^UNq&ef~ zRFShvL%$XwXi7jkK?z_dA~V*{aYow=`OudZp6BetE-9g<7ZZyiLtZpBC+2})pp4Pf zyqwF_T;|RK0ldi)pI406f_F>X8NAy+9OT*}y;>k#8~z*yVkMG<`vS4M$$}yd{t){D z#{Mf>p9~g#pEH=R_yWeh39FaZaW@a0<&0sS6_V%yT6+rgWDY`%&IPi!-VOyY3 z5PRD40j|2*P|#NF4Gvd8*q=2oMH(kn3Z^P?u`l?SNN8cwcS{TNh5|utW>AdzR@#_6 zj<42s%g_g{HnnNBN=I8`LR(4EHvS{DtZYQibaN<*EZ&t%pIHH;$v=!@IiUv<)mgHY7byhQQ5aU@Z zyj$+O_$GNDeCFKGdK%fr+q&_bZ(xvhBXo4IxYy^{BMrKXq~e$!yoZeGRQSVsOcS4^ ze{rhY9yxc&g@=y|Ox>eDE-+02;$V1{;?3P-F|_ez0cCy_90uhKaH4xs0(MVIz=n-p z=^SjxhLzfR4^}EX-wKnl1dZ)fg5o?3-ZH`Z+(zi4K5>)p1XQQkacK}J7%-9K`1rYP!k6W@>bJb&E_3;g_3@&N4G!- zoX1lku&yZq>w4ivs4hx{GgTFM+%Mq;`SgRXYT8S>gp*7Xj;9h%%S*!6o176sLc8h= z`q2Rj`N?Kyd7})%AT;{HXb|4~&iN)=rNod6iRF5AFQ*Cq<=|2+<8c0+KLa=@y+Z>ri`dz=~Uc_YVo zZOmSI6krTVK(RXQg*{YC#SxnU)ckKiUY`0)mEycuCV0s?swh@`I;r@Dvf?9hjZ~OT zm*pGxI?M7!%acOOcvU-;lF=<|JW^6FY=1xbw%)@rmcI#;P9XCzEg}J`${X!TdYnf#-rOn#JX4;R{|@NsRj`S zh=Vd^fH*Ky-f^~&##44fY-{ zA9dE%dS;4%quX9U$V6j}*Hn$jSmS}8AmG!7h>pE(-7#kaEh&@d9E0r+CrO2=Oe0>l z!V@*LL7B=uXepWeOZT|RKFm891kkUMghb7o;LB%S0Syag)7Lo-7J^F{1 zaltv59YheSe{QdZWZ|w6QAEE8UN}n%avKF{7ApY+6!u0v*K{S(D0!l(kr@VMY#^w) znyuso=b(V@S>geV;(X)Kx}mJ6Dviz1EsONgzF8K{0Iy(Fv#Vy%U)SoS_{e*llz`12 zcgfjX8<_>`Mps2PT4e`Vr;Vb%BvC_X<3n(}_s|Ibd4j7nZ&B4%kgu=i3M=z4DMoRe zlT$IUz1!>6+yEpI2g9Jf@i-J6321-Gxc6B?VSCX2t`Xv+{ml@+(Ees*~&$;GY!ZKAoNc+265qzj=TOP^&&gPx7YK0T4dtO1vGb}%6NvnG@OIlqE8N4T; zQN;F7!F_W3CqM5Q=&Hk0_J_ff$L8&y7k`KCADf=zoyJi?1QF^sR@)BkEgqNvIlj@MlKqy=@6 z1Z6>A+NWF4Nh%rVG~;E3FRr5n@whD=LbYl8^sFRfkcc7*w_-0o_LHwNH+z9{Y$5{Z@&oY-sS;f{Jy~dSAvS%~i>!Ro}xe1h_`9 z1EvB@1tl{1>imG8NphgQ4KLuT%gzz1-`?6X`Jw`@4#pyIb|Oqwf&S*)ZmGl9sDo~P zb7ktGFm&@9vL6&tJ3snI0D=V7(A3uox+Vow*iTGvB~=nlZ|r_zdgJz6v>lpWC6j); zp{(K~O)n+*uOM{XFT;$TNp6g?w5PC7!XFT22{v>Ye7NMF!77VCbicIt!xb)S>m{%y z#zA6Q!4VGUsOM4~bLJNC9UafgtW-5vRJq=Jt=+)GMAPrn(<)K2rR%c2VUleIkxiQ~ zTOx#3$$uvYM!;6>ml3cvN)8zUUP%SnDBH#)h=^+2A65go`-BSA9@#G!+D8>IHqIf6 zd&a6Oik0@mVKc*BWf-k@biYyi2*ON_qH5eg@S?lT#DBl``Qx2o~#uBchtf7!VAOCo~rmiCVmq>8w zxs+=r>!!F%=iTXmbl&X_$fG0Oqg+LJ%P3bv<}hbXG-ZVs3m9jmT}Aog1}#JRA8}w> z$D0d1cR;=>GmRwR^>IkRcUs;e33&S)67c3YNQ9?JEGop?7V?Pc#JU4=5tjk~TQ1_d zN4xCWDu5D;IKoLT;%WedK98swf$;Hn9a7VNFys><>mRQ*9M{r&_&eP4Oef)2{1-*Lgm z=a+x4=&D#;381fT07@?9C?+oDa%H8mib)9nwx)|7Gzki>Dnvu4R0}@7wSTai7pUSI z#5xd(aRvAIK{@|;oFpit+4rC{=>1hH+Kgup5*1ws(S3zb6)lZsxY9#Eq5s8%VmeE{jU|JoN@yF)CMw~inUISEolaxgj=jbZVAqh&w&vX?(SE;Dt zr&PtY|3XFmyau47iWD7ZTac=`zNkSkld&akUQUG&|T6v3xV+JA@He$@~-auFWY z-Zk8QPt*i;p}(lAkzvq-?OkuMCx{N%Va}V&btgG+QJvGlRYzk9ge(eHPz80@M+!n) z!10!(`m<-PFToR9moJ*JwX^Fj8yiiS;EHcqS65JR#YsOEpL#fuCo~G^z^`_5?anyS z&DGDwrjw$u6<&h(>+WjLIH3xLY_1^Se)x3$XLnaGLpfY}zSslGePSxd#gUi*z>vBm^> z9+4iRlYsQipD?bW>Q!IV0~&f-iiQq>63`(`eAZQhQ7X1>sS@ru)Ra1x@kxDMNo=f{Io9SVK{eFoOZ{9g1k5->;s@!f zBvw%xsiL>7stCges*3dR!E1_*Tq;t6KYXwfnoXQiT19e;>4I%JLH+iKj2;*o2BQam ziCU7Ns_Fz|!m~Oyt|9Ml9XcZKZyixGpyIGP@b`_=R*DNJTIOLQ=urY9gFJACZx1f0 zJ0MoObA)fIJD?K#(}aDSUrGSyA9C7`|H9obo2W{GrSzyDWgOf>B=1OQW8r(}|0sR$TkyZ7?_E3`eD6HqBo?lOlk~m) ze)Rj^3CXTj@Nn9OWY=W-NFfsSx&w%exNuERaiy~zgbED{q3{2!rb-&%w-O*+|E7*` z^=5|&6|Lm;5iTb?NvP-+&<8?Z=>rXg#O1X^B0r6y=K_0nlq-kbB5V}Xd!dqAju zFfgg*#<+$Uix{EwH712p4?&kX3KHcC<(3vyG{w;Nr^dP#1=K%EtZ+kBNEjon?oqM~ zZgo^zgbhMmpQl1IthCqHGPM*RX@)65E=~OxS)Vy74PhTu2C<)_*hyB{XbB&Nt#6xA za9kNxKPp#3rH@K0RN|<72b9(%#_dRt^^IdOXwZVZBjiO3GGF{c3o;+xPO*;L9h~5L zEw}Y}|0UOSwpuAJx6M{4f)6$An@6%9BY46j*L!TYVl0isj-%2@Y&j~8gaxwqJE(eL zBrYG7M&bheZ)qe(zXC?$9B>jwf^d>X;xlMYn4lNb??~~`cjv|MRxh~<>)-Dx`jecn zzdPCWl>Iv)C^a3Q6UotZw4LJmjFtQevgv&shZA0piY8S5a0-CDa_rJVa6Rhje|JOy zYqT`)p4~r?MG!z?STgKW#jLzBA!DEa;C0wmdi*DT;dNJY)=s5jcW?a@8EV~s!l4#X zRAlmP7l`wAaEhlKpVY!tj(1CQg@rc~>D25r{)v}8=xUrB`$(FrkLLP`*PjkH&tt-N zQ0$QsJ2V%zI_qZz8@C$50#s!T?B&Wy>k4-l=PFs`d^DlvFcu_;Xr{j7Dd})EeI56O z|Kha|f0C2#4@pV9xAQGDF}^Rik)&W4XgyVMC;TA}-x?I;_)Me{R}XFh7KVW+mYU$7 z20%RjaYg}RV`fvlE3!g^DW3QWXf4uw3Jx#fQ#icsGSS|#rWSZiKG;;~n7`X2TK;3C z>x3PXR@#7uk2P5-hc|abg&ue4FGf~7rt4J0gi?i~G_*p=Q>RHut|&%z!nhVC;4+31 za2d1cEjV34sc605`w6YL?G2vzHVmklKglrGFeR_-NZEgsV@wcbM>;AOa?js%4booG zYjTPzgEjdw)iK>lM^Te@Rg?M}bAsX{{T(Hk{N2aLq`&)Al|k$eDfTKWZ1i^z!`A&B z1;-kD;h6MyUQk;^{$!QukMf*Ua>#m%8#d0O-riXPtL1AXuQIr|3Ds|K4S7+DUv(*t zNhxeIMf<^5sl=D4s98YIOANlx2MSMwp11OGXjJsPRm3m!yj70p<$0g~z%|7({c$FfLjV)tYxY{dDuyKF!46{}ngg6E4ozB%xT1Fo9k z3R@5PZ9OhsF$FUnY`=b79=-paAg)+vLVSRTp%f9Y;pn~ZV0&0@XkL4@tF}Q+^v1a| z()vMf9CJc-XRL7y;FJ|qw4zOpODlR|4OoMQ#?0|r-4oI?*Ch#}e(|;5&L`w+yyC^HgH^Ucud>fomEndE>Bl~!3#wuGh_~4SE1yayRlipDr52(3 z?Tc3Fqz;rV2?IJO<#CDNm`~S-Uj}d(F zPFEz~u*0>IIf>dBt{S8WK0O}sJPE?hW#biN>7<@JDV@~llhR39AbUrhlul~FN$I5C zhW{;{)JJ>3NpavLoD|`tN2N~sqf&63!Y=d=lMZU*N$H^W{os1SK1zs49n?S~Gdif0 zy{>)idqPzmD2q`29Vh_uN(W^qBplQLGuSr503FnqS*|y2>;fVC9Ta>P{qy~Bs^xc* zh~5Ge^&iK00F@^Wn{O1EsDlbq*t&zdz{?zTH8EhB{8Nc+>7Pnv12Z|v!4V#jO%Tgx zBVs5;gzUsYh3AGo$#K0%^+XSqD<`cW^ib`TEW|pt5mdB}15OGL)sUY!;`$%!W6T_{ zJq2%Ggb#>fPmu(y;9?1>jRJ;e2lD6(G38l`N=Ai;QiY$F3LC39@h4XeqNnbn01jPL zZnzbWCIN2%94;T{nBdYW+(IijbWy6Z6dbxJ1DtSClz=XZ63|7}IsrY4QqkV_%9bvw zO}2DVEwiPII;aGejSwBzi7`PWZP0)>&vtnOF8eC=iYg@i1l97km6oDX$(Ygo#5u)B zF19GaYEH6zRx5 z8|#I>if0yy^zn{`%l$`{)(qV)u!`pt~i`IPiiN=n^N5h&@Wh)MHfgO$xm z?H3;*SfiUt5x>w)rJTy!O^M+p+|-$0T#IwZGk0BZEoW1SwCG+YD}oRH5f37a2fhPEI7*i@@s!`?z#)V(Qpl56T?MtDPoc}1cMVP>a3L`DI4=_o(BrJT=90(%F22Q49l|v#t>GqA^%0exWf~dD;u(92$?&Pk>4n^<@{s`YiTiw&Wz{YDAa*I=? z;=mH0QOF(0&o=GfLHh|>=2HI%j-Ls;t6=36_SR{6hPd$0P(^y=N1P#s4ZC9b-HliY zLdPS-Pymk*``9j6I&vwCqqzWHtMRjB+kzzE(PT)#FH?3U3CI@`e0z#Ca}FU z7w|2*3kahJ%?;sPPSTTX21}tI zXKPyAT}?|mBbO{M6?eC?9~E7aI*_fTkD>!%5$-8$7?B@OOl&ci^O79s2JDgUO!fky zq8q?-L;oXGH3xa&41d3byHf5lw@SEMvAI@dLIi)`15cqmYl^E}?&9c1KC&vV0px3? z++JfD;YE~s`T~clhiiweW`^iMHVY~`kS$=h#YytzQSOZ_+n70CJ9b8{9gdL%+;_Th zM&Eb3Nm6j%>9;e)+2lLRao;IPWh;WCXgl+q@xuGE>3cToZ*Sn;N2W+ zl@fH72AR+XP_&^|Xu@4TOeK7rO1+!?%30}~rm>uUXAg4{_Vk61wpwZg4h3zw1xNU@Zp1YAl| z0xl)5Rdd%gWWx!{k6`NHP^b;gUo~>q<`=5FUuPlb{QXxui9MO)AqzD$|G1MWf-nMkCJ2H&jNcL{un+Dm1}LA$&wdHJ83H?V~G1!B8Pe zK!qmOb3ef-6%~5gsL;at?lJ5OC7V=esZ?kwq5Bp3PFHBFN<@V=QHA#Y4TbbI>{4AJ z3Wf?%!lX?@O7c%0b601SiVA&975b3nJ8$Y~e@b2cRN~?xNo<_r=VjwWszRts*m=_1 zqR(6OHdEv1hf@F4b)jIW3ngIVENu!O3ZqoiXZt9h?5a?1O;-uAftMme%cc7&_hu?bwOt8d3ix*n!>{> ze3in@wW>mV^~eeh%@IYzLj;t7bxH|Xrjl+@p&0yI3|P0>&%NcAPe(3?7wk z!6(JL^)u{Uf61%gkV%>TDXAue5q_4O68tB$lYWsWw4Ee3!VV&^DH7Ib@bQGU>OXm) zmL#aY)udOH;ZK&M#;LOamryb;n9&9wvf* zLYv4SK9bf&`wZBLPX&H%g8Y;~u9c8RrG=M!cva((YzioPjO{VOSU-|o=@)-5!GI;1 zJ(C*3faSd5(FOUuC){tcb4pSfuk72)-H=@&RR3DRc8*`_1Fyozn z9n28lb7{xRKIJaU%LNar$Ll}so)c0{2q~imz7IXsRV4h-lUD5lPkg^$m-tF5!KZfG zeHUfSyBR4#Z`I2^ICPS_XXbia=!-5 zMN*e68TO<|=(%oS12&o@K$mFF7uD((A11zZZBS4>Du32Q=5B1u8^z0pIlsVHf=aLh1qu*kekOgum`FPzrlY9@1csflou}J*JtP=8JoY0_=U~i<)TFZ6`!(e?r~4Z z-RPRv%|nuu^1enNsz|b;k}gU!k)RTM0;MhdFB*ORGPrEgekiOLCMgKn=oXmXi5G>L zu=5AkY$5!cS>5Wg*`%0i`I#4`tyn@*(N;jhl1~Pf=e2$g3uj-DRA2Mg_WHf{I&eHxDJ(8*QZLDcOadq@7Bc-o zf}lB1tFkjSbN`akdzE8Fa=GSy24K5n1qZUIx1B|J)-iCxu@; zl6f7$dwldxAbgB#SY5v675Czh7$J*sQdm`yq_vN^EUkSRmEhAZ?Y|NyKR?kXxhZR* zAf&ao!1Ol1EI#CE=fy%i&$A~<2{afzE=z;a^|CY=d2qn3l2MnX!AOPwEe*!0*TG;6 z2TsCZ5KhuylmJ2Wt&$DX+?6$c8QuE4GDJ=sQ#LW2F34__UU$@9cf*rb`#^M*cpvG774p@K~iIWne zc*A$yo&MtMm&JHi-?A+u$)|4p=RpXgk3N$HUf$M$cN+6HfS|EyFiSb17a{qfekWY>E zlw-3M1L^s!3!~@D_-czg(8fL?MbPzqa0OkTZ3(Zl3?|gs|BHEwZ8B&2#+d1y?d~D$ zM{}lwG}CmJV^06|iaf^ffF$5C21vjo7$H~vO~l0s1~B%}9$kH+b=~EDj#Z+0#KDf( ztCDMdl7L(x0S`wkPfu*f+K^Oa9m{*JQLG29bic~_(maCo(>iMpNkG<+fM-$0k_6=X zw1F#pinCvuUmB3+%BS$$#aOiMV`JlDna@Imch^YwSB&Q++uZXD#bjvz}3zeBGS_MB+ zeM$%={`7sMdM-5VmVV)O=!VAWNg`><72f0}9G>ea%$ux(6Bg%)W^&if_oeDa<=1N1!gZrIT>;5MZ&R}u2HL=zX3?rqaqcO!IU-84s< zxV|I-xk7^A$`dl(gV`vOip5fLcx#^6oxMyF(9J-CE)1SUv*;S$SD+HaS+sX^q*Yr4 z|KkFyxYuaa&g_RN?tIW)ST({)TD4&?IAMWho69#Ga97v1f`*}<68u29@!>r3pu3j+ z710QESSFKJ!BtlJL3aZCfv5oUsBZj9LhQde&}^_fjo2>27S0O4NLyP?L$gILoQ6WJ z;32QRN8EGSeNq@QcjrrvgFU%JsJMroe)K8$c*@}TT3Xm|{M3(dzNPqY{yv2ktk`eF zf|dOZEm+7_!ACc>fjn_c?-s?q#{>;4OJASe$&tIh6cnf9lz`LmWnRZ)2H9{rehb=7 z9IUy)v(CW5nz%BtBUpDOojkhHg>O0qiglrM|33EM-{cz5p;A$&M5dz*YqJK#F$ZlUmphz8K6(T{DYw$Wea`4uz~(Ey64B8pY7%ZOri zg@^T4nZh-=F8wow!-Iw4R%p0<22}Np$Zpr=-hOulB9-bwQJ$4b8T*^q+c}uE%5M(l@=J&pmnAqD06i*ZbF+)(U$xpH2gj!MZ@(vC1B^H1nhjP zuDaV9S{6IsMcVml^R3t1XV@VntUT$m4;n>WjN3;O^zl>{ZXRO9_p(aF3jKwuc=K_zGKzWM5v3HW2+m(v?=ln(ye*VvcX{l0h?M99~a+H%JV?)_FGQM&= zM@H(Ylg4W(WQs5f8qVjLF+%c_fWipLG4Tr{B*$);gY-YcdImlSHg}O{Ogx!C`?#gO z^+*$ACtucPbS-|%=9wLGQ%GTqblg`Y8R@vmW09|^LIh5zn{mq7^&5O3J; z9QU{(PFc*;J`fk5^Lgk&cM0BV?L5Z6T{}3?R(W2irzBriz*AhS^1EDuh6(0$?sipa z!107cZ32(suPY)4EmDKzz!MULhp!fdfVd~xUS!6`?I3<(<97Jn9R9)v#ZGYrdc8Oy zF}2^YNV#H~QOMKDvc*4pq!w4vq*z`p*b~GT7WV8e;!RY_`F7$xiX``D5`UL_GyPS9 zPw%w`A0qW!85DW*1SvI!OY+$4L&{thqr5a!HV0nlVAdF81v2YOjXREREI`T}XkO z(uEYb30Zyn;db|v0cCFL+cf1!3U1Rx-6S5QD*OQxGj>=&$#np)6X~fEu0+-s0f2p-4~;Hfb!Oa^}F|67*BMG*bnP*rl1KU{Ik~Da>3;7~H0@sy>`&0u0Uomtlp) zurEviODVut|ER_cYKV;*E$b%V_$C}^+^<07Ja#WdISzk79|)$k#pPCwl^VEJLmLLC zew2Xo3QE9v1#Z<)D$Xmko6;TUfPs2Ep^fc#xl>d8mg>)PJivj7;7~y|39OAzVMtSFXs-mnnXpuljkuDtQ_=UtnV6=C4%o^v<>U!lSEtri3gO#f>wP zj}=KerNvNn;uPt8mEaR7E$!cX%1yOBW%-1;o(8;Cbx$w$jp7cyLf>++fb_1v1%v)t zTRU%1!_$E6QpKbjvo0dtSht#CaA)Vi*NGeoMwBf4n8n8RWr6xGwmH--|M_irTWW=?+jUz4u zWkBBog7C$|CPecuh86oa@q9ze7UIk6c>=Ynx8)lXJ%uRLH&;@!$*^{6eUFCLcbL@1o<`b2;2}B;;UPOr5;T>V;OybvCZ0;R?R-`f zPj~wZLKIqyP9ht2iyBQmyICfoVxY8DO5uMKDD^cc)=MPYL)gM?--wKe=AH%t>?9$h z-8>-(D5X9*F%^vD2U~eIvS0Hqr{A)p|~Y_6JYw>aYh9I-Z%S_J=+ht3gumvPc!aq_aoAqtfsX86?{-(EQ^CUwu^y>$m9u z31?$rgrN$O#e*FA9kHy3N)^M?)|H_30S^6L4HyBFAu=m0oVoy}KSX95!IyONRA8eN zf;<-;Iwb~Nt~8P0iAu}1~w5bp0|3Qiiv#%%D(PDVUIIOT2VNYqy(HvQUcB-?>^z_Yp7r` zle85Tm8c({xqn**ckbSn!5uozF}Op_n$NxqlZx}I(LzC-SB(+Ba9%a$jybqf2@J6K z+WYC=aJtaSs}$kiZk|_&w|EK`>b=tYjSiWqD$ch~=ZYk!L^JQmDbX~Q;FB*c{n7nT z6kj;bQ5T_@YHIE7a`zxlKl>j-VcHO9 zR1L_FOBEaJNn-Ita&+pu2YVjPsY8X7;6F_C1hOuKH#*wEgrFR4f}oL@uMN?I%cdZUI>6YE4-BLl?{M zN>{s5;i1v}oWiZYD?(if-V;tA6w=% zo&W15{!=LbIsb@1`dnI9=yNFneJ&*^pG&D2y-B?*gCGeo3h>$kbR}`^fev@{x5VQ3 zY_2eR=x+}T?ayVANkY5-{PBI{la#^{%EPK_~U~| zR2yZf@9Sv!?n5Q$Gn!3nhd6B%E$F_5HhH4q3mFs*tq&!j^`Qi`J|DjBY0fAWtM zP+g>&aGp6>5qzj=a~|FLwBuhCP7UWhB9g|i2?|0Qndk3IBQxf{G%^-4ct=B%2_v)c zzBDrL!2f7u7Pj)oj&QO$`wdTN?M>h$j11u#8Kzu=~^nF>LU!)XuXIDGYi9ETPnc&9v&90_WlsAwRHT@Gk{$nNv6VjT$UCV@1#T!DSS=gox)?T4S{``6$L6p=F3-5 z?^QPO3wxC<9}gYptw=s$jU5RGaLNO@r$u%z{CwBnl6zW3{5*^Lc@~vC8M#n2?-S2v z^JZ4lj6$D!&e%e#h=Ou#`a(BxiX_k1RN-~jc=Ve@6;z^6oJV=^pyvW_C7y8J(~?J@ z@)Y8WmwCFdb_xQll-$;ew7~VY&BuGL9%1JTicf9AdZ|(})RR|<2i~X*=NFy>Hs&Ek za7W9LkJq`K+(k>w$5V@VBlx`)o;NZ z+sPdSqe(T!MDm8KJWsF{W=6~M@lADxG+-M@f;f0?TgJ08Aij|KT%n3=4@typIm<+A zbQP=-eeN1hdv=ay5}}#XI_n!G0a>3GteY{-=5Ka+JL$BaD{6jzt>+mQMKb|cTM2$@ zqo*OOO6bV61aG~~1J|uO464Q+BZ+v%zJ!hU-0xA9+Wl+KK-Poi60EyQ)&mF~S$CDJ z7ljS2!G@AVWZl)odgC`Rb|=$Zg7qZHdN!dW>q(OJvEqX(uq7lBSx-`|u?3ed>i!H{ zM{^0*Yb5I(gpRD&NY={-#6`11BoSG!QLM49U)}6+u&XqeU=6Q6h`PQ<=*SxG_HTm* zWSX%7wM&XC3jD_w=yDZkF5s#~YqHDLB?-tjn$Ozf>vF9~qL3J#`{}V?b~zNd*wM~# zsO^C#nLSH$3jV!y{w|V${CgArqe&w2@9pQGI0H_a6>U2xi2u;k(SgmNIR*dMb^h~7 z0`h-d@Q>uz0=raTpOQr6|GJ-loxtQs-ek8Yk$p!q3Dz5Q)>$M0S#J=mo3WFGj$AkR zxniyK_`G`CqnV8uxyg4{5Il+5x> zXEkXi!MbXIY}KYDL9iAHHs)>4I*|myRwVcaC02>I_NYWQh~^S}2k3lLNCNVOgwzmk zQ#OGlAYVxE@r6oBXPjmbENAO1KOhOn5)x3Ut6NEeDZo?9xkKxyF*84h4b^o;@%EgV16EYWJr6So>SYurT{Ni zm7h80DWwJE=PTT!Iy1sa&SlDhLC#9!nV9-t)ll(gq~F2be2oEma%xz(n+y!%Fk$GhiVNNrMM9 z%~*TJv(?5HkP^7$eM=Gi^PWezK`m-61Li#qHMUA|mNV?-`EeFv`;4a)@kYu?$Zm6{ z9Ws;lS$;VUz)8qEIsQqAmaQ_VDafB@Hn*Yf#S|o{fa*0C#V z1eAEtyx)Cuke5jsG9F}Lj5CmTXdc0s>x@4k3CNfO<2EdVkdY@h@WiP{Ce0&w?$&vp zAPLBGH&40cX~HfOIx^jjOhv1zSx13D)i!u^*v1osV0PLn1zz+BCyB_}#wP_pufeHD z3`s=xHXd5o>#ty(cr>ATKxSJ*!o4F&MD7hGckC8VkwoO)5V`w>#~Da6%_P_lA?(MK zL}WjNu%AW}k^K;Z@M;qBKFuf~788h-BoQGN6Nrr@5g``)H84#?exx}C#zBdZ=_(f+ zMA8uApnzxsXPim9iSB*S&s|MJiWDT71mhr{Sk&8)*$Ew)2Jw^-ZwdbK9#2J9jU)=W zwV;C1m+2V<1Azx%_O+O%c?^1 zDTIz(M-`MFcn(QGu8`m}BWe<|jOG$-Kap&|CUmTjPeg^(D>FBre#CzKoGLOr^*zan zIG<4IXR*^XT_C^*4Ta#>2pt7KAqD5hN_g>0C8DN*Mr#5mBP9wM+fWNHBrRV>l7Ji` z0VgB%NCJuo3I3`$p3*bY!rge6=I1yQd9o1BL~K3b;Q_CH4Pf!8>c-hfrwDIJo>|6Q zkGDD%SUQNYIDHNmKfTO;dEra__TQmKI^=vlzfhFY$2Y$&|91*M0#7;mx{8~ z@6IF4a6WP|()$~mNL0eO=Yuw-{!QG|H=pRimmdlXWa9~24AKOb@*ZO|2^HfrGXw#J z)Z;U>oY;=xzs6uAs-2j{q6mgspkfp6rFi& z11bYT>en( zIBG=+sMV74-X4Z*7~CyXn6LQS+uEnnHx;~Jumr*jRq7{I>PPARtI4AZ^O!cnV%Qj! ziVBTT3WeD$^lAP0uySESLF{4rZQg#mIur`kp#)UtUS;oKMyaUIvqp7lRQ0~ZRw%*b zy~AZ7an4YC5TT0}!l&}L7Uqf142fmiRU&Hhozf;$%d$`>vCZ&uqcspHHbiXBqe;V`sZBTjoAtkDU!KTSo?Q+k#Y>YLZg8pIJPJ^tD*X z)n!P%kg=q*fjwRsSCyy}BE7(UsGWtWQ7jkUxHxZ1tw|97D$X0jnkhW2yG9hQJ;3D} zu}AB8>sq4WTEu`RKG{JD*gGfzYxBFh-ef~Itj)W$Hf!_y^}K7@3rbjd4}UCAYz*Uf zET#K9`^+HO*=MO#RB<|0@g1q6Ve}e%dr?`PV}oSxpjfC6C7?bX9`lYfh=lr#3Nj4d zX^p%uvfWBDsm~6n&kjl#Z?k6y!3#hsG3>NTKvhmqRW4hol9NBBENLwLI_(Z!7m9ro7HJW)xvog%s)3s7edW=#uLFiG3Nj>VR1k|H8Bb~fC%WY6idW6e1 z0UR8$6bJR71ZH=7(3&lcRC;@d@^0>DSqg2$z<<|xM-NLrs&)EhgnpEg(U7@c@f?uKi zxl zSujcPD^np@woWCLD3r0q@{PTG6Oy>#+#O9cPMGrCrKB#weBzTZ9id353MHT_>0P}q z7_y-%g@b+l4BO^#H}6Q6s05R3(_dGoKS@CUkm*XS9xyt%AWuEqJ(i7C$*9msqR=F% zka32!_$dd~C`xM7Uus0bP$Nn}jZXFOR$-Ki8uc-1bg-xQRkl(|CN=t8*XVPSpfuX% z(`biEMvb-*jrRQwjmk)kK9?F%Fw}?=P^0TldTTODMU9sFH3C}@$A9hZoxuV^OkM6l zFkjLj)gGiImhYut6O{Fp8C7x`j9wBld^&koUf#eR61IeorQ7NZcsZpp@ zFrAuklc|f5IsqP928xGDQ35J8pg)8WC{-wB>n5Pv_@=>01H8ZSr4HZXCSF^jtFuH& zOkTD5Dnw4Sz9y-7Unj$)khT?a{^ew=yi^G=ak51*;hkkyrqU$di<~`0blweYwFLiakBnf_X zcIoQuQHiL|_hxkt|Ft@mr8QFpXhZ0bouv8eyl#1#s_o;){spJRO%>rPrK3HCm5v) zeg2QO?+&c0SRVGCP_qf7Q*tSx*Cg~_La!n8UIGDAs{ku1_td4L5$5X6oO z3W$QD&jx~B6oDrww&yo9d(PcCHz)7CkMR2|H#564JF~m9v$L~%47jO;J9J|&ggQC} zGvJ{Lj6=v>vnItFo6E^Xv;7&a4Fp>ib9Y&JBG(mZ3-C~C77H&~CoL5EI^i9dGz-O~ z)U4U~i;`$&SEM8wc8NQ+luY?GFkPl^3eqW0Mfu)*Pwz~2)MF7YNs^Wos7jWp?-o|Y z&kVJazuxRw7QIaOg_TlMs6pyB)Ut~592k2ZuP8H4 zc-_WgxNru+!3aDRoN&9Rf$>U36%Sm0yC=c*s@x5K+>awg9u~Zpv7pCm-edp@(%lnY zif@C-?IcN>ST)Q-2+o#@yu*FVxebY_%UBc zS#6Q0KwM+|>6Gt^23Y(Hc3*!UpEX1>X@$&4Qo^_&P3^d*h!co$Zh*3#LWn*M^ zW$)l5hcI#GWiUk1Gs*KQdfg| zvK!{Nk~8o36pFj;g)@ysG0K82VhHV=JRGB(lXV(P7F5P)3+mb`cRvJ>@E$)CP)3?HE;g6w}A;J>_ zcP^hDGg;J$1*PgZbq`6OicUeOt-CK7`!S(L0th9_$^s zyJ>!Xx9&jm>(8w;9sMSXtGPU})zi&L0cNm>86IkK8+kU6BqFtbah7E!v1wx&5t_ib zfZc-B$%x&GzsQK)8e7}~_PB%;8n$f7SbW!E(HhS`#6zr^WV%*pfW@`oz>P3nyB2y% z%dEAY1L6tILS}sL8SaWzmg~`2Ww{)h;CUpLESKw;T)E!U$9M~5b;zFSW*mxDHjB|v zHtPZCI{QggL%De&9DhTTlFCpf%};XqM$bI=BiKA{zm~H0(m~abO`eV7R|ZA<)#1jf z$!!|3D~t`@2a1Y=<`o&$ltl1-;B_hRMIMb*Wr;J!Nj=-2=t2h-?Y@-o0 z{#(Sc@t+YVci#hP9@r+!eo;)ZG}hww3;2)=$obHu<^Xv9u(BMm)ze6DC{60B&>Wo9 z<$(^)lrq5iAzy~z>Y!P|I>#EXG+1z!EW}pPELnuVXqGIBD{ht;+dX+jXUQ|$J%^*$ zYNc4N*drRGT(Pxr@^a~U0|sii)t-V!Naa$ zRhr?+b}=&3$@ai_b+X-$s;P&9isad?-{Yy`>TQ;Iu5?wwC@Pb&GEV!i^Y?mEjQn`z z<~+UE)6%^UrRQd16;lV9iL_^7BX%>Bh1{H)YnzqC%`peUk$s*hF_+Os2S+Y_$%@~= z2Z1Y86p>hftinF|>VDYj?qD_ORC;T?vIko^BD5`hDcjkAY{r3Kmc(pL* zV?oO@kh5_wLbzoBj$|1)N3skYK+ApV3lKBqP}=N1g1oyKo8qObrYBWycx6zOOnuRl zFMijJR9oI(Oxb?n2()z-5|pirNr1Mgp-HwbDuLO$stFDvk+IVvnaAwFh(zLyNF)wO znE)R;Pk+VJP;e-T^s`;0y01d?yT5LmlBRcp>Z#rwfznJgrODO^l4d-Y##@{;aatPl ze7(0kc^IPfoDT`Z0n|UuUiZ|q6(h^tBSCH6tqxk)6|QFVeZwBe0WPiE7A2B-)4E-&~sL#A1dV>m>7({d*-1=R?wP0FAg&$6&;9C`t1T zlLjL!>t*)aFsUAZfefo{#C`Fm3q3$L7X>t3=)MS5W(5p5?wGzl?ipuHNmPg7Q*|Zk zvFt=Pt%6F%Xl^OWN<0mB>n<~&WFD^xX&>4c1FA&Vpl_mb4ep~xw^3oBxoobJf55CV zUmGDnF)-;7q)-0Aqxg&bgGUpK^AGC3=b2s9KltK3&ph!WYbbfq&uM_gwcv>x;RT#{ za$N=a_ggcTi}y7PwWhzDsMhpja8QB)0EaesjwUKM`e(W2LvW)nfw19jboM`CAY4dP zZZxBz*2F!~eRelGSsr|HT{YR|k6>vdDM>Am|Mt1 z44_<^3|*G_CK{uY_di zuKBR3)a^1il|vaZ`no3v!1J$Z^ws;@lhjsrfi8{n&~U{f#Y2%EUby#&%OU+ozn^;>!A8*wWp2&XyL>EF^CRhr58}7#!|MFdZD` z{Yh4V4Ml5y(%e9+@D;Y7tisp$i>$)eNyS-(%sn%z;1z(%GPQ}fnmqAQVOcr%YfoZP zOYz>b?Y=Eloq-+I=F#7ZEL-4~zni|LC; zSE8-J>f_$n)h~HFil*UZ8%kc5oN$N6d!pbLA6|4BSjlq2p_-XqTEq$8_5(TLR3d$w ztBPP0mBG0RgT-!elH|dU3X{q|q^`f@S5hYD8C*vn=bTPvCFIYWfz z`Ae15Jby(aX`a7;9c5;V9;sxy6j;VGE;z;G?nMYUdRyhWe}Uh(RZ~-WdmKOx(y*UB z9c{&E9zH_D1CvFKO_h{yKJE(0^gE+RTaI5$nSNmiiZ*V#>S<$Cs4PFa3Vwe~WoRDv z%_}n}qH1N5DmouYm{OH3{MFNlNoD!wN-EAwx#o;JN%i!vkSxlJkyP+?445Dxsg$pT zAaxq`0CWKwocqkVVVy?tQ9uTV4Mc02(@a5wGZjT8gEI|(k-?c(xj2Ip`-f+BQR8yq z56{l%1zKlTnBrayQelb(mDP#Str}r9sNlJh+no$Kp_I3(yxMP66?xmgL8I$6A2N7} z4vanPWY*uFhs86jES+iWtgKv`$1B@y)6wvPhjl?ROpZ({E8pk5Tx59r7~g`1!+oEO z2yZv}rtr3qWQ-UUWsK&+xU(Ch2J&(O?5zg=+mobn-lMB1d$g*QcanP@wv*eV`K;mO z0(B|v4Tz*FP>j1kCnB%wt6KV;2s@z?XB^L1VE+65pUQaaxI|qBCReBq0=QM+6)6FJ zT}3b6V$cpyYpg=HY+Yq}?sH$BJW<|zrx?aa)4b2BqHI|fLxgNuZWU$AJQ_*1Y?{0r z>t#tl#_TG}phaUrZqVX&(@k#)7}B?xFU^yRg`HnDtI@Dt-7&l`?tjuaSKC)L_A=M_<}}~i2K7uJoG<^Xg<#i3`s=J zkVNDFGH<{L|z3NLF?dYfa(uPBGJZ-BgA1J%3@_{B`c?TZ|>`g;i zr>eJ#Ypg0kW`|K!W+$a;C=gkg>`iqomTAe}Dekt|LO#iBvnG>uIgv*RJQ>6_=Zx-#G=$o^q5Ay!BaFVuO0oTQB~+}@ z8+P`gyWYd05Zv`Hs#>>})-=1_H68V=69?!sY=5$fEeCaRV(aB>Z+2pfaph|NiS2Cl zVOP!<^=5QUR*|E$WM$meqwc!dMlsnnHjgX|LsJ@^wO!a;vTM8X7umJl$;H{V&gBDo zci66oh1)T2GU_lwO;sv8qOu;yiy*uZF0{NPyz(6;;;gpw@>RapUq^77?A-UsA6 zgDej{(|Eg@a=PDURPgCf<10X<`D=@B7y{#y#uw11mf3e*D(nwNUt$?+J)M#6uOGh? zA$&arKD3^O@iCwMELUAEF_G1wn%>mA%E*in+`D%r$c)jjfZG_-0`9~RQ@2sT>{0oH zBAQe;m+aIq9$-D}JlZ<&pqD|Mcnq!@bPFz&b`r8IjzhvYW`=Vd_y5Ha-y*SbL|1_W z$W`C~?J966EqO;^YT#wp!_qa@nh`K_%hKv=u@fhGmI~LB11mXa=Gza0H;of?JL&^8KA6a*^UA`?>f+w@%4( zrn+>!<9D;srfx1QJl(XhoHWW?TU^ssNFex3sBMrKMh)ff*hV5Hqic!G^HShO5}naB zRp5*RsEg{2fn|(CNup1gM30IVH9}KF36oYsbxs;Xgbqo2*HDL~eKnGtsGc?SBsPZr z53-ntq`-`1;moLaH~`KSGXw|FNNZBVHqufjdKZbsx>-t?g{CkI8G>dM-QHbOLtQFa z%dljV3QciV9Pbn7f&DhVnpP*6c`m&vWIy<)l2y zY;fX6nT?zqJ>Sa#q)iT>kuf;OTUT%>sq}WcO1n+<-Xi|eja4fBt%f`|AW&WW#t@WP zHENo-kqt^Tf3efdobG*1)T*V+L z5FFae19Vwgvfw>}ypc7|$ zcZ+YBloV$9LIW(W1<%}o0CC|Lh4HfYZ0{cNm*$`%Ebt8>7)PsOZb^nM#_qY`M_;@X zLNag9@wOF-DSC{eM+<3Wix%_3TSe3GA`L@DjH@-3v*{p}=SofU#45!)u>#5t(He3% z58v#q3Xw7@LD3pUQ8}HbVSL)1&RQ~M=ej!b-CMk+jry@ZKYK*vn=@ zo_qEJ2;^*K@K6}^r4;kjN+W5WzkoV5<2Xm;!G+)k=3^1d@5Do^_!~EtFAT0@Qx$3{|2C!; zG*A1tMpP}f3|ECh7(%g0Mb533$~v@yk%-YL&P_X>&1;#iZcEKhW`B`84X$N}Tz8|h z6FZ7e6=f%z-3#$48#i=1Ie?VP0i@LWwf&WC#Ym|?7gg%>_jyl>S**RZAOvfv1tG`~ zp#|aIT53U9qLH*b-_505EfXdbUlEewlcp#MYyd`Rw;B4$i@p9b2h^*vq}aCjrkdrl#Kc3_=}AB=e3G6 z=5v>O?{U10wzp(fdVl^3ZxfgJO{-l6rLJm#)$)Q8vXa1Rto-CbI7^AC9hy2S2o+UZ zo&A-otx}ZRKjiHv8ibdsV=ooTUg#QLu%j+WQ3nTUJY{REg(M3QrxJB+XAEFpXR7wl+>u$3(pl;qvGNgZ&Tx@I%-rj zf5bb${Wi+RyK}!5R*i}ukI$Ja%GZHnW?-L&!M^Z%WmpLs28@uUHP72>7}UhFGz?Pk z7Y&1yI>irzeYMpv5L>-79f!f=B_9S|W!86vQL@uNycb0WCJT*#HX2~bQgGvVj@|Bk zUp9G~f@c&o&8(wLP`^6L1YO?Y9Vk4y4a!hWtD}OT^BIDIpn#zFN$+6@imd_yW2*+x zrRO>OKj|GJHt|y6;2PjD(wnMJF$B>C1k#n>XH`@2Jwbq3B z1DU)BTxfVghf3hh3r0`Pm1cFqU1&H^{jM;%oM!_DZd=w>GpEg7Zx450Y%QNTEm`x) zhkkRf_c76_ZrIFe5niu7D?u*sUL}*m zEOj`jY(3Q_-#r<7-D6ZJ;R)=fx+n`mBTGhp%~4Y^11r-m-Vk>#uw77Gv$?GhHL) z$)ljEkqoYTCsQ*S}+&l5QcT5L;WIeU(3Fk?#6s`g!zEZeav!vcx z8P0K&L+{Xrz=R$Nl*u-lgJ{Zm-%%!dsrG z*b^KcG7I0CWAMDjl9bdO!sp_e!^!QNnsP=6dw5W|93I4Ut4%EnEe!2C0Nic>Rc;_{h-+ zOA7@zs!ct`-I_Y>_L3afc^21KcS>WT;fv1eSPgP6WPRl=t*Wo?pAp2e+%nJKR7%{Smw$@@##z!D57zdoZECcBPkn?5zbaFYo@?+uywyo5Wp# zY}Q6{1@fo*r-^SFl!oA>@Oodd5|r2U2LotV;2J{76_^C_;613b-oR6`{g?XuHL8K~ z0-_o~QPXj!^Vd3n!1LF73_&Kemc0C;mqE~3dp|22f-c;h~~XhRyKRKU!4R8 zX&_XHuYvLYp))BCpyhxAXgTPzer9J|Jz5URV{^J0*Xon;kGNXjOgT$#s0X;7A(ato z&5+9n=e3p_6P8qxpUr{CIx-*a7ccX_m|j*^nC-12|2_}9=jIJ%@(;WG#WNkSz(poxB%8O z<0^@!?h{sGmcX*Q9-u3mrA@wH%wN`BdRpN70k7|U~paNNf^>e&$kbL*)b+K~U z{n>-X8=5-UFZ0804lF&dH&h>XOPzji8F{PMCuGN~-p1lRU0zgjp z!%H=3q~ZXb8G<(LfPhVVh8VyQv|k4V?blWF;Oi?sxK6VCL~ctll@%o#*^Ok%VK6~8 z_GPyhvly0^bii7KXyaduqG(B9)kp%QZy`-NH;#aah1WZ=h*zQkHwIWIspe1WnEw~0~XE6W9C zd^L;;jpgPtzS<(DG1OHPoZNyaxu}_sU%jZ>nCz}iDF@5?nmBT$ofYRwpHwQ+zUQ=< zlD^BZwVdxCqP1=cZW0E{7n(J?t^-e-?geL-@lpOSDI!x}?T$PpS4vTmD8Xx-AHeNU8MUCR6hiCkHb)lbaOeAM~4pLzt($Bn$k%JM7; zFLSr8j5a=7!V7M&71Z|UKv+TJ*~ZHLyvYz`I{-oU=L3cy`vV9v8>*4q{`|y>5{>hX znf>{bVafgg)*?jq$3gR++{P;K=x(C66mW5+nyVbcjY0PdST}>d5fWaxiqd!Md01BYbku1|?$THlIS~M@1u4w|Bia@I< zEJB+Tu-FnmN0Q(ffiTjRxjg}v6rr50>8VUP4j|w2RCQld!J*`P&XDJ7`??tcXgNOp za=Zr2&LfN#$#tlS+HoCX2oemxM&ddxvr~Kx#peu3PY7#)zE=W~8cl)Jhe)(IraK9o zNF2_ITxkvP5=VsMMXB(qGyD=sy2jF4 z)}*Ok%Z&C|DA39#5p7JgM5en6%t#{6j3nX!l4$-0wh{qkt;US3@m=Z10Sd!>=F3|)3T_Q931-wY2>6)AxavVSs(NnY>N)qLS zNwlkpZ>M;X5u;9euBpnGdyXL>2d|sp02+h?f6VD=oN6l9tqpb;AF|@G_irm#{F&Rt zc#lhZwyDgXFtbGz7^BeqlAo>%c6RH|Gvj8Q7sSoX-OaO10KDYq#X;9rE_`&laKZS+ z0NzLiqC0*)*~FlH1!m!_#g0ra2H$F=LZfKIQWJmChNWgIZCKde;yG|J@fqEwEqpUG z*%EA#D_BvYwX>64whML!uU;yQ#K&`6$oVaOE2G8aLYbh?eNafCP3T#Tx>^(7jhL7JL!~~Z6{vZtIxzmYz0c>^ z_3KO2^@Aj=i!m~_yAPgv8SjV3HDhirBhx$jWb{@ombF`bN`qAYZ#DaWi$+)y7u?W> zm6B(=1v`k>G#}Of4vakqQ(27lBUXbPqEo4A$9N)@Vyuad6y&+CzFEdKD1vYNUWNX_ zd+s&%jk52@+H~`|jen)8{TL&poS}80@t4ruS2rR#%^ZJ&y8GI?4`RFcz}v_gsspWc z(x8|XNWh17HiXwpVI?Tg+Li&pw3-i2wL&P3s0|>M6=)R$?S(UqzG-ssOI~**gHy0I z8{imhox%_pY&9mPv31g)rUI=XtG2ZiXw~gDJsDs`f!4l^pboU&ou*dhdo`BUu)8?7 zm1!!-YU4)BvJ*Gj#BpvEWZjXbf~-%3G1|r%J?q4X0<2DqC@=})QGoS$nhLPK8%F;a zr~k1NeG0BR(Wl@l(5K+)Wm8ct>HpFS`8cZV5Obr1t414dPOhfq|N1ITgW0CF=Zs>-3{X7ox^G00YFDy-TZrW@Vl z9mN{0=fiM>+UA2T#8pmq8s?iC5lkolJwXn->a8qhXi78~{apH6)793VNiW|W?(4^9 ztm*XTX)^3hwrS}qpMAI-JQZRFD=LqQHJXzwW*n7Gbj!wiK(8u}x|PwSRZ45zbWB-w z@aN!6kQtm1JusaVM|}~=(JJ*4{-RatrS$MPs$QkA9TZ1pk)#k&h#^uO^=OFbu@KQ? ziYW7StT^hUV|+u3#!)+t^}Q4Q6;`)KrtxT@3P>tQ>iue17ff{GEso=p9t(s2? zSF=zPU?`XY)U!nyd2VW^0;n4&_?nA~x|UkLimMR{o7QDDX!%NMrk1a2%~bTFQ+R=P zx_}N{3=c0gSeMdq3x9a2yk;tHaVtYm%mEM-w^+gu7`Jfc$=K<>0fuTF4_iFKN+Jo@ zMwva$mnC*FI0^`Gq~L(Dvg3OT{P2|Y-a^PHlP4T*}udHb?b;(ftv$--9r$A@u%P&kB81m&WKLsyo z?7PL6Y@BSa3WcKRrZ(YCZLgXtSX1S$g}$`7`dEu= z>2G;?p|4s|wG3)EKh+r0LM~`GKSc}+ilqcKsE;rj*}#R^qA)*J5P)lsTitBbuQ)KHb~rIt`ygfH#TIIAFiL7}+zE=up#LGcV~H=#_!_8w;;SU%kIzVwW$*X3 za6gQVjwU(v?J!AV5gVK@JxWMz$JQ(G&ZoEIZBav{Vn+Hez*X+f=V5o6ap;sy*}9 z*Z^}ntH*0~lgxL4YB56ecr6E**8}UjTB_TDnYu99kba!$sFup7urZ}~YyT5d^W9p` z6}IgCjr^ACk%O6GECZb7ZB8ud&D#IWlHRQ4ENQz}16bk{))hcnOgRxP)zx3#YZQHD zW6he1H1IL{x(C}!i|StdMT_d*mb9n}9gO=E((!${a$KQrVbS?tTl&^SAJ=kQp|TG& zNUf>Ip~0BgaYQ4m_LL-i3u{+v`OY|hoE%#=5G&8zIlPJtUI}y*=QSU-Iyx}+eBV-q zO5cFKfhk;;mbdj~Wlia;uU>fhH5 zFN}azY-K4u27i&#V_FrX^a_7YE+ehFLuXzFhTg`*p^$rEPkmp=;orTMLtsb`dwsju0}GWEX4d<~2(KotkaQ;+#N zxZ7g8_^7DO8cJ5aP*=S5Kw)@ZBCNqJ~4&LJ-{7hm8n8o6Jnk(ZD}Z^|x|^6CLaWstTcO#QKMdS1?Au)zFyz}E_>eB#dzNAv~QmG<+<-c3AyrT zXptqZ6^RUB=>Xe?%6}WnlJbw^FH-(-rTn7n^M^0`mKD|e6EFFei*FcD()$-0VDT); zC#JN=33`t!EG0|JV^?w_<>~QNV^jw?F!Wqe9Z%{ShC1*PP=|6Gf$bk6{m9Tx*b>ICB z-mPGIgF` zoX%f(3v}*pqpTF8q^wl`Hr6t@=7_JeQD`dt;t}6;_hb}`D}A7rl9Zmr0G8O)FkE7` zV__QcJMb52eMfOxKYa`$W6Up7A0>SLZQpm|HO7=i{L30(F)hh^m^kA1Z+^#TxWvbr zvhrX)Xrs2CC)=nH_2uva7jyv~qAuT7j}D4-mu?#(lTz0|Tcm^+sMc0_N@)y1o)RF? zQypcf0!p>YICz7222t&%?lXOd3+cn^ZChpKqL5c^nIEesckW5_Mn5>PK<086C%SW)KA(>Uvym`rcPdJQ>DjJ7=@cfz2!Def1pK&|x;nMu*v$zgX%Wpe;}S zGNzt55ys_h&gB!uC5maTxyoX6l7_MAZ2Zd{V^_lHU*h!t?I1DKomu&X-^#+M<1ELZ}?WwDxM`rEx@P9`$ao=22gb z#R1{!DHr`|OL-sK-gz#?X*HTp4W`K%f50IN=SNa;07*6SXE;6JP?QQ&@&1I=R%<5B zz2aLd7VFk2p%$7#Eo2A`ztaWjHSN^}>9rb3G8HnJ=>0?`l6`341!*Qzv^w5dsAS^o zNG1*-nI8Mq*F$h9$#lD2roGpE>%|AUbxNj_rc5UpA|%uIrc6I*B+2wGlPUd;-m%8j z|3RpVN~n`cD9(?B;s6qA!-q{H9UBs9C z_?kfBJhqluehe+H=sb1p07ICZrwsf>&QnGQN0;?d5x;45IsZLk4A$c=>Ie<6*cEKL z5iaURmw!Q$19eYs2j!yP+(CH?b3p*dNX@LL$GVMK9h9fQC@D{2a0kmpolwf(+E@=% zDN<9)Khm9xLU9LSsFqS4W@nZ5uMt}rlpKVvW&GE3+^ly;@05W=>qi(_9an#zL3NhS zeuUC$4{D*ndTcrWFymwgx%qovig;gFqSff#4r~!W4K@7!R*_i7T*GmdaPL6?Nnc70 z=VO|RdTpNrbV}OQ4$9*Fs*4lTpE*z%&56Cx z*ElD*0%=aL?z09d4I`KniETTAv@|E$;V+sKu<}&$*9+gprN~=c(eZM_8%Af@yMq6A z$B@<98#4BzWJNiXXp1orID}+b0Q2Ui>9o0qyPV*>!>d*#H zc1JZU?}swzzu()jm|58_!S6N}cT}^IQBt$AZ%3Myp*VZ$wZbI15!7Km%kvbl!D%`v z(Ld0gjSc0~bO38PJ#%&~(SM8B$Drg`_YbePhn1iNWk$%-GD(O7<~SCn0rL+2q5<;` z4H%Z6Oq))cm;F0Ze)8%~d2l582IRRcErd&=O#@Ra;HgBs{5)Dl%FUJi368_51jz)} z!H3C$^49OG;$Id0otD-*jJc#i>M-WJj_NSxD~+%eQIZ6QqHQws)=PJ?kMkr4#-380 z)M3mSHAo zG8%&UInha(A4bVEKbis|V3 zKzXKd37rC~cPfa#8Al2LRAS7uQ;>jAGCrUdx}JBYseirvyQSZ}#g}QMc2;|rR7QYy z&AkADyXHO&fxBi`4>`CCgp9})9@1HDnt#Lgn63kDnq#mQ>BtOO03X^khw(8t&7RI` z)9lmC$oJ0Gyj*kT$xi-Og0rG6vlA;!{C2@@gN}a4tlT}deZ;cPW)jYdFb)Nb!`h-8 zFa;;xi35GBfeS;aNyO_Ji`U*TUb`5tmz{aV73C#oboVC<8!Oz>ascfqIDqyPU$*u) zvlXN51l)4%;#VJ;YyiDCWd@|jxAE_kXFKabanT$U7qtK?lv1{f8WiQb=&?T%Ga45caa?q94U#px z`D=;6VZ;Y=;$t0%Q|Li=lO|3>f=hyN8e>)$<$=$!@tNl0Y!*1Mp*W2b8!m%XGCXXf zJ=Ivvi9hN<{6EQ%D7*HZUB+c<=>^5%r7#W$IEOcj;lKv7r6o0(ZA!wy%mFl*Ie-Rp zQV;OMIg|$TkM_ZgalvvuVa5DYH&^Zauff2@Q0Fy<2<`l1x~gbKT-VU3rg2uGD;w1A zt|||R*&j%hgir=E4_2yh7ZvK{%t$H@AgKoQ@sF{!iMBIWyQruW&QH8X2@m_hlvNL* zC3L1O4!lT@F#76rRz!k`WD5fAbl93?xd^m2;_iPs%1JItF8(4HCAX{N?mt()I%jH% zO6&V`4!EinpIH|tD`vuzI{CllBouX677Xw&6pOSXRhHlF8ep}iVBL*ySfC{ji8Y$K za#J4as@#+n(6N~3;lSRrysL5)o`W*zC_D=aaC8*P3G44+vp6rNO>mmO*Se~3#J62lIN~c9JQ$8R z$23H}o4@g9k*I;z)S$766Ll#zm?r8n{6!OWSw_)`nljG+k>jqh1h<`aEb8nyKWxt8 z;kNU8Sg9^7kBnBljD~o12L(x-lx=NRJBE?*_&6)*{orIlNvS zR)X%jc3=P+d%Kp;6as-{ST=)Tp{uT0_OhAAfNpB_9KaB?Nyq^NZW5+31o?xLyRrG4 z-%a_0)v*-cCFo|Gy98i#aMyfyBqK-DIOe^f)#YvvxNG-o6dAjF7$et1a-|ox2%Haj zI*xqsr6Mj6U2=W0o4Vw>GmOpSoXvAZ*=+X1Nud*)a}UohcGshi zIy+Cw+sk5UQ4_I;N#Xtuc%)70;ALwo?2axN;0pvQt-PSIAoRH=1+f7;Cw%y3` zMzrc?UTq!A+Dya$#8Yk|5NI3z*1Z|J)EXn7etEk2YT!@9A<$8CZ9v^gGiJh3;9P&2 zn61guXw2uDxWhr)-g*9>Y_^(iu}_m>_gwS3D`7@;SIbB%63V>e$|iWoN`ZdW9oOxQ z9)+~D=1musRabXhnV|{ML#u~@&R38eEkm#3FIt9Pm0NE0*JDow>OdzpgRZ!;`#d3< za6<`iX(b*H(R?RF6N0BelSSJfF5HoqCp+BcA6?{%*8Wd#^C!5Xzs1VR5?YJVMGaDm z(YK&S%qRa+Bdq2W+*cwew5Lps3Pj4(wGc4ta>d(Ul278S zq6-M3yOSY^E+A}lFTCXUiZ^*Fr2D!__XCCiy2BxCMIRk_^?rX3@g+kNZK!3Vy=hNYqv z!S`D&OI%O9$YdM5HZapT+*4WQw={yR@*ALE>#;@Sy`E|xPi-M*B%z1&&GUDcn~wFl z&O=*m2PzmZ_EZ<Vb0ewP7W1g$QGoxPRPQ|GkFz z-Oer3{adJ&rU%9=(zU+58~h7wMFT=+cKP+2 zSvV=`DWf;SwH-WsDGlYMTa3m=lU_1=3pj=Y z7EMeiCCqx!eq3X-Ux@oOCOerRDZE{6)*{ZM|sM$6kLp05cq4y88Vw z|E!|@vv;dMPpoE4scTkhfW@?6Nr}3qzg&b zk0L!d>1QlUeR2hVQJ-8Xwoi;F{WllwlSkpGOg`9nR8{%Mlm2!hy0;dOdZ)YwSnLZ5 zO4K_~iJF?G>JxWwbEc#+4E0IOoUA7Bu}PXJ9T}1)io3ULyvturK=q=1lH|~GPjYW{ zMq8@43Xst%02k&qyJao&41Y{-IefRji7~b}O`2q+%{!1+!~m9tkk6uTXJ#dN zu`uoZW>oqqDX1dnMj2Hc_#p4W4OZ=MN%29fbA;>uZ1TFCo^=6LUNnQ$^4%cx- z_Hza&vd2xb7Z`%b0>UDz{kk%J^mriu!sw%XnFNL)x`5b{IjdtNgA-YR+sKkz*MXNp z7paX&wl6~vSwLvNZY0AJalqP$lV6w5OCfQ1AA~-Bbq7NbaX@Ilu7F{QIAAT}5zYt_=Mr9-iNa0VShjI9fOn7Kh!ND zr_N!-dRD=F#Dnp2eaWeFm6n7539s07O`j2Zx)zq&WO@88zuRRfBt2crh$+ABHZ`Mh z?R(;gzkX!nzGZJJs4y&J$k4+4Y1QTLNBm9Pt8n!2xqJs3PIN|oVPP;v?mX(RD5Dky ztKl!VXbF@oUqU%UcSM)O8PZcMN;G4%>Bzh<1L##YkIv}EV>8r&^B52r&*=KU?|(|1*3DICbRU~4{g@%NN-ryw{>+f1(u+*W zzy24MnlYD;l}d{+qs;fjepcptCHQ3yNm6ROTzT5;K^J@u_#1z#D4R~t9S@{4orai^ zPHoIG;M|h~NT(b?Iz9Z6zpbqp>GZ>*I_-F@X|!zLwriX`|85{pjL_{S?Yf4@*mE$1 zhA?VrEt6ZmhFICH-?&G+;S^l*<9|;j_xJ^@ll)Z5kov4#H;G2keiZ`;Uot zb#s+Uk13TNV{nR!f7wq(#lL0<(&jlWpm9-Y(>{9W0Z1*Od9C4?sZ7p@`Y!!T{{*9K zf4SmIxb0rPzkQ^Ff&Up!jYD7ebH&Tc7s7|@(XaeNSnp|ubm@dMq~6P_*|j=+gNvSl zZW_i9zJFoo*T#WgSQl!3)PZ(0~H*DeRW;_D!+A2lb^E9XR0g9Avh8~}<5Lw(XZhFs>%}BimxzuVpvKlXhQP5!H)v)Lz?_rXtf>^LnmHg8s)}Z|f+x)Y4@XXq_*?jBMC4RctnT_5?-crKqX z5C$dfH52g{?KKkz7Pr@ojR@RQbg%hdL|}DvDpt22U$oXBb$pRJP#s@1(g>?T1xrg5 z9_T4|?T6RQ^-DPYH4AkR;lR_=Z=l-P*Bxlz*uNVQsH0xOnK)3+DjR5OOd3f0`hG~2 z?*-~JHngv2082DtgZb3?SeSG@1AmdOXB4aJ&gBE1qPo6VK5$VUd9iU7nZ9mn6LCM| zPdog3G{E9t!Zd}R`{86L-z7hf4`8Y-?$TuEgg_a2Xs9Pq-WBPsNnciZc%Zst{qAd1 z^TYw&3YEt6>_D|IeUl+*ANZ_%wPK*H_<+G_{|FUmM{1GX@WiYq#812wZcERbWdCFc z+U^2^u5L$WhDN0%x`5Dh^YcV)UI0nf$W$$D#t=jj5Ja*ILm)|44S6ypFu<@{dL|+` zPK@G(knFHb*~|#G=ItS>0H-se*}MW$9TuY6tW0o@SjzE8aEaN@bqqli0YUBD!4TBW zB_WCjr_Yh%HI7G$FPjukFa%Kq1jP;(_Q`1^&M+*Ih4f!je9EI=c(`#HIj&k@iuje4 z%qSlm?lS3@9;Ew(=>ME4v&(tfiFk$}(m!j`b^W#EhcyC2L=#>Jo84fL>ag|4}=I57YThwwch=rmAol5ABgFi~Xlf=GJ2Njk_7L>dsJR4*spkj`ty44G~jWvVRu@s}E!WWB_-NNui&H90Qu7k37{lH-N z8k`N>O5Me#2ShBI$)|ptQC2o>0N)#l@-&Z@7k->k4*zW@jxvELY;opr#C3-)IyVf| z6mK$$7_5*#rIQ_jWw?h-_sv_fHu!!3eW#qX>hE!n>eQa;Ep3=#4{DrBj= z*O;u(*diw+Dl6oK#JZ}=MJ*tI@E{Vfj?2gi`3NCANCCXa3E{lR3E=>8LI$-74ig+o zPRP&DV|c^=5{wh{s!qoT*NXnSZOZ@aouwq|%@DNfng|HYMapIfbk>dWOdP|TMUJ{% z9@=(kdCW~aa3ViFjFU=Ecikm7HxJYncWZ8>yG4wdYq^8&PLA}~i+AEh**wT|RQ{ld zZCU1hg&kq^w{rS>9O%=h*_`N8dODYdJT?@8AF$ z8XQ1FULwO+h3S3o)!5ZyHI|ben z<8|wlNTW@WMl%HU8-^K;8H3gSbQZ(X{xry>x*ZDP)|5+ShHbQ1=0+UY(U1>kM_ZQF zrV6FzMk-vzm~AOeg>1-cUbH#2@xnpE0i;w8Af>kH9>}#7Bc+Zgs??a%v&zbuJpwO? z4|SuJX5TY4`yNA(W=~AdZX9uba9KIypMz?NA2phU{f-IyixM_Wvztdut-%J2xfOp; z4H(XiWa9vm?Ty~BsB$RD_HIZv*QNch_6byUiTXqA!{1d~9vl~_A!;)?QS|f++--x> zl&U$zKBZphA2=qmSY2E{U<*n#2QWC%jII^DS#T)P>>Eb2-1oEZ5I3{Bv?k3NqNeE_ zhA^jTBV*|hHBXmoB-zymhUhiPcz8%L6P1m!IJH9rX0#}AW~6uy$Q~T%FKhse8q5rn zX8w@Co#Lo&7mXv=VWpwN3{DzaJv7ila42c$^)Q+X8wMX2KeM`|p^K)5E;59k^<{^u zSzmsr9ssn^l^)7;6c45T>$Fc&N&v>DkeNOj|M1>5n#@HkBKz&#oY!|7%9W{pn)^Z6N5U8?L5)?obs% z%4GH*G4TK5O-@=A$AM4vanD3}xB=f3X^L zSo+&gncXITfNQAC_+s9WM2)r@j`eAyQEiyoXjC0m%tm8GE^IU^4O1Hp))KYRcopUZ zWcv#<^8ub9io7SwFVN5Z4K{%9J6_ieFbvYAF;m@?7R-boW&d9ZqkoCh|F;u;`n;7B zecCYqea!zil7=fqRURH1D5R)_;ksK~wIIV9FN0wlPMN(@te&jq>l*;=hpQU^9W@V0 zeczTbF?tPGD-Y*l-T-ir!n^^%`-6@sIDl3I4j^kyU$^2=GSps(0pWA!V}_|K03(N) zR{(Bjji%{vHnOG=2(+fd<%9ED%Uc%uE8!=tV&vvhWzFpW3X=m>iuv z{zjsZk=rsmFwMnO;Mz=jPPA#j3}@GquE~LVvVX?x*lHfF4|C7Cj8TQBCfdrFWs?Mu zCXsF#t}X(MB+<-^0BqWa3>c7A7Xgkka$#1(+{m!%;3&bzu9*1=(L;lXi`6+KM~l@L z_=^^+FNV`%#cl%7`ef?Vya~Yac|$}adZ_QUTnrJt6e4;_5oPI)*2k`%S_t8+hmnYN z{|OSe_V-#8h;c=i9|4WBN7G|9h!!kYd6}^^&`q8=Tt*DkIIB?wi?2VR4(sSpdFd|j zBsit?`vPL#h^l<6Ws>5-ukLy>N% zWNCxiO!;Efc_E-|R2`{;r%f0FNh3n%i?wH1YBfaC3YDfQU2G`FBiTVF*=&Y5cO-W> zoL|u`fFOetL5R0m1o0BUeGE^{Sv*o*0w`n%bb(xpsUqA*17X!mti_Bqa)b5(f4BzV z+9S8D2{>eoEnX9FLq7ttzhHEf6LixEbqSy~b^~1k_!wJ*|5}#-T92S(qPkduJ3rpDf9|p$o zZGk4P0(mF=F_w;^u{sdx@v+*LF`y$&2C&qEv?*120~V%bbR+(vWpv{xT1MIBw@+ow zUjw;v;Eq5}(Z0C0BXC*lXH2Ot_Go~`w1hju{_@jT0+2?TczYEyKlvTaL!D9{9i^<{ zXAD8+2M~0WbeTqHWsWCfQhqAhLiUvNafj$O3|s zrF&;>c_B1?E#=DnutxS`aH86Bw4yqUA&4p17NM0%r1n(myv%&F>1M~$`I6*fWX?u;Zf?{E{9?2IRx_#5BJ)SQHu?{ z0)7#UY5x0hNku=sa{gslao}@1RN}ePRRyD{mYtn?`o8r_ptdo7jJ)s)?6wc#SmYCT z7aN?k$mAWlUC3px26~EVOb$BMOZ~3=buJF(H2S=&@CpgJ;)F`RQUK96)Jp^Vd;QiyHZ{#IndY#B{5t$9!r`_ zqIpU%8$qNqbG-nbv}5Ny^^W}=7zW+o_0kiXC#}M7hqL@-j9P^`OUg-(cj8DfL(Y+Q zi5x(?L=K=`BE2Tgp}0$glQ|eXZRM_^D}@Ur$K%G#BY`JH#jzl(xgb+0R*Y5p6%3*E zTYIe1Z(W8Z{ieufXJGhh{iZ?5|Egbe69_y>zeRXbZgOwnrC#OktGSYf;pU;8>Cmwb z8m0_otznC&%sK@JS~iv#l;r?YFb9x=pFEe-##W3JTn^jP%_uOH8xm&;pcm6t1S8xR}O zZd}>bTi{aM=8pqz(LuL`v<=@Cu{WjXI2zJnb}F@QzbY~-KdXj3cD8REvmd%u6!qh+ zqOLwsb8>apIMve=!+4Jk=bfi`N7>X6*3%Y4)zh3G^)v@iPjdiGr$wg&BLs(1Pyfz) zx~YV0=HoK>dEj%gQ8!x6q_xnixFD=$2tAXYfu7tjqn_Byu+-!nu9nq*_X9)+06QaPw@LdU zskxHNrWsPM#MWqAMcKTS#)nO#c(})cdW~lY)GHm0Hy*D}Et_g2%4swluY<2foAD0T zm{Mu9jOM%Xz>H2UIWrQ818BHVJ}-x&L`KYbb-0V>HiAS^)aMd|p0NK%XB#$hm;!^J=-x(^}40=ksPWX)vF6 z2`=8J)5(&Fy&8Qp&Mi6#cH1R~;?x?3M> zlY$%IFH&%W362UrT12<|n_YvLuE+?JCbN?USPV;YOB$lK{pI5a;3DoFac~j$>GCt; z_xpYi)OLwcnvu%iO*5cCt82mDM%DzDwwoVT&hUW_n|WJ_I~amCNQkHyXd?<30=HK# zpB!8+I3Prp(ssA56LOZi!&<&w&LeiaHMq2Hc+fE4CfvlKdt;hA$+F{oX9Z><7B>XykL@g40DlYM_$A2oZACX2;Mi2vT>s%QYUV7B#c}!iS*G) zW)kUE%|K>E=1g;O22VRNpe#}+29!n0#UcNIvPj>w*d5XANS;HS-TVK4>@bbg#tt{7 z9B{douSuk4D9J0LEK**IyrQm?lvmVg(*A>e0u@}MT(%ymwA(M0tvsSq3_%1bhmJ#u zpex%Vs6q&oL)VPeC8AADqD>ish*A1@oEf>J96(8QHUN5}L&Kz@B)TVbyObxo%~a7g zh9DJD79EF@iXICiN?CNLSY1-l2~$NU7=lJC<<5SWt#(4^8J6byH(W_qpcIB}`0O*o zVp>ZTl$L-WO?J+YHkoHX^H+CGR-4QUlS4xeyTk<_&+QT9fuhQj9lC{bG@KaHPKYz4 zoe&35KXHJXAec$Vp`_R2HodY;ItiI{UF6vG;59K&3!wV0?_@P+`Z5Ia*bmus@G)u* zMka6?jS?5GFBfZc0!xaaH@dqpm({2Kn>kqx@tF(}8shg)Rzti%BT1k4h3m7>NuOcE z+`L5z3~88ihNM0YAobA&1`Z|3f?Trw8Eu1!F7c*rpHkQBrc|#pL`bSnO{q?6BuVvg zxK!W%4^o-=mcWpt;tWYD4j`${cYvf`4kf8xVBXm`*8f6?xs#T3WgL9U$BB{(^gol{!WO0sz(*FV2&@MQEr zY=Av+WVi;Y9o)bvY6sU>BW`3PgvxL9XzD5n#DSeBZwkwAT*zwB;r?y%@`xZ^)PiS7 z@TXkiGE$O?Aw-8Ro2MxMaf2%FeCQ&3ffKpbEP;nEjG}TPyH5!@k#l+nYq(yQt9u8# zyYsMxd=uG=HJRK-der!B2Blo3p5gV5uo9Hvc$NXcWb}}5auOMJ8lmI?_5`^?DUMg| zg)@!Iphk@7TxJMz1Iyofm5R1MnEEr*8Chmh zh$!Up;lsvBGebmYg^12lL|Jl&dfE8>3BjT-8_QV}gFB)Nu(EwgdPsv*E@Oe5F+JE# zX4P~>X5OcfR+CEd)$%R%;IwAfw%{0fB0D%#?9kL$6YS3bK1jow&`ZJF{%hsM9gvGW z!36hqEWwx0yO~tGJ;4)VC=*AylB=R+`ugnl#&~F9;+!-wQJ0{lW$ZMzkiiQxDL>9@ zMM|M{>;QCPgs+2~w_ z(1pCA%N!a?fr?wP7FW?wsD|(RhigW0`-jDCdl;jB{%?Vp^uVNV~E$ zLzM-%a%OOdc!xnLV0N9~mv>OS2^HR6^; zOR->jq+GT=yMo;G{JP3=!;V0LjZZ9Q3oe@%ykFcj9jKb=6qKR%r{)_nQ%_%i&b1}+ zSlM}DkiDg;tVt!tog&lm)76(gDo$tSBrUvDV_hoDp7dr#DV*DVI;K1&${PE!+l%20 zOU4Vnm$1R~#4FNI<%v7!z*AwmN`IO&U741d)0Jt->e<48?=sjNnDaQDO@d0>|R&ruDBUc3ZS#qQpi< zngY1{7(l!4dk{+NEhvQoxKG~|Tq91}3unRurdt*V-QqZdQ*>v=kiLVAucymJ7xL4^ zw;D@^?@J&VdJ6pVbmh&g!9teh+x1g^_xPs~!e_&Apf}7@)y9oHHqM?rwx>K(+t`Ys z$7URb&ce41-kh!?9=Dy%SuJYi0vDcaR6SRPQmQiq5v3d(4kb4*S!S#OH_)P)dw+0& z=+CNB6s32r+U4}-2>dwxiI1jKcjcp7 zsOcR|4jmbSvI97PX57FZb9x%1^5nX;!R}%VD;~-YaE&0YEFUf>k1_-Vn|tz;b-^xf zJ)X>52+l5)6X1d`bDLtg-bCAKUdep}rt}aWTx{3?6Jr-lIt)v3!$V;yX8NpEh%7MP zae5TnPn&|r@E2_g9?PRm0lSWr1Z8GA8Hk!ZJNjj9k_cw$y3P( zd-G_aDnmZ-dO2fZFhQ=^4ARCt7Ay@PpiFu!*wDC?N0|tpAYs0I?Pr|mJI=o{0BsKU zg;%-4O3-(l84XJ{)HqCDsNk{2K}GyU@ zQgZVn;Ej~u7VPCXHl8Ti*w_#IvNTt8Lu{6PhuBPm)EH>!QDdO4Mp%Ltl&}@JJDjS5 zmc2A})#(oGJUu-uXgQA6AkS=+M|oz$JnD;$#ZaK_*KJS+KTC2m^u|ZtK+&Dow4Fh> zG1sHqBSuNNM>RY&>ME*HhZ#xn!=}!kEi>{0N#!>|!{9CJsq^LTh&jpffv1BF+&!_e zeCX9;t=I9(?F>reFD1O*R#t-ImoG8^*jzJyc>tj_rcyxCQ2g?wy>O;+95jmY%i|0| z@yo9Pfydb2G6WrMed*!ek4MEXQRI;KL-9-9a5H`hoG5Qi=0^e z2bFPAdKnLURUC7jW})JklJnT=Rp*<$Tg*77gB-9)-#ZnYVAeAf$K(Lz6|)lLl~5d$ z7eimfI11(o?`j_a4bApvMC|jJfy~cXqiJH)JlsIg__F2&-PQgnX^DAP`_|kv^R9Na zJA(~mlc#g4miifp$iI@7G!j=Cx!unPr-AzQF5qvaX2DcY_*!tVTgz`oG%qkJbT>Oc zv0S8a-m7Hz*sG$M`$!fun#pFoWp_P5S4A@$`a<(Xh8YYqn#roGXeP5fA$nj~DVo_8 z$&urdfxl?M%J79pGxdUn?V!)Jv3OF5D8%t7nwc3QIw(YRkRr;wA?tGXr-xw&8Gboi z-tuN}TXZf~x350t(o;?&DK+s3)kk?mPd&CY_gBHH6 zKDF>|@u`qR#pA(=;$V2GmwYOv?p=nU00bZ)S*?<+;7V&GPBSbel>wHL)qpsD7b4NI zdGh4D!CA(?eQHtt13DMKY`S@NV;*>DAe){HRxz&m)S}7=sYP`nG!Vb_wHlj1;mj02 z{K9{&aOP?sIdY4!1Yb?FS*vL^UGiS=2~iKL|3BKkJ21+kdDwdb1hNDOkkCR2y+{cV zszLyj9)bw3bOK3)qvTrXE%Xu~7+~oTs&tSNsw9evqA0Ij6a#{aVgY+We>1bsb31oA zd_RfbKbya;iLd)c4 zEtlZa9P(^he`y2glb7MpQv;isxP2vN%KE`V#4D-zG5aQF^e-X zp_ylnX;dZ-i}JRrJyy~Itb8nEUoKxp=Il!>CO0*6SCS>(N+~AOKXZf`lg7$kP2H`< z6hA2@_)9TYNfFAW2$oR|lO72uMs)uP9U}9|S3`4=uxR*d90Pbw`RRYbl;!>pQ!2=w zn^T&}W0zBwg&x+7tqIX74N~sq@L1(u4rs*x2bth2Wj(~3nguzA@BlpRZ@}jRQYss} zpyBbOz$;~?Phh@teXLww9yVY4f09zxxG|P&<_#pr^D&JW?Ept#Q|2{r1k1SVDU(HW%|?B%vB@~KY#Wmzhy6Zn{{?pr8Xi z<+8ms?{n?e>+5tg7L}WW+(pD<#^lgl2$^F~J6DSh3<^gL8n60q-`d8`aWXAqOii&% zBgs#1SM8vmV>k?Tha;{6zHDmFL{`d!4IOn$uSWn?+?^SnGepS%Kl3v?leL) zPYE-XnsQjH0d;~t7#A!PUg%syT-In3={4|6%f*SuY?TIGZy!SjNwMJfyNP*G!rGmLb?-LF8*#);d_o2#H`F?!}|- z;eu7E6yQq68iv2fSi@5M7p!WGRSQ;Cvbq$NjkkG9%8c1#f>-?r5Ao(R+s(%vC1usR zj$-nUZJr^bK9c2TTU!GxY0`K9i)LF)wqF8{%Uw ztx}X(CO{rsDHsCHfk90^yNvxUrMxjPMFlmClCsID6w4+n{GQUlm;l4t%s<OWM8ca~K$?xhV?iNcJlx))RO2vQ0CUqMXk(=+P6cLLUCos&3Vm$-UkgyH`+?se1 z*pTT8L2}WU5LQgDN$f)?`FdzuT9atMbj(oWmmEVM{6&tTkK2yu*; z2hyH;Ld@0-m3x@sQ0`%hgI&>D=buYL&*2rVT?|35GE_I^I4RbZx4~ zEw9#cbTK^6d(11Bm2*@uoKEF}85!k*M}SqS;26T9@)A^_SP`0Du9X?(9lataV?%N` zoWxod9^$DgbN(tcLF{7kYp1pYq2$y+R9H~TFmjygM$Yp(KlzsDpq0Ga#;-YL+B{E8 z2<9esdg!QMuHdd6Y8Wm~YW9*GAqUWGn5LLF;Clo##r$07CviXJ;@(!`3N5ah zT~@w=5NbO^1u~3_N0MV=5J`?H+o>GW4j_t-X)AObI;PE90^Fc|M1?J^Gc0$2T0vn; zT^DdC?^F+ek$0-+x|esV7v)%x-wFK^<&d&+eFxs`BLCA4NhuF)F-$-DFGeO+etx!uY>s=~9`L>Q@U}QYX$StES6Ixrw9tPEx@eD%AGC*n= z?xpd(OI{uCs3Fd={4~_(xR_~Nbg7|!J?8Qb^>t)y14qG4115B}#A(K#OoIcg7{T_r zbT)#_H+5#RiyK_l@1bU6$Hs(cQB{PHhX8ICjDr~=Fo?8x8p5sOl2A94S2{>ci@8|? zm2=+@Q?f-Lrnq{3!li8S8JDuf?VvYki(7Q9nJu#Jw@ian5+j8;6q#(X7ycq!?B%|f zEzW4_u;;VI>?X||581>>U3q1Zi5g(BE#SFSHaCs!?IO9#PM86wwoe5h{1_$H;)oIqnRsS z*cp~+1J(qXx~Gcc zEEBEh98pwXVsN5*#G}Hdw;6(j1%xGRRxh_le9beUoHrH4-x-`J-UJVE4!#fjac>%w zh#0^uVzziSLT3 zOn#c|-v2pPUn7qYlNjlQ-j1naF$2)-b`b(dM02gkr^u3#Q^h7$L=ScA5lTZHv?Luj zT-V33RlYHRIuP>38ONX-aHIVgBS0JN7Xg7A?Qb#!4T`U&GN1ops@iCGW3IRHsP{_P z>}fK#P8lt;xy1;aXrtYalX+kKPO6Gdf6(k`g!zth`x7$Z%$ISK5S|8RM*GsoLlU>_@*~1#{`bR^Oa4S7Ore88?VkrEZ11DXWwDOS)D+C@Bx)Tn^fmY((+piNKhQ2sbYx{Y#Lg%%}>bPy^MPw+m2Bhj)*2kj z*cMzjsK*4@Y_D1*O2ql_Xr7sKr?JtE@iCs9AbUre>*?Z}pc#>_^9s><3=SaG z-~dvMO?FTX4kgui(ML71w~lsnu!$vFVx{p5K|<8{g&bjNye&(0*;b7tAGL|q(YEh@ zcA5Fs7qB8-=d7qg96%KsJTLK6ABo6#=S@(@t}SJ+>2$0VSF~uVLLZtH`j8`V;qT4_ zwea_YMkt5NEAwam%HX;mGhFk10ANFv;cTcf900E;lpoh}!F$k4FGIYSIpjBJra~Tc-h3J=!`$cbBM9S)#YxAt6GE-225q9vtdu<57(7{SN^sQ_LvsIM9h5E(4H7IjHJQLDX}+CyZq%rNWfDi5|d3L6_u z+DjB|V+}QjIs)l4bE7RQHg&XCglH0r3sJ8keOidRfWK%V>cZrEEkqSt;}{w6gwd9N zXUX^H&>OnG*0G|mHAo#Rx&gJn;p!fDRU@o=rT=}{EsmkFPFe_(2@Fy z44~CH6`^E#A5UgS>X-Otjx!cQ<56hK5H!=z0tC)|wlV~b7n|S{INqJ1eN)uDXCUVC zndxi6&D9CuM8m~GMo^EyFHTV-@XH!YF5v~v?a~zG5*Rm$BXH^b%%pR-17;$hR}U7P zA>qo__IO8=&(y{u$%qn41(xV`u@E%PtkS{qE+C;A^7-Fh! zI9mmodl)8HKGf+jeSYfjDIz#bkL2l1km#wZrJDJXZ_LR*OymV4|91^Vvg-#y`c72` z>HniSsDt!<7z-m|stOet4+s^ak9MnBHb5QBgY>*FC?etj8t6EH1|~X4&!IFh&6}dU zdn&XJ9;A0oF$bd6OlWNmD-r5r4o^Pom|o}rfMvCZWOeI&^C4ZD)NdcFvF%j;MztMr z^oZ2eH5avZX)0_$+A&p$ymG4Ay>OA}=DB%h)|M}|16_4){syDx=M~H)5>^}n2zUjA zxfd@zaFnzW`3I7tG3PG+qA}<0R2p;GMK68W5j+T7^nwTLvK4|~qhJ+das#ocyECaB(v zoWY=4S*IeDloceUsA<)<_}(2XGPDe8zn%m19PZRKHHSN+vy;dtxX5su)n8N%u7Q?akUnB8SbaKFnC!9!{vx}qF+D&m7*=U~&j@ylz)K14ZO|o_CSFR> zUP{sVC|Q?S&c5Opl>ZXT@K+s~q1~{!b-X|>|1c<4Jgz|$4#MtO)Vr`+-lTn(N^y^A zq$N~A9;}Q0ucMM|{D&h(roZOsBc9UKL5%xeb?Ya#`sdoDa@l69wxIXt?!^W^`U4NeIWNH(p&aNF zJP|Q7s;Bov1k|~Oab~)5I*f*jF*{6G*G?v&1RHQ`41-y8kG<|XdDgpvs4Z9opW zdF=FRZ5H0YulMQnqO!^Rjv}_Nuw6SwmYLyKr!Ta4>Uo)!?>Y{OikQu;DU6qJE?man z&uNSRk_gVR!~2d`eE?y22jKA!93Ih*i9iQ++Gv2+G74}nghWf};A|;#;$^V>=tIX+ z(O0ve!O+%Q+CFj6!-z)D8BBf0`ez*FlaY2_1ITOdF+&ZUOJ>l(Xewf4`eu$ZZp={Au^S9Q)3LjN!0Fgu3_)8_ zzpFmbcMFQmR8z8pnA0>$wfXuoLa5=)DH(91DH-QRJ|L&PCsf)$b2KxeX39;UIqHiV zGodV-%v7Dp{6NE*Ag;m~ipMs`Cl`+hRR z++BQUT&O%fJEffb>MO?72Xl3 z!t{ubZf$cS0?cSRku#(EaRAM-CVuNk5*$jQ&5W69`420H-y!*k>MQ9n!wWMg+_9Y} z7~Sxo50Y?;pye-So|fk$Pl6%OZLBDTJa_OHg*M|nmYN?g&`=;00fMK67D+gigUjC;*1<VF)hj2XQV&eeJi>zB1}K^S+Zz?7_wGbL-|0J64{HfIkX*~pum zLGB%mlWEG6)G?g%MffaWVg+q@G$(A9TEGuu2%_0F$k|MAX!P;q>T*|*^Fh&o<)vnH zypa&%lb0yO7jl;Kfs#}uWK?j*~fYJDiJizE#0X@Lm`HlaRkXS>`%{97JO=!vf$&G|6UQ)+TzagwxcQs-JxU@ zl?6|k1|VI{$e1QV5J(pPw9G5z zd_#oI1^_pU(Amo1Lm5IFe6880!Pn7fGWZ&ByBs{IHu&h-%HXdcM?ZuA5n3kZ&=im6`X5CmZq*OY6CV* z58E32qh6;CAb@@KY-LQjvz0MDr<#)WkOWG2uwv~bw1nsc!z=bJgsC^JVHOBsfsSw;gu;4GsdL(ryAy*Vu0 zZ#hTJFs>szpBcvQ2;mk2oM?u@Iq8+UUUSq+U2n~f!rh*n+rT+$a^b^`9%2l{jV2eI z8}0bG=cpZ@R3ApkHqK{8AU<^7Ef61?M{qv0o52C(2snT~YudSvvw`4HinB}2QA>z_ zfkVN;^bgWg9aHoECnvzP&$34{2Xq3@Vdah5mg%~fl4jF56D zZ-GW>hf*PQOiDtcd2#9SxyrXJSmG)nCsl^=`Q2z|`N&_ej@-+EH1((89&T)M<(*8FBJ84hGOc_*jIJuYoovU$ehCyo)f`H*=hkHdpzYG=?Bwvj!08 zYt}IY`5HNw`I_x>m9KdmbNTq1Q3&C_1~`$g;heOuIWt%JnzNc6`I=Ll+beUGukqnV zz9tYi@->_r`I@VsU%0#csUM?HIHRuvF(PLZh!Hs(&WM~12avPj0E#-Y+d5kd4kc$Z zeXepgW9O2yG3=nfxL?6Lo}3I*KFglbz-SM#$vkL%ax&5Qi=0gKyn8sAsqLK8<5;9& zQA=N2zz_mfh?VVqU?kI(6<}?TBtO5TPyKG=r*d~T+$`q{_L*^-uGGLxsV=WOJ zJ4j6S&ozFYyp%q+MF@k_iU7drCi5zWpj$M6pcMfiOZT%jKkDo+4)9zD;X3o4dFqDr z8HOObh=4m!GA_=Ew?&C0z$}tYw8 zix&YJ-`;~?HPnsCn zABE+v^ARRJxz4qcj(D>6LS#4SOc8rLWXvIHIQ^4>Gn{_=}8f z7I2touf;a($-u}XcY+SY4f~%ThZ-}xQ*RXQ?c+=p>zLSNFH!?6{^m+= zL9ecxdc`Oyy?T1S|5UoXtlHOEQB9>o7pU>N%al~wk7yXV3uWc{wt@*y`u6nz=N1vM z0J52WiH7QeY(QA;SxUzDb`%k17;So)X!juJL{W=DNyBR*fDe?s9FFkvR3fgA!d4(he5xP3&u^r$>)#2QzIz9m0e;AVN>?SxAs?*D+Y6Cm) zVH0uT86R2dQ!K>jynse{TML52yAe-@8OqqFu#CZY&?;`HkiGXU?-kVBvkQIs_LawRZ(IK{puq@hwL!W<$F}K_h{#H zp{=m6GAC;~601RKI?`&PnvOKr2uqxTc(k->&II{uR$_P2R}+TbuP@`@uG2PL!z^a@ zCl;zx2m?2|%F9#ZoYln$olDJO0?0_ka1Jv)1^mY(R)PlS)P>4%Iv1*_;L1nC`ikZL zxt1(cQNbpLpdlO(6m9Hd2pYlxK|?surQ6DnxnUjXC7uhTjpt3eZ!-kZ1q9K(#t=jo z5Ek92=AH<7B-NQDe&@N6?$0LOVvD@}s~)Zc1ce;s7=q{m!lFwXlS}fg&d5M8X6jdaQM_`5=u=gs{>IQ{MR~jk+hJ`Ts(m} z_@EHYDoTSw{VC2qVi>Coxl7n@jWz6xWT|Om>WVQMOU`BFBIYf}FH+u;Bp`1IV#v6> zQO#tA48Na`7lB?s1)oRGS_tc)rDB4@A{QWkUWvh4Aa%%M@N{R6SjM0Q8QGA(@M94! zn|!&TaP~tpo!bnt(U(zNsvA7qo)5|CY7{tMer}j6SW#yw3nSV0#Cl6tF=fQNVU>h4X3g zy>I3?_{2oodS|5gmcjLD&ERx(TC-TXSChyA6;5Xks0?I+9ns<^k%Z}hBz~Q}^d*Gw zIP+UMY@;7D?d=+*D{t4(k6As=tfgWW%9)Y3Yg*QxpB-osemtF5juuKdfTAl7pkT4X zT4#Hoauh7y0u93ZVK+f<@#1)ob)I;jDX7qpl{v`;MJjC;{fV44xnCJxCJ)IIh1-WDc!f%KHBQc z6~&f#Ra*60;U%iq3Nr-tTD2>cTfk!lwhhkOqAEjDr&U_QETJCc`k$R<2KvB`I*qf_ zoz`KAGQ3WjA2n)w&aNk93TSw&(=<2gG~i0NI^KLLp+Qj6l3?k4uUB>Pl;$F%o_8ig zZS|2(r{dzLiJSW+Rb_qWWn=aouNCzj2T`miYEv-M!9l#11Ym z&N{c4eYb@nuNUQC%!}$eRCLrVRFvOtDSMteo?$7V04#+EZDiPM5TwH4>gwS-k0qqN^->icIF?d) zU>l3so5~DV--oR)=1{P2I{`bv@FktsoZSVhtO^dQFICHnNekuW6VBR3=2BVe792z^ zf701DvNdw$F+oi&hB{JB&r+{vP>PI~ZcVtKO<>)0YlGay#TrIdKSaHUL1F(vJw$zU zDZR`lKYSU3H`IUIVY4*~*^0>~=Q@WOxlmK|Cz(jV8psbdgm-gxBZLp+dzPwI%zOwY z623yc!w?@cabWXBJwpwz)7{Q>!s~PzNiyB=m+5;YQz)0oe1ux_HeZ$oPU;bA&XOLX z&X@HA9I`B zWx6a=*RKMww|8D<+9~A0-PN(sYIq64FO07)f4Km=tM+9ojAxY0S@|;mFuszE&0SYn zw*Nh)u#ve;W-Nz?bIZK$d@QmviplM^DU+LG`R%Ve-xuo{lvYlo{mZRkIq353K?cy# z_&$VEG#(9g#P3-ZeG?9jz37`c&d6P+f{puN!#0D*g>ml=WrkoT6cvHHd`wKtlH zxhxB&XSTH9<_sA)QT*Y@$$V<#E;MD+an;3NnjOU-zjJQIGE9HLxnba6CJ;A@KalH_ zj$T1g84xJo$Bt`cc-4~_RLx-3X&8tBeHA1S19)Vsa)_2!Qt(EP#6D_q>+Hv^6X(|Z zpK-&91#i5B$dtOAJp}|j0|f+U+ql*@<1_X8M*Xxdok(w%sEYr(ky7$uqDamHWv)glPehs%W)N~ zygdB5v$IHJ8EFY=+HwpOBc$^SIPAQPVJT1qEUixg4O$ZpP!;>I5Y;B~X^!UupOz!E=t5B~}qw`W)}qIbficY+~E$oSu!^#q5KkjMOpzFrmH zW9ad_GfRBN2oU9KCgp1kL6q&++=B#%66H^PDQ6$N>l|SdB{TiHUu2qZ3o!&z&Ca;t z4zdZsz)03sR3=n+!8L+owh#k#04K-ApH^ez@5^aywEcn>*h(FR=GsaVWM)~Gt0MbG zfB86aBY)Wkf04iJlX_=I3(es+1jD!VDin5o8ah_Dfwg~` zszGZ1a%`sBzZ|6zR_zM%(HTpU>0*&4tac#-aI!DVR3|CFeR_0pIk~W_q&%JCtSAqr zJ=I5SW(3gj+SX%FlK-}?mbZ(!9OAftmLoDZ#MMH)#Ng!7k7TM%fwvigHU$7d&U|&I za_09Ck~a8$%v8?&4#}Y|MCIG$t6IWU0T#efQb``2QACekwS@QH!{8P65t&}^{#yxG z3#0rBHKBN{q-#**LKK$!_+%zMO(?!8>6#~^R%i<$2b|NM9SkaU$Yja0)UV zD_G<{eT51#%VVy$@lrZ0pU^}^SJ<3#10$M<_%SjkBCA%YiO6crj)Kb-oZA-2gbNow z+-M>ah#O5rkSk6^POdN~BB%Wr9On#P3dDdWB7qptYrniYdM0wkVwdN~?jz3b%YViW zXCglA@B%9b&{Tv2$g|T_ghR=*|7V37f}emM#4U~+m0f#9)sJR=I-Ne#K#*eSE@&yq%K6Y%;dGq3RugO zv9%+0Eko2P>t&h_dm<=(rIK|Dv;o`$FdinE%_#>nd22kd16?)cc(=Ce8F7IT^>Z7= z6K6x27YC1qUx+dfh*+hY`#C)&A2i!r_> z;*60}#o;3vLXQC)N?~{sHiWw1J6x(^U~jDJm{`e*(=f0c9u&q))yp};dp2?xT!Za6 zHcIT#SoDy#ok+f|+H*K6WmwRd7=c-=IDt+^>UJ>~qktEU0-P6(0vte<+Wh<2Lh|QM zuHHU!QO%a-uUXkgUB|^|T12%Qe9f%cHHM&t*xvww@y{O&f$(44K04utv5`dM2SKuoeP)FKzrf1-jSDVkkkMv%;!B_{e4>mXQQ9wR~CA2e5V#%Da%$663t*MLx8fV z_r_1HR;#jS7?Kp`gnwOM4x}}>GFwL1)!cywj-)l5qt=>FOs%=9S(4U#?9cJ50A1;4 zeVQR%ZVJpWXpK_S!fSlh)Fz{cay7M;lxf3VF~xm)^PUW;H#tMXQ*K^_#EwAdySh!$}JsHao-njP3H7c$hppn$9{rqd07@(FE+UkBZ zANL1-q;FP=t>tWwRoyh%hxFHznme`+S|tphmD=z(Ni$ zQ4D}^`70jDQS9Cue^Kn-8*1r$Wk_!qU|4~%d!_ZGqv+(Ut$|$rJnW|4O?K4?7|d@e z;Li0Q$*xlJtMjSNq!{U%AV#zLQ$YWe23WN#$m`Oy{6##MzM48ZA^>&!q_rw|T(nkg zOwWh*!j0)(FFxvfzI5hjR|R9vTD39FD5-scgtgw4qk&^wjf{Qp-LP0)n0aZO@68?F5-2}OUiH&e~~g= z{2OH$0k(n4@KTCvb-=#gU%&2C-)WFq75!qZS{1#n z5mq(R{}pjAxLspK;dRhH?EFMT0Cx65>(tWd2OgJGRAMD)no@3^njMx|r=Ean#xl?> zr|~-V1XKrxppt-~2@aH`3C=xuS7F8cMlaEJPA~EAaEM#=_VKSs&f3u|AJ*Rs&Fx^7BkJA`P6(%7@>l*XRY2&>iwd5X+WqzgYJ_7ERw7HUO5 z08jg6YUxOLQRr%#n%mZ!<*H|VXZHQbS+26i?R9jIitsdsrSQIVeUr?!>Y0#uCis$9M@|Bdt2Ur zZ_^mD*K3KZhOv3Q=~I@tT0}mEGI52f!Gxp@6Gzh6WU-4uNvo>+m)pT|(0a)k2GGIa zNrX}`SRE>aC$REHkJ~5zSVik|w3=}d+6;sLi;Mux`9A{$&iTJ!2-@?wzMh4Qch;*( z|7Of(t!2=pU(0On)c_}&zHv@^`WCW5&8CXO%`#KlaGqfl-JrSIB4q9+m`V9CqnT77 zW;Au<%xK2nXoH&ZH}T{1Am`I203Vv|2jYXXecMHuu?hyF$2X|;@hAMK$8+jK0#K)q z9t5IJ8#mB&bnRfg*+>)p$a^^XSpmr3vyo`2LXi)bd560-G1hKSpFLQwd8p4GtY%D% z9UG|MLwQ%gGyVA4g8;QK56JV*plK}!&XEB0U8&;-N3md56kNFVT1}(Rf9aUvWln85LC5o-LPdbM;iCn>EOoowXZ2q3G%uwA)i8J2$55 zBR2dc4;}7&HKDG(Kho}pN%+e!E|$i`g-Hq~9lwF3JtV32DNzqRFl~h@u#hq@q>KwG z)527HHyBbe0}-R^*4e-&_ekgZLHHx#i$<;5jJf~8bnr8-4l~#-ZfLL6;r17?*5;CYY?$K+E?ZelWVJ|xpHski`=s+ioyg=7OJ#yUuXF*&~h zlGibb+XzV?ObTs+q!=b!H$(CaCiSu)X@toEOpai3dkZ8#VNz=+B=s?g+g;>=8TLMq z+UM_uBps8i1CZ>*r1(Kd!Z3+F1j(bATs{m*9wya~LsA!$C73*o$>9@_9LMCxlaTy| zNtrW{l*i=8IY_?5gjDkOOYkdY#>&26G(<*GV>}Vb1`}T8YJhh6`ApXz1mIq zSsRlVF?kh}fnP#043pcK{DeulTaZ-7WGIT7h{@RRAaP-G>jy~gVDg_IAsLK`{27w< zm?ZuJ$tX9Frd-Ao&fG@#P_zf=Lv;gI~KM{LHNc$xE1g zTn&ZSQUj8cm_*lvq$MUp>Ohi+$;Nt+Y{jH^14#N|(xee2EihS!NfsuT zn?RC>$+D)9tbk;OeO5F0IUkdA%^`UOlWH-L)W+lvCcj{k(gG3>CLd#R4U_IIA&JN2 z1SZd6(z`7r{V?hJ5G1`Yxq``cOu9Y{NgO5hWAgO>! zIws38DbyK~Vwg9a&!{?VL!!P<|S?DzQMPIY&Fdcq9hDi)Q z4NtH18~AuHJrz9#pF5=|XVYfGFM2QYtvT?E9=hu=4}Q_>Oi#~;U-X_%WYep$vJb@dfrvb@nrp2UcN zc{i$g=VQlQ`@{pAbhD?`azA1Gu~D6ED8Ud{Ybr!SQG06<$q>Dtb&rO3FR=mW9QZFA z<<((hBIKXPT|-0+%Sfc7H!0Gc7=lOxf=(dxW(Xv00D>0RfG!=!7yJ-U+xqB5Q!+)(eNp5XaYdM&M zPrZ+`p3NOOet~#{)hTV3ySmJo+~v`r4>kqMgcmx)B_xKnjc_N~-XrN&we3~WxUq?5 z38BQCX2BqV><~Y^mHgP2a6iwHKqGW9PlCO%NnJbq83o`qc#TPPD99Zl^ImYx5`Qu% zn0-%q@|^2_u3e%8=9Wu7Mu{)FmWt5LAdmJhagoIlKmwXGeqJu^ch?~K!b`4UfEmN`+dfmko)X+v!OCBx{8Zsj4UYG zERn?kpkHxSHY0#{J1ep=INMe{5niu3%u0cAsSB||XEvM0b(W#YxK3edCN~j~A1%@3@La z_{eY0MK^E8xjNm44T)fFZ>c6J1@1WhfI`xo`bYdlbLt;A)112ae9TQtxUX$eGgQmhd{ekyf>qN;cU}~Bv8J5t1f1OIbm*>7{H;R$dSSR<^IERpo7iMSsT~GCPp$aS^z6(IzC0-`OaiOT z?Ukjovb(;_`+aJyaHL2|GZTN2(#(X>4|jdI(g2Q@v4XRtGY|GhndYbnYwA^SrE8dc z)Z;5Pz~Y`hxj+imKu$iluDrZ_%{5N!)zmT0tS5&}HX0buKsRTNjS(jqmZH07Wc%x` zSmRZ|;{z41F+5tnaXw2e_@e2S0mdq^6DLM55wGr!oma8&c0Jd zf99%eWaQJB2pKg)mNVZt`az!j%vIa=qrCc=t8C;>l!U9z(@eCm&s_t;8Ng~s;Do)H zS?YA1h{9W}UMzyYs27WD31Is4OdyLtyu>bVRBLEuyp+m%DV5DfY0*aIL{e|MdgKqb zi+<_aC>mmM)A%Xaj$r`o4x`}~wR2NXBP?;!Clp9Wn#pRnT>V5hO_-wXhya}IUAL$= z0?U2vYA&8+B`D^;R|$L`@YdI^4PqQCK>@6NiwcaVG6V&%fPnMF5%QVWN7WLG7?z?~ zz*2OayoE)_TUjn5zR4thh#`nLASgOM%Me5t5Efn9(!NK9C^F6i-njMjF%a|jj~PFJ zfBbNZ@{f#&@{cvQu!wj7%0LlB&{p_`|5_38fGrdecf}lB-)l3mDIzY4B~9(o5pn6Q z=Ad1cp~-YhZPli0RN1OVZDLQOHprl2;$?*f-DgZpI#tFDjEinnfpHU*gIA<56O01m z;=jTbiIxmXfpN~S_Zt{1G0f;VAGeXexweVNe7VI%KI)ay93*%-h>nj74xqqz<{z%X zViY4p-aJVIyp}qn;Fc<6Mv%LdJkV==Y5Ch-*OOv~=0hQ}F$LNiA1j`?Rc)XK5X3%V zs~Y7uK_1lN^;`34@yh+~ipH9)N{JZ_rNqO42}Z-DzZ4CZkzs$h%9<|wdAZx>?jAY8 z+n8oJJe&zj;qV0xz;Jln%?bAz4pVPa^F)aAj4Xx2A2I-i!yh1kw9)KmR>T_)-(sb7 zIQ)}kS-&teS=JBSvW#uYvYy9WUdy6*STi@{VPK@i#)`N`^1I^hB+&&0;xX|f8t|_(o=_F3uM9FjCS~%q*x37R zQx@~oHf1r1+wxhAtXT?7CSjX0878YTnReUAWQ+k@s zq#+ao$8J-n^WF(}56$m7r$o31i~lkS$#q`T0E>V6!~*G81DR9KJxAQogjo!H6}l8- z;O`lhf-XSBUU#)Og0`z5xbSwZk7Vz*?QA41xt;92I3GzR9IdXBS?bl22GGLK&O`*L zn>`P7>&?-T#w%JwmR54tG#YM~M=H5%7>%}5B#?*laZS0v1jfiWf&r|CL*i+lyW%6- zq43mk?eQ0NT>I?-?3}`07G!uSLG(vk$3481dU`4K%ty%zd&g99ck>T>&x>R%$s^uz z3_y*ayj?}S!!^Q^B;9rY%HaGtwehM?Muo^?QSRU}v$m_K_s1xAQ?Z6xcCr!_e{S8*-j6%VuoSiemV(et+trE8*I5QC{>pZBBJ(msP)R^o zB`JKphh!AK{thaQ1OG4EecV{uNKaY$-#XyNegrOf8j}%GZfx*&7QSYp3>3ar*#W=s zUn_jgR7yJwb8w{{%EYEweuH}MJE8^_w_@0r+%fXt%1L#NhCAfOw^C||#tch_*I zJX>qIyse{s zl5v_df0b$)%4)hDHrg5{Jrb}@bGy2HJCWu}y;@IfWL(=JXSALeC9eCk%j4|637}`2 z+DwcpYY))0YR;1nQH^n+IZxFV?v0|zPObek=lS-t)cc8oeKc42^U6Nn(*3SYg!?j! zi!6%(Qb02x;00mIGguC5;~wZk4(C1DMq77ln`p(z(dgY=1H2A<%D>>S<&zK`w(sjK zlig-`YA>7UrTM6dPj^^O!ii63SnMfb510C;^Q}kSA-4G{*9e_U-*legPix9fwKB1U zA;|jzf^IsmV+dS4uuYN6JG*-z^W3LWr8vUyjB11j8G^_H zLSM^n!?3iB0$3V{peg8Dc1|~l<@>N)M7)Y$1knWq_1rdwAi99C=w|hDd&C)*fk>V(NnT(GA_)lEzx{wAh$J8^ zlJsTmJ1hg0{N@=oh(EAPcMS0Y1eUaQ#tu@i%Lgzh`(r!RbfnrYHI7%_m46%`-q&4G zmL2SdiE;l&DuyuKpq<&q&^<7Phpzy)?gznUr(JSrKXBw zdaSnT|B{K96I~f;a*=O5=}r~{8I-0m0}#Ny7BAOimZyr0&uKVBq_A?)1Ke@N#~^^F zCeVg-IsN+q?&D$+%a?G&6KBlZrA}PWV~E_FsZZE8%Ctf5nqo7D=eQG%^}BRTV(fYTfR@!2k!_l~EQ_`;v#b6v^g`i{^A9*Utc(=#5 zInrKo4>lrq%Urjoj;O+lVsqFk%HFAN^UgVKM%LY}7GJo4aJ+fL(1vC0fkeFffv2*M zh!`AX=4EycirpP79iwgFp(t`PGcPe^vx@sT0w2TubZ z0OTkqa|St@`9NWvD9)I@OFbkr6J7xv?08wEF=}2 z@T8S*qh_i4`RLj0iSDYbdgl3NU`BU`IWwva2jnhG?Ikz>D`K0BTss<24|?P0>ja0C z-?(V}rg~g7>v55Zi*{*z1_-(d!4Y7Xw(I`&xU)O3ak6@tSIdE!x(vZ+Vx!qYZ14_t;1xOMfYeY0QVpcO?1cnU2|zR6rJ)qp#rX2P_&uR2(B;VCpw$>^Lmi;YD2ty zRgdmMXl>Wb)OCX0?B#>U_n0pqJmJg5oX9Xv#*jVg*#mA`lAb*X#EP_>*Ne2A14u78 z0Q91~+-!HW6dX#*aluD9vbTNR-X1AA>3gHx|oGPlw@SvrOO3>+Zmes>GR5l{nz`2k!E+y9c}w zhft-K*ZD=+2QizINWLP0Q%JS6yiGsS~|N zp_Q&mMJ*&$m^BoTrnhkv9rJn}W7IPU# zYSuK)ahYmXUk`Hi^>IyD2Wp1YuACvYD+f@!asah!Y(`?D;81GUNA~&Z=iWt*EOCyB zOYNFtwrdVUU_I$8EAK-i;31X|8ImgbF0bVEK$WDYQFNcsuKrLo!&g1 z+Ffuc)#;31ojxg->=EJnwPsVD!uG4TQNlO^BfxLUCpQutN<>TS*A0bF2~OLk?yrs6 zC2yxp=xFQ;Ru7W&VB}~<)D;2Nj7YylGGf1aizJEVr&deY&nzxwzuNWS$|&hI65VQ* zRI3eUgc4pz?Pv_xuO#fc-z#C%R}BYet5Ib2um_c-v2iqHkjctmm zEOy)t-&4W2&`0f3TcK}`w1xOgFT>Kt$3?LDt+if7(`(%AdJ{R&rpYDzMVls<_WN&| zRNJ9W_|)6#9*}>T?A5KX*(bhaveFTsI}AV@9$$joutOC0nMPRh6yz9~cTLc-!`({+ zAJ9rh+ZO@2*^3;YgYwzKcDjq%-fUxMos#&Ti zc2M^ekt}>rwQ4zrAd-MUQRRhG)KNqYU=}r6j%>#Y5w$iZwH^#X)BvHEBL^@n(FLqU zm-d+Mp+2<7H02O+;d=xd1ZpaB|msgn@uN9z#>(xTv(){W7mwH+HShK-&&>0 zIO(oYWFrWa9wOuGjH@i)J?X9!Sp?gWFIRo4%}2uVDDwgPovb3bUL~u(G^{`?>|jl$ zMDnA2yQA~W#!2Cy^H|z&R~|bUKM=S zeN^0F`DnDb3O$39o~sN&^Wt9tf%D?uIRfX!KV!d`hqntKQd44VU%p;dMvHB(R{kzmzBK*C(tq4A>9AvRvrgIu^)#Tij37>E(wst1PmTCD1DNG(=%@@Lte zv+Su@7H2HY#i~F&X|ak|juxv%Fb>|uDv(SsR`DXVSTzA;z{RRbtSGfdDi?0H5-yYr zXDw6(5|0+DIIran*cn`BHpB*hUTZk7o&U5U%9=|Cz)xlgTN`nP(f4bHD8uTg*dn&J z#wD}%Z?O_-!jo*{0)6}sD?j!MEF|*EQ)I~j6oqjBMPc+s2M)!6$#wkK&1ad`H+@z`NxYXOO~G{^ zn@eZFjbcmAjcUaKR4e+V1cy=>D4wM-(5lj}jYl?-nb$oph!IRes@G7nUPBpz<_0qd zdm7lDRWb7oq%2y(nhZ^)ht`xKX`0H>wv0P#7p63M*YJ|h3hkfo_2OTtfrlhFf2|x zZL#vwH}0l%cPxG4xen(a zAZQ97hz(6OIU8~a96+7I0c1M#oVA6_iv? ze)N@lx~QZ%sQvkJN7NLf%n@~bIe-ZE(nr+pXIsdFr>D`66mvwKVq!#8 zSo!;5E391dt-FCS(KM4XXStOYA|?SMY(nG@NX%{J~QZW}`?|eN%_Y zq})Q(QOhk{uz9M%&GuV1Pp8Pv$dY@7npy^V`_I%>VmAZOY_EoYk)13D%=XOF3C}So zIg(QdAV*RI>S8?wC*ETDXasr#S`KG>Z!iSS_C5y$&h~C{1dio5RK4k0cG@EU{-~Pr zWns>@$?eb)g)&-p^E?n^fp}C z4ZvdM1HKm;B<&}xVZ4l;$5d#?8!cGUBXI$0WcpU#M-+5%00mtfKtUHh633ww8@+~l z+0i(4lw5Mq@uTK4^%d4WWEz(d;A0x^l=dVVKOU2%rj4m9erEYe2fycav}LQPlGPDh zg(oIb*U((w_?FS3Rq9*E)Sz+sm>M*WlceT5aLlZ|-Uvvlciw6~`Aj zIz}+h;-!b)4ac00NRGywPWX$)oKD#^=9JUdk7<}Oo5_3!jvcx75`{zUbeKQhOSHF_ zXm3T7UH`ET^H;0jdD8zdf7|TmDtMN_3M7{2qmPRLX!LGU{-a{+KCxz?(Ey?WjvT=~Al)bTvXR=M~(K%GS zx-*;NRU2IWiuOdTTADCYyx^bbtWO?Uq`Jo=N7wau&!oQRi_g2#O~{LFlRAs<{V9E$ ztrmf8$8}@lvMqipuAZljD9PZoU<(Cs!PXQ{#_#X-l&H%x(PD7T>W|@d|f0OiRh9J`Y8RfwQ(w{!)nJQjpnTYfYCh2z=f=IuhNdJ}XswqBYNFoiT zIO$Q1J;TKxEEAFb#Uvea!mkH^LDCP2@(fN?p@613N<=d}60|jx%UgO{i1rMQq8bfP zsGWwM41olpz}0SMT&0v&wrK827Rf9h5gx7xdl;Mu4?m%{MrJVt5gwk8@X%*R&KK)g zJ|Zj?;av<)gr!M1n<0oWe51ur;`XgQ)5M!B9}#{{5x&CUMEJE6>YVN^h9JVPc?la^ z!3IBe^o|JVEwWX78G2I1mm%`@6A(lC$ConUVF)mT6_P&M$cU)`GXc1GpF@&p-E@1V z$w~Ny|5~?aWHw#-nuj@fM`g zKD#sAUs%UUb^eSCE9oZ9U@XsDD+aRSO&ZRXZqh6`sczCN^5vLho9EAMMZl)H{Zi+; zWdpF|7ixgH_d*SPxS49W-V{_>&kDsc=D(qA6oT8*qKQd)ABcr?gE#@O9r0Z24-k@M9L9eW! z$V)@b;bk=aR8MpT5XEjkrTl8-(tZ~A#E*p?_H`Bg?t`PDw~5*5Bj zKrWTuBd95__V?5dCii;mlnl%Cl#`{O^z@Cidt2Cil%OxG0r}L!PkP3PvmA>0(|B&! z{q7k1wppay2-PhHWQ z@r352OFM#RRVzJiPkA3G9f(LeqYgwo#b{7_jqsP-spJl2azi|dw|A=8|GvfOgaDU^ z)|d=rV0xq5r`0mfH>cIwKkt5WM@)S!`$r4JC7AGMP;_!fyYLseqg}GY1W#?YSYmmj z4<~q*=J!SiCVIAs=UEfbK>eHsSWMGb6x`{Y5g%y6YIuH!8XI4&wOvx}POrcQ5WxQC z88tlrdPWV;KdJnF)1C-9V49~qe1w*ikA`PPO!6ztldYg=OCNuzsY@+n&~Ns`)Drr&-4@#)frjsG@3IgIgMrr;7)^=Bd5`Y z6+x#V9z_5-jW=c3Y|l<(=yS?lB(R*Q{>I?v^kTU&8giklh{Rkzu0qRTx{Cgqkm)KI zM7fID&nZ_iS7%lGdTE^JGR0Fcp2|)9Jxg*EoTYXX+ZjJ}6RT_uL^U@(vxJQ{I91GkS+`rkxvg z2QOdjiHrCHB_`)^7k`m+xcl6_VwEN7o(1{6!=NQFb%{6&#Z6r&?@(F;ET-wp3+^4@ zBzZc-@{Lz|g5}^BhL@3!W$^sRL(5<>sG;VlmO1O4RRKn=vns#{Ad-Q!LLS_f z?{?Nd!U>E%#I~I-gbB@{EY`6QRJxH;k_*)6TDJpu%{^SqwYIN7h8)xXUQXq@@V{ ztxS(YOyW?C;5SbXEr`p|%@r!fGuq@g2CwuS7Yi7a{Kk9)aKFLJk>6O)icqkz1_9(Z zpgAens4{V4KjZLO1RVkP`VhFB@*UWRySgJ({DLtMYnvr#n1;(XHZ5ChPpp?Qv)G&Io& zOPutD_iv$Tn>~j`Z%tFp4FWK+$LFZGqZ;H`BW#5&o>oQ@R2L(3`xZ}CBRPi_6XTH{ zH=Blx0lgo^09GxC0e0{y!&rJwQ4ijQ(88DWnBsR*LmkMu~V~9K5Z+s8Qx~tl%srF02%BXp?zV}WV{S{ z(5Ict@%L$EW$#^{ibigZ@@b5S@@ezEJyUnLr?K&+*)xvap01G_Q6%0a3z>}M$-b+X zxLbVBq3Fp{Y8ESqC)2G`L~g#DQbc^m7?3;5X^=Qv7`Y&wj=AC@Z3y7*jF%&K7Qu>; zJ1c_#a%a$z`~qL0q6d|EHgcyO-rqdtreHT<89X)V@|u{tN5nybzU zPw?mK=6urv@x^n(|D(d>OgUe2rZs^let)eD)EPhWTq;*NQ{HRjOqteM#z%^e&h$76 zOm=?)f05mv$i0^{edU;EWPX#MnC-bM{>y4kCVx=_EUxJV_;i3a`JB+j!7{e^xJu>? zrcZLbTdlHPE_^L4=9iSt#?@SQhspLl)Xh|NT2Q$Q-4Z=IMwDa-+Dk$N-eIcD5V)6Q z00Q^vymaXfQwx@h=r(;`(S3v=h%O)!gsWW$gA-YRYqD^KX*A0~6rVCFPGSh62nf2u zG@l`eBp@_N>k89mmW$}FH|g$Y2%-xJy25mtA&4#@EV^`s=^d7VNM15Ye##I;5)dTn zZH6F{fUro?J*JQs{Q9W~?8st2m1hVd2?%|UsW!tBUBFs&Y1c1+F52^QmFw^P0=a(M zBl6JOo_pP6`sM;`{dG_|=q3}RsK$X;a{Xi53NqmYymd0H?8w4~{RMgZHBZ0DJTwYE zB3#f`qMidSbkPI*WvAVt5`H;_n^lb_#`pO_2|x3RuQ#rQa4_27-pwmY3mBAq{9FW( zkB26sD@q3|jVvdtoOM4TBQJUSimj{!9bel7%@4=d*&+3p(a{`2`h3f6Q3W3e*Rhh3#{h zaM=^%%K_Kw?!h5kzFEvx#DE&zBa# zn6`gUSBowuMKQ`a+s2o4U@3RmN01L6(y`ir=GQTB${gp{Emmq0fa>0k zp<7AI%*rok1*q~%{6$*#&niFWitZCU4ret4o`kc0)1pV|Pc(qmCgBUk|3}+<$5&M} zkHg$^AqhDrAt40_Nl55D6hRc}ND&AiSWpq7AaLpBwooG=2vLFvi;6%H9xRUtHbhW@ zN|P?qML?u?1*HhQGqdO1Gw0^y`F%f$?>{#uv%531JF~O1v+d_Gbm%~N3zR#>RacZe zKIRj3H)E0d%=RDTme1`h0sI>2Ui|)pbT3Y`#N6YfUka|)Raq^ocGE#5Q=r;aDbq^lfC72ArmTL&s-9z;srXm$juS<*&Xvm};)9vdCrZ?sXaS3SrQ zQDjQPjm%SQwNW~3TvutWD#omrzUL08QN1`dsuu^)K_m_!hbm#CJYsJMicTVpVvJFB zhUwKA#u5V6c}1_zbe2ffnZm2{#{Z!@dM5yCR2@!@s>1U)C8XnacuM!T|wqLjPncA z7^Ga4 z?faR6i0aF6Wb_spcIrmF>jx%SzcvghqLl|GzGvuy%!2N`vEuT;1T!rGd|)4Gwf-=o zqcP|Re$g0oM2sxwuFB3!&@iL7n|@w`ZL$sEgi`=`ULx*n0Oz>?&U1v5?Eo;2OB65f zZW(-B;t}!d-|i5RI=4iYs%+J@92AenpKu1C@kiMz$DeyhOimsRma>NyX)t_1w5aC} z6R&flDEod5XP4BloEBDcMB0K_70Cx>#(vI)+?}V;6a2otOSK> zT5M$xB6Me|G@d~!g=(6@gu>%~Mjga5Q1Sj-Vo&st`Bca$TgFJ7F z4VB#1mu~5vn$DHoMz}`bTyP4jPs_DTgGiD$}QuZAWq%{?QCxR zquklt#7eQh;{isk^^bBcYM~}KHQSM+P0jfd*0Bbp6`Ab1?u+U(j4l|+E@F3DVIK;R zl2r528CK6dT^(ellb$#b0X(|K%h9&v&Gp?+S+LQz(xajcJ|88J3q=-em-WYXkwl3{0O7Z6eU)`ZP<;JZ+?_h&-E-D zMIqNR32%i=IP>HZrkQ7TeCvlW_L;AgQvr3L^Mckk7CF0-p$#kK0v2SYiyHV zQ!Pe;Cg;^Sg+|-#nh4ycN`VTj`n-RFwTXTk-AuGh_9e!fEo111>unHI>b?%;#V3`V z5n|!m@eR}`7zZTE?%O~Le|C95eUYU=KdB*h-+Q69W1G}~kt`95g+Q@l?ic1{O)972 zr(tfv0h8>+*|H->Ci{{cKhiWvN!u#Uw{WL8W(l>WJ4MOaMm8RJw%YiqCMH2E?hL?c zN-s9WEk<6*eaXcya$n%3)K+f3*>D|sb4g{8{$}WmVR0litm0GvVLmd)xJXoz?Rub~&fE zA?G>=T8(dTt=dKc4W$8mL8$2Zp@`GuNPZ9SWS0;bFOMp(+?N7Ahp71={yC#X_k}FZ zog6I|FCFexL$*U+eIzI6_Osx^PL|`^5qIl&hRtXfVifmdBw=RKj%55I?MU8E0T%WU z8)*c2x1T}poH8n7-ecfGF+GtF66Zb!ml!#%fQKgcO<$O;-;%JdSSVh~}f?=3KfNCF;HC?xng|QSt*{+Abp^ zFKm|)kpfVWA26h$H$i(iUWP&?<=IHO;A5$7|ksn8yS?8 z@&^R)fu5IxK+Jgc5Gz76&;1A>9RqooTRg79;Y!blO6nghKaCTYx3iJxpY1Zff(<3( zE6{Yb#lz%8-{NuJM5J%=U=X&&BX)<};t{_CQ1S)0(jvM)Ois;x`6)Z(FlZr8+dTd^ zaT*5di-zN6kX=DDNb+(dM0l5*uP!Qx%YyC;=Va9 zJ&M^fbu+pyb|boAU@S6CCS@Fckx3c1BRFPjj5vFGyC2VINmjd_cfa6J=d$XPDS4Lx z$dt^5hQix!XPXHIKiQrlO>7&94jJz5>Zc}RX+Uf!xmN8U1ERkuwS^Ty!vPm^fx>iF z@^%D0D5V|`$|>p%hB#%gPZ8dhv{SQr90%3#%bN@p}mWpT{HAJi7tY&nN?+Yvw;eKAn zJ%S|=ZcM;EFcVk;p?%(pmY$UoEEA!fqoZBM5(q6Mn9oXm#!?CQoB(d~RjKVP6XD*X z<37w15VvE?ypirE>RARRq!0l#+d+R)%CXB74k5j(BQ3=eh+#+|sU@)lLVGuWmR^)< z%+d*CgI)SAAeKNFA%R|$dYmN?#s*@;dbhj`DNkJWxSv%Avn*70z%CgF@v{V^<`@tt zi`q${kODdb4S{a~4>$zQ+f~32*gg{;=s20>ZYWw#dNv`P={P+sl?^oXF)(SYJK3>L zJTlhZDsdI&<0IeetRRkj^sv-M#yrk&oBkWtAWC%WJ|aZ@j^U;ukY1MhnL%j?+=~D{ z1oCn)1nO%MXIVKK2Tvh@#z8PE=F3vf-KILxg2eq@BDc}V#Bf%g79`5-mJ1T)SOFR^ z<94$Fv(j!kV6MaBdRRx`4wx8|Z#_B-glIwHKBGkYV4Cih`(TOqqFoG4LrkKOo%9U(I@TQOl(qdh9jL|K<7Fx8O0iKguvs-^oYHcvV z)tul)yLO?qQ5p{a`|MOtQqdXgQux-_)9bK4&MZK)krQZi1vHJIE1X!!c08(7T_y)R`) zj#QslkW`-oNKrVzd|!$~QCnb(C)B;QuKD`&Qrb_ZCX@XR`$?)y7)u}_ru-yzzamQ@ zTax?}GvKv<`hV-ae#%TEUp3 zDt)L|=|h$PomxIH_1#Z$Uit%1#C88XUZtHs*>q}pV9KnL{_+!0qfX7Kkv^Q(_2Dd| zM2+`5r}T$i;|1A4lM;34e3ZiXO3l;unz~Aq!uB%Fi{D#-=9SK0C$Z{7cX^c)qK?G@ zBsLBpO{7<*IF!V;oQv(C+KKT=5^KL#H^VG}T$Mh+Gu}*_!4jxuy?MZGlbFv>uordB@m@7PHC1Mr66gUl%#cH2&Hvm0BM~VfEtmWm}<|U)QD|i-v%3) z>4m8uSSD)8JiR6JSc18;?%-azym6SNl8?EcSMqnrh3gwucZXh>GBrhi@CoQqdvbcv zp85+@{{S8N!qh!Rk(%{3rx^CLjcU>hQ+5QYSvf&!Rt}(MF-SKXLx8+%3k7IZc6zMnikGN5tsDXRH=QYq=`!n0TwRlv8fc6 z4`vk|Mb4yBA+W|yVK;3bVRihbw*x*j#b=EadSmllBh-ZfDB7yh5wTO~?J@kK(A#5T z_AYl-)x6qsoyghj-eSATGrou+vk5=C;SJ&~?geT;R!>^2?P~%IwzK~Qa%1Cc5W7YR z$3gdKW%525f|#_gfDpu!+aU@+exHoOGej~9|IEHX1fup1cNO(NP=)LgU55ATKSb19 zGPu0(?r_&k9EBC*0g2vbO>uRug1Fk>86__6aC_8Gc+#;^>50z;7yd8HL5nvGo6&Br zQTwF0H(_QH_h$Seal;Nf5V!5x&2#%`?MBqy?VeyO{vsSThD{xfMA{zrJ@o{u0R?T( zF#rW^Pk_2((DtaAU{tLrr=1NJQpK*(qXwz>OzbjpYeUX;cb{DPIW%U}NHumpG@`Ld z1|wckBKNwCmMPkPxoxO6%R}L^>icE5>|vHb!8u5vZ9`BJV`Xu+UapY4)xS?d{rVrWeBCd9x(Ma<*>Vc$ar80R*kYU zN7WXS54#&D-o+;2s(P5Uk-5&;?qrivqT3O71<~+`yQBIFs~JVM4h5r`%yN*@GQ5Ul zv8ic!;9bm2O1luhNNE@DFL=fAkgl~Ij=CSqw@@JZF7}6rV@KUDs;e0jWN|(-0R|IA zS;i*y>T|}eiI&IQi`AVbc6lQX?6feHWz&9fqVJG+@k{#H=hV|d8I|Am%c$*jmO!cm z33Pl>IbiA`Ms2YKsS@C&u&YhYTpRbxV}_LuNSl{(Apc(M<-fZVl%xaF+%Y6leO3T= zJ>WX=6l837K)iFx-6U}%^2xPkC1ae{8Y`T3`_!(CYfzIe;>zj5ZYpXdpq)#rof$?5 znCj;S`!Ohuv>6DXkrvv30;WHlb&pdgvV7#Gj6EQIudytFVl;Cg0b?|Cc>+%5W*=bF zo<-20xP`kN<^taUx8uo(X>Ww^NH0(#XO>f<$-(Laa)PynQ6ew)3r^|#1JaANP@>6! z9VME|1yQ11-0*hOs!I^8JQ_^w5GQuVju?ey?1+)e%!!f9%mL(JasWA)tFE|{R1PJV z*$1i!GZDoNO^YYi-oEM{ttK9X*3_*q$*t@`DYvpLA>cFDJ1BkT1}u?UwC+JByGIV% zv?w{vW+nA#H&7#|nNy=WaRAjR_fL0<%Ar)JxPxY$@cqDqJ`Z)qB~`B6 zqbpK})K8|8jS;9p4MTIc_;vKZm-6H8KtDA2I+9 z?Mn{Ip?#s5U{t1vwzq{SH*H{3b-jsLj_Nj)T;GDm;D(N>=^) zJus%oVi!%u^`k97iR>b$M0WAzL((oz zVU(yBPhylDuZ!qVPb1Ajh|HoLAu@|Wgrr&gkEj>osieLiOlv8p^{EXlvWj-Jx(^&t z-f@VIw!lultD%5>docDb96Pu>`D#KZTkNpYk{C1{oou|s+ADY_GNn8`i)Fv&fFi$g!rVp9wKL<<)P4ILanW|jlU%+iS#4ka_& z=8!b24GzhPc-kR7T<`>A8oE#Ql5^YWM}Ne%GVxWl$1&Z~E8rx;Gs=*|V&UH5mDFLZ zIBB4Z*V%Vijw8IzBJbznb(36Xo%Mm_C58#(2g-|wCCiUPKmzYkNh8+v11+pi8wL|m z$^$J+7^)zXpf7E);_^TXGb;gnU>3;(UxVmqH2E68Xf*lyaKRopm=E0ZC)UM!UdZo( z_mA_8RQECt$@$)80u1^^Ja*YgY>D@bi?>1SIspocw=4Z|SeolApqky>!z|OM+_Iho z<>Fy!t{D<(u75lnFxUQao~laR5s_QY(=G7?R)d@C?Pk5?)>{TJDoXs|uwCtl(a_cL ziyFH65o%~lJSM6HE&PaAcJiI`qiiMOHT8hk_^6S|(_ zX{%2P!_5^k%Bs+F#ZZk0VHL}X=8Pxbxa z{7cRJsSm*8B~`0<2B>*KxnNVu$m*WP>P`lysoXlCf*Y}ZVF@&qg9Mt&0UK}=O}u!! zn#Zf&V7X|k%{7VE`HLwmLVN89sOz9OkyOL;fEvwG2{)t~xM})XyC&#CO_qxqqUtYl z`q_jf5OPSM>1R8ZKzJbm@j9l9Nwq!0)jlkpFg~ke9Lf?1BP0;Jcj|aj)Uhm;&_b%g zE=lA@UC$WxO_qz0=jh0numnO53Dm?ZSpwmO1PfkweNTUNE6YWAH|lr~umr*j3553) zOCY?Epf|(rhMo!PJ(f-wZ|fMfqd`)G1Zajb;<-kinrZ?|CA5%gVYhE%&kD66%SFi3 zj!LPuVhO}9B#_j)vIN2l2?kyY8WhmW$Z(E0Dh=n*qcTuhVg0B;@G19UPnzO7Dh($? zA`NFd=q7>VYU5Ck-=#O;kQ@BhIIcGC2pwe@j5)YH?Z8wYuIZhw&S&+&S)RzllWI$j z>L=BfvSb>c7emAJa6K&OF}f8;X?%{DgSp5T1s>#KwOMDpg*vR(+|yH;e^k)%sysx? zxu46pq2o)FT6i*54yEHuty+5CQh#B2$@2cr0AzW8IVvshK{Fv>d5ds~VQOp767`me zQ_h=gh`4SZMF%0#u~)R};sqEaN@;u6a9|ePxuRULA2R*t87S~5IaycF_0Sh4s zeZ1^Rg&(k>*;

qSYiVlFVz$;8f%gSG!v9tP^gQc0GO(DL_DEtEl!0pCd&%rcciNGt2isBZB~F*AvA8Gex%mlY_+s8cV7 ziK$&Y{qoDQUb<(9`Yj_(vi#ZvEYwM7Pb<7EM>hAg6N|cf=BoQl#4>CPTa3DSnu_C< z9MO&)`2Bdi4RP0YXk&CSZ-6`@A^>mDkoYK6A7m}##T$=%%E41=G6#n08AfR~zmTHB zE;gu#r zCKLYHF=oP_J|<0gSzZ%BcAFQQaZq^p1t`o zQUA~3twj2Bp0Ice}Llsy%E6lMm|jPCV+wBi|0KV7SBGlkLR@d5tcN4`ZnS0e=D9KeO)10^0r9^XYDs68@+{~A8fK{0!v zCpK|2=HT6XDXSLwK%IFt0zS}_$Mp{MG)txq)blv&KrbAp4x|!!>Ocp@F_))JVIBbI z0*+KVLu2C8S!0ksuRuq}5blUyU15l)x8yO&RXlsD8xqQTTKDaT)$x&Jw_CrHZ^()e}UCk)G$(JeIVO$im|?9`+jG#dz2ZNQadXjmdYRh@R*j zDBkeHe2anQY15}NJ=K(fC&Z*oPc7BO>W5FT#+v^J?9QtqZLB9r$v7c$%M7Wf$qt(A z1i2j)Gsb!vDea*jjrBBC#-AWZ_f>38(sO-Z@{1-?dAG(B<2-MxQ#ceib(rP!4Y*k> z2WjlYI?u(5Z{Nr)tfQ$D}F8Fqyh8uNwOs)X;R+xPItQxJ9!Z zLHbdhC6RtqL4ZX+hPpi|A~QL>l+)GZH<2^JQ(a7neyNOj_VtViwHYf8}fr%!%e zdDxnb>q?BQTjSrPu2lKWR#)^~6&W5=S9twUSK?ShF=6zY;i;l@`b|ul;i(zl2{Dm| zjKnX}kdeRHXvno0o?&H~N|*>i`9!YI(NKIi)6>K;Rh*pZX{JtN9HL@Wm}~+pMP<*A z6S-r;%8QyCohjm6wkL^o?l{>nlg#qwcCXdlU-Q8Iitq9?t7#}BOTW!>;MSQqhR$S1 zjGqM&;?FTJHOUwFMNRUBY?3&0dmlB0R1i@<$Mb}`mXQDzXj@?o0@}j#*k#*ntAEY$ z>~*MHt;M+7Cgm$FDEg7MrbDz??)Ov`ef|DWkvGTlV7|^On!o88s9t2qX~K8b1Q^xM zo?N5}UoG+aT+b}^zKNL4+wc4)=j{V5QDu0ssS~X6} zIeUAwb8_52X3p6G7tPsi>gKxro1C+s{7uf;$!&x=d$+9uo}_!r6QZ;SLSsFN;`6s) z&fei9S)AKg8SZ(V;X~>3FxnAm(VYEhtPAN+FZ?3?>2=bkOOes-|Bh#7x{ZQl z&nc2vXvR=ROxPx(#QX)GyQqLiK+~WoU|6$nt{V1O6?M5;K;C!xUNH4lcGOo*8dCTFL0#?u zW9X^Xe5}<5uvVkJ@xQR#)M|$iV6+-3%kQgT?dKB92Ln|{k@EhO5Qg}WM648}zjEQc zBGXU9D7XUcm+pSS^|e^=8I1c8r+}vEg|$sFM?rfOt2=z|>8GgWt>t(R(d015ip#Zk z*3|+mfz5!>dL^gp(cgt*x2IbCqgYuo#to1H8RG`0$QZND+vZ>n-HI0B;Yp;@V#ZgV zzWGPi`fEHx)lQ6G8d=+$0E3(C8AUhY@2M}Ch-E1Cd6Bi*BQFBGGt^D+pGs;zJfz>A8WVBvW1MT(pXnj##TRK zXiYo%J%du$$U^{i4QL|j8ap?@>cc^nkL>8rr=%VInI)KZ^wxKzqqqZ~kX^sOIYb(cfQBJ7bGKz1|_aG@Rj=9F$ntDOdF zeE6u0086#6D$n&$nxB?;@U&$4$qRerH1on9J1q?OA)-w= zjZVvHO=X~Dut-L0B+E&X8J3U5=pQ|gt1q*BWVBYcP)aBhb+p5*XzPm6Ez)YLi&z=L zy&xa%2e*6PQ&+QmB=yfv%b<;Nnu0dvMa~XSbon)y?SIJ9u~O{W;i;gmWa#Mha?DO} z&^eUiG#~4{FOa+|-;ngAxmCFu)3#OCi45~Xy_<}ka#|WY;8!L283SdBGlY`ut(k$IQmV7M>wPhOkLOW& zVXsuY0P1%Z!ol(%Qd&CUWA%nc9ostaORV~={cm+65w{9Iqg`WDixnIHrVAmjj&?l; z)2H!oR;M)A48-+5l-clk`SPeff;ZKjX@bfhObX*5N>G-qe8~CATdn4Av7d^~b zD-XWv;mYr7ia zPc~loLO0Jmg9lOQ*wz93q60B2@Nfd1ZJ3YyW@%&YkGN@z_I$O&?FO`oVJ|LP(;|4< zukc0ds$bw2t<^1okbGko1^P2i0PrRJxrRR!M>>hqE}GU2LjQ9({?aDZG+!O`Y|uDPjGhe? zmkxO{tl(BBMl}_44|^tSV;Bb_^@_KZHjYDDJ>%=4j5#BxUn5wG!L6_G+|GW+TTi6a z3N0l{o%M!^`(3a2)l#7;i(=m2*a}A3ghIR FOv1um;#H?Wb3mtaHl+S^l!Ju7mncVv*lXFK+cCXFM)NYsRZWBHMe;Q(b9)R@^=3 zsj7A4$*Z0l{UAINGO)Je(ctR#0B)Wi)lg;C6%{UcD#n~@kgMx{AWgAZxM04AOSJh_cBl=n} z(RXZ!&bs2MVoQ`HWNBg>3F!@!Ukis^_57f%<}8tbdS8P*y&KMo;ca}CweNYdDWLVi zZ10c)(wKnGh@7^*3Z+d6=?g=v#eqLO!>xo3wv+Sa=4^u>SJUx~D0AI2Oyh7d`?_bR zc8{}4<~igX>tSe~MXch5yX0GRD4%|t<%V1|oD|`y8|pn#yWfFp&(?ZNh;H{`{iWlr z39<9~l&h|l=X{XawW01xI42L{T%GTGL95S;Tx&VHhf?R943pJ3C&Od~pdicL9r9q9 zEd5-5%f0BnH%`2M+fzpAbWWOYj!ByD8)wmcw|C@%_C~c^RCx_UCDVL+iy;umaBZ zP^i@hy&up9@T6)tVna!9EF#3kj5u39MCxPS zBqip&(Zv>qd#ftb&SMvYQ_$hwNM-tYa*KdtYj=y|Oh9+*6~`fZ!@8Ovftn(xR_Chm z^RWbp`z`z;alcidxMyo#kBzv~BfPVZQJ}EIjTI96}57qASOrQ_%6{HG)l~lo&BdH1>NL5hDQCk; zQIal5%}B1`i&2s#iBgVA*5nYUXT{$ah9Sp zRForAq+%=Mz40RItT$B7uSPQxa(-n))HUjYoL_x$Sd3;#7{Ym=q&jY2s00=go=kQ>d`(o(#=v|}7h!)LcQGb7+EQRqXC zb7FB7Z<=<2XQ2`F%mp^?-?$(rIm8K#`@oLKo#ljWHANWs4LL_B$Dn;-lU`Ej#h@zv z!Wrvc$vaYu#4JW7vj+Q~EW{Q;i_&GIT_fkoErYDI9|i+x3(0y zAd72y`)gU840f{g@eBg;B1dCN5yLK%j){2Y)t4I$GMdlm25%PkPoEw6e>cgw5iW4iJs)=L`LFil>01uVzCatk5y$}JG`%5Pqj zUiq1e(kuTRB!^!43C?ya^vbzNSaXwCJ_t$EVC=##8jM|+f(PSYE{LoVu*1{S#Ot-` z5)VA&eM6hfD^G6POb($jbn+!RhE8NDI!8s>Mnu*Pq*q?-3h}no7BlS9DYK#HS_D#q zCx&`ypYrVFkFB^Qz4APsLjKqaC`4ZQPM#F-%1fgGO!sbYP&w}f)}lDL}YO_VPBl}qG^0sGdDH;!|Jj#xa0=&cO37On7n z*L}=QaxZonzDVxHF5AeRHW?+g^1f^%_tUMsLMw;mjp2#pp2{KEY>sjwqldSt=sUW2 zbb1_1)w#-^{%;scaM4vUY(cC0KR#O$gSxugHsVz+)wtEP^Mg#dO;5Q z)XSt7P%Eoml;)g~UT}ym0cZ@V7jrQ;>BT(!BE6Vrrx$c&hWlRzCU8sX$jo~IOiKfp zmgd7`c;|_oV7_lz6rsU(S10eg+BaCA$f39*-}8Idb!RTp{1V(G9jL zK`irlj5E%1{oOx3!7b<_6YDK^l+!pe=|g-@IxQDx&SN#n-S;3@_^;vapO>n92y<}X z;!EB#rn^7ZQY&1X3Ap>p)GN|~oyPN^KOr`~1eKs|UgW~ghK%UK5;Npd07vBUH!Y&_ zJg$trBAxyBkO^KPALokv@TI-H&uAZVaMsQ-T^=r4$m($|KOu1VYm0i%dLPr)aBAfB zf3G*%MxKI==GcJZZ7QAqUA8TTPJijIupm`bcly_ecD=n1SV;wZ{(QMD+}3}2Ob5~T z-OvWwHO`LdLtaKO`H;}_=mgP<2S$d7W_`TVHSH>-8Kwh@ba8}<`UAa*S{P3tS1#|- z;tiCPt8|x=R*@&e;=_wd@>S-^)xIh(Q{u`ZFPSszqE9TsuF_>nHU#N?#kN=J5+AKy zK7y?|!ETaZkaps`)G>Ax@m8fEilJj3QwCn8`>XYM3rMC z{i(O6QXA)qtNMD|NuEwke2i1PB%3%$p1ChN8Z&vC6se7^bqutz1x#&hflwQNI>cK~ zvx3n~mKy43+pLC71LS?X=UVHUWVpiZ~YE=1%swwYj_@77(r9TXXEF^;;G(P$6HkOczb?m z^5y6+j=%2h;5aYFzv8XuJOsq3b0t;q#VUvYpotc+ZtY_OIDMLEafsfyP-8jKI*++Y z&=>HF1bx9y&@=(x`HVk8{F34;De|6yMf8-Pyqc&ptbeH3rFp|e%bDH;adf&j)YT)L~*fd0a#$#qEL*b>Wmk08Lh3jy7wKhA9)U3pRc_kGJPVs>K~ri%^=nK!m36 zIZ;969rT7chXY;GkP$7srIZnWl7>JHtQvARpN4RV-q28SsUefFIB7^0evyV`{b^?k z@b(HmH!?7RKTK2c*8`Yl1u)IZhsl_V$GqVkWxMCG2)Fc5gs$6MZ<0uv<6WbDfNWUw zaTSM4NsB^sh74%*bd`>X3FNA)BwQCO--d;nM4pj` z{j%5DFk1Dx^b3hSnmEI?>hE|v7Iu{iw4{Ql_qjI&?)BgEK3JrvM$YJ@CddS@WCZ7m zrq09bbS^3Cz6%kQ7M8Sky}h;e973+nh+P@sN{j1qtD&VpU|yOV+_3p+MlSN6()w`Z z)RHNSy-k!sdixFL$<%%Wc>B3++HYpAw|{^K2J z6JhMP+?%JJ=M6yP;~yMC_6T-Uybli3X_la~mOZve;p;RJwfCJkvG^Cy6I$pEz-e?! z+F5Nw&lPe*+M{J3dfRGoya+`Y3o3#U#u*=Z=WDfi5egkvyCLT*m2SugLQ%wO@9VE%gFkmiq`Ul2TRB~d9PZT{avx8jhTOv&5^iG3-;fkJ+=2y3n!1J9D(bKC zPOy?P>`8LI+?-K;&+eqJy<@Bupg=*>wcZ!BsK1y_P_#f}5J*D{lATrb?i~{xGN{Jr zP{;uKRMtkXJeFC3K4tf^VaS#Imy8^=hp0Vx7qFxRMfHe$-@DHT?gSmM-doqvN+zbf zP%}a0M4=H=mC(N^ilCIaA$sL`YdBqhg^IM(u*d{qgedXfJa65kWGuw{S4oZqV+kUs zQD>h8Hw{6w^VWlz$qob46ivv1$7C^@@CHYNDgqbBLpAi^@&d?(8*hOjJ(vJ2(h7f{ z8jhlLHB%Ci+6>MDt?*kQWF% z!2$u{baB87Y@iYHB{R=oGA1^fU}j8ggoPno?dRfQZBNmKo0yx%&Rh6JW9O~Ef~OSI zZ_pmxd0V~XY&y>OTfJ{;rT>QFhB2i9Gl4^Jz*I{AEf@PES&Gh3_SAo)OHrI5jbWFQ zNgH~ux_|RHLn~f}W|YnTmNUw(JcVYI&7fpZprJR@By+$>GPh?$%6yS2^Mwb!)txanb(vH6 zAoeE79Jsd1JeM;TB8WP}eUAMuW`@v|TP#k*eXjO8t6qbG-u_H@1}%|-{7qH|P~i|w*?VXE+~of7wD90iYLGoo2jS04YU(HGr509Z!$j`_6eWyHi{vZ z$d4vA_kl+(?*H^o6%n<-8!ZZX6SyJgWb&q!ebDB(&-QL`HGkqPk}Li5S#Klp`gw1t z*m)LqZWO=8+5w$vG5lPi?k2Z#q~#}^eBQf4i{a#`eQ%xjHdd10N!JVB`dS5^Of6de zmf508ja$-P;!P?tE_&<6l*WSGp^mvFmRy85mW5!zqt2I|vkNg!{}Thm&P&jXI2=#G zJt8JwhFyTqa6V~#c!5Kxhd*;m_V6cJ3NT5&b`iGB8toj<#s@DWA;$+BqAt%ZJ=FXv z&rajR)LYUq5Ilv(hpAAA#)oA*$s8Y06x=89-;_Q9V5ITEo)I}dbiYMDK`8YL2sBT; z?5#*!0i7FxDtOT41&tJ&ZqY~q{9F5Q56%*e6da{I~RseH(c!J_})-j{3!i_$l}Uu*ZUykUq) zl|pVa2&vLNU6pRLygF0anT7W;L6thnEnnq1Neal=ka8v5mV-s-JKok>4PJx>i-L-n zgGCEo1_ujAQ<0(hIy)Z3KTYSfJYOch04y|I^tml(g3n=g2$@FrX>MH514Bk#M=uE< z0k@oM9FH6^Zjidkcyle}ghq^)@eBVoMvPjwN!t<-&PR;DS>p?HTh=tpXUH!o;4=HR z47kkUd1yX0OLA&%%z78H;>IjuheiwFN#B@NG!b`&8P*=BuXWNV!8Mw~*`mSW(c-=( z+Ls(mLqf`?LY?0S{pzaaCvv`oFI(HliBM2wm)=-=cnUSvj^M^RV%u00S@{7=^MPQa zXdUKz%t|jX4&=+txz!^py-WH=S!+R&mH2R9hNj(N!l%ee7=u6>S^FZaC_xjp3J$7N zVkG1~j0$(8%T@l4bh&Jpa3$Q4(Udlj2VJg~ck;Vj&qw;oDb4Okmy08j9msh{&f#j^ z7EMd}s)xM~DU=Me8DPL0Kxla9kGgnW%(lZl(C@zwKO!Mwkg4crLD|EEk z&B11XWfX#SL=<3gWQ&YwUnT8zo}WC18F!e+F#nG97?4$$-mPSSC1pXOVwo0!L~5^a z@)TRKK+M?6syljYOFZkTQNp$~crfl?9=5@6Au7 zO&DRN?&?-|)pc(QtR81I@x>+q?^cn&%lRRZbBNx=t~@F76hJ9Oo{C>2^3=OFBBvk< zcZ3W?;2Kg8rEUOIS^!g8K1|>jgLO(NUftFEj3`~x*R2dKY3eq?z}fALeia&g=vSd3 zh^|6wg4i3uPv9yvgs`j7FwI5FqrIUFU4@1pbQRiw!n@3{r=qSnUdI zDnKEX?&#Fg9PI{vk<;u%`%a^O2~;AoL+{`hYOC8dldhf<7wh^wVJJ4ZSgg269r8?j zab-#EQ1M*x`4OVdxJeOWX!Dr~B7NMXP;CebgQWY?U3TNxAO?mEmV+D<$Fq7 z%Mi;*oee41*LUUQYf>X$J#8y5LX)ooiqN#_=v_H&IxMa=_O%zsON|b!on>_Pl@*g7 z^p$lSz(lya2amLHWYYDUdl#Rns4u#G10wD=z?YD?4Ow^>mxqhpgD?Eom_comHtB23 z!CgLq07DIE21U1ymB8`_m^>!Bb*$7qdFxm-PbP;c;-2*I9t_Qja=OajBNtC4Hps=> zCKf*It6hklIUtjCrNliMORIx)Ir|D{gr-a1Hua6s9^hbNpYEh;eox;c-;$>j|BqPs ze@ybPG5+t0oGYG6BJW{eVb%bt77yH$dwwk38S|c`=l)mSR>SpTVTv|@^G)@t+R9f` z8F^1U-pW^98_kmg7gs66Ep;0YT;R20tZu^7+E+QoWI$g4A8=26+}bzPhALi{<(Mmm zweeNaggwzY7NWT}L}#`2rPvbvuC4DSD^a77lJoJ%6+oXH-g?wGOyh7t#$`o2-z@DX z&MdhAsbQ`ajIjek%GjGl+ zdm@--l~7f>-#FRldr}#8U#{Jc;H9YN4!O@QPbTEU)%y;ZPg))rEAV`Ny^)cH?73WM zD^~hKwSk-onqgWXBk{!3ocr>`(_EgH7@lomc#$2$c;qQ58%y%ZrG*GhE-et6T=u^& zCzn0%%gJST5F}16(=BY^YCRVVYjRqx-;cRvTo%7%T=u?nK3~ESgKo@H?#a=7!xPY7 z^LMymPx_{6S2>Q5XGGNh!k4I=0sXM_HD1u)8IM~bcy{! zix0~f+W*aIZ@LztFYsJ3kvhv4lLS?>cFc3Ez40cyUhy2FO8{B~8L1)f)*6C1NHK=u z7b(WjVq$irzlvs244Rd2=fXe-J`>GKG6R^#1~84yhiTAVsbW?7fQniCNV4g0&^bgL z?BkoHy@^N+hlTWP0f&&Dy(ybJJ%^?I3wpL{y|1a51O7fWu6uj| zc(VGBg{Ml3iEHP5?Ug^E*6ni<;iGF9aTi` zI9PU|pgsDYimRbmHP+WiBQ9tF0P zTjYgC4E7DwI&*L#uTKh4*DOTLqsbYZh&hZtk6;=`SAyB<;cq0y4)smYJVCj;I7dO# z=Eg)OY4E|C9uIlGISlR}wt#VnaSX>MZ>>D<5UY0jS~;G@f90ERRvzizmcb)@UMrY7 zZjF)9pVx4T6siA$L5!YRgjaoy#tRq6BIcJAEuVxpr@-s-XuBC5xd(DP>Cv31%<_&c zQl)5%u?<76%??4`=cj0=5U3zq$XD7$%G&C_fRyTPHIaa5k5II&MPG~V>TnIQ;Rnf?E#|pcUTP|~b zf{`X>0b1V!J(X(RfqMH9Nj^I_3I1Xdipu+H(11~9b? zU}~2Sli@Z!F&&1X{BBe6SA8#QeXzXIq@+IsID|Z=K2CB_)1PH2h5}72{6rWOsEMfe zDy%5=e$y8w-KKGjgmjy1h`Po)VYI5yB~iFb&yNxlYF7*u$0x;xh%u$XUg9OCV&Yt1 zxB?+f@}lffNb|kWDb4pgBIh-`2wa8N!TFgFO^ePCM;1~XD zI6v7^e}HkT{ydEUqxs4A*~B5H@3R}Lj2Ef@#M8<7*(r|afbS{o^e?~=*lCS8AUmDy zl#Wj!_p@1~6sc@-O7G`#a817Fe3AF_{u{nuv>O~;lwE9AKD7Mg=vv0&#m)BQ*D`7h zZeGh+CKAB9r5GNt6vc~E6_cG)>=+!A>=<>RJh(Hk8DRDTUkztY@h}mc?SuWA3w$k;+6G$IA&qky z=hgIL7ICoY#VkNDc`?8(c`;uC`mCR8rfOgD666(p4p|I0Msa;7uIBn0MF2ax7XzJ? zycn@)TZclrF}e{mo1daXD>*0R%UB@j%fKC$QMtZ~+EJdBm_B4-`V29xGNwhnCE&^Y zjODl|W1&Evj0Hk|`^Vz=67bs>z;S!<+m*M9ODATYg$HzExJ-=k2ilvQnB)>bnMSe- z_(daGg%ZId+4oNA#FSp3P)iQMK}bCMnGuhDfTbB7 zDEr?Sh9W-(XRGcnKAIlrLD|~x!#08^7)3dx*zf=jhn$$xD+Ysk5t@?^C?T@a#&vd- zke#mp3^b>hSweQc>CmLMQ}T@;LFbzaso42ACfWJYpghhcXh5R5M54I=UtePQn{s$s zQ9|#HXZ{PJ+MdWNpHtN5yqmr88xA&mJJ;yRZbKI~O6|3mVWx`jS};vGgVTGKf+4Ng;X&?#vnp!OdbhWKXv*BL~U% zKpP-*=2$FRZ8YZoX>Ol&4fo1gUxMRZJqOPHIY!xEp9MUI7nw90Ss*WR6Mo^ph8HcLH-$Bi7lKZ@*w?ru!eV=g9{%&>k+~6>x+c05x&Y|aR-Mg-WuUc#jkMj`ggu$ zjpvmMhkt$t+MXQB+L^q$1O_p*w`j4dN09^W$Tealq$5{9R625X;4eCIHcYr+Hvo+# zPlU>`)ZDc<(v#m(nT(AZ&t(Ae=k981B7)JC3{7~WuEc$Z{Y;|z=XOMJ;m>#!sr zJS;?L@UTE=@R$q8F(frbtlS9>T^4YGW5)yw7ch3jad{Y4ueQiL=1Y$c2?N43bcEs; z4IQCj!9&NE5b4J)+U=WW(=&$d@x7^~V0ps=kqcLyL(t$mQpBp05Qj=+2}YNhStS4M zQSsVd-}72ChFBVJ8&a-EAee;fC*-E};6*lU9Mcox;Iwkm3I1Z&DgXm@t(Yy;Dz5b20D2w-X$ zz|=4wCc_c?^n`DSO?rAuZ*&o!_l1c^76C@jAXEQEXYboqoE;WV?Kt5*{wS#RiC)o5oPi5_yYHT=l)JJ;cEfZ!FAXHKx)c3tB!( zt8ZO{LEj3mNw+}dtlD&b#RA%t4dMgi$8tuX}viXvgIFl9uOXD zV$v_Q?FF*v+r*h9uJ(7rQ;VOr3Kv~B*9;fkZa~l?=7z6q@ezPYjQq4!nLt8!ra4@F*oxak|Dt>9HBU;RS{F>Kqv$_qta zz0?bg&P3K{L%6g)-@spVDr^{WtqYg_`l)c~RQwj6-!PQD3x?qsB%op7NTgv{21UWC zP@wbOzU!;$3{%1XIOU5IkKBVphU>8Qyaz33&B30qETb}8U^*AE2qxzOI3?$zE}*9{ zPd#3OtV3;;TZe~L>0AIm0rQ|oU84r~EKJljzZ!%{H={adh1?7agxriCs&q4+;CYGd z?iRNDNVYZ3wsbQ(V@d92Scs6DVS$jFQ3a5rn-MEUYJPnQIa(E|wfwDB3n%DiaM>8n z0kr#`TK;qr1bG<(i;d-* z<^iM7BGp|Cc2gedv{cqd)%|;tvs%o`wN`2O~jld>I>}uI-?Gw32*`XUCOf z2&*3t_czuq@dT`c^9Yooh2%Rt$y`XrA(Ss9<7k?1A^8Y3M7%vu=)NU7mW!*5ELE_Y)ohGG@rcrI9omST6+`C;N}Y5()uNQPZHo;LJc zBS28mzg361VT`|-Hj$Sh$J4%ybUfirl<;|R{z&n4dnHQf|2?hEi(P=KQPJ!|>mj9-=UCpbRA9Gx_dOpXnm0EO-}mW0TA`10#CSB zOLHwq5&h0MTwx>ibWrD^uR)!b3iTltW)Lf(o6Lf*>02mkLnDi?a#)kT%J$m+F*Y4xS{?9E8enmwSJFuGFo)1c(g2R8!#?`-x-7-$Cq=mL z&oC;X;_;^5c3M}4U3w=r^jztYx_6Snv(rAe-jQ;j+i;#j?n!SbMDEFWo)mCTs-d0a z?g<+1eC`RLr_%)XT#rXRbX{07yc*lCLCf2Jv~zQ zOyK$LxD{B0B>xG1k>o$Ikvw@Od~h+ajnK$5iCY&y^i2TKH^GRENZ2!t{dSSChzI>s zwEbAzqC&rN2&vG1U4?#PDTWFaAqqyT(oqljhiiW_#L^G3A?5l5wFd)WDG&QwYK~Hj zaq>g#%ScNcS4#Q{rNyeQFwLO-$U(kBIZ^)+e>q1fJqNBya*Wa}?;st~xAi-b1&T5? z!7u#R@EDw>q|yM-R;Ag+t4bb2GhPwXV`yJW_ZT|zbTn~}Me|A(pb@-g;QjYF0{yn))Lfe4_j?=ZidrZ(91-X+t=;kfA0k3z~(}wdOE&Ps@C@ z#Omp-{S6)3SWb_ckB+lWHJWc4Pp9UaoUi$2%jS#V%?FbcIMW)FiN&efdhBX!DKYv{ z|0Nr`_->Qq1F^oHzmE1%KB~*}QT@V}>abzn>ajLd;gCnQ=H;wpVNB|PfvKc?`7KRG z!r9)zzeC%@*`mfGrjJObkMdM%szdphKJ$NJS`T>vHOaJvtPRt8ehbrAJNXY;B~L-D zs4o6NTG=QNiea=Uh!x8qhG{B75X(@&DAD(Ezj-9pqopxA@^C~g;dnxyxKyK0IdQRJ z$W;|CzreFaU8AHi>WumACobhg|L$OnI?5b$$em-9#;6qF!IfyTL$nf|AfmfKXaf&N zI7dZ+3V#_JCuVkm9ft2b?oUgqirn))9L=j^c#mE!i-S$~aRP$LeT15j`#2wHP_XN5 zUV>C-9E0voEO!_dGS+1$AzD&1L+t`F!SPQpM@iIB)NzTF94dK zmez_z0~_Q{IPi`*V zA%+GtjyAo@_<2}_)Ii`Dse!Ol19B_52V$W6gPhdP@k;}kmIW{^%ZCa4N>Jz&XLZ*! zk=)PUs|=lP)wRb!nR!>g4F^8-+i(y>x8bZn0JLAJpW5)k7wdROgiAX(g9y| zM(tAtzUa`*lem+gPC(Sby~4ERI}JA~(*DzDahDeDY>UGUD72aAg)+E&PMaUv;F2RP zWiG>22U@#Wj`2Kqp1&lG+oC zqf|uRUo$$1uLt=bR)51ps`f8p)%wh~V$yrH!_$wMQ2avcp8Z7O!zb^!{2MfmQ<|P# zgZT26Wk)8BvBeB5a z4|n_`G9Jq87jK^%gQ7FlCm3p|Ur(ibX&F=MQW_isSci|gIQlVlXmGAUX0F){$96A> z1g)dLCNf6*J18?sW8kTsc)m@C!1hb1aU*3KBtYOvWo(K)don93YH6`&j6Xf86;gi} zPk*e$FZ|b-+q5c8rYjLDZ#7*J2+%cb#DL6tV&&By38Ll4W8+0PkH54y>h>q8U$9Jj zE@xI0IftK&31q5Nd_AO#K7GemQ8%!hsY^5aE8mos5vfS$Ot?p98#ETqd5Axn^8jP- zc>RTW;>ys17Rnb;e>}&06p3?J=~I&%F#i5=&x#s;zguNssnn_zCDVgK?HC4FaZzqR-Y5~V<{w=x@LTW z3fKecK$8A7=cW42bSRyBZb*vSjU|(KJ2NUy*E2EFWwa96aDGUo|3##(sMnxGk}@iW z96WVQFpUuw8WSW9s|vy1!z6>miLb|(x7K4%W;5CnRK`Z4u285OtiC0zKJl`@pF>^9 zsiQ=$_HA3+5hLoa8{bI%Z*U@s>up_JUk9gR(bapV`dd5Hw^XY52m@|#JA&n#d8Q`rU^kP)C$($ z=0vTl7Jm*=kUMf7zsMaqA0xfeUr_t$(a5zTsH{LRoBc#=Gul+S9GkL5k8KXV9#XNSdp>T+>Q*~B#P)9e_5q-thCn*iL}?Z zW6)l=bAo8ar5p%Xx?@G`Y=3%UH1fj@*gs}V39`;3rbKGu>)HMe>IB9+xdu@kVRb_Q!bHls)Jkex9I&YO0IFSd9Isu4 zIJ?@Ns8OdTuU!e*2Z1Ejj+3O?1p&&4It%=rRSu=v-85@QJDgHgLRE2%Bqvs` zk-Qd5Yb5GeUavjif37U9gvT?jH2N?03Yy-!u&QK82IChQlEHBW8IqZc{IBP?8hsc0 z=crRyn~~L+WC9GT*$azqH5!Ovi~Z$9+!FtgcpDO~H{xV>e-DI&-Fcx?_La1d(Ge@-FqN?Esp%Ky}$n49H}~ zzaf+4X7g)^-XDVFT`C?b!$yyI8=9`jc)4}qxEc~8`YdP}CFpB$SY}JL3PXTHfg@Fn z{0?F|SFfpw@{4x37J!z5e~-qK>>aH!zaIR{yH}gL=ZWIQ75=i07MP=x%8*GNI45<0 zOn!?`{Oy#1@nYI1{+y&pcBy^}S2|W{wlhDWF7YQ9)cRDebf81WU z3XE7j?{`hv|Btrs4v6CF`pym(bOr?#Pys0_O2C3GDi%;wR6wwI0sGp(_Q>weTB1=S zvFkO_SQAT{nj$gwJTb*2mc)`L(Wt4KrpCl1ChB+YxwAWGW{3BCUg7;mhjY)Ia_{e+ zbMBqHGtMe3;6Py@oBwLzvVhfke|Z*n8+4MuKyp~G1RI#ZF|b^3^kQIjSzrK6s>NiMS66|hd9Z~}`yRIZjl%WvdxRH<``KgpVVv)qdGm_%HdgnGudd0WLg@ znEx&HgouFfKm)};1Qez^^J!rWi+=*%u?|<6a+aAt-Ne7^ zEbyP`3H)%CDUUPrk23N9a;~r*YZ~haVmHneX3KNT{4Sjz9h}|4VVBpLxmN33=-`!( zj(Y5LM@OE#$ISYY&KlGSdhGPuqv70cildMGzM1tM1MB1R6*I#{ok8reT`a7(_F`e4 z{HK}oHxuXPRIn|umT@#~a6IQ4oMwf=L~;4?&X?teW~O>ZrnfE^PM4F-Ozn(JQCABi zS>V;ef$~5zXI~>{{8xor}D?*{L^N}j|_|~BHOV=zGi0n#><2-I@)7eEqH$E z$d(_eZ5jml%!57%1#(SOyHumLcgleaq3m>D$6&dsnJdA-70e?0!?tAA{*K{tnwd4# z#M*R#W0{;|<{E0^x_hHAi2ZP*u$?^1%sSn~di^FOnB``!A`@3~EX*00iFxu)GwX9E z*3GwJ(k{OZKtF0`J!oRR@q3{^JMn9Ue$9TwO0OddiSE;gp zm}&UnZ7Z_FGlxRhvPO~nVHhPOjx8@BnJBfEpO+CiM&0D-%?WEe*7NfZM(+7^EQzv^7b{6 zx3PTBxnCGlVHMa^1g{Do>WpB|-!E(s@qlM1nzMf(=}OdSlmg6{3BgXxpwDw3F@tXB zSC~P!hm}yHt?A>K?3*?#+8kMa@)6Qmm^KgS1aI0bgHoBa$UtENmr@G2fYIxHBOLTn-O%!0w!x z(cxhXs^&N)uQfNX^fW`Sg)q!Hub6pWF!1Op=Up@7+XhC=IA0oh`WZNueO)+6zC$j#wTF#>pMboNc|F z*d3U0`kR@08<~#um{wb4oXLc<;7(ybn~`yMAIDJn3BrT>!}E+xC;I}^Ml;hhMkYPy z>@#z|YUG?0<5(%5G&7wrGU*xTJ2U53MovsP_svXqjZAvJ38`Zmvubq=W2UE@#%9h( zjhuS6>1yWeZ|Rusn{Vp1ay0XkyYTzz zT0TW5c=OGQ(r+C!D~4s-P(OL7E?(rDfvlhh)FXYtdcHuz^~-cKQ@)o8t71K+6qz{} zc{xq1m*>o!nt{Itd=~6CA?|Telk3@;m z89D=XVjc-MbJa9)>6xU3nYF3T3cWi=PB$~8=?th5lg%hISB}o5uWwvtu30*lzQ9>+ z=31_Ep+-I7ykutGX=K%xIPaJ_j~Y3}8t0;!>oc9pw8;6*%z9I21uF|=CE7St@N$-0 zBL!@sU0dYTGc!d|Cc4IHM>(4~`Wg9ffzy|=@C~mlBa@zOCYm|N896cA%r`U5F*51d zW`mh?osm<|Hm{pG_ZT_#Z1a(s^L-!Af63pNnXVX_Oe>pz%B8~3a|Fve+Gx1^yiOJe;P46bR!+r)2Hk^CpcmR5#qv=j zbEb3_{xeg*h${aLTM!r8nJ zpSQHA99v@}Ct;^)+oqt21w~b@?W1z-BLC)oe?sftxqi{|U7`^m2;U(Z{p{uHiU-0A z4I20MC>LAZLLrvuhIr~ZA^Mxy%^ok=6YQHE3jrs38!YdPrdWU|eb?7zHiXHk5(dTFXwZsl3 z;PL8%gJgm2YEy-Xiu@CfAQKVJYY@fAHQnXtXP}Dn8pgg|qdHd04eIH5$G)vwPhh7m zX#iJy`X$waw`R_lqU83Z1>I~@k4}+p^{nP(L9LjGYWke4B!XF8ws{$Z9jXgqVd@MqnBsoWh~64#r!c7uPA zCljQs0Q9dS_Mu11gh$H=9kG(HMAl$SS32szi%VW!3CUm=;Xu!xr=Goro*A>=sZ|b| z*R}ElGzqNusLWdJ=n9_(HG+nmdE^ z26U%Db7z`P7w$|kxTF3T?t}<;K$EB!h(vUUsOJ8KvOb#}nKGrKJN=FBOxo=DMt+6J zLU&%!+mIcfpTy8QL!YQ)f8^Mz~*j) z_+e70RhZw!iVE`@(TAY;hUkMT!KxSeD`QCz@u-8-alE3n)>pZK(5E!eQH%Qg8&D92 zG_U|6*GFcXSD#jt5D##WuqZJSp(rsDLfI=jAd*ok4&@HxP+r{W*dX^LCgV_cgI}NW z^+`9q0g*YPftYByI$a=hn8C*hRz8|0T5U0epb3#lG>M63B7`#KC0Ni>D!P-}fKIgH zu$LXfZSn?U9{RIR^Jg7tKxpy;-L{7%?{n0XUnPw=aIYAgIw+hnB~?>>9xl8Bedra{ zhx5%u2xWnL9Y4vGie9ZTc*Wj-6;`=F6Z6oi>zY&7Ndr2CRk^L9R+#uT)bWV(?E!JC zoIL>eeCHdl$_XH&gj=9VBpV-R}Odt)|!&%qHHSBcc$ymnzh|*F=q%DdE@&$5;b__pB|BMSbGvTGt((Zug6@T7Ex7fsGOpz_}Rqs3F$9bl$OFo<h8eG37retq8~S2LHaX^3PQ9HWB`TKJ<_3!$fN$z%Q1* zbZnI=6&*U{aY*c**16(%P7aPY0WS#Ndcup%AkqL%_4JF2*LFMNNeg!fz7?7Mo3;($ zXKxvA6*T#72Pxs335P%zIz)A$LnZ<&guZs<8cpI6s|r`_*$2q}#&J;|Lu|t_%G2D* z(;GzL5U&*uIvvqxn?;>@LO5fL$EIo2LihrT&=;aes~d<0j2*|mhm${)4THi6>I?2} zpSuRrshHf24!x#1^qSs)4t=OO^s!DC4t+o!y6|5()Jix6iqIjVNH}C7gtC~Qz#&RS zhxV8qDsJ_&qqa@O*zciK^ryGMpC|8t&o2=B z(4Xy^Kil;N^yjef=crB={v7o2=fr>EPkZ6dcHs}vCHyfF;LE3fIoivVivDaf`18SC z$CL8k#6I-r56z!H^ah+oRU3)05Y$KqDIzX_ZK>iETb+LPutp_hS28vog)e^yUx*&z zi-{1*zP|@QLZejlY%meYx8=u287F@MtZ2J|II^CeHGi@_OAeVJI2FC<*2 z2wy-EMg*crIAbD&vKEpvTc%WWrVH2W3D+3nvi+PJp(oda`LyW-^wq!smjO7&f} z>c^aKoSlR1`hy>$59>f!6*i+$c33j$-_$%Po;32g5d<@b~SG864+XRoS zkG(NCPtG86L1QYzC-FTv)$=4CUN6>?wQrr4CXH&$s#I~t$YaP&(6eJ~jcF~L-`HZd zHL2>1jLgtATBsMp2<)iprb2L8s z$3}x?rr%DE5v=A^YJ72AkaLMm-buI-Emx~KGvJlgO{zP)%deA04i;&T!KcH*r|O1h zLXX(b!CP6_l+Rp^*o!rsLBzlA!at%ih`-FF9oy4UDla`RoRn5K7Ox)L#9(AP$>gvE z-zgy*O&4jUz6I-Otz$^ z^J7_Q0%p*2gZ?_fV|`H>sQX5)s|&^-udd2*#!Hb+SnfRd3eMs%XR4fNai%BoIARIiHqt#U*;^UV&OD~Rn~=t>Ep;y@G5 z0B{F^vYK-vP}cA(1j-ul06xKK`BT1fP1x1*u5KaZJwl%0gEuYl7mTEbZ1u|A=9Rfk z$W-*72VM>mFBi$K>$Lm4cdA&b=M1(59OU;4)OdcI{Eki%!^>Yhbr8JazfFEqZ}eDI z^uj}9c%?m#Rn2v#u~V_m0rG!z+2UnW7Rv0OHG%i;)Tk}Pj~(WXnYD@FaA46oac>G!A-qABF@7Gv4WOP@hfHzBOVrQWM+)>WxSH$ z94&V-Gp6`5>W2r1nYjn~a<^&X3}Ur+jSXULn>gd;8RlCGd~Zo_>a4-qHRZ9+%)Qu` zdrG3S4*V`KkikV)`FZmlTMT#L(apkU0J1}7#{FJK+wW|7b7$`m%K_46{-vfk^Vzo@ zoXy1Bi66Y-_WmMxIddkk0WF=iY!|rHo-z?7=KpIr|1%@5^MS_S|2~okSNu=UYrC#D z5pVbb7#SnN8#*{3ANEuy%jNmKT0q65l{wL!;8!&fHrZ}Sb>$$^jA<(%k*4CXL`=mp zT7YNVuCs#H&iMcR@jg09{I!?FmQNHf=xW4`pn*-&tX4dH@)`Dc`NO`%Lt0<9ex$J5wZ!|W4@CrlVRj%o5gH8#XyE`&z>BHX$gK$%8sDP1804XHZ%*(DibF1~64(~IX#(-WM*0n?}Ej-RZ(V&pcvHPksMVgR4eG%$D4XSnur zB1+N1EVq&ujltzx00oQ23j7L-#tJNDhBKDbcT%FL@6HT&x_p8=TRj3W7s>CYi-Itn z5Tq$BdaX3Ey%_4Z0Gr%Omn*8KX6(!q*af;$*A^r-ZXu%jSlEI9S}KgP@s zuNk3&alkFSvNviW2K))G96rPjFB+NR)PAsRDl6jI+%BFrU}k*0q2QR+N-R- z)JghM;XJs-mkOWgjb&`)MESNZTfD!>LYe(nc!#Ys!gimXob2o``?rL?)usZES+;Vl zzzO@zHvV7Is^lL+Lo9`8FlyLRz^FcFF9}A_R@)Y%ac~$Bi2_C+2^c9@l)_6W@zrHP z6PyhzV!hh4C3|_QGvD?rn>Za-x)-&@>9}dm7v#Rg0lr^^i_??5BPjH;buMjjdP?sr z&p6nB70?Trz_}566ZsWFZ(>XH;uPVAi`tVd#CvAGoZ(#I8*=u|bp9t`0Wm;>$x}K> zhslDL0w#0yMvr+#Z#EqJ@zdv#aqsLIh=3HZ<0F@Ag}X*OqcfX zk@u_)Pn(%OGBV-H@S2(F8!r=vs}fAXH>3HtLYztETbc6{Jk6Q|n2=hD{6vHZXt`Q? zBh;63oGqpJRvb(4Ugx>a-Vs~4Nfak;-9{}$Q3^2QctZ!_CPw>K9-MUGSBR4iUzGyou6cT+7p|o?W{v!~E>`S)Sm?3OYXw`!^Cw5J_ZB&u$}7k%eD5Q~ z`WAukb&H+v$UDd#Shj6zh08AZr1{*X@RGa8CC>iLwZh5Y-;M1D4DD;b8|lxIi(ut_ z!7S+0R-)4U*4TjcpY2mN_bF#P`8H|8$`5Yhm7mZ)S5_YLj)c(e|CkV3+t?tAN@#?l z65fVX=wDxMNH|b5wCbWmSd|sd$#M!|LhssZ@_QK@pyJ$DC&5PL4E*{nupsw~U@^264;GmbtN5T`>N(GC;D36yN>;TJTP1)xW9S&64R~ld(wAw@Pk-1N(KHZ zH4{9*cs8$h8~A>Vr7ZFbam5AMNlJ@5<5&2upMCu83Ha`XcKlbbDQWy)iSM!DuKjEL z3it1l6X6QiS|Pkn!Mgh+eubrzi)Sg!bVE530LJ)Lhf2Kr!RjCV*sX#NUD@th85P;j zTb!MhEZ&beE`OFML1_nN+MZ+FCg)sQQLoIf5tMjNr1&h^K-RGR6 zjO1HwT}kZZbIt_;^Qam4nFr-bLSoU^3mf8h9_FjUq75x+UabfyllEBjy3IWYa3#HqsTguyPVb8Pdl9>m4DNl z!OcF>k=A0%?*RPIKOtIz91L+^w-zDp3QSS{C5Pp=ns~Q`!KXNO^hH>?UxHTt9Z@QY z&0Ss?Z7XDf2b{gw>8novh~3;0jCd8=z!m?~6Y+Mp77-8pHby)rwZ331{GK*)m20FT za{(T(9Scwkq~JFA09*;BEzrMltMb<-N!8n6*sK1dAHc8D)X`%`O__u{2hnZBW-(fX z5pXw4-0jT#-)|N(ZHWEZ?m|}uNp2&;Wpi#1E&u$ffoCSWgW1!2oIRAblzgk2JA<80 zjeCgTV>ClCXv5D&WWVa1nn}rEAI{3{4~_0(aJ`~U8DVe%x*lPgIfRf)uZ#OPjXgP9 z4Q4r`E7_HqL^{hp?dl^*UIfpVaLb(#Ra<)yqp zn^6EXdjw#GVBw#AQX8=aasuGR-?aT+8!>%u*039=kLxX1SiA$ReELvHIDMpkpbO>? zd_g+*fHT_mGkg4ivrEJzZWG1SKx!mDRQ+w7Iz_od$%#2?ALTx!6kKq0X8EUbD@%9U zun4=FV7wvv-Nzw@e=(y%xLMt8Dg__IQUkOx=6!%Gn8>z3!HgfpuQ20BwG|n^2cO>f zJqAQ1X8Zwd#7eit5$8-JeleWiI^xV#+Hgsp`OjxL+kC-4DT7d<9Z|jWp;66|HkQpi z=3Jm;5y3oF^pVoriWr&(|MM8yl5l9M?cLf65ahQNAeaPB^BC#_f{E_{2<*_xK|m#m z7}}K0z3S{G*>|(-@Z-AR%ks6qS|w zS;_?>UBr=3+wwT_nDQ-c!NG?Xi~y&!!MCu?eo`C!@=0RwrKA!D|IEiQ_z$$fr;^0r z@AD4+zLU;asbLcP@}x5};v_eUj{bgXC5C{1opQEQ5|e<>J5j2+)9cvZG~e2o^5Ar) z!nCgD4k2*TI5z^PJHJBUbO-17sR{}l&wX#U6{jj_Cik>$Y%LZA{k<{=cx4U{G6@(n zS_?4F_{5oSQRgLm>ijk!pWma)UjqC-8}~{ll2*;EqGP23b-gu5 zU8C5Qb5QI(MTCoD&qAHOC<)HHMP`Jv>*t+G%6ij1TCrz+qbT-{UvQpL_R{+hrY|Rn zJ%(MZ;B(kx81x_K1my!CuH%$zhH}-1;SyyCVIO|stj2z+lN-c7`oh^r`OAm@cO(D7 zi%y3U)J`835kLdl8I1eul5@He=fhQBa7nuW416_SLN8#c+P$5aXIBc=z^0(yu3h;JUYUiCs%D_RTMiK6vs zZWN6!lc|+hv|j(#IY!w`$-HQ7TSiky*rOQKV)c6Yd*?bM8H<9$*PQc}cMR6>q9Dqz zdr}6Wf>&4+oGbMNAI*AQgJV4#esE3*IqIvy{z*HL`@hyec|`-|m1Y*8T=)~DfJ+)E zsWbt~1Mr4!UIaeNCjRVfAysJ4w*Cx9>ptOX=^z~INL6q{E?!EBd(9T{(fd-gmZPiMO0fl;+$NZ@Tg>A({|! z87r3A!k^$1Fb!`zHz+-b8WE+swijhyr}hwA;7P;_zrnKl(08+f*o(ix!aUFChT*0g zj?8tXC=SYoON^QAMQyQ&wqVeP7OX8mBSt(6*X=3o1-N!{t6+8UJn-_u(h^+1{|VsQ z3LHG*QE38PaiC9t>+`>y3Gnuhig%quB2u_r6k7?@P+ndXzkC-q@s+cb4iNzAi+JrkhK_GHvJoQS1L-W&Kqk{mVvx5NQEa2rpv`oE&D!Rg? z8Nk7TNTmrN{^JE=M}JqMZ6ho2ca4sy!L?E#KA>R2I=6QvS3TCHlB{FdhLHjK!`F#{2C>u}jMUkIbSZQS5%?mHDw(=Ep*& zMX{TyxTabZyA=am2Lrz2_Zy4dUkC|{UEI|Cu7fCczap)gSw;IwH9hLG5%pYE*px_D zI$K!PHCFNKsN2L#-bNMIloPKW&%PhnI@H1fyVMb$R(#bkoGlM@wO4{n0<`+q`bJUz zP7ZRNRT|LyFqGEqD5gtfM-jZ!uERU+0?y3{WN_70>F9GqlIaHThqsggKD>PduPu^o ziE;G~DZxA}O#j98Lztf4Q47=l^=M&=T^PtJhq^+g0$}0OgNhT=;}T3qZ)IAYn}e0< zGyIDG>8VVscNCQ=bgB{fm&w>Oy)xaz`8+`lE7M)z8Lv!Vq%FKMU3)LK9efqcx-fkM zoaB#^&>$>K!4mjsQ7SuJ+x3w9m=s()3SCv;c_nmqA`5Kk7ZmZH*})CeUMvV3n=5SZ6zrgjVWcFlz*W`#_xdk+SUm_-n-;Z>Tbq!V~ zQEx=(zi7VIPI)l&Q(?qE4E^&tH-`QN{0c+=0`SHd`Vn1Nhg^i2!GAqM=b1;Q)KP@~ zm0p>vyfRk_nHHgcM4ZcI5&B~ub!`cFiQjJw{jU>}H}uDv250Uh9GYoG$4faC z4iAJ?b#j91kn#bMj+-697W(Y(v$>62qm>ILW-ZEF-jOV#{KCerr^4EOV^(`FO^&AiaDeJgqjzo1xx9T?7=r?9Ibg=s9igR2{S zYNa69)}X?q+-cKCPvtwtbs6+XFiUIh3bi%jJk40s9kyBul_(hl{Twcyr$#=h@AVq|A zvea);*vZE}oSQN#WZLox-_!)WLz&Ufgx)(%Lmnd6JTG*P*OHEbLJX zdNGrvv~@jaB*V7Dape_*CEn%g3xo_VVaoYW8O^i)>_I!%oDd5Y_Jb)RGJgzX#?RfJ z5D=YU4bin7T{Ug*5rk5a0-?{t%z(9_jNrr=9mn>@0lLA25b>G6o2*W<>t7KExyN+q zc91R*dl8hPbqco_W3AK)C|mdsIsNz*##+Bl=Dmo4U=H7l2=C-tok_i-m-XvSA@HtCJ`so}?`pQK1Ewj$jxr9WDCF z9^XlT^#yJ`6vsP&7nY8;641)NOn23ko&zRcO;CXXs?|Xy-^Tb4JC@;UCVkwAMJBt# zSYW2BXGA022;@4s0X-lv461Zgi=V!0&|a; zZ=FebIOc+>Fl}h;AuM{lD>Gy{XGX}a;8zH_72ub#Zq*_8NN2Hs)@zt+yCv*CFEiNP z9ODXI>vol6KMZ$$qP$4G(u3*_Le^X>DsvNRv6i{6XO*{!E)i1?1Df~`li%Wqfel}b zeV~8e*RWOdOk3pupx9 zP$^>HnK7;;DLz%eFm9}CSj2vAAcf&`)MA8T^>GjfDvWdWQd*<}vo{XlX6`og{fU$Z zu}CFq17_bZu-KC`BNo&76=E?R{3r>F+d7Li6s>GMBHvFIYp6k9nS;GD2Md`NYpBo( zmTRcbC%9GwOyl<(*HBJE@~)wzX{loSYzk@B%qsQzX^!d|&o=$b<M#Hkj!YFW>D?vJ`!I;VtFt(?X_0VQ+46cX%;8*-l&w6Ncs#p&}Cm5kUkrO=d z)z?G+P%^HEDs&O+A^$Gq2Jd>P97|jPt2XQPP_-^%J%m=_dI-!Z^?Jwyf-2HKsp1K2 zJ#HGEw|`MDa4pntmMfMORcai-;HtS2Z*Yb`i!JS{$ZM5Cl^4T;$Y#r=Brp}%IHe8K zpm09V4UO5iPS*h?%ixiBb(K!YWu&1ijet4KSkq*XJkXvaerWvi~*W7uxy>MIh? zXd+xB91C^!QC;DP(%A;#?2o75MBFsfJzB!CzOm$lvzUrOG%x5X63$%spC_CWBx1tZ z)m0Qv+q=>q-w5wkxavyVU~qW7L}du{cI-+L%?xe?CYq1<75~$dXl8U3i3XfE0y%{f zd=t$XO6G~i_Ql%Ot_0;0rF+th^q;OJJW2T;9OF+?&>l=NU}Y4Q6A|={Nx*LYdhB}jRA^54{ogGuY>icfsE&QxVQ4o93;HVjDNPD#FWC zwr_$5=FPZ;H0nlBldm3D2Zd0I)`8qa44oS}H-^ql{0c+oCa?%9b`s`Jc4hc;Q#uhm zl16nE0rMrVq?f&tUiOjXIn%jlt821Fz-+(G^+LeA{C;D=JV{7;z}s*AfNgpn9&Ue41dCv4q00VMH+UuNE91l2&h4%?$}Q79TClXfQ3T6*J6ueu zn5KJ;#fapWCZgj54kK8bHuY8_kv_a(g4gzdo!;eoQhCgWp?Mnq#8c@)TX1a)E%5uu zB&82+0jxJ%xu}x_jR<$J0qczt+`tGuJx##9AWb|Wyy>3ec|r)YE`f!<;;Jo8hDIKy zsUQLOLkM^6Eaq+Aix{REH;e!23DdW`i7*Y_ZbbeO+VlE)U<36F*8|(3v-lJ5owUUp zsGmzKAyB^x{_#MK7GatZ` zYnJjMCG&92mMyFE5b@dzcwvWPP=`_b=ht1&WKuF1h;jJnLzg97=~FDKkE19&iMEc7Y-(7tWNh?%L)gZNaPn zEn=Dgy7}QL3$yL_)3nXW?l?_sJ-ANo{T8OFvi6Xxwym4i4sW+ms5~)SzJrO$lLJl^ zOb+$fihZtn{@UAd^4XO4p{{Rw*flWXKJP>dsOzLx#Y6Q^54&b6h14%mnO`&CI+OBX zWln`@L&SZ>^s=0Di_J-XB{nC!n=5lf7FOoh(!}Ou@G;j?OTayR;xE2+jIa4#r1q0t zNJ7?}D8;)m80cEa(wnKXmA8ptvBo@%ShKyw|HHST1n(d`o*vxKZk=&WlfKfxa=B!% zu)*&ES}qc_PKPfs5P^UCS+TaiCOzXe!G( z>#D}eJ%G0%{{E3`fs#y}(NWTlkTs8r%0%;llddO}0Yti}0Q&S06+o{ZBrZ*%Y#5g& z^bm1Lr7akjpatU+2*9{x;eb7}hloqhawYI&?wKC&yEE_mx-fHRe+oxA8OY$7o5~RA zY6V&Zx*j|0YAPK?bk$($SyyI6Cbx+~tPM31cLhSu!P?^kN)`}nZNBwg%7YN2!n6Ug zXR^KjxE^Jv_m;00a)sZ4IJ?TP5NB8a2b{I;A$A66DdCa(RX0)S{^FH+!z=TKkV#5r zPodlTGsx72->&loPw^k0!SS{L|DGV+Sm_25l3wZh_Y{?GInt`xRkZ)1p$}sl#g6{z z3S#OPu6;^w5_4v|tN9j&) zM!a_EDXP=~v;{E^E&MGW#pzdE{x)SaZHGItRs|Lgb~xX&_a_lqLrSm%%he}(BHr1a zpJ4Yl|I=zAj2vn6bWL^k-Pf=)HiwIZT+MSal_~K50P(L?t}VG~Sh?=vSNu;;<=V2R zs9d27jdQ}r37+_>SFW#6GFGl{_7s)tTeQVfxx!bH&`SOV3g44G?|{3!dPS?SdIfW^ zdR_nh!&I-H9zyU85C?l+=_xAM^JWKMr1oM-S?9WIonj!vylBVnUw6$_ex=-c^!_&KKcb7 z>(vDg9!04%fuidGUx=a-49lJyuI3fe!J?w-Ea=DeHQ2oyuHF%ka1&`L{gHHtICMiP zS{HE}u@)Q7Z^u|Tf?r`Q90ArCm-;V)75vc6`CG2FnRI+KaYgT!O^;{6iyhWgWj$`Y z_9%ti9uNHW@t#4*|2Nv7>5y5O&F&BxNX{fICtAg3P*J)_uN!F#LIhecy)M!qVqvj; zp$3t|8bl7143T*0O${AXkU+;2P{r$g3@=#k!xs;hud9LGsEB}b6%6zs#_z5xD`FwH zm?CB>bpey_#=CHS=m$y`$+y6K>-Urg3x6t18z1g1g3Xoz6a<^ZuMlifhPl8)d|}~V zkS-E0jf5VV^?HiLTh%Kw&?_@g$h1hjFWqxZ_f5QP?0wgsfH;1?G4Cc4lAd?tGDP03 zPg*sziuRUnA~fx&R#{V|?p3-H*&^*)XtQ_8fEV%{FCWIfw5iETU(-EW+O@t>q}?Nu z`ix?y_aTJGWQdGAi?(3Kg%;cwdV;oiaxF9>^7Ar8W!ku=nyqXyarTkcYtmn)EhrsY zcs^%KYN;{G0ov?Q0URC``19nTeE82o8paoU*s#s289V@9J%1z4S z(F1HAJy;``(1}J(Vfu za};Rxo(AsE?ZTR&MJ8PFKRq=={|r$x!1x=dat!rFuNm5K0iIZjHACl2Q8RR*EuNY| zO35r?x2qSp%IgKR2*h*hW#fHyGV zgN%*U)fGyS!7lG!)*?a%2eE#6`27s8(d?&0wI@3jtp>823AXACC;B#`OROa~Wr~Tu zm$u+Mffk(TM`(*@c0ePa9k%tXptc&qaGrl=V(cTG)r5aXTTnQ(==1zH+U(H)9J+?t zNJdW~c8f=wVVk1>N)n5-2l5fyijD`J~Oi|4B=p`n3 zw_YVra`ti^wWgE`9DI6HX<~Xm4o>l64(7~?NcB;_Nxk4>8mrd@v-x==VNDUKHi>wK zcLqiI0@^z`qc5JUAH=prsnywnD7Aw!lRAfZk4z0O4c@)b2~nmQWJkm7T0$xK?jZbZ z(jrdAoDKbTW{!ItYh70@Qns78GyJxK%lxxW3S8(RDX{=vqCTRY+TBQomk(t~n|k4g zoum!D*wyv$$;#>V)pN=zdN-Jn;rF3OFkF}fe-o?rQw-!e3ui~OF%8tF%D0sJ*71dD ztM+UuZ)8T}K2e6(Fp_l{fBcs+?ln}~7-gV??;9N~mL653ZAy3+aRWW9nWc3dT$nsO z9Iu{N3}loXoF%@AwShyulk_z7ApacJBK~J<#y^K8E$GF9F3(Cajx;{jqrd}wp25XJ zZUnag3%MMAg@s&BmU-3C3gFIH4cnWjt1Y79k8J?L&$faH_3qoQVM-zOiq!jrteH`Y zSF;%6<7H(z5iSB^QI=TWErS2~`fdi{@btpMED;j+WQmaQGI-8^@NAX$S?87z5?%lf z9ulZD5fbvVydj}MD>c#YQy63n3Hhy5DAl=k8V#lrbHw6~Qiy>#Oy6>D9H#I16%NyP zB@R=!*6O-Un!Ge|MgJ~+O)Fwb$7C4s{cY5J$|Knz+*6R~gZ&S2@Bc>on@Q>{C6sE% zoKZbntmf*|mc1k0eQnty4^?H^-PJ^fzYDXl(q1K7V4_PlV#3ym^LMj?L__%XEVMOa zH=A{r;=+ zE*WAax7I6@d1W#o(_$r8Ema+3v64HIs;U8d`2F6MT=d_aQ)EKHg&aFNu0;Y2E*up| z&mfJOQAI@$jd^(EteVP>#=EPE-@<=Pq~l61_$5N|bizmMSU0to@&#$)%-Ryp@{Vj) z@U1!xe8BU3KMBC)SN8L)J-8u}?ECI&xb3QJ&TS@*<#W05oe*$*+q@!-)>Su`MsX$o$|7p;TPRoyo^|>OPjn4j>z66EI1nV z77Grv1{WM)2E3d&n(dwx_z+bN8Jz2g+_yeegy+xAs0r=9sYPd8XT6uz{l0-bs?Trc6c8SgC zr`EH*%%16|_KYaxPSN2WMZ6TxIGgr|;oe8dB65y2-})Nm!N^I4XdgfWm}9>Q3bvb;KKdGQS~Y&6}dKQX0qx z)E^bXmJLy>u?;`^1+t|>phR#Ff!(YJM6IaJ{_ZVmvp?W}UYl7MX1}AsCbEx!O?aOY zU{ilMz@`?oa@bHw0ybZIVWW&t>r0*bu;wGw^oTp$D2kh_)Jn{_Cq}44l%9Qn&l3Rg zrK^1?1s6{IrK^6x2p=5iP|J9Scjze2Fh z0G~?&+Z7FL$Me+bmS9^|7GP6Hs{w3hOnPG$JW3s?ETb;zuv?I~ zEO(kZO?pLx&Wj~MXW&?X&Q1+FRFHtqf{V>`q0#;M&Rp5^XP;0UP5jkH`iWfO>fIr->Hc|}y95<_SmX(iKXx4Ut3PIdZ{aXLppY0=X*hf2|Gf`b`OlA1|?&pc>j(`X*$y=1I_}nj9sZU5)mGSo!*&wSAdO}y!R()()JK(>v>64B;(m8xIUQ}4ZE5^kd=;q#lQ221iQXKBinxV!3=d+L>q1x1!@Sj z6nCJe&QuGPw<#HcdV*5CK=lJg5#kJYV2F#lSgw5AvKmzQ4e>0sf^vjfab}k4Qm#`9 z+J$>o-*GbLSQuga)b|(5)dA8Y{aCU?ja8(6I$i}rPG>Z43!k&XuI4`stKst^d8HpL z&m>zjWj~j#m8)wSx*v`BiW9I`%ZY96yVNND0dU(N2qd;=T27GdJ3juf+^jh;$o4hT zR|PJp$WD*5RW>?^TQziqh);5%sx-#}(_iraU#^%KvC=J$iIRl7sjmicNI8OMYSo`|7;>6zq@>rNU9?6HC=6lu?wd>m1r&tUq<><*lUi zFy{7=fMLwZ$r#1}=6V=g(_e%!M(@Jviia_2RexM?`-ZSB{k0HQjo(N^m~LVvVd63> znujo{2&BRevjpF<+ItfIpVeRNE*rWELl%V?u^&U$SuPht);WHKA?sZKl0sIsHPGpF zjm+?w+ox;PB>}$>3$>7ShmiD;^-F&dvVI_~npvd|S@~{QX8&?yz04jkc)}qM0KuMF zy%+JA&SbK`6%|#Y?pYu&b2|TPpEB%~w9_lpukK#J)Xa zSn^Bod{WI(D=KX$1Vu%pkaiT}05{MSJt*4@oFBEzL`0kse&E8(RXQfB(V z^=ehN>N(iu{h3JTnSNxbg+BXFfOPy?()#DsCd%KYdtf7VSFNOALiKdtPXk1GKXJR7 zrvweuJs0P^0tSjrhe`uQZGZCL@Q6Q-vSAjlKTy;VkI@!P|ImVuqkq{6XIi?@WeNhdQa-fx$092AF0p1(Hv8|m- zy~n!)H+vUzyZE1;&E9(&#GzM>5dVO5A;ZnyrPL?f>|Hld+w6UYHesyG>5|jVHn4=v z-siwMe!2v$!PEn0;AZcJ*cuOAD{vrHHPkmt2a2S-kDEsepC!~@EF-?&tv;z7qGa6k z&2L(*RQA*=SuJkU`aa12%SdUCvKe; zp{cy`mKtvK6OutYe4S^g#jx9NzyM&~u)D5b0NZ!~)*Vk!i##J`o5z|SR9h*l&5dG| z=YhR^l((9j`6ySI2hMeecO!)gQDQMUN78Y>+e zBoZq)V4Rqr(?Q1HFH?#Jckmk%>#D$m4MNUvn=r3_!mlu|eliI2s@$VBQ1F9OOIYBq z>Nu8p6qdcd(@j36+La%va|qik|EWnCgsQ18T3z~#SA~uJ5Dt^!k*x{a)sc!c7^Hh< z80M4vgG55Q3!vefO_-2sQ#MRUA%jIiYDim90JP`{sTFPJxL7;Fzq4(yc<6nX1-+~G z4*A~KSNmUsL_QiYSmdL=gS92;`xA}%=)?Ea+EO;O@_a-kiG1`G%ou@#J@2b^CC6ZP z?tL{a;xDd}M&@sb4Lt2MW%du$RONAMK5jxSp%m{r%MTdECY0e0&tkO7LwxBEAM-+P z!66G(=1{%2_))1BC{(1o~M+xU_C27Bx#be@X zY~v)lz6I?pD5`303p0*(Dc8*J4``p;ymE~4m)Qn}OU&Pe5xz@Izad&+H(If!Mdes) zEB3A(SIc&Q%{`-zl){FvALHE(m53o=u4iI+9j`T{1jic;LC0mHl3hBlcBz^Rh1VlBuSZ*I%q>ad zl>dd-i5Jueqt|foE!Kw;!m<|o)vzFcc0p}zBJ+<8uAmls=c9?Sz!AE3{KBe6DooA{ z=}iC;-%;2xSnMb~2ce0dS2IjETpG~`L8ch)D7?dsz+`ZoUtuyhKBRotmPenHR?W1crKL(1nQZu%YNqlx5lr?#E%e#% z4iSm>+z?N|-E>)vsaJI)$`Gl*kkoyscqVOOfjw=g$dv^{MXsC- z9^>|{IamJsJIIw2pq1xJDhYF?Es;gvRI{LD+WEcO(6*YL`Cjc4k;aXp!_u5uiNiuE zTCZ@MaAs`h+&D9K@GBgV9o8c>uFi*iot*YbEi~MncvMD0-$W zhUKpx)u)sTL^`h7AvYeo1KYgc(gr?W(2)Cwnl7Ev2J0YU@N~>cZLrD@6N4oUD`Bvn zx&edrKpQM7Neoso4wj5dY&^zSlimDLtz8k9+YN`YXK%s*zLVSlI(YkuMPdVqQizQ> zcx{IP1qUyQU*X^-fxYl}-(2HfvlzFIx8X5fUw)@yCT%`mCnOy4#QGv5b8as^5ZQ@F|@t*fQMSYxdVfi|H7gv{d#>6p^K z6yID4{u|EiUm}L_?-XUQqa#O_W>cXG!_Mvck6K0f+#sA+qrXxL=3#t#aD$Vv9EDE7 zgZn$~sq>Y9;XwAF0&CJr!$nP6iMBvZ+JXhHP-CR%;o@;aUD}Kh0Bga>;Uz5c8x0q= zpnR4aA}Z1~4czh7f8>8-H)@Ytz<@2w9JLjL0eCha3lbmlnhWlZMrJH1DhwAtC-4J{ z_|FNxvbpCd!>QHi?qJQ`!L$WSa9rq59WEC7(`mD}3e6YZ`fe_`hl>p^;wa>+GWt6}_ZJ??JO=Oju2fli1PtU=)s11Is`?3#%&RH` zY_O`L;3Y`G@bdw89>dQGeud%Z#Bj^-Gmf?McUvv7|MGWFQ@%F$qR8f#30c!!HfwBW zW%mZ!&0BH6IzzAm14fb2Zwe8>$n5FpVJLNT^T|%{~Wvy({q=?8EBr%HpBNV)j{(yL-ef-d{AXU8Eg|Pl+d0bI(#% zQimX}^)J=h8ip!Jd&awr3dVySJ19kuY0q&o#x&?ATw=pMSQU18P_x#4hetrg9$6t; zIZE%vKy@>?Y8%@@(MQ(DJ5IpOd)rh_3|P!>_AZ}qwJKjHVlyXU_h<(^-lPiffX5qL zb|N0|ke(ZXGtagKX?VCJ=ST-xrZ?dPq`ges!U=efbK?ZO&#!O--XBrI1gu%h?aHKk zT$;2ZRu+}mjWBmL7P_oC{64F;d!kY^2c&yuja~@WAmp-Ezd~t3q>C9HpCe{;1Nfhx z7`4!EkIfNNsaK9D_|kKq~nqJJ#H-z2#;lzXQRsieDi(R)O`# zv!4hEoGXDj;wKvP0gp#6JR^fAmgymzy)w6WWo{8N$zdYTBgP|j0SP{DxnWc5x#tAD z#qZYuqOGCdCL}(5_%K0wD@UxM_mNi3tfFP5MDCn#oYmR#Soav^0+B8rFl#3={nm7k_FE0>8wJMx(lB+&v#QLwLroqIl6vbgp=;*PUBM zr(7LsW_Dxu1;s$YM{84>xQhZt6Gjb{lL!e>$@1Nk5^T8wmARx9l=6vGw6c__+;a@x zpuHi{-Bp=Kq>JsH%_Ax#1rw^K(>^yBcXw<<+1@mFFMkAs9gZ$cY~l_RS$r+CwQ<*A zfz91P63Z3vn9C*6jv7uxi{&S!7?o*TIy?9+Tlgn!cJeC>GdpuJ%#e^!Cs&*=JkkOx z1mDhgw{$-laEvI|I{yPg(nG>At@96&R?W7e<)!TWqqo-wvz?E*Qbh5W*q11j! z>-{&e_a*!H>|$$oJ=?Fm%j-(FwcftO1=8Mri)z4~8cNYT(u9lN4))6f@)q9P<@go$ zHhiie(;aKk*>AUXJ1jc;@g(<>fCzrOG5*#kByVTKY3!hMC|a6!Obg4bML0C`N_{#C z&|Zbz>)?iuy|;IFR@xF3q}MGp+uP)c9nBhfn0PBI08BRYAYX$9E%a)#al29w;pNdF-NcMFVzj6mra%z{iqgw^0f96Q(6cIeq? zF3RIMoRdyu0+i?=(F2L!baZLox@qbKJG-N&~%Sh8(ZHf4(Fdf{Ad;S%hR<3 zS@Os3RAm{Jfcqj#MvBGULinFA=1LI8cXn;NSx|p>n)DKkCx6ni{8kh1sRZckPSP%D z;PaHq5c4#3B+n+=Jauv-u*Cj^U-3UZ^VB&~Dgy((m=5?pFdDa!JOF(v*;N zcsCp+;9ZZjYW5XvE&XguX4OWx$0}WjbOCP*efHE*u=R5@HJpXzxLYcHO!sK;w!Tro zd%!gJQe`~7kAvDangvaAi?l_bhG44eW^t@V=gjXWaditCSO`>7`NP;L#1*g8QD( zg1@G@M_c$ppC5vSM%?v;Ucg-oTRCBbL+4O!f zvm-%+cV_qFHsH)o84XwbPtVNmH%iQG7;@vxjyBj0?>S&Mrn~Xf4o>Q<(b}Z$%_Vvw z0H4%rH%GUFk+#mcL%|t-=oRh2ISmHDq1Q(rBIkM%Niyr2@2(UKQ(1KGjm9}`MA~fPu1kZ6QT6DjC$7oR& zj~*kYV%`{$X>ZoBdowM}#{~AZ%N;6>fL5MvsU$HemqP%Arw$Te{$15wAKp#%lj`mj zv4eLHMeIu2Us(Mvbi31)71Vx&ZRDg)BsijY|JP|Xs@tti31+7&*(&%!pRl?6qT5RmW5u)7$gyBJ4VzrMEsPyo<4*Eb z9w(G5R5?CMwd#QUh3*K84!}pbDVqAuX7z0I>~ZZ%(4J9}_8PuEgP+lDE7vmW$Fp?? zSm@7oeaW9McE=d+$7j25jS-9kw(nW~a_G?OwAC}~lF(P*DR+CU z<&;Z&qengBt+v7i{phVhzwWIsxy?#%1@P-alO(c=Qm;{w_O9{0B`W@ny;P_~3Nc*eG^v{3l!JG^V4 zk1Qf8{MaOpOletcV1QO}GTN*@nw=h-8!x>)j-~8#)Kzwyjlg*NVoCkI-?G0q_a7Z; zZ30FWg9*^#v5J`z!uIS<3zn%ZI53-^bvH6H;|NUFM?gO?@;XEqeqdzV7;#`^Gn5GY zz=$DP;`3^nr~#)UKaR%3hQa>hfr6{aO8g2}la*NXF2nA1XQ&AHs|YS{cF(h@6L)TL zFAIp_w|ke6(J`}9WJ1wbkTK)M3bGDq)r>0IRQdw4J_~%o9l$d0tPfy2=FY0c9&B^B zP&yK2`WAMmg$?!&;~_VkOB6D^%Ik+qK-}nz-gE#V95Dc666@p&b3~60gb)k$_Os)~EYR#hosFJ)SH@{On-6r(8m=2VO2*iG-OMq)@w9HhARdON{1}7gq>P zbY6Xl(UY=qol-ZuSYiyKEhqq5aEURNws2^}Y9BshR&c;A-gU#h!evGY{emn0MRu{w zSYY>EX26OwfeqOQ%Zz!@%9j~bl2~T!*74k-*j*PsrJPsn?iq2G_cUE*?4@0wa!nl^ zOb8lQ_+a7jn?u|)MDSsLg$O-8Pu_;xUfY7r^ zEb*j!m=fc|P=_*vu*+Y%2PtiRxLO&xbO86Jtcbr%BkSo|?*59Mav^@lOc3~;MO*NG zXhHlwL0dHZO3;W)WNCuHZV5et*xfNfVE4HR^nnbVJq{0zwtx^0TPj4r_N3h# zhCh23!te=Zd(Yi3;x-=^3ft3koOt*RrW6e!_S@|0d+yATi`*fE?InJNu)PE(Si|j(4qz%oL|_HfX#115zJ+6* z{*zg)@7!4tiQFa%+$z*atbi#+LkJ%y4&30{lYxT34dYh`+%Q&f!*V5b^Luy-ZrDi2 z9rL}{+&M}Me!EYQ%WO)>n(oqk{MxgrpTZ9RvAz;JJFIpsc5)^xectLO1@fyDr6>Z(?U*Oc$ zQr7AhcSb}fZVw%xM$|wYAWG3Xi5r9iw3&0`0Bzw{I6zxU8lXA3%BUEuvdXk8cx_9$nr7_59=I`$(&1TG6wmk1pDRHS13pL|CWvR4x!bB*a*#x1WcT zN&M|dd-eW?84&_oy>3~=^dH%z-(ZUTG+8VX&vV&y1YV=ca0Dntb5ql!owoXi--5$% zk6+<1+$(7q67N`5*lYiAuM7y80(Tq3dmTd32OwmM7=UV|RkN%to;m9S5Gcy*VSl;X zD$R*9G71(p*qcoeqYyB~i~1#Z-SJYlDeTR=?nkAxDWdb6agnt1t5O}<`IMr$sEOB( zb`IpXVCN6wSJ?T3rj(RjVG>v^(E+VI-XE{`KF)z(F0ZTXFCHgvo5Cjl<_=x+_v|Xt zbJ}1m<)Y|dOdzsFl|v~;ZQ5YG&TqlNc!OWzV7yV{VC;})Ta`Lf{bnx@I7yUi<8Ypk za2#0RfQAV+Z5&RJR?W7uI9{a9g?m@m1+ctp!^7A|_`!j9I&AGqXTorVLS`P zWl$@A87402t@-6zaoHm-`^05J8-BS}T%Nm*Uk-{(y|(;vjkx?FF8+4>azb2Ai_6FD z`Q>wQd9VY&Y!eq_OGkd)E-sZi@k>>4`Ab}ib>^4N;<8m-0$uoJvbc2X$}fGyrF}Pk z=^`%GyYowmxI8Z|FNn)mJ^1CUxNPppFYvwf=DqkY_%`<6;#aZW2ETsWn_u8luao=m zU+`Jal)n5Id=M~{$$!DO!=_}3yW(<5T;Q`aTgA6F;Bz3^;%IpI-oa<$7aU=~NSyKw zCz4kd#|y)e&spLyS2zpyOMW_`5rC5qkBC#;;B>eT#mP!=QqyU1#15R$^PV`_0S=MK z5c|>LB!WEg3%0rU7CUocH}uD12O#VuEGzbvz@Dfl#V^>oGCZ6Af(;VSh+nX9zOpfz z|Af`t3&k&3C)-7=NQ0Gl$zp{KtlU{8-uJ_DfvVyO96YOjLi~bfdvA&79q_p12QgoS zd8aN0;4px1AchJsP<&GSg27A~5$U``tz0B9QT&9y<*@k0GYd<7prKJp#1;3)sx0-^ zp>0auRSdpE$S##PuG5C|h>^pG!EAGFqYE=1Y#5VyBT~gLSeDW!>VRP%RWOqHms)&g zb`{@`;!lqfRg3XOsh8QPiblLqp8sCFHZxGd{#(udTh{)2zNozai~YBlO)qZ$6^B(X zUOO&OY(|M9BY4=)5jqP{Knw`DfWQg}pnyOL2#A0vANaoL&>}^~1xoO;z5Rib{7+_} z6u;&KO7m-OAO@})zxFN?(BYpl{5oQ-ePrkl(@WTyDj>u{4z~A6-ojJf%sB}~E6ymv z4t?ZLO8!Rh!s%Qd1`Y(+P1TG9cBGQgF@CVS0RkLfX2QS}I}-|u$b_|53HBBIQjiG+ zr63c+t-y`!wnW1!C7`)86cx_Uomuflb8W9E4taMMae_Ta6~Dj<21V}#BdZv798OSF zG{9x{Llxs8Bfs(96S6)Kmyg8d6MnH<$46Qx_dmDJ5rIZq=M_$vIXXMg13C+K@60*n zy;{n{3V|b{rN+hY5|Gkt;upLSpdC`rn7pbTPVecq#KMopjIpVFZU3I(cAvz9STW#mfrO)M>25_NOQU@^6g z<@y9F!b-FHvU9Z~>t@wAV%fMlMhkXB9V5#(lTB@Cj7$U};FV>h9TZuorkk;>Rb8VK zsj$;fL-bWt58)Vz6`eI$L0Mq`!Ss5@-TEd<7BxuZ%dN#Z$XIu!B(Fms-=j{=%7K--HZ&UW7Xl6gB}5YAYh>J{f9w)7W#2!DIortS>-)wj zrbYxYd9O7#YWwudR1Wx+LIJ<(l5Q9(BluPAE7}&?Ix{13TW{WBrnC1mj5d1JX^u>g zSkDO^M_C{&Ha0PO`1CrIe!eUJR%nH0MqT|HN{09BS$)ftVoRGDEs5(Xg+FX&wD*AP zaxKpmohjU*kYcz;Q2cw|&L57sXz{Uy%Y`kh+jbhAbZgf|5 z5Qb)1E0mU3Y_WQo8J9Pph0(;PkEL3I7=;2~K|Ryb=%Y`ejQmTgeG?ly?X8sD(#mM6 zqC@+;3Mq;~`;TdD3?>FwVjUR1Xl)E73}vV{@3TT zd~{`vaak&4FA{~4f(-p1DaY1!HioD`;GKkJ8iOEc--Txbh0GmoAVDSiv2$IFOIpq81twuX zbv3f|hDeykM5q>rP-RoQ8ueISH=`;+qlLfhW;E0ZVH&eymQc~D2+Xp28lBirbFGqb zSm7kRKTWRjtklDJMbD&U=v1Fb3R6S%Mh1b~^Gc9;Cwdwcefl^o!u>!DXA}yUvU6`f z+EB=lO8R9RRQPB_l9hUl-;bmLUt^ZeZtG(-t&<>%K`&oI1|OP%v=DF9{WW%3wY$7W<1ZS`jfk2v_XbA!7+;8PzkK?P?;R6u_4^6{!g<8(@ufplAcKInRb zB10~|BA(bKavdu_$|#=b;#2Ae+4al-V>D?^rEP#=%JmAvNgCCdelJXu>9+zj^Jt#7 zG6Q4yHShrQ&B=M4r`&FXjVAs-r#o}<1>V*qCzqK4Ia$M`eSu9KVx;>2m<~DFug_q| zlC5f8eh^0aPF%hem(%=$30U0Bg&QR40yET4FbB9P;7LIVsL=`bW{Q=?KEHu`Nvj$B zHssKzGe`~{SI8W?<}E#q{cxiZqc^7l_`v@f_R^)h6Is8ZMhm?+y$4gClS8?Sb{AyG znms7P@m6LWYdXxR#4g`plwnPV8L9e>lmXJoTQN%_A{?@e9<0J}rsu4!Vf0Xgl2rgqu)H3cKY1GsesSxBMoe~QM zD1QH*Mh|jt0=*}e;pgoiWwi9^+bA83D$*n=xP>xs(2fl9BpSno%r0jeZ|etWIhc>w zb1^KrkFp5p{OKC9DB!7&7}v6Q#uy1iJ;iGvuB(kTCJ_d=PrfnMNY}rlvSFfSCuNj< znzD!)HOqRaRk6HfUlAIBM0S+|>w zs_`g;!q_8bN|HUCLV=`z=4PXZssap8ZkWhx7B`bbIb_wcPXAQ^|C(sDRIx-)6GwUM zs0nnR!4?MiV2s{lF!T5{U^LUysbo=kf7@wn*e%9Qq&bwL$8X_otx&Ecy6vq-SCt!k zI<%d*{OVVsi1Rt$*lb}qlBN|?mo>(D#~xO&6=+= zn?KEXRA2G0aMw=f&xaITFkGXjjFLJUZq!V^jC)B(HhBh*f5ja3EQ7Z`1lS7|&2}v7 z1EV-=cfFD-lu+}{G_v(QR6mHa>dt!aqAW1G{b445WT3x9>EL5sXB+MGHz+yZ$KIN4 z+)R8-DcWZa?>ZC;G@?R*Mm#jfn5!~^l}4p0IaW~@9uYn<{W{Xq0`bu#PNOY?Yg zxJY=QkEx3zsT8MO6hQe=07{aXL7_k`zMpT5(-ks=6s3@8zI%aDOXUW~{ceGAvmQUo znMbauBYS0`(M`ny`@y3d^fJYM;7;oeqYr63#fe}HQQzeA_SRGz7(N^|73XU~86fU` z79aEUpk(OZ%1_(|VLOL9$z=nqkf zP?DwRC{3Ug>6^p5D1`#mZMBSh$)5j&v@qAGp&~&9E7;)szvLQ?R7Mb)xs<2BW1b?b zVS`aP@w}e(zmyoS(Nd`YX-fV_OI%#WyG#l%r$E;)=a%^8KOq%NfaGH_RDL~$fkE2i z;<*_zxEuMm6$by1*lZHxP`{izjInxEN*47?Y~*xDrR3<9#x*Jyc%!ROS&9qZ=wfjz zx@HyEs5LDKiq>3h+^Tn?WKh(8Fo!i)N|w0OXrN+&qOL+MC@v`KVo?<3Bh%)-kJyxX zR%Mp8MzK82FRVgqD~^TM7~@FOCv$7iOY z+0L0M@5kxPbj@t%)57jE;AvrSwtQN6C+mMVe_A+Q*kp>hoD>RuDlR)kkM@|jG!q_} zAuhKFmYewnr>&xBE)>g!BDuhx3#?=!3*cZ50EeMHfQ!*cC5aCGhd>W-!^(Ls*yjY> z*zLXtWOU&kKbY;@F8kVmvzm)bZyvL|OKhTyTW4;W)LN&rj23p^|khv2gr zq)6jI9;nDri84Ts{n~@Zf~1aw?4kI$hm0{=59DzwUdC=tQE6x~g2&o!F@|cC0E+*# zMbWDrg4>E`KCCdf6<`0baeLB4QqDv1jIBmnZ3^-@6}KmiXdi;d&TKUT8YO_@@XQel zj7M;(c!CR)sLlt({H1D^Suc@4tjZ~FXVd&grHHEd7oTLLv;CWm42_{Mi220wPQ$N7 z4xaJE3-X!U`O6Y*3(}?MQv!JYuaEMsl2B*MIq%}fjMmz2Qkwg0+Y$l!%>B?Q{$63q z4x>8j{WyQ{j`|ZEHurI3h)aGf;m8k_z?&@o31gzd3*l$K9Y%PimJojJb{d_uPgOO$ zu$#IYF^REG8-0XqvdP>m?^6~Cli-ua0PO;j!IMA$6H`nQVm~31?Gg4g81*Oc5j?`B zv{Gdl`PbTIWF(cD%e`Lq0{LcCo^9_kdTW)D2eht(8K;WVHWZIpeZp1ZD8-Jjz?-u< zP`I76uM5Mi>WQa~rCI}r8q#?1ZXGS7lm-9&dAISlPisXAL$5;#+<)(Jal{gieA93b zJM)Y&L*a#>-nmz4LPZPc`%dpQruwuYPAw<_qG;=L#uSAO;9+_gp_0&+#h*6@v&;K< z*-1o%=pLkv)12+((vV$v-l&%}4@>9QnYu&k{YD!th&)brsO1zx@uWLYikCaE4tj`2 zgG%+!Kg;%s?f<3kLY)ui&aV+g+KG(eSKiQ>`LF1);Cskn zkHFR(G17g>UlF>i&*P8!PrqU`(|$xIXyw}Yq(9x+$^?)td)27>j}pYo1g*&J1*zvh zNtpYZ(O07)q4_BRTB_RX#vp|atnbpD7)e_H_t%Zvu4w(o-Y^<#4OHbb6Ph}WQWrV$ zvfea?@*IQ|*@sdB==|4P#sq~8qJRHUCAkn_yNmwmsIkeX_e1#Ea`OD#apP8P2$I?P zca<?MGjbJdSRnvEkiXO<*-sPFpa3GU00L2;h zo{_Bp!<2wz+0gPHg_)nSjDQu-wtQyX8Rvl=C_4}4sciH~ zZqIcre9~yIB|EfZ<_rGnIt+kdqEdYxOZwcXu2)CC+vQS~VW0EY9SWK6{Ydp!o5$|^ z+~}TKRuq8c0rojlsz%GJvh-7YsGo4kC{?nR;4L?gH8^FY#8i|2@I|%k{L$i-*v+Sm z*SNM#Pa8e8E~o|A60~iK+IHag`I?3H!jk^hF>4pCwfIV+x^m7XZswa?j@^^b7{j%} zNS2uC+seeU{a+g;+3RPFisJ3n$umZ}zr#FM;R|D(fBZc5$QMQp@&B7&7>T+YHvUVV z<>p3)ed|l3GQ1I7b4{_DEaoetf(;(antWv}Ps$aw2n-aL!J~O!J|JFzu@T#3KUKQp!Hb% zS)-Bmv#MZSHv6p6ydv_)N~m+JLP;}$P5Ie~VJ9vc{nCzmVB24W5@PeE)MdsG#)n$j z`CJo{8H)ZnkMC*X+X~jC{1QW?Rguy(*6|O%o1l)*98~jP2%5*9ToSI!o;b(fH*Y#; z+^=2h5C_4-c7`hga3b6NlQFwkQ_jRr{t&Fj?kH;NZ18y_gJ@!}*li>=*?rz<>b_YI zZWaqfsEiF!TS9Qt-I#dA%7`<(sx#jOV_w1)_&yRXk;L{~Fh*7cHfZYiiOmb##s4|C z%%EVSqF>J|wZ=EU3cLGzqvCaeA2=`HZw8K&;^{a`g#98p&R}i5!@QANv$kx_bp-~v zg72hBULhHMXZ9uIGwtbrDXpGFcv4D>=sONU^O!YyX+8GXW&X7Cp3BDF+9wWi(sx$X zD;C3#`QdJvRI{7l=q@fj_+@$d>0=v>o^e~F>Ep&szHMyww7F{oz2-Bkzg2}LpEt@B z`-n3Y_*ohMfcY%-ccT&UrbbfncR=xCfg9#SXr!^^VrFqS+fkb>g45YxZ%8W$r}K2C zd@Hcj;$~9m$)Yk-gr2DvjJ|vm68~vu6E9D+3x~lRCFhI63+x&%A6GRMjFA#gB}{WIWE-R}V5^InwIZjuW|B|H zFL2Ym8h;yed|Kwe6xCWn^afE0tgg=-=$YgkqWFkrZKy8$!)K1p@`@0fgLLbB*vlP8-A8y%?B=`7 zI+ikTDcC}GO0?=1;_@}W*t^Gyx^|D{MBdw1H}JVAenwor5*V({e(3hy?V8vvmA~09 z1vmStRmhJymR*fM>3y)Y*(UyX_t2gXzwM1=W#`$u{RD+?B>Th=W8M*K`4G5Nk?iS# zxqQ$kMy;2GvKPb!2FNflp2ArIlf-3>xU3SF-Qw~Tzu+846wQTVIRQ~52iS9fH3wJf z1Nfh}*W={@9ftFOK0#mt`qF&#z@uDUzWa0n`?PXa3-(AEv%5cGA=|tlr=zdxx_Gm{ zpHDEBlr@_a<+W!SaanzsSY)TQUdW*!+caZSJDT=})D}n;zhLsyKkCU3J6X=0@2@(K zjVNz6Oz^-C^x#q)zSh0Gy>XU1oGv#m>J`j83cM~`C^kl1#)-=We(~5=`rkJ$3RRS; z(Lhd6H!hYgcRio9I;@%UzfDw|0BfN(kVzQ__qIafbyJI_{V8{z5sk zF{+w3C4E51oK+Z-K41Q`syR+Oi98SwWc`=DI2Oeyc(DFUBP4dbu37N%6$>f4!2?xR z-Mm5j-65CpD#avfvbC}FugGTC?Dhn6p;k(q24Gu=8zhs#3(5$^VAJ12iDqTS63s^b zID@6Wn=>pCxM6-+PFm3|D{24rCD@HgW~NrlAy6#UBn_Yxg#{B$lFey^!EJ?alg;5; zI~BGISb=RyQNY_ElWl`zDdxRNeF)j3b(f`@Bea3Y1FcJ5U&lL5P4L)=8fLF#LJ+N> zx(|PHz4tnEv^L%$fvi!#l7xlqR8cEIBO;{xxXQRI-?gT>Nn5Cj%}lK7td6_jZMDqP z`f@DD1G%4hJ$s_I*;w0vWZ5kodxyKDy)qR2iXq!VF@8&BGwPU){c8<&D$5+q4@W&d z-0Z5#fMsB#>+&cjqD5r~5%*A(J#+(q5!}C?Iot0)Y_Rihn4=QVSCgc#k^<~lD;`hp zp=P22ne5N<%czHv0t*>LMBPT_UjG?`9ok~uL31gQ2+mvU+Ax%A5W zwwamk)B31FGuh{}B9{ZddZ@Yigx^2Zboy0$+3ZA+^s9hVLWk!TN7M}bYFBIXKK~rk z=~vf#2xw!zmYjnE+%A=$WmX}RG%mg$8{#xB0c5M%noW}k!7X7OJJr@~t3BWl&;;MQ zUr7MR%+c&ozyQY&_Dv~<<`B&u%b(d>XXHFb*OQY#CvZu{h z8+eIL>tqgTiBXy->@2%y@yj0nofDco%LxVJzn8?_XT|vMI{#sNU{?WPyx!SlcQu>% zeU|f`&EbXl?`&2w;~IW{v%1mv@IqKRSj2**gGPBvj09)GtR^s9{t#qGf7LjLC5Uh!rY{|uQJsLG+`3BLbl z!CIDh>(Jh8V^6cbegn6OY_9h~U#1jT#67tbUt5X7UZf0E|AS8bi|#N=vB%a8uf<07H><0%#8zqox|@Q+GDO%* zjZzi;#kyj4Tf3s=YrxpqRavFYpqXDEV7{VXrb1xT18nL;AxgRa*9X&CtAS=my>!sw znu#&aMlC^ER=0QE4lF>_QQ8IXmy^s@CsXc8KucIPiACI6-ZRu(p--k_(ZCBR8JxK6a3x}Hrwr7*vm=>Tkp$*#Il`=`DgdkI z?G=_0R2RdOyt5Y_pyJa1e$=L|lrOIKFP14IOQ6(BE^)WTP(fy@B5KviAlWW6UIf^4FwfM29&? zn80BYa6DDVS-G#--0@~RodUzo9wv4z>8R2f-gQu)PIzbImK+Q2mkNNXg$?T*Vq2vm60-y*W=-+WxO%XyiZrG2g%4~V5KSf zc>5mG3Da<4@R;n-44&FwrAonW)lSZ4dzrF8q->gL?$bY@WQde5S1bvx_~k6~Bmb8! zfA1z;(JiU}9CM_8(Iu(xKTB#o*X-yk$};XYvq@I$7fDdL+s$|NN@0>VU<`2}jvxAh z0jwwp6PnxRnYR)Kx0RFU^QLb|fw`6G=%^mO2j=~JzWI&bnv${e>p{uT`8~c+>HNA< z2HN>`3P%`QD3YM_`_M2)sS3bm`8sc2}PgCV7dSj4L+dWaikD=R>9Y$JMzjIcS5=%_Rq zwCSO+Ih-&k14lT;Y|J9FjlPp=1CcY*>6MRB7SXhM^%k3ReENP$htRp{ibXRP<+Na# zIp)p!QCbqV1eeQIn*R;T0N&Iw*L*+u1R;ARa~S4*Ntm3;e5_MJiYSM93I&FFx0PK= zqlfC2#}6_K`Sd@jNNCbYEB>KA_pLDR)U`#9NKL%isUVdG4) zVgBYKpcLSTu?*4cIi;|Zt0QX%32u1bKBd{nJI%(d$DL-Dzr`YFuRGgIm~f4TYs~sS zy*m{NdwvxPgy;6Pd~&Cdp*xuOj}~As+!*09z(OybgaIZ|ZJ>FQ**_SdKQmAI=eerA z$V-G6j=pra`Ha5IC8yu$96B7OZ6k96E4jhsr$y0%kR>N?=H2-YN`@@?<2`0c4Rg%4 zbsJ6btudIJZ&~Edj6Xfght?w-43A;y8_d$|y9dlvRT#8H)qDBCRnYv zHe=2jQbg9k7fRF>3dEPIkfNQ4{=9|{n{|9FWtTGMSTCDh;fC}woN5T&zynUbltPeT zc5O3rS)<+N2r{a9$V-9;wKYFD?d50b|uk|HAPH-YN_a4IJZ0^UMLMS3T@q{^7S190$ zPwZ4&QK<~P={U91Z14BI#Zq^fH<8BJDH}uKhsy8T#goNnR86qJ^G@ZIlF;V!pEjTL zofU$vW0^0RDMZ?VNYeK0Hec5N=aTl~6{SJbm&r2+M{0UVMBDOsMJg{LX#++g?VnK$ zR)I2r0j54&}}K{%8A>asbYbW-nc+*YzvljzG2y~$s= z;b_C%mrs9-&%Mj%kPtflmNF|Wqudj@JnN|Www^@Eu%oNrF|)2-o01`VjvZ5?M=AHi zF_WoCU=*`9f3=HByEQ2HHlHK6qoTm6e|0vOQWBi{ws*|${r)~V&XM97{YAk>GyizYKJf%<kS(jVZ+Da*_PaXD-Og z1zEWuCl_So0)8%F=K?POx&;&yc;qD~Xb%Pl?O}os+QaiP&>kM-fcEf^0JMiTOb7L0 zx&i9L01VWJZW+{v3@6kNaEF3@aOI%&J@3f_9M_LHo#ag8U9T`ME#OO(RfQ+RgYGiD24(yxTh^-y2$tYZ&+VPy5bOE3=u32s20nj>^_>P!<*(yJRtcaYmylcPn&4s~y0XpxGp{FB zR~=VmvgAL^uurQ^wC3)cnNZg$my{Hsv8>TwCL_r1d{Fvt^M0*80Tu~5(SG5F6}k>N zWLmhZnRQm{i&Q2Q%0IE;3gy@ipLH&I7#0+HRn5s_L7LxsN*jYrGAZK=RQu2altTce z*HePAR5`!hIO`OfJ7}@xs zgbdq5OXWoEvpQx1fAn@DDL0;tx-Pf5K981ACu*QjzNfiFDYbyCIIfg+V=;EHfmzDG zYpF9e+FOB?Qew2Jy@(1xQ?ftH@Yg#vL%_?ur z&`uFK+|@dlysL=(lv()-R^>?YAVUT#SUdHLSlo{1Q5CIr+Mh_KnWwRc=QLKXl2wz0 zGQp6(LJ5$0_E%Es{xhQ6nP-5r#m`X|NR$&QTOaDl%L?+0t?sR{R&%Wml0n^~JfX86 zVy*5(OHx#7NeNTqESkp?5YNuziSbGe-0IyNZ@r=Sq~#!wXIJ4~-XF=-nssD${Huyp zgXl>xq@I)jkvGt3tZs;JXGa$cQCK9hJ_#<16aSK_?tyC7Gej?v>g4@!b!#edu+uo? z%Mn2-Pqpx0%CRRK;QC&ZjfqKC6aSiJ&dJ85oczfKe2nG6WzNaQr5u=S+__91ulN8v znru}c84|WI#if;Sq2}T;Py9QFUvO?9*!cD?em56xlc7EohT1}5=mJFH0Jji~%*#Vn z3r6NY6lLe9w(G_cQ>|{=QNaj9^H*7RP0JpdC)Zq7sG<3q^oqq;N)4-;{s!XndW)`X z7$^I*&ydct>v6ea;2L{EQ00p#a({DcE1gxVX&G>{LzbQSDD8 zOF3|MeuQEoeX<2jgHzbb;Z_M|77Z>qc554dDYprS8YpAXa2l1UP(#WJ3Gn-pq`ag7eq`kAAa4uu~S#KQsy@mCg{tXI{ zX4eRXrMI$fQCUP?6YN0^wk82*zTLEg5;7F4)59f&`BZX>0Y-34wP8eC@H;!T|?P#mY6{>yJ_0X2_(v zRK^O$r5vk|6=~pE+uK`lsuIH5i7v$z`@j&gcL(dF-=Dq0nd(|e=TZv5=y59Q41Sf^ z*=Zf642&O_cCn87{Kg7r%Io4G1QOB@-K<-QorotalY2bE-L0Dl!>gG4IYU7Ye`1;4 z!-L7adiWc9@gDxs70|q_ii&@Wh|5}WS!2882w8`23W}+k{#2(76{L{(Y$qNhD@ps83j5N%=_Gm@b_~L6Y!uNNUG>EF&j3> z+N@_&sbIB~Uy4;@J5S82sZGXvL~YpifTp_@nN+nW7O1^@h}B;sf<#lcRwY~F3vvib zl+8PMgEgj@fBhYhR1$y(#!sbW(^1y@M_9dl`Xf{$c+oQ|XY6&_lSszeB-rc4Q8X#d zUKwRIRN=rvj@EtE3pjrvIs(6pY^tGNEHD(dFVzAZzvgJGm*%2EIJl@UjJD>eYC{5d zRh5{IN8N`@;@Hb$tck>DPGk5%ACf=US&={25%;|^;e+F?bbtAkuDQ+%nCleXI;|A@ zvC*vBb`z$obf&~hDh9twbdx${1NWg2ia0R4htyC!Gp0$v-m{pJdr6pQ+_b9m~0O${Ufri zlu!Jp%;r5PGJH=N;6c`Nv#pj|sa0tE0(b`7^ssDkWRl>C_RckAal>DnV|CGzu_VM5 zXwTp~e^@pFnQYx*4;?bN!Q0$!)z_M1xdL!%(WZDGaC^jhLNaTq_!gXcQhjy8OIn8A zKhGMfWg&2Z;Ntn8PCyx?9FIfs`NaF?TbWumDJ|SR|KJWRI1)LepXSY3U@i6OlPMiu zA1V}>91J$Bkee}efO~AcUo;(R=H4GB5*_YvUiiIRuB(fc6dpH-Ce}dm0~a<`E8N)n9sLY z$jT;S?7dbBKMZYK=UDt4_E(+4Zdz*T#4AWS;XwN0z0@xvA6yHK;b{$#;lSzVU6YUX$`%^F>zu7F*+$M zj2_1>thI&{!zq@Bko&AkxHP->E~^FmbE_5OvwN6E>y+f!31!;>H)#f=vxkX}n zaw0#l9{t2!>$V%LT0T9572*Q|@l9rh0xIpfhvz{;CQ`)4l}J*+8}Hd@tt{bRzgj+p zz_=eFdrnm?5%-UvLd5SEI*qFol#e1Fvaa><&!am$(ex4|h6C3>Y=x7Kpfu5EIv-(P zeAsHE9Yr4JNMMOmErQ3kY_)FCD4`(XCb-Ix>PTPD*=7wThIRXTok#d+>StB8%*0%$ zLg$df&Muc9u?}iQ?(~TFgk@JK%^K~nb~K6?a=7r^Efr+rjm9krbJbx*Wz z$o?J@tn~j{+2nt)6+5_xe{pQXJVjJK_xX~Vs42`1=Hh22Mi z-PyrcidJ9^ck%>rI~I}fvyl)j{JK(;DzfBmp+?$j1e54@AR$_GseESlP&;iKqDlBI zNQf35lwa9{D}MmNB>FxiM2jw!=jXO|(cVWi3I7ff9Pn}84GUkSNggVSLD&t61kgTt zPyv%?YzlwN@C_5rQPoF%q*i49bU8=X$^>S5H@v@;IQt$ zMrW&xP+P4N0?Br3kA$d^At3KPY&FqtL^KIM7zt6sAFEQWB5U=$)gWn#8x2P?>sa=Y zP$hQP^Hxo5HZnSUww2DVfPk_?6@tkcB|zIwLbRwW!EIEYrO(faVL#0ewu!wfB4nJm zyFj=!!f?6#k51(g5KkYpvb9|(nx!1F25Qd{LP01TIArx90iYBT0YC|0q@9T3G}2>U zw**tf062jqq#u2ZglN%a0Q`bL68St5qDIC5(AE}Y8wpALs2lS0xzkevS7I z0U}!V4hgUG-eDS&mENH{2?Yq)L=B%G7sc7AkFDBC%iNHz;Mnsq4~{#L(HR`B7ABxFI4A*H zI0w<9t_gM+yAVwpY9|sL@NwP_bX5W++JT@2YrGiywLZ`yYyy7Q2iDr^POM-4aZmp0wngH9)J#FiZ7+)9P0l|Bo8I zL)l;(tsVkNy=x;OYGiPv1?7T$v<`?S;oBl1YIx|&uh|}IkTk@NM)Ti&7pxZANaS(m zKl{8G%zp$==08e+{5KHMqShbGbIsq@9a;#{gl+{NB%j*VsJ!lfi^{UkD+Q}2y3{nV z*h-dqO-{$y`Gmqf1=e%C2G5VE7ZLteK8lc(or{>B6A z5EhZ}`;ibeJh=Xc2qcl;LqgQZ==$dnO~Ri=Le%i+`X%lz$O!ppF4r%EJWkhN=bWAp zJn8zB0IpvY(efqoRR-{m;=i>kxPB8vyMpVx)NG8!Y}ao6R_m&`K2Q2(**m^q z2kl0bFWY%A5}bCr-s_fN^7Q}MqQL>$6f7d)Cm|tfc<}!v2qcliNQfF4{eKgpN%(t^ z5H&pd|86&$%m4QwkJJC{GqEuB6FlkvlmPz!6rx3~Kc@auh;{}4cd2;-i`oAFF`+p8 z-`m};ivO?Df;VWT))(X;*~G<>;53on>y}{hbo~o@aJZI?MI?Lz5~79&*KdwM61gc7 zqDDs7?~7;>z84arhA(jaMq}M*#PvTYQKX)=_AVc6&@EDgE!-Z;&~CvZ&Pcf1*%J_W z83~jCk&umOQC9~eVHKi9jD!@jG-5gO+aZukD2@>Db~^}xlz)0_B)KkK`7P^8!PSE8 zj}4Yju2{fY&g(Ul=quA$`MBV9vazGVqP}pVz~}aI%-?HRh`xO!c2y zFBgWNUoZE{ye-UsR9rq4YuG*#m-b>A%5~y$R$RUnm)8W#5q`m4GoolN6w8Goxxk(a ztYq&DfP*;z99HK6xL7h)NutAw8i5|*CWS4u8W`xrH29{6@7uw>+5UuJA3bRU=K-@- z*+9POG4*OJNxr{T99fcFol1h$hsBbDH~I8Nl+KT$8W`75P~d&PQih)ipUz@Zg16}H zXc0KI?unXwl^d38Lm7muJ*mO#e0m>B7N=e@IG`m$IapM8sz$K2K7y8mQxfg3OJK>N zlx1~VaEE>irGPN_szZb#utxhxO)hM%s~mi1AwoG=X12Umu)p8GWP@C02At55*dH%d zbc2Jrm`ldaQhdQ&1Q}w18EacFc;3HdgWT$dB5KHnQbmXbW-rta9!cI!eBQT>gMOd>JyinEDyWhk?4VzuWIT(zH=Eoz*qhz8Ah%-0da_$WGknkD zGJ@$UqR@-omk}(fA>Y^R$&6snI7K;oM%-|N+;Ui}Nid7Fyb?NAyI>3ULK7}2@g7H> z$Uk5OWmTgr;Fo+O`b59K!97mDY%HBdDFA-ihC;xxbnTrrr-kw|S_HfK{5|h+dSwR> z0k8p6YZc6lR9T4kO|63M^s!V8i1)5eHL@uSRCYq^U}91KG*@NqFY_t|_~GSotV+A! z^^tVphM%CXpfW&>8=Yz_r7WPv^!CA4Mg8}<)EFjBq7(p=wC^0*B*5@Y=U|xVspMp^ znbjpYL*Gv|@pTQ-H2xgD2dUre8m#Bj-=K6@eydPm`R$+Gf^}6!@biV;gEU{cB(R;` zgHI)$CIVdfXB{(p1pDdV5gwU-@S|?ioc5-GtZUC;Jzb%IYJYXfiKv=rBE}E>>cbAM zuu|C3-of+CtZ$ZKRem6}KmGoV&X}1Y+s|FmQGJ6;^@|)Iw zo~avUfL^ojz~IyR5K0yXNVDHaVt%3}`LJtrpe!sE^#>}+Re_OL?A}bkZ8r)4F7&c> zuejRx|CcS|u+?DO>>g{+J~P8L^qs`o%=*Ua8}}HYp#9nA>A@ap+dc1bu7b9qt3Abv zVEqUwA_creDA5WiSQD&&M$jbwCxj9$KCTMZFA_K@;AcXKRzShJU|qkLW8_Z?pan`3 zO0@X6GFVR|aIyj^gyIko=iS7t|FK{@GHu-&(FE-p;o{(b4#!_*Ht_Jy_SwPf^*%&V zxftv~cCe;Ckdnn9&d<-oYCJmFm1H}mXzB}Af(n-Ua;R@yPlDsHLs~b_dz{PD)y>!W zxOWyQA`LyAP@)zfUc2fm2$IBJN+?ld!?Td1W++{Mh`>n!n+c_G0?cr*1nWE@*f8li zHzs+2#8ylQw$NW7JkBwK{Zte;#`qXa;G}@- z38ioXKAjTGNSfq^qoL7YYVcZp2H|mrhW)@ELxTd!&`>B48UX@WxH^c1#QI$XP8#V> zLU9O)^LC-D5+{$&2oBPB6WOx&Xgo7mTYsLC^W)^cnZa%(I+UUi9V$gc$5RByQMI%u zJnwO?g5ajnQFS(dICzp2k+%DkP@)z9(Q%0&N$d-R5;ZnPN16LLNPg~t(2gOL!U;HX zJCBZ^#$@omHG0V;g)?o7&26fSSR7_m&oaHKb5G5)_M9EkJ?zCaH=RM99 zIZ9TOBGQxZAe5*DK$L7FND_Msp+t?1QF4I5Ndfx^rEmiH7^_Lr`))WICC9>icy)sC zIHSbX!W2+Oi9&%Wd4~WNt`5+L{6*lTk^V<04gqoAE_78w=K7rA4SLf3Tw;D=gU84p z=J1fIP09IvNXiyI)-vx5#;}FC%2-PQfjChqB2KCkL`Nmls(9YxT%K_PW33*fh_qr? zLMfbp_;tbN`X~Y?1q>&Y!U^cdxPVy%P70V#D1{R+^^Rckq!n&B8Z5AP@xwcUHCf+v z!5BY(V+Wt{#^;qAoavAPvYhq&QK~|LU|H%G%AeTCrz`)unc;=}y{m$)^xXtb8tExQ zaTqDiTfkKbmaIF2qxJWQY}vn@ypz9VJ3-0Vzcdv6OC7dyO)!a!yc7(G6_p}l2DG^Dd06iDV%^cn}fadF9@6zaEee0BY=+XFaKY_jCp`-XJ-$Go^jqy zSx7I1XVXo#1T*xyM6@(oEkbc9lUBp?9_NbeSM5m=Dd0LniCTbIYNrn-ND}*cLWvq1 zhVw_Z1+UX55jZIzKq!S10FO+y?fj8x*o{e3@1X5G^)4ek&eVIaGxbtHIi^=Aka{fw zSeS~?*mxu|W}LU{6w;67JCGHR@ns)Jh-}$ZFA<8fhKD@wajwXY{23`C1$;s%Q40V^ zzDSTH_RoY8H8wbM#*@L8y8a*sQN|~w38ioXxFZ*1lb;GUPD*oQQb&I7DelPi36Il} zH#r@d0!l|#DB#E`1h8-wx#Q{JLwY{~$3*vBtSw*U$NEp070ZsjzoWziO3Za(F++IVAMWR@e1p8*}i9npU{}nPCAgkY$$Fuq@B3k;>bV6|`lQzZk z9_NZ23@bvJx~ppTzEbP{Cxepw$?6{t#^_a?&hnq&DzKfKL-X_ts4`z;Xum%#TPhsS z?${sH*xe6=Dkj{Q?~>e_usrk}7LxUx5?d-J?krNBn#Fm0&ed?^uMToIuJ#aDP03pE zgyM99%AWT)S7bNNAVs8?H71n83F!ACe~Q$Dz)1mJ38ioXzIij4rH>+TQowLRiCO>z z;=6}~X-Tu(a5SgKzRcTc0pW4x^!uG&Mgf`CCtM|tQi#TUK|+tX=>(eGgS9IEt-(Jz z5}dAYCUE(2vF`0)lLVKV_aY|=h7Cw{1%tObg$xEc!s+!IUwrTiku970Frhe&^MdC+ z&J{TtPLd*0z^8;#H~|n1mk68`aDh+?Cjg?M%oYx!B#anBiCO?eLz|;K8fv=XXf(_} z%A=tH;c-U8W@j`|Kp72`LNtbGNF~tZ9z?@`YjB8$eguw0Lo3qv^+pylvO%IN3cS_0 zDpBy{JHamcEFxR_&~!p^8fA*-JZ4$t zq!Vs98b$AY#ODcL5FTd~xs;}WGKwgLm=vPuV**X?K@|PB+HC$L_@G|uVGfd?bi`Pz zC^t7dzbiJ5z48fPmb2$moW+NjMS-wQYic-XM!8`l>{w6|FYY@2;N8%@G|5fNzgr zBHT3JA$I<|U}F+}bV0uS)K;(WgFc^LW-GUBL4MN0YxL@ra{lm=z6o2LjaLO(goP5= z=k1r4(FH*xZhr?qB3mAbJ!yJ_4aozpYsFO6r3KL(qs;$Y7Se8Ec9LVR}4 zCDUDjC1u0qe0o>Zh40DhYNWEPpZIIVdw&bYR4$k;Q(rArKHOd(NJ}|h>~3{dw=ZQD zlM+Bz=i;J)?9YO?V^cQlf|c2z3gMbbE8gP0E&`3a$Ca46-f+#}W4iqsSH)jhDd|TAgD24L8^ycY^0uUVC@zT?#hw ztzjLDh0@r8B&)9eFdsMMn<{_*uK1X(??K5lD%q;9Fv$qOO>ucf zY!2EjF7e`0SzJbn%P?_SA}(QZ*(olMiA!e@0Ug9;o&cD`FSx^30OtZ|E&%2NSS|qN z0!S_g$QDeZG}-hE+JGHF8`z}>+Q8O6&<1wKfi|$$477pmUZ4$Z{}I{*c$>)`!C-ZJ zNARlI*}d7Q--7M5qk;$8;#GG3kD&cM-9LW|7Up}p<<_K>Efw2%(%7}~$;}%?h_7TQ zE^qbk!Rz=pbqP5&F(kjK8+Srb;eih+wpD&-X4)UY8QM8gjH^5-7E7EZw?NR;KZC1$ z+Mk3Bg2YF4uTYFF|2w!gS=&}%8d2W4o%OEvp;=lbS9s~oA+RtCHN-tmPd@tv02VAogzNPsbjChbNFFkuBYrEaj3)`qAGM%cO6 z;GgjnRRe32Qd=2p0)|ig_S^;=#)yq+2Q{|cdNQwYIB-UlVvgg*QTjAvAdUF!Th5nI{)8R0~Y$Y8$up*l`NJlkI} z)JmZicr(kY6e<~yEk$~k~_iP)y8q5@!J20DB(`*hqw^U2A9cw2%qHm&|Ku5s35Li$He5& zM1txz)9cBh0or7u2bgJ?)Aes991!B$QbOf@+5$orc1j#^g@U%FI@bst@%fjzEHz5j z!6`|m&wCt#80<+#bCFWExdOF9EBueREH&9Bg^yRKo3U(J?a-~HQzDiUj$M~E8nC`H z>rp2(l$cY=nBd}H*9nc(-XO|?i*Kr{xcIB&J{a>@-B4|x_Aw=kNOut8S+Dw`)(RCP z{p4!#0q_F%AtLPDTCPFpTfhG&m)Yk?gOCEmL5plx!!G};KM@4MPUjo030XdW+3n7b zYiR^QlQKeIX-N)2a(8nCG02;qdugZZQqZs4W01&uix%W0QMk^6d?8;;}DcT)$$ayr*&wz&p*{= z*oUQIT@rd;7kXK<91;?@J0p~ovqND++tA=hrsW&QTe5cTc#pGzAcJX-wNp&X$bB%a z*gLLmBh*9fLxbeV28KYS0QcknvS)lRf{F-$m+4?aNRDl;xM%$Tmn{-dZS@a(#x>s# zObVw)g!rd+yv)yzF9`8Z?Rec1ZB)=QbR!geL#m1sJ{Aesy8jKnV86I_4T3RHz9AB# zMVGJP;2Toi5KY2&Mnbgk1$)J{5eO#Hhaw?bbg4XiLuv-1N%*NqaKOiUHY}@fAk?0G zLh7x-6aPj-p_a{xx(CH_nA(DmBAs3qH6E?k4n=o6}`Z6Q>io(fL5tuQTAkCp2i zs!DnRijch|l&C=RJ~lIU1EM)Bk;c4k2_{b$&pZ=qsU5*0($FsNBhe`Vkfh6)L zNQf30{O|8={2OK$5lo{0jD%>>89Zse*q6gS&PELM^mP$RnrxIGK8i zB!1{n2p&82bSPP)1ZdXMh?Xxga6+b*|I(~vnNDm*M95fANQfD-FMO?+NriF+?&PsA ze9EBE2(2GVmT~a=pipCN2%(BNfbXjDZQ-?;F)CDw-9I>#NFsq^KqOECn5+-tIZf8n z>z1NAP4*B8bFql@s98ve8Xh8H6#_}*6-bB{86#mUf=Tp;kPt1pjD)4bcqHt1qtQrs zXIQ8O8#*Qw)u(uj?aP&oMVV?w>O?uaJgyC5N2c#Msa2qw{oAt73H85=9c z@z|K@Mx(Lu{y5%C%tsz)FX3uif+qun5}<9TAzIY>!`jjZC-BbyUPP1T*?rC zFeTJY>xgL5`0bG3fRFWrzZwp_Zdz!9mW_hth-d9I9$*s*l_dBkBEdIdeWxo!e+mJa zof5!!BN5I~yR>0mw*-?jCSZ(v&kX+5WEmEb#>+uM)bJ1!4ivS1FJH9yozt4^o|WB(KLLj%c(pO%CGpad{fc|>sjRrvPAP<0C zZ$#~B~b zIOBuh$@riIXyN9F7Ih_{31HZtjcC$FBaz^MkM(q*s}dhYSB1uD7D|@!ao4I)eJz(z zNqn>rtJxZ}>sE(qkocew5FeBP)?0{hj_Re&^SULNobdtHgXcs$u!ywYHY7w14?8!? zy|$>H_5z|w_yb6Y8XmO2yq3RT{|M0}{QF3V8Xn@K?>gRf{NzTXp|Nfq4~<`u#~B)X zouNVSWN1(VH0}?G7PbD|Jap_7`(#0iazMs<`pZ=bhga5z25C)EvJ8h_8+bUhA=HAg z6F=gq7W-mDD4B!;Ee@eT31F>sgmP3Zt&!I)!4x?ZMqm-?Ohb_nHGIL|T5SfRN%*Nq zh#DS3;oeQ5yS0^wCj3x7jyCTLbtW&Imm$wq`IW&OLgB`dFL>p1`u}1<>Tlbx4y4>t ztG$S5SS@8sZB2P=quC!mMS2tRIJ5tA&g@U{WcH^7Xx71q7PbD4?7uJ~WUQyBTowO6 za3G|yA>W7Uu+JV3>Fk@wLTTDYR78eD--Dsj?DY4cN^Iccp=#PgLbNh4 zPJTf!iGCgl(W1*ZIlGIGlC)g~=_4PF#>ur$^HEYo>2oGZmaWqp3C`N}@VX_KBD?Q6EF$4YBOz*dNbd6y zNFvWgLbS->w3VOZOCr`Fm_%QNglN&F({|a%op!q$jXLd$ecWlEL>{NpKJRo|f+wAp z62NJ)?Ko^n;3mM8aY?FW=xkjgbw?ltv#%bgx0|R$bxRpWwzcw&TlB*oyk#vh2 zjYbkb?zM$B4SAfAwBH#?1W!g1C4l}nBU)kXOw<3Wh>)?KCb=q+wB|KFO?Vt7%SeiS zolg_?5Nbgr!6f;K*Of^!Ee_#C31F=q2<5caHm_TP$upebdC`YhL^}O@NQfF9Cdo&) zh3jeO5KY3LMMBi@5K}iF4ZW_#?8anJVAh4lLN|~(WC`T4=a5ASg_oz3BEkrAv4S#qiG)5bUXf!YJ50BMZT!m$w z3{_-Dk13mavap10(Y}PDS~S+vqE{u{db}SRt<6KpGTc6RKh#_c5vuSDx^yX(AKnqF zO?og20U<{TVDLEz=QQ|CuUmpCa>#ALA~Gf(Ktj~;{KZ~H_G!_@4YYlTCgJxYAzFAC z#&!6F598iJFo}K)3DKgrGmT@%t6z{gW5-N$K z+TvAUDl^XVcTT?3$}$m(1HnWIVDQ$6=`?r?uUmpCaxhK6BGMnnBB5~bC;Kk0t1Uz{ z2|o`Bg@a#mIh3QVM>NR2#RB5co4-#tX}}i$7OIkX$m!2_VFBA^?j#h|Wzzn&IiWK< z{xy%kJU1GRziQv`_}h;>&iHfbOYmg;Q3ANb(}-3WgVMp@rx77zJxy{|qNvaJp_{bd zQL>DpkG|)Pq7V>3lmHg{6@@r0_KVjo!4x@wY7*t(jdv;%3I`7X z)CSRH0JTIywD9;OYyg5u^nOT)7G3s6x1Q(GFwu=hqha@X9t~5F#~BSTIHQ-~$!MSi zXxs6K7PbD4hYEK@gpBocm#Y#DU;n~a%|42f*`XIh{VL=C&dNRPbxSZscH9@Sh-~|V zNGKdUIPS-YCgDFoLgC;c^It?XkIbJ;<}c@w(@yz65{e_`|7$x!%7;ZGJAUVjMk+m1 zkfQP{M?L-A@7&X?A&=A3Uvzpp!IPd&3E=7F5iMV0{xjcyT?vP$w~PoG>j`;PJU#WV z&{%CSN|t&5slWL8+L44>FgxXky`{5pe}@uC&Zos8=Tib$>w1K8S}V)zmSBn;Iwls8 zzP$hmg@YFdzG)26B>Y+=6b?SMXn2YC6rw@s6c>Z0B5STG7RzFah3k;ec^ojf6KjazMHQM>pyN$b$Ym)B8eYW6VJriZVHt*c2Aa7Hms8@LA1`B zS~gtEr`?RQMcV1flB$MdD!-cV8PpfWVQ$)N!Y?XB4%m6sX`?B~%MS_>XSoS*tpJ=S zYtb6^1lMttTjdsa`IN(gCYR(V20=n{2_lu?XYGhH-jsTQCCZO7iYK~C5`)+WGVpWW zh7;da&bm1CCO^sP#fsq}gaK+Jj}_wxtL8Lerq!vG|HM}Nj5l~9?{&u89kJmizCG+v zY`8Z$x$VT({NvrG&dq7;dzod&h5IV^;bgbnd*#V)hxf{p-5wUEeo$O)6=(WP6qk$Q z^0TL|XKyrWs}wl;@z=!gD2*_(?41c zY2lIn(a*|5novTLmjuyBuha}btxZ$KWG2+OLao^OTHyzYrQ9v}QSI=}+A(`UEQE-n7>*qOiVK-gMrT(XsfF}5^VVL<3yR2^?U8eAh5Xp;e9PZ-N-$OZj z8ThM00e^k$nsCJ=O6CEio=donowz34Q~MIZAiQhiAqDN7rX+amp7d~&e-iM0I`8p* zjZ(mU8Q~<2O5_ojnds6#`V2Nca#EqK20T+Q3ml_adCc-++Wd;=^e_Pa~Yfe-a5%zH{5%qzny3BfdC%=P z40icx`}iGu=maiV3JK9e!>g`0I)v}mY9O3cJsAmw#BbXxoTarwIEmjJ35CSxpHC>p z_H_=YC1trW>8$C`&U^+x1bLjDR8NvGVT4HVnAs;>HI5Ld(!$%={S^jku?SA@i#!qM z-QM7-;CzP>PU63SghJwj^R4O4o$pgOCUrjeu=dxz!!@-t$msOIUQQ1rpwa^g zfocvO2%jeV2+=76xS)5dUlkXulF5Tyf8LR#N+ZFkOj-%gdmb(b%lXofTQ*?|5~7C& z7hIPW9;~%SIEmi^35CS}v48j>Z4knVMwc6aP7Db5B=eH~$g>wV0L5hz3b%|soRi~@ ze{DagWbJ``j6K~AM_qK*K%O6OM;@nl_Rd#;s{;9v;ISHm!nHI?;A8Bb>y}?%A{GIi zhK%#BgR}Sc&WVx>pD}v(-hvB0AyJBz8xk%>z9Z4tGt&y&+TW3=lhEB+;c{3;%thna z(?h~H$KvRn%ph3C4dJ`VEizY?MSr;=Jd`y4Sz#R6!Na3Q`{7lQXYGeqAjIq8)eFPI zP5kda&wO)pdXcA7MV`%ndL=$i;Q#7*ws~$&AB6!PU%mIde0=rg^YZc4%c8kn{6D;1 z2YeO9^Y=YUfVXsVp#>5i(g{V7-Vq28dJ{wlQX^duP#_89y}Nrzld_6}V8KoiG%853 zV53{Hf{K6$7#k`A|J~V_-0a@I@H5Hh|NDG?Pcl0*-`Sa+xxKx;J^mBmcUz12&mR8g zF8=ch|JlKQoW&?EU;{H-d4hj)CbZfF%Aot843-)|8F-5;OW}THYe(@n-9+m=-e7JS zaE4euV)N%e3el_??Yq$xcV_e^<@PXs@DtfXljo-;(QTJQQMB!-JTD@x>PUR6{%s#a zw~fjuK}uu&aHss`sElzQ5|8O{rz}z6PI+~5#w?kUebQo(5ywR#Vcg1BjmfCtAuX`- zO?}e_(tfiuT9ex_Ig5Rhgib5Q&i{7wb;b;Mxw^w1@i~$er|&I8zr8zyeU4=9{@_p< z2yFg-T*e(T89FCf1dOZ3XN;B^(@U5UI|pkL3nye;@XpyI)||j(`Db#*NSTp;#Ds2}l7Yh{g&j_d{%%UfC6D)Amut#Ja19+hJ>yUE8SZ4d zKRt=IZ^)J<9WO{gn?|NbXP%ys5%7}JSP;4*QJ^b(W@X$WGdctD3YLce#H#`L3$x$= z{NWA&3`MsE)#qf?l`Y_=8kmtK5?lo1_Rtk`*f(Z0ZTO0Id=3jw?Y*dCC?CCXbptD; zPt9cy1SCps2DO}*vE+Z}_T889;Q!8j`o4_*GPf9K{96|h!Ve4K`|r~aBFn9ml%xF&&l`48v)Hi0 z&KO3L5Vo+UC!#3U_`7S{7*|gAhK~Z}OI>6v;ugA-5hc&M!Ic#s$mmM$N9qK?Ttra- z488FM;z}5rUoK@s^ATi#FzF#gQB3l$(Y8hM=SzrN=-!GbdDad7eB-e}#p&%YW%%gE z6&Yn|>Iyb*dLL;Qcn1(g!87!IDG>Lze2`6T&mnAK&5wwpSmXa*+ZM^QH|=LFQqo`5 z%8QErKkEk1o?e|%fnHn@C`sAB;z^7Pssf@Y-7xe}1>)4SwJiNxAZ+2(W{9F#<8PvE zi{#Wkh?}Mtv-(6MLY`HFPm4XA(T|Kn>V)lM5Jdqn^tKm>Cy%eo7)t^OTUfIQQ50+Z zsoJ(ko_rK>3*8SRN}hFtE61<(-dZ)FU4uY+=n&L{Y5q zAJVpIT*;Ro$xnz|=stredDacCd}UL{0OEO*DUnLawa5U5-uMD><)SB;E8|_(R6`WC zyH&Jp8dpMh`F?ED5{U?ZHb<2F0et=x%ksWRodD>KC<=g~??Hk1^YN#dKc^vVVa;Sj zQLOP#(za>*ne%2Y2_g{zuozMD3;+T9=UFyB*CTZTU>%|;0EWH?1>(;G&oh6%fw1ZR zUjlui5kWD=pQ&xrxD(#GtkpSKpL~o&L~oBFN}d70opD<-29fhfod7tCC<=g~??HjM z^Ws+KPTyM$Q7S&g5Jj=ZUqsu+xHPkQ@fItofkZ@it0PLD0l=S^7L6=IlU`zz=vGLl zK)DrB6cj_>jRJA1v6DIVc7!dg8Gzn(FKe1g;ofa8dw02ulX6o@#{bbhtcLoLI?;nTL{R_?eGdx6pBwfue|ACG!kUhVf~<*uI+$2P z+r*f(CG^An%$>uLh|oV2QSz!Ey!qFg%$qZiHlcqiqA2>K^-X*iLVlN*4!q5rxf1CY z#woh&T8+n`O;pbP5|si6a~Q0_n<%q z=TGl3e}0Rwg*9IxieiobgtkrNPw1}kK}KWpClV0=zadKg0D64LRvb#c!<0zXqy(ZU z0EWH?1>(=jhnPPbB5cv!dWfP}jeoYbP2*3<_i4x3Q^g07hyYlQD0v0|f3Ew8 z<@>WpodDR3C<=g~??Hk1bNnaFpYJ1VVa)+VQLOR5rESyr6S~{?%Rn7+5{U?auMs7G z0J}e9_wSdHIsx!Iq9_1{z6S;3&)^B>&zJ)YQK~)_5Jj=ZUsl`3xYT@y@wwv*Ha-)O zi0E#8M9DJ%1niqH+4#H-sS^O55k&zo^gSpLe?Ip$^XE8(Evy-XD2g@yQQ9_*KcTzJ zX9pXT`A9?n%tMs?0TesQu1BkoIsvc(Q4|0}--812=NG4#KX)K(Va+x~QLOR5sBP2u z6DIRf-?Qt{2S`K!yo)G#27rJy`+;4LP9b#y;2T6y01SN(3dEn@ADKTr?=nOw->>Pd ziEm;h*3dS&-3hmvjn1%J&5ADd(TIXN`(MR{}8DY z0Pi7+0$}KSP$2#c{>uD$9$^b>&LWCpjsLW^P2*3vwDXUw5bt}eS*j)1wMxW8;{O>y zT-twUm-b3700U8!9vFIn0`cc_e=>izLfFEew<3ySjsF&HTO@x@uOF;S`XLbkkc23C z1^|D0|7QN2fYb?qv52Ao82TO*h(8bi!~AI?Y++3XqA1q*)3t3He?q=rxx(^&0}>Gc zk045(0l=SiuCjc88L1NhFCmHoVCZ{LApZRG8uRBT2wPZl98nZ&{71BHk^K2=W%lgo zXCxv3&LK*k0l=UAJb^)^(ECh@R8Ve06a~Q0_n<)hS*=i@9`Pe=(cL&iQLORDYTFo> za%%*0rCx;t4M}SxA@sLEl)UN}(}(+t1cs3QNSy%agD47sq3=L}xU**zbLR|%Ev%V} zD2g@yyR~g@cT%_<%_+t%M-~zh00BhFGXM{CTV-OZN*%odEa=Q4|0}--812 z=VPUrKTCeV5T)W%0#Oue{88FA#-*gYNXHM$u$85nNCdiDJswdUfE*=j%6R>>jJ5dY z|A_WS*+4(i2I&^gZHXuj8cfa%eRm4PxqHhq=Z-+w!kS@-qFCb}tZmEjOU}Uq!nx-w z1e%hWNJIckLzMghR5t>{iH+0=fFPnM0EWH?1>(=&VwgXlMcBfc&4{8{<9|Zirtv2f z)3{2knC?R&0^kiq$uj^Xf3M1{n0|)T34o6gMFBAMJpg~A!w~elz6F=_I;DQgJ?9F) zPPwI-gnb<2Yw|rR3y4@F*^uO|Go;{9v4{VZR~=$BND{%_`rLlqY4o_I@iv? z`#LxK17}Gem*kjSCBY33)eP+L-r=(Gt_U_}esgo6lZQ;kQ1EJyM9I1>HJ&c4%~EMD zX54>lQM;o2n8pX1(c!fM&1n5Pfl4us^RNza2%HQA?=DSQ8rk9Ci|cg)2gyo|oBVaK z2K~EkpbL2zlO1yssONsWD(zP{P>#M-0y{nA1Kcrq0k2`>KxgtfCc_JOGgT8l!7S(nJkN2O zH8oI`Ha<|IIz{h;(#Hmxb!eHXgUZoI&$725C1mJ)v8Dk-CPUz^b+sa9O4-)w27Rt+ zU>x#1!EXjS$MVJP3BTD4<3{&p^Wx@#rrwx?>YL5%-M{4Df|Wc^)7rNN61=q!s&6*O z?SVI&jf3LN=2{2&o6QyLq(mKL<)twDxhLg*_NwuM)j+ZDN$JVH$HV^OO(~`K&}p%$ zX{EvHoL7*G)A-55yRU7@uAu`t7Zj5+n17jkREOu2+G`S6b&*QBc%Sqv0Hz)3(O^Ja7W-p@9P^?xG={rDF&L`;|mf4+pGBxIl1H>(zJKaz$j85 z@u&m3ifR~ENaK421`>$^16ra$x8Li=xC5^DuLKBdaatr?t}Rg98ywgsy!wI53-TxhoJw4-F1jWF=Mu zo!oOIa`K+KCoP(u91>WGyx^`1uM7>Ok>{{ts0z!6Nv1uG8Njst!vbH$y^6^0k;aPW z$v39N(2s9t_k{Zpt2*FXss6%x>AK-;$}Ul0z)2Jsa2-bkZjl)w&s^Hwow+uG&0bGp z3&Fc5?`6kBIzvd3gCWEYs+{2UUUZGs_F@Q00^qgTqXSQpYbsD|Z`A>kBxJ>t$$|A= za#*bdeIg)bemo|yz(eOx4V3V*D=HMZ3(KVL_zyc}0-wrEJ4_3-rMSB8`^%g}s$zEV z_g~{!TqQCq@2%+4@qyYT33F#nomZD`9A_3`m71UXZ1hB};c>$+YV5YA1>HKKMM-+k zguv+X#S60!`bEtgH-6T<>El+XJfB+ZCYm0VUZn=qz=5jIBuo4g0}W)`p!n=H*vSqN zA`1EP#l*nFh{2sNuTBc|CJT}MVzx3eMaq}^F$0f$=JJ$4XAgM*)8R5YOznmw3KNw( zCI`|zWE~dW@5>lO+f5C0AkSbj%wdPC8lS=}_-gj}VfU4E%6zuqAYnnQD@+eOAd{VQ zERJLSdJ~Rd7Hq;nw+V2Lh1-I|GuaK3LAF`7W|D_umyj*E#OC)43n{# z6Jpj*GE2);7*lYM>x?NWevtHU&kj6DY8^q@2GwP6C+R{c$w75Fb#GvS*VBx4S{CrH zDibP0Pj+6^FxI(H-6?Wk5(L1kd4c_;D+YAN%K%IUSA}o8oF4SWEXY-!-n7$`?4D=e z+76AfCtfgIBq$gz=jI0z6${u2F0n2s$#&@U8w&y>3VG&7>~#1}PZC_YB+bZtAw5u$ zB^b6HCVT5Jg?E@vPh_`RPIoD0z};Q#?yfS|lhB~!r!&~S@osc6?rhXlKr|0tp`SG42IiASDVIcf}60kQu?aK(5BY&F7vFyZLlnCY42~n|+o9 zdLxD;Jb`xZPLmIY?@mFL?(VeIGInoWJs@BHUUe$m~;f9CQ^Fq{8e;tfBuALraHE?@(*4U9H0p>wxD8T22N!E_Xq z!6ln3OX0D_=Wc;Ba&CIhhR@ylYDJ(u>2j3u!)TD>!sz_1-ezo6c-Y^@tC_Vu$#Q1V$^YNJaWYduNh(x3Ky`g z)!4aOjvF4v0L)K4P@CkU?T6jO1CRhbbD2qBQRByIPU%c?P-obijYZjx>IT&Hrv!G5R|>k!wew zn81g_i+q>%aNX9c1FO?lFIZhi3F1HlN>e?=6tli0O12KWZ z1i#FwM1>^H%iY5A7}H6kday(Kzl$h&)(x8# z+U{XbHBKRQ0^l1&Q2-3R@%i+m7&sO8u`8|TBZer|gKK(g;3W%fQzTDTbg7O;6x7lG zq#7KV@n&ElX@s;1M>aqdMSrx`^!)k}Hn=T#JJ5*qMbN^S-iU&X5$|tk+aft~JmMC* z??RM3>jqDLb$~sGSb)@tS2qwr(QhQ`+myH3|7)#;-9q2K$2J_SNBTu?*CC2xjh|}U zG@f)`HQ0$n1i*Gg$uj`BbIbhTa`GWkM`u(G4kRC8O7=x@#fV^HZ1_W7&P|XcoU|}_ ztE>(#W$z(%ioJ&3A^9EX;Jwgc7M^PeTX^pZqA1q*|I)T;!UNue7nPzvX3bJXDu*cf z1Ay=}KfmgYv|pP-{64nT7Mj9Nk$=T5u7^^ zMX|j zl6=zVY}sF;K!id_qhhk5_ep*uB=$mn!O~|R!WIsE15vOwlh^?$+NMYWf>+KzLn1=| z$B2?I{g6Btkv0*ZKQSdcK2Y0kR+mjAVMrf|0>L?t)G6lT%7B{kdF6rZdGA|x^A-OI z(<)V-YKVdm;Tm2=+s3%G*#p68i9|$jnj=d70NNPAAnA+LiRcW)l z@~j&M7|gS_A$0=aMMO~m488IBbtPCc?Uz6)dh8s#VjM*V2$K#Wiei%g18tkep91B< zU{`Vmi3orn5G8*A{eNb6rq_@-PJ0&V%7-h9JcZ_3I=C!5UI(Um1SCH|FFATl23o8EINC#{`ECsbi6vY~UD{UL& z(w4hvJoH15hzR{aM9Ck()n5Z^$rPkcgnl-rxISAB zL*y%@POKP?`G+lM{D8?k{$c}uJneKnJ)V}j!Zy1*c`xZ`cZDrDN)))(oj?i|vkkpp z@*5?XD;B=Wu63n9V~E*x3=)(eieinwxVDXPsZoMOi?0f?mvCz#5fLRnqU0H%-}S)5 zq#e>E0(7uQurav}lfwzRW@WH13X3Fp9|<;*bwOBKBQ=VhhTakR4GUb+HhF_B$#jG* zyfy_<6l?q`+O}N7Vj>X%kbx+927n&0x=Cnskzj~yKsr%?He<3ApdNI2(ICDRmc(Bu z8tfn|geX0NbSY*VdcWj1O0eWUzF4pwIfk%>6AvSbVvYYpZJQ=a;KZkj2RoCqNJIdf zMwI*koGTFwkn2dD2+$+GU^5c+In$k86`T^+kj{wq)Sw+nuqMhSNeASTM1d&%i*OXP z4ZUCT8zm@ljY~Xj=mFds??>vyT=9KO30FGm+!{AhVL* zQK~}~5Jj=ZUsl`3xYSI7P{H9@2}neQsy?FR8NkV;+mJeuNlBQ3Gl|9~NWqarA&(>q z1gA4nrdVs}-BBRHIp2r{XD-4PzMG9GiZ%Y3+BQvaz;|%;$#Ntj03JY;`~kp>ZZlFR zg0lrvaByOqsbx+QhVV!f2+tEpono({cSwPRXLWNHo)ZXLc<)n0QLOQQq-}GD$2qj~ z7bGF{UqF<+>K7YUAUaWBG9}r`4-eN%V~P}==4x~#VTg`If#?)Q>J)noy*~;hI$heZ z=(I-I!h0PLwr5lxiboirt3ZF9i~%ZM|7XMj~uFV-7nf7!ed>{6n>Ej7wYM;G=o7kcb!s zGY}#R$&T?O=4{LU3KS~gCq<&BvBwb7E-6!Yv>)4-{?Sr7&d?{^z1>{ z!h5?AMX|>Jseq>jhMPmhdd5A9yTWF8#xRJHD^CWXt>2BU)pos%5I zPgW&8o0EfmWz7(&=aEvybVKi({6-4;IqfdCo^c9c3rBu~D2g@yFSTvCM(QslA^`qC zlsp4C6S>mgFeTYF0B(a~Fa>2$Vr)CLz)8Z8ND>9YLy$VfUPJGY{Dud{`OTA9B6UXC z!h0PMMX|=;R@=t7v;_`63VAyc5dcFFC4T_c-NCtJI#MUr;u=n7i8L3JokXe+iL`fe zunDSml8T~J*yn&H3Iu5i(x+H$=-pBvL3(y73(^w^TljDzqA1q**K6A%1qr@R^Ewg{ z0GWuAKLEH29YgBGRpO^=dB1--M_TL-aN}3{dB0Q}zB|AJh6S+Da)fiz7 z&YQtK>GgYqz3BUMgC%7Qh*=|qp>)E~dnvy$gSyxMK9*AB5VmmX7(`L5@sHBBX<`QJ z3-Ec&`A9?n%tMqs12~tZRY;wP*&~>e9W(v}k2YQ?Eo@7okWdl@g0liCQ>-=g?#OR& zplerCSwbB^*ur;jA&O#+f1kE3*Wi4OL~Xj=t1(L;1=>bQYV7*FQ#M%Cp)1U z#5=dGSk%d+MEcmGU{8@rn1e#FvXFAcdPDD?{00j$=~94YQtgurQL2755k;}aAFpj= zT-xea&1Bc&_DDnos|}*$51@w?98Crzbs|_JF@*;!dv9a<%Zp;^J$5h_%^oCiXVd8b zq(d>%(0d`jF@fP%YzcdhEdyZ-m!%_$VvT>HwoMZgR^8f>M-aEr{Scz$SvMHZmge@7 zmykLh4nMtP8Jp0(j>$YGh1h}5^vK(7jI~wSZPAvc!D5swm+p-uO>BLxGCi;~*ooHZ z#V$uu8zj+I1fX=o(7UKW0v5Y6*pHk>*utsbA&O#+|66UFCSc%H*dYEd5)lA@BTBvi zGGAU5?BXHiPcbdobpQ?)IQ(d^2dRR|*>x{@eXs-F8qdxWbLyTXKm93oBP&tj_ovsO z7oK8UR1OVVJkNXnd?EQ3UqJ{x+c7D$MXKEy&i7-5SD3_ujc8h>AH8{^W}$=lYk z3^=(dSdy}T`N?D?ETASKO1_{nQyvMn@Q}qwpSbCQU@yUB6zpy&G?FO9S)w>`-k?*) z;@p*PTrW*$BzY0+=Vug+M&e4B4ZU{@B-ZmbvRJ=^utfmgL=?pu|6Xldq*#BriM{Xf z6%r8uClDoH0O5504e3J>zJkdp!X4;~o28&g@(^Z;;)J=>cg)=Ex{<9B!kn8%2y@3{ zb#e`}-m&=&GfaINKEtLy&9Uil z3_TaT%|q@&`lu6>yD^yur3idofqwm5ur7V-1?eg)srdK>X0}9uOF@GdgB{62RjHU& z)rKXRj?V`x(9b3Z%felhfpFOXrdYbzTD&mwFQrOk+< zSmS>}+ol-?aPhw6VILITheQOx8;FuWfT}MAH<8bfI+5%@y~L)G-(qrhYL+UN(TqN} zLrQi@e)kSGX_qMQXtmr<=Bi(H8bdpSZP5in68&mtFkV&$;rC?M{eY`_lU;{N^ z@bQGlcL#fuNf?YDlO8)%P4n@X1{e;k51cN#-xY z4EW^0)bCv<2g1S05)hmRIB$Qjsf_QO2D}xk*Wtf_88H5{ZhQ)d0lN+O?k%>hR3gK% zv$yB!J2(@Uz8ySN$a}&Srtmj{Bxj>TfX`v0;Sk`|t@XYAbfbVn?ir;Z0-_mE+TM4i(z$73>#xaFTnBmOSTfa5Uw z2iJ%fXJtxA;t0%7gSS@4 zBPMNtw1gme5Gq2Y)4}FmZ?Ds8MMxDDK@xx=cIr&B+U}tf6LII(;?!5{r{P?eJN_&H?ECkA@FG2Tt7q=%4)>Z0h~u zw0ZzKJ0&}O0Q&vE1rxkKomLM(?|&2yKtFL>9DsiAG#r3_=Lg(}@A99nJdrx_pEvoR zd)be3>^Wz%fyIVqbl^D%!)y(N;UdC?Q<%GG{NoK$eb85NzB%3Sd&6FI$sfU<#Q2f% zzznd=kNjx!9`tA+xk#V#h|C!H5#SGuYcy-hbpHQar%jqUd1kA-8jWw7+_**a zq;%$+e+JXN(T{ER7C&AKFVUanqE$q{t=cp$wxuWMH|4)yi-xp%z`mLPio;=MQ<9(4hHVXm2~DmUHMNp{?mi~j7urXIC^q!eSnc1m&hEdjqi z_S@^G6as&gWWOV`PshG+5BqQsoQ3XKSX@|m3)4J%Oma#OY8Nvr6iz8Ot0>)n!dorw zESG`f*yT=S>!Hb&Q>)OL{|4`fDZ@<+2ZCG759DS*bmiM|9X&NOH=QuMc?xmD_8r~7 zt38x+4`M$#pL63B=W}knDW&|6@Hw|aOf@aLcX)65_jR^ll*XF?=st*e65Vz=6h-rM zn0-g$qt&kj%b*kO7hn{)5qQ#L4xy#rF{9`P5BpHfa?HSPJqE=r;}mcf7A{6TWNi7& zm0t59FWH2Jph|uC#O*!ER!rtqicTwLM)@3tFVOU2ra$~$8_%=+ukZz7qj9G=(z`VO zaLoh7`FCuRXHFP5i>9}JB%1!RA~BA>kiXgM>>m` zxlk(I$d4B{+snvs$he!aSqZa~%$Q!n9E2RRUI52cF2=qbnKqz!wO&OuAqWr0Wk1sX z0~a->(|k;8g)_=9iVc4$&GC9!%mSCZHpG0|OJ^Ruw+3C&FTF1P_spR7qyc7w=p8C; zMnyY%>N*VAYu;LC#8fjUhRkCt%9yv48jiq^6k_EoYtD?$A+IT%{T??@0rtrQjl{9C zrb6b7j*gW3c!(iQm(lj+%tf+}T$rQEv*_j6!t~HIlYMIR4d3AQWFoda#}|g<3rVh4 z1#_gVDHqreDwruUGYr>N(dH0hX<<AT6p1m%$v_Z-2V%@dGC3Dxy%o)S zWM-Iz{qhvMd^^sN1{g0gYb%*E$?J}-KT`N6L4|Ofc*LNSX8D>({QvIf;MAMtiNt46$uh`7WLAJ17-+Z+;U@WE|( zY#p-?xdYn|x8dRU)to@zj#x5J)iGOoND3l}iX>6MJ$p|lwI}ytMko-a>$C5tILalt z2KCLFvTkrr_#Gfe2wOzKIbYT{U-T|>Ij6O7j>O;pDbt`;8=4c46;gtMbKYxcb|cSX z>$!921%rM6(J^E*W`I0}Bz<_?edYnK4-9i#n0FusJi($6o=PoQ7fYQ(Ne|&^xR!l;$3gaC1_;kjE!j9BwJ;q<>|zqK<*%Z!jdY39yq(sW87d{CKd08}Q6iBf0Z635J{O6 z3Ur`HqG`yC5Va+VEFC_?^4aTeRePGP(0GwF-rdvm%gUgGlXLALc)U_Cvz>=r#DFk5 zxAvCO=)A)qrP0|)Y4n355Kf~@No>w2ks-7a1w6B{k6B-4gw9OMwKJXinooM;ep2H! zQxhjBA9MSeDIU`JCscP}Rtm}59+SZx{F{JiR@%m4!0zz0q@6~XZ79AkfTAMdKqspX zGQXGMp_Ad2b0;UI5e7ptG}x@|@lJGgHT(fUNdQW4*P&94c9-CDL)r9UvD2mS-T8`P z(p4r6Gk_1@9A@tFkVi0`JF9A%8mWgI7Rg;}-0t$cYmOl+9scm(iM_)dER$jIxET-J z!De_88ESBqk?f}GU96T{8tbxDlFS@w_LX%($-_KOjY+zbm0R3Ix8G?FLJ8~kU*l2c z2roHF6U$ad=X5q5o-OW9+;8uaL|1Ec916U{go4u;~c zyI6IUtN`Ci6ku#Smibm9gSiLyB=#h=&!bGznOoCg$TpXM>(?89-hCm4K_CGE{)^+y z8XA1=F4|y*S;EWiXm!wi^w9Lu3?_(j^#-02A9$6_g7JVU&UhFy$(*e*79J`rb_~*6 zoaQh{&RU>x7A)0Z8~DOQ483|c`x>o8&c)b)lg*YgGgPAtHIeZc&h$(%+k3q)pI2)x zTPWshh?rMA>N!5mJVM@ay2e&@QZiD>N0`FnS9O(&d(>f({BcO{j~X=YRQG6_I+HD* zNq8`f`W2oLBa@-CE>NihPNX3$Sx2dLW|Ybc&W)U?%$e>6)bej)E`rQP`l?vzS$%OhF=`pRNy@C46`p?!T#q zO;2-*Tg^y@syaFyQDoDjwWiZ!%ghedhd;=8A?uPN$#-ZtIEU%RF^l|Nxerp!v1B_! z5hb@|P`Wt1=rHhvtx7xA48+s4AJU6fa9YqhCOGhEU6Up@5c=imW-oFaNoegj>@XlZ z_*v=EA39BWHAI}X(RwkPK3ziE#IowPbh940jLC3q;*LVI0!c3UqXkton$~BSjY;tf zEX3JQPjWP&XBSvgF}imN3HZcVV%|nfq)m)JnDQ>iWEeHvKs5d&IT(Ku1t!mZSF^>uOb(zTKylALFi*-oPgf)}mTRMEL(#hQxUMEe~|uADW{M*%0F$1%}O?shq<{=MRgz4Zmi2`n` z`KX!ZW{k#+PM)2AlszZIO=4yG+gWV0k~0=0b6^U6ZoRq5-BmfIku^Y|7 z9o_ zPb@&baId?>KGCx{4K8}P3~jKPjo5QiANfPK4^-2C#4KVNe6#tIhg_EEeEaZ`cY1WD zcfR7>6jwc{D)U~-sR{hrl(S3WI`urKEMl>pyEW)9*Lqc?>(8<^1PPA$UfdZ=R2X9t z1!C0ddDE1|;jR=jI%6#A1-4>{o5UD<;{_@EB%eSby!3+kCF$Vw?nkk|w9I>E54vm@ za>-HEB|RM>>=JMHOYTLAzK6|Z83lS+W*b`vlE7gUx}YSpAvJ#6X3q0?=1|XT=IB_+ zA-D%SF2e{#M1~%_ zK&2jtV(^L?DAwY@mVW#e$?d>S3J@L(g~GBXebqK=*#c3r+g9_;w(|X#+e_mi>*Y4 zIJf^$inHWb7?smMG^={ZcE?gw3CUhehBEQ58mZk5i`2*0BK1*%0@IHlX4|49G86|F z6gEC{(-Cuv$9v8-Hm`}XiFsjVG4s1)W~zr2%0gq0^{98Xq+%YmPd7PCQlG9y>eJtj z6T%N8JfE=Vyb_tMgLk22mU@cPey1NQOke-REJx}&Ky2_#omZD`9A_5E-U?WoHaYFu z3dkB^s7SiOjU_*0OPLaxxv_V3P5&h4K;pjsnK?aD;=(rOA)lM$5Q8*PIrh1kiV_YM zy~HX6_a5wJjG<}ior`&viLIh#p}gw0F2DVy+0;8TOWnH6Hur_ME>HZ*OzvHNC?%z@Trx<_MScLx!;X4=x@}DR8&qn@p6K}Z6|FwWWF}aWb ze9z}gC;87*{&P3~`I7&9&VPn;r9=78Ej;#(`Og6UXJ7V{y(v1iP71fc26P*cZ9ugF z(FQadkZeG)0l^0CHfXj%E80s9y#e<_Z(uhC^al0>L2qCK4DU_P6xhW9-GOI*&>gsQ zfbPIe26PAJ)X*Kc-a&Vuyz}m)u<-)hw2MM$zov&LruU;`zBPOLw(w?%^)ocfXR%k( z587qv!c?nxlRR$3=G%2&xH7~?w@e85XzEF}iuybPiN9z@)02(H70KLk()`#%-f-Ho z#2cGizcZWp-f_s>u6Bh|*mrOezBk)M@8&JA42neQ!tc#0K1|p&+KQno#-x{VQ!jka zrniWf4Mu(;DjD0apYKN*w-4>uKRpUzevjH&a_7vaPdcgYy;_JKyE~&YOZ50IfiZ6U zZ_k>9K77jbQDdoDN@K~%AI)LDGQUcZaamFlwIfTsC4Pm=BC=xNU*;sO6*o)Nm4&T7 zbhMW(vN=nygb>1xN_1^v~%wehmCrp`3h(Uk^D1%w#o1`Gb#)zv!ZWsxd%qXvS zjtirb7Q>+LWtr=U=>UaC?($#F9=_!c8Afgt8@X)ncPyRp=%R{r`K3igXz^KAxvJsM z=sIR0eRRfeW?vsB@Ze;BdDjs^ozJ51GD`2?&7rx)@9ghpH{TA~#IAI7)6}v^Y8z_j zq04;j53`wv?03lFl!1YI#3Azz_o0ogR6K?bqINt`-`5XRghHJpc2O7nZN~U86^3uW zrP63Z9SM)7>i@925${zI=~!npC5T8%0&rnvo8L;%kN!1>Apf|sV(L}1v9IE9Qo?qn zJS(cUQAb}iVgu*ay=D&dkXjBI*P~_*SvWVY5Zk2UjDRMn9XmJSH?;~tEkY>Bxi0Ee zk5yh{5rlgTLWFQD7L7vf*rGdJ7C~KdVNWe=RrFyh3+!N#_fYkb|5z<%&o2Mlv(V*^ zdAyXv7JFwHaD6v;7W)67AopjXzSo>C&{GYpKGCl@1gB3ly{47u-=S;bOi)94ck%NM z{wS0lE^U?YJR>w8(uw~^%{fm(eP72iWu1Oaa@Lji())ZfJM}!vwY(o>& zYYNTH1QaHvr+lxa;c>6!nI_hY&vWcrZ$*K=On1co3cmCziE(Mz6V$ z{f^DOjtWsASCp3u=BDC7_U{s7V1Hj6}JNiCEqFM3m0#V-4te9`;Jy{?l zpiZnc%-6?(rcJ6#b*m?Ca%yM&*rFAj7R6qFS6!1X@^HFUpq_P`Z<-^bns7I6a!lY` zMwyyQM-~_yPYP*YX57xCS9x{%SmH)ss6zc z(He3RwJU~v?KI`t5XkX8wXA!6oC62Df@!DQgq@` zyW*5;PLt}CD!L|Jbev4==7@;sD28-K?TR5CoTfY*0@110zcvVzm180}x6YtjYBNu6gL5v?6hqIP5lua%pe zraT+MgOjfm0_krQI2Sr34ebPaAky7O z_D-Ox9o6X$x_hOtpf;tsRnPZ_(?9Ndv2;LxX)cX}Ul9{qIEc=Sztv(dcNV&wQ)sfp z{;QO-Or_5uLo}-U{UWvYqmqgnW7*m zwoElFJvy^`8|$qi-X@pTMZNxF83qaPMLmOkZFW&-Undo&Oy|fj@C>wbXKSgq?`69G zsr1ok>2Pucl)_!D)%0=~Ym0A`3U#e(#8{-?VHvdXZC2YBe5#hxkk$FwDTDa#_=WN8 z2X3^(=Ws=E2`n_ddYjc1-B>CEWx8(>G6}}W(QX!Av`aS09_L=6w6Gd--vzKuvl*2%D+CUq?S+0gSiJ?rtl_Lo}u7mJ#V1Sl)4gW>i! z<#GDe9aa@IMi5&T-F|p(1sXrnGQ17{pshw)gW5WS36)Vkb7;#d^n%qXC%EBL*s#AR zrM;l=sx2sVMyo{)>7OH6WKN;}vB-p1^p~ie{06bXh54mBt(QE$ONi`LUWIDv*`g5} zn(<6awqya%7^%1*OTri0ckZ%Uc?-e=v-ap&XQoj?)p968?V=Bv-y@Uv!kK(aw~XC1@_7qWy2R&Nh! z<&eYKQ~gY03HB)4DoRJ++dGQxnP~Zaog6MvN5gMnIU@q;p+hEF2|i44;)JRDCt1@q z_;;pQ&3q#iz-qYxW`%Fvv2tFTVqHSW3E{+f@otNHy!VLkp~=h>B78_7bN>{ps>in& zSq9npTrQptgG`)e74djiy2i*0E)aI5xF;=o?F?%)s_!V<#O(H|8Eh*00y4x&qwuz7 zCos<!_zvP3{avQA1EO<*?4zng%1b>-{^MP9GYu2_1^T4 zy31xan?U^*tmJu`&X{Ke8rES1&7Iq;u4Fn=An z8fsy33eRKq2hZf>*(vkFEWdE)U*JD4@@Kox@t<=1UZ^zxIm;VP^Pl;AVlj{ZK*5C? z`#G?eCOPMs8vYXhbYcs5|!fMWxOmBRJg zDZC_N4A&A(}O#eK)#ip*5P!WU&+DXYxPr_J}xWFYh~dZl+(SvPsG`tQU4#S532? zqt|V#gqI=lv-FHK&I7CWZtni+)~{qaRsx%Amc-h(lJ%Gjdt{49N$F|peUCmCCv0xwFT^ZIenG8EA*Y`<_ie!3|fb|&p0As@eHP<(=?F5c- z?_vh<&4{4&7x^5M;nm;bYPTdwnDv*ntQ7LIOEP@Sor8G}vt(IT4`k1exD6)m3v6o< zDRc!54LIWGQZ1<;H(`eUiK(4v>Jt)!q?k_(>D2ax%Fs$nEP~*rPJui6EwSz(u~<96 z@9QgRm*ikMpv42$JyG8JSH#o=IuBEmGGdfT0M64{759u1nEm_ zt=%M1m5aSK_ki&wi@&MWzpQuY6&nAsH6qrrv1KG1Pdv+>qm%I}7L6^-PCd%a#;MO+ zqpHn9ax9#DpMrC8^;&xVd20ljk9a5?T)pNqb|fgcZh+b&tdQ=0!D>n*3Z%%M@{vu0 zK+Sv6+ELuQ+U0~n5u8AGWwLVc1hx|rB)lGyn-^NXX5CA+yCm;b`z6IVenVO{+WB=W z4LMkj8P8ls8gL~ncg&D=l&^L!i)g(hzh}c{qXzh2b zIE}fLuZ^ljCjCcUWe%viARVjIw5S+;(BR9YVJUe`y2xOA z#PNn5j#*c|zx=CS%^q;uFV0Na_K($-+;mmV+SRHb+(;WfveG@J=&>_aTiWOCv^aEK zTB|{W?_+HJ*kb3e#j0?0%BNPYqpf`AhEJ`rg-9bT=~Rk#n9N68`Sq&(t*=s4AG|HD zx~Ftd8zcm%4c@P;%^KjSudSYB!i|B)%D~AQ;FG`GePjdx{^%R)KAFsV+=@Q(v`F4HlatSwIJRxhw1E-R&x1^>^SiUqWCe;^QMnmox)Frrs+}XRVu+X z+vPCk2nuh;OCEtixcrnAMVwTw&$`5pV~%~)9d(o=@Sq|3J1ZHDcT`MR!IB(XpJEfg*!6VB_wqV9wW6oW3BSubPe*k8uS9fwORNY^M}t9A9L0kR)|!% zhB6w;a)%`~nv$xR42klBYIlWenSr0J<{nuEH@Cctx6CzBMA}@m{v^$?ZkT6m-Ij*O z3FBsKdoAENZu<2ltC%5~FD9D2oWf8k^NTej*P(LY7i%mTh(Tefyrg!hA7+6{{c@JI z-b0clI)4je`){mLPs3#HqS&3P#>tokSCvWE+*O60+Z{uXF)KHF~U%(h+T$qL!cJIqE}(rv$5t!S0YR!P|s7>O<=lGh-?c3igh(60*F+4tf} zv9G9(k%Zt4+<*VF;ytu*5jz=O9$poLSK|vzrb(F#|v=6Apl)@}qBJ4Oz8iJLeGU00${s?- zV*T8EbZIfk1<9BJT(Gy8eSplwI&Z%qCpbmURqnm-ay{Nmh!B)ol^p8C>TF>_Nn zK48DV3LO`o#bj_{<7gY-MV#ios!C6G2t{ST`1)Ng?vr4^eZ#m{B{HD*+c&KuJ#uVB z5n3X~jwR)8D()g*^@Pd2x+U&!;4o9N0cyR|EXv|mLPjTs>hw~%artL5AJY=uQmLFd#tjZk!wn=t6~o)BQPYS6dYUN z)P`Z00a7ZpD$9>am<;ZP71=qM48=BlYJsD07G}xL5PqoV484bwWGskq@9OphnG6X6 zXBaq0lIc*^+Q-=sdpF%gJ#+20v|s7Peslr5D7+~NL4it%x9^GM$n^H?3nTs-b_=o_ zck9^UG+bj|liFCq(bF~TFUSX&3_h$@)9yw-$7C3oM~_M?&7WWf?7`z252oF050sI> zgMZv?HGa)+k3rUkJgQsg&QSFn4mpZ$KK;5u)E7t7VF;hu@+KC6FhX&cS~RXX}2Ly;hwSr!_FUw3ZJjwWa{IHDRV|EyRL`qKqT=#_1~@8 zkll~TJYLn4io4Y9!Av+ocDdciANs`5QEgcfmmnd8X=RqMljpED?l~PK?t$2nIH8^G z_j=ExEOBo2l6+zRN@6h9t97*BBv&vb%Mu1z(bY>y7An=`PWF&U5rOYsT~)>(2BfMNRGjRYK*ITl{tsEBd-@|fX`2|_-9n1iVdnZL!obz1L&sSqK!%G^vkZ|Xc z?CvNpqy+_|Gf+X9xdzj2E#-`A;dX%Ey1s z@Sh*pPxdAZb|MP5zy@?1kZnM<0nr9D8<1>3u>rvb?KWt(K`Yve0lk4(KyToI9`puo zE1@^A^38jbm;&on&>dKafbPHzE_4TOd7wKmF@)~G90R%oC75?7rIMGH9b~7Kfe7d9 zu=uMG-89I4l(Z?tSYUHbb9R=;qEHucEXw-9b{>yKsY8#(E-A9AahX!+D~2sGO8P6I zXxeUwy_@vJWCq@Y?xP`MByuv`C`xku9}YF58;06F$p}TR3miZ|x7K9ObRFSgm@8|Y zT{&~^Fx%%PlQ8|*SN1@<=S1UM$sA11Dzzku9{Pw)IURkoFaw@>%_syjFE8_H_%xJ6 z%N`};Z1RN++M!h_#zkh&(6C})j2mfZxX85(%*b2>Z}cY?qCbzc?~=L8ZnD|^f3*y3 zzT}SNTA>P=C+@UMc)Z&oD@VsdM`5+s7rx)XW-Y08^^Fk z5sA@p^k-O}J36*vc2~0F{xN33u0E!BwS>e>5;wULmAk|Zq&g)!^R03A;KCly+PQW+ zaUbURrHaNcd@yG|pJJExkg|nwDt%=yAk{GidK&(m8t8-(UKO*To_Z?LEYog-#uPj+ zk}zPXygh|4-eE1^>8-WW5=bH@>+!o`7L4CT#XojO+HEpWj-w@b7!fMPpev@^17vZC zh|3{rL@Ln9GwjZu`*i_n94R23X4;iKWC`vYn59w-y7eAAQD%hPf!#Gul-x!wnq`0C z*`zb7MFgYhrP=mFWIMJAN?w^!sYU3?d!dgwx>bdq^ zsB*Q$=>%o8?L2!T`9iTJTt=_XlWh46b3qwsbf3M#LmQfG;hbGGxMT4j1}#6|9)&5Q znKb8CWY?_M=d)q^FILT*(H73W8o9vkALID`EMh7S&j@pL!wBk@tuwoLNCrc17cXS< z;fh6Ydh#nB-;^EOQx%WKe9+%JQ|(QKNG(i<(WFugI&iVQ(9LLIM&yG^8TLBT5vzq9 z?X6nW4zr*f^|mgeUU;T&u&28WFlcg+tpi~zs8fzpuy(xx6EF)lV64jkxbjIz%vA>c zz_Odm25=8Xa!hxdIYw0yk-Kil?okqRv-#uxyW{C&A+{8^0h^vP#QHC>hoB)Q3uo1e zt`y0#3rp<&vSly^T_JN1qW2%LQ#@oBHYfcPJD!eSW;Y{mVKR>ay|7G5LP@T~a<*zB zQD8Vq6wtkGx!stY_)oe!t+Xr4xDY9WO zf+7I?@SxpJ=7zGq*N|q2Qk2+~C_3|nRd)X(-q@mO0TC(@%!`JKaw|!(avM!oJk0J7 zoQmZxKpocEZAr_b+5(iKrh9Y5m&ppys~*w~kwoeiTW|L!gD@F}&5P@$VbdQo;Kc1y zR9iVD9Gc&!GAoix#y-ntP&DObalwYt&&Lnl zxo3?1au8w2411B~e2plS139o2o!r5i zir+-PdGqc{Icm5o@gD{aY_Z$tP@H*hXDtfyYX{7L0_|x_J7uvaeC!RC>Zp(VciMf! zQyqhTw9Rgkg9$+!xm`*+JR~#k+ipMOAu}p)!trxxV&fZV!~Y`R<{F$~TnC#8+%~Ncc8->~$O8 zJf^uNDcmI8waaE37Wd&ULvE-PgZkgF$H|Of__p=zS(9Tpb~7&*(V6A<*zbBhpQ;wE zie%B0{r2r1@}tWlm15A!Z`pA&BMj-%ho(i*6-DBU(phh@`OTkL6I7V+HaEv;Np7GQMiex={Hn|f}c`%l<@SoSOFEc-DTdTdB)MfP@9?OOv0o-TrmFZ(H6 zp084?dz%&$3xA!9g%|$(#n@Pj<3Atsx&JZ#Q-%Lok^eO1wWbmODbN2b!+x@t?CPX& zQ5(c;5V3*X23E8V2g<=Mpd4Jht@hpfkRxTZdjDNxQ~&CF5t3}!%u*85a3@wBpElqcsUC%C3cAW+BNJZ_Ja zu_5_jq5TNfuQNbW_tQsqO<5CEAc+Sc$9!y8k{JOKHjAJ8PmrBIVH;*70H&!sx$>Ws zwEtA~0Jqz~YFXgn)_OrP`u(SDvWeR$loePGT)=T*gh)Y#k@ehX_MfCmad|ZNpnQEI zHvFLEH3QD*mu-(8Csbo&e#V%-eY>V)QsSkrzf3bw=Sn# zW~mf|zVVaYNM;1Hu9jJnyIJ?1x0`vqm%*&jvCe338o?sk{sPVd3}kBDeuc z_^6BQp=d=#JiLt6QjKaf=7R}XolABVcKR}=Lkcy+6sV!Gzq1LgV@VUtfD*`?P$EJR zmq1{QB>l>Yl1i@Sq8Rk+U)ghUi4g{K+HZ_J9vh;w^e)VREgh|~6yAf7kigP@e=skr zWVZN(RHIz~^bfm<%nf5_^q-OkrC>PK@}UyiY8hVEm4qPCU%zZyc%RcOVMUQ!#7_)B7hX2@Kkpo&xdbK25PI1PGBn*hFuGl|%Kh`7mj)cfhz#>0r z5n~74u$P&iU$r}WyuSh{&dMPgJeUl>aNQn;dLdP1o_A{!LxV_3pPaSfw7XNarv&DM zOI#gK=ra$gg6U8mRSH`@E)?o2GxGeT_m>Qn@UpojRPWI$U;rEJjS+EI%H6}POC`f?ZB?hLT9BWl9)KWGNW@AUHOu5B}p}BR{ zTn>_yig%1K2_{FeE-7~$&le9p=OK?^K!~GCG3Ys8DBaCyU`Eutmq_RinHzey@O+~v z+PP$?71@CyAp&F7L4Z}$tdgOcvcmXMp+RVbOMQcR$77{J^PTP4ANsUqX`)CVNgB%1 z-ZG(Ccn4440Fcd}2JMHq5y%(wP>cY;I0TfKo3Zj{1j zgSowuP&agkhrEsZ<|JA8oGv{eg^OHt{m^`5k(7myL(`^@C_zuwXSL{S1tgqE%Tz~y zf%%{iyxSo3COMDE&UNH(Ooq{U@e#J3=h*xwX25a#O%pdKnIt#}-Y1Ph17s^8Ca`?y zz)99a9opVFG{ocem(&)&2Sx3Xq`>OrXmK{^n(6%OQ zoTt+dt4{BN`Cxu=s9ETCFBydC;PqWSLe0n+Oon`UMAbM7vtYm9QPN$+d_6-wWGrww zY;2NDVB}gF#^+jvs>@`@*45Y$y{#)T3$}IH|8DDdZCJ`mwlWhIkUdzn9(@;P!RW7Q z&|xu4f&owY+lQLS=-g8VW<+K8(e|NwGB?=z3pPY=>jlh$ZT;zgxAka8wp|TdCLTS) zz^YsdjaR)1F_;CLP@&ZSI9o$Qh(t~Rt$A8DrbGUkG^m)s|G#zPKZIv*P@ia{Uk7i#Vz*D|muO1Vn?nI~`? zg&EeDbCO$=Z!jA8G--fjrX-g#fJH~5z~IFcgnM*AXq?R5X`nP~ms|kjZ{NVsL~;$= zlrtsphu^SvVu!`q6O$W#OsaX)@X5|G53)_vuwq=gw3G6V;p|^9bJ2WHDo;AJUxX6h zS!u8>y%uSNtl-NZNk#)iaqOZqW`}zC>uTGu&Ec=xz{&j`w+<{#rwh~ z2Zx7VCQFeB2dItTi1mg_yQ_PLJ6NU%6|p2^F`_7T#YC_Re2TuSG+wI$n=gG=Nem?4 zoou0H50Vsa+Jz{JIsR9*Z5RiCCh5n!Lhq8Vkcit&Cp2zi-zJZtr5A=ekxvxaB;z=u zD8|J^Fs?v+^~{)1TT-$NgGA3blZ+CGqL|~4(zfO5tNKX9?JIVm7QEq%pVT3?%ixv>v;q&-1H2hDCYQ|(zZo%lXpt!1@b-;al7e& z#!Zu_hWe5>6|p2^FQO=R#YC_xzixtB+k85!QvV=u;ik)oqL}0VUE3DPP4~|T?IIP+ zvSyUpImLX&VynKVtUK{MWtPNH-#wvrq^u&EWRyY_#kQCTwiSr0-kcTcND>jaa8)-% zQOxmo(Y8f$6MmmXSAZbl;RK-DPc&V3fBc)D+Wm*O+^BG^_|Cs-@*VK1FP;}4Qx^XYhbA!tbxZZU=6JAgEg?$#jQzsxs=%c32x8X{&^*QM7{5F zs5srSI@E;>=gd&A2bJf89bTo*<3`W~+Nau*(r6>-P^=tQe|}pN`kPF`WLW=FDF*FG zLk(m`Slb)zWzVQ4a(P(YaRXeYp&v*p24I~MyG`if5|M@3+TIbeLXitUL@FkpJ~*&T zF(2<&=JV@9Z9QZIrbEY6ib2~v8md?lli6_mq<$Ptdo)ysY{3ftkF@`eucGMwz;W-A z-g~d~PD1a5AkrZy(xe0ggwO)0D3*lBN^T1+M#mkZk z5Xobqx&N(+F=D<9kSS)dV{^;OVt&?>dC*dP#$MB+MSnmaiT*K}BLD-YuJ*MTj<{)l zpd1d=u4<^cBrsWwnbz&c1XOy8Rw;r>572tgevDiPq;Sz&Q_`s5;hIr_5Ax7EpM=-% z|Ch+#`U84~i&Lx__8o<1SHbxxmRVSn+o$O%$T}~|U7Sq6KU!1!|NqlR9>buEjwF}x zei{-`aJnHpfx3fp4p-?}WA3aeY4q_EHA%60vZ^*&2Vl7CbpU&{X`Sx3-arUGyjM?> z3u{VE224MrD=nM92cN7tpqXQUBjS02Jx|r#A9IgIG38Ly?q9!Fck0ivLplC*jSHtX z>FLajH3bVnpRKvU{$QH^pjM=}K36j+@M(4tqpdj((1>gK#Dg`dk;c&!ZMw-{%hkF# z{jDcXyi#+gBld)r1yyDZuOVFeR!bKRkK9H*?Dd*bt+WDP=F-xWcpG<&H6@Kg-vA}n zOb-;7|@n>Fs3+*HU3XkB^xw)!lAA395a zjvLAiM{0hG>7pn5+cEw&LGYKKINelpGQt>;8nl$Eq%XEhTm4bZ7qMeBX?jUb*3tt? zY7k90RuirjS0Dlxm!2g3!EwB!krto~vl@TA<|^$0d)0d5IC|b!ShP}8a4SCvKwqst z#m&y{PipRQ#N42#bH%czq)~k{*6su(`)5kG>F0Q4V|6>Y6T&RI9({ z^$7ujpivrq`B}~MK>1u%ZGr;w$j0-^=a^%AL6`3{p40X(cm`p zu(Y9ow^-;kr)nOJIT2jwr~ju=lzJLH-BNSuzm+pl$xcOf8r~DfKb;l%|5NHi%bo4inzkz^`oJ$2ah!S|5SIxlS-Rw@eH! zd~cFO=Q<_OD^{njr%3?*@#I8J&jb*hiJ7{eSHNjEWhlqj5_%eIxLKwy+C4`|CQzX18k?EXKUV!xn589 zR}S@IsDF8#{l}cYYrKvaSHSxsY_%MRTdzOBA>^m$;F9G{WJ`529gvaZ=_hy4YZPy`(>&>-D@{uYWx=)2`Fqt(<)Vbz*0x zwrKfj2`Df2MmI$`Q$ncvz=qf-a9I#y{KS<~bu{=*?r6kG8wmhl1MDB`Z0(3K(seTz zB^Do9*)=9XPX-@Tv?7Yt@99+FOMpDJrxy`s7<$v%DeDUYC9x;xb1wrFVC&|+I{#PJ zdn7vh7|B~(Sr!=&OxId>KLN!-2w=~7F4=jvmaTwVWV+Tx+5@G!39wh4nx?!eOAF>z z?@xCY8JDqQwxJrl#9p=4edx=c>~>}Q2&w5>^|-~mipSZzE=rf)^~!YVT}Mn41u{ka znI!&<#~;7{6gM~U4b5Bf!<=F9aK-X8=?*!EK6m(?a)%{Z&MDD%iRaiI?x1-&&hx4I zuC7rNcllGrmFOV3F70vo@=Ecq@5&{sm#rRfX^%xc=N0wqGq0$3zX9_W_3zzhVR8TB zh4cC?>eaV*-}yZkEG$~Es9$lfK1Fo;cMM6-%66WKe%KEz#7%6oUnH?k9X?r7@y8Pba-EADRUwy$;d_uBD-H{gBjV3d@#k&v=UwsVef(Ki z5r)UcIV!^O-^7Xt{Jpgz5`Q;TMDgEf{2g~*MGXIl#oyUm)DYs2Yw-Ot?j8Eo43la$ z0+}|S-jLNQ>GCk_oi_3czY$Nf;||P&4}mszFU_RQ`OeGIcL?ny?c&OmK^tEzC^7b@ zOY>_5skHx*QJ;1EN<8#A{;a9EMt&btq-gJWsTB_I1SM>FMmUttn|VyuEW& z;Di45FIT+JGzLgOFEf|2J2*$i^wS0S8$thjz4Zs+$WrLL4$etw{s)2rC(?Bto!w)~ z^p{QaD03vrk1;`ij)nB;br^O&xf#m&u&iLt=Z3D%BF8nf zyO-0ptsn0M`krt}rBgm_aXsQ`c0KDdr0b~>uOqOVy;P{RSo|3){)`fTE){>u@yG9k z#A6%ykqvxXb4C0z6U{GknTVGwCSo?_qT(s>pW})(6+fWz!`cIG|LwnR*x#OT+9B^7c>O1Sy<_0}51a4164uajJ)CJ( z;Xz=I8}hLbz(m{ck2`6itf}}hh?2Gb+bKcbE|a&<1NhIas%&|j&_l~aw*CDH9n^in zQEZU=d$jjc?f1w1*RS5M!Q@A%+_wULr2YK~qcr?)?Af32sm9*#LGC}$N-7Wv{J*P$ zJn)7lKzy{yVgwVO)Byena=%#1z}G?U&(Q8K`zy!;Lp24ywBH|B?k~ZAg51vY-M+#V zcKMRamn~ewUjR&`qXV1>ATD$k((nD8CG^z=sMGsyaCV^e{qb{pDSl!ay*EV+z|Zj| z`1xjR$97aRz`>gOxw57s z9T90+gOIjvEYct-fr{=P8cIz|@TaPDXgGNX0qXAYxI1U{&;p7ZjGw7}<*DdDBj(bRnL zgfKeW-x)(uL-Fv1LjaJMI5~-$7ETPSn=mn)ZW#*T<09iLhdIOLTf43+3!_s@HpfuR zFub**H}0+*2+Ymmr*oXMP2C7*GR2hOSEFF%x?i9xkcJ&fsE&JDDr&#yj&CsveA~R#m_^6u1R0smPWB7@iR%Vys`u$H;JDY zjlj=2c~zN|b^$0jIvhV&h(GsUfV&e$;;Q=B+uBl>QTTcN82t49eOqgKMEqQeTrvf{ zN8?wMQ2xphSOfI9_&G)>+A_kKNkhlr=NAL7vS*aD9i0|G z-yMXX=f-c#qv{Fx=|C}2{H$&H6fqG$Ul&E6ImX$}(TUbia1NuL!pf@iH)T-HB=NSu z&Kc{>qq`^JZcA^lxMQrdt)omnK2xB#9p~)em@N}#iMsR9I6P4y6PiT>dGh*OJJFo+ z&M?PX_1Gk&zC7O9*>NK$IKHM6y^!52AKup0u~9zr_Aortqj6h1#~m`^U{9G4Ndte! z=*^^Vbzu}b)j5EQ`opqb74@pF$l_9RWi>qXDHAq~Y6K{+bS7{>cVsYgVSM$Zy zS#fuzxH==Qt`%2*imMHoRk%D)JXj|ZzZHphiK}>#)*!B0MB20BDnX>ZCa%K7)%)Tq zOI&>+uHwYiX>oO0yz!5?`bAttXW=SD+|3YIq2j8YxcVMqJ7m1tcnjBH$qcC;d1T!|L5B1c^PDxT{ku0$(X z(N|oF_O4=txcXdNm5D3S##PJ~SAUDE3UMWxt%|kTkz>()5tlcLM9~&iY!p|b(W$sY zT#4qTVz0R3zRm%0CEApVmvD83E9CN(mzs^o#_`+w(drAGD;y{2#D&gL)H2AMNaY?zK4qg4($);otA=jBl0m8jf!JBf}= zarSilE#5B144yMD#t(5On<^6Lv92=u>SAZU(M@4=)-kHza3yVS-k46WPjx05 z9dc-+%QaC0YMUcI7Bbu@%%KyD+<5@p*y*;ix>?TX&DZRRuAADT~h_BD0kluBP#>Y0q z4{V5BKuP5&ptxKvWJfd&UoI^qiA4EObGfslBSNJ1th?HotC>ouNGz_~9+9Y(5F@6| z2jU=w*x!OEN@mkb5%kx5XQHD|FyNlSfY;Y-noQXXoE?qD3V5Lg+`PbfzGHqcFs$Xb zYkB%zfc0ABY;SB;V4F0shQ6|-H&6I5fjV3UHNC-*T>;1&C%A?iF#X+MJBK@dr_)zE z3zWgq;l<9@#+ype>zW{C0wEYCy)2gwE^$UVUhzrND#A;-W{ou35(>f9WivHLIpbxs@?6FBbYvUcaO4yq;*rErx zJVOL(Ceva3$A(&^G`}{F5>I%CJ1(XZRnGoY^0*_)Uz~?-bWWnD2Vt_xyAq+oAt~!Q zO;+_1GYho?@r~mHOW@g_wh23sXBH?UK7NI>z2kcc_KgOnTuulTCDo@(#lN&+eWn!u zG|wzSRFyJ%X|1!9BcpD;v(!k<*BrMpZpMtGeOEd2jHG;PF~;X}F*-gKB$PT11mmLk zBb4OfYaPjwi^(i%qAsf3p^W8RQhf{!yauH?PKwfOa5R>MDfO8?s~q?G#|Y0|8( z$*0q0TS^@|ps&6F5R0K;*Txk#-B;(+D#Ke!M?XQ&j@z_3&c%vx@iVh(#rv zBPgNT9R;rxLV%5>JHB(o(y*}`6OB7<*gF;WAs0-e><(`<;i^>HhhNzH)ev@qg?;kx z!o11w)Niau9zM3o`9Sh-{GKhV(TB>fyhn~35aiD8w@oy!yO(V4%e_EH0Xa6HA#T{_ zPNQ=Jx2eWGmyUXz{WU+5RX`grVzOa&mpV$tTcwU+bi(QENeM5Y--DNv2<4VT=Xx7q z^!ZKBBpjrQ`;#=70R^V@vbX=}W@o-*nZ#OR#exYlRyYl8Z$we@LinOZ45-<_r9#nC zqrAYh;N4Hbwm!SnndjIhaqFzOFa^dUJV2YuV(c1DJ+_LI{3ek9IAE0F`Sbk&RRuOzvIlQONvpx{!goz-=rA89(o0w z9w+t=E0!AZYHpxwp$x@370MdT#lg2i_Ltg+_|4M25UJAunD>DM8}I(utPpDy%tTq+nH(n zu5|lFgKPM1V`5#`G}N9iQ4nALK#7ji45@j%lda9l!<~fA_o9N zPHjd#K8bX=F42K*(0*IcoFNir$d%g0tUAM|qOUdZerIQ6VjF2C<22ZWFGMjUw2Gl; zqgy4=Q{}Ei$LL_#BZFacFfe_Ovy*X68*WiGWYiT#&Zdj^qFAm72D&-`l+7G$m}agR z=2+ldNO&^4KjTrAi~X7`bSB^&zlchaaqdGtSsKlI+n6+SWY_eNvxD)8!unXlLU@}? z3Ckj*=~QW}SbFFyDF1;EP^&xdibTowTRyhg{>?08R+=(p_6u+r9vTjnV3_A0Ov%90G z6}d++`#boyGn58BhI+A3=|0~o0BuYmB}{4+K?RRHvmA4+;Io2(ZxlXd^b_D@ zlfv~{aec0Z6@PPAt0)?J0O5hlDqur^0Jazuti@tZ??r?8<&(}d<8>wQ6`Mfr4RpW} zBb6Vv3ZrMAg0PoZm}WB1w>3?M+n-0DMzi*-Lj1{!h>ig4{TMVq_$&^#K737WqT>`J zYBuwONRY+)ZCkU3axH3n7PY8#JKFEwT#C*S4~DQGm-Xmat8Cgg+ns3Sw6iw8neAk2 z=?7%Oj~xWzlhDl)!z<%;L?79dpa=-3K{@qt^u~NwqA|uM-~zt@CLFX_2xofo_hyAr z)$`75<5ng0CS9s@V8!Wi)EpZUMwh*Si2Xk{Syk;!%F!FWgnmc}iK6(ZkjSmiy5fz8 z74AMAci4lj*3^_!pGn8gpdtOQ4e|k{{=MydgdcU4ZQbFDCinlGZH-Uc(Y!hf>G4s* zp(tg;sp@5n%6w=;e$S80#6WoqF>nWERQ#$l*~n-wOCq(sR<;}rH@%K|iYs4pCmBiY ztz{eE-t3NY)cWUZXzWWB(l8x~LslRa8iQ>h1KLXi>DylRKI3WLyQ=poT7JDD+dCs9 znTEdV3^T52FS|&(5N^#Tp_wSjt5+&tVUxDHy{`njZ7HJ}N3fvgp7vDy`=(Nd4%Tu} zZ6azrgSDm=O(?saHn8nV^=<9VvO9ei{ZIE%3=q79?DTg9f;Rr_%*7Weh0$Cdl1;nb z0_qz!)K_h&rvGbeoKx(c)pdp28)5uu!}(3(pdSH3OC76&^2!DG=5ALQ&3Vt6Vf637 zp4-tuGlRx^5LlgxbmvofBdSKp`=}Z{JFqQizM}{2Zsz_Kx9IyaV84Gqfa02X0s}Sk zJ4o}ItK&Ac@nC%ALo{@=Y-lrR*JsdqDiwd}>kVxE#2Z89A31v(-VRj!b8TsWmOVap z&N4RGfNl-~L@P(R!fEF*c%WyLVo&OdRd++3ZFnUlgPT|5aU19(3~Efp4GeubdeE+~ zWtggr6_L`^x;EKS)KUOTT=JeX*7#Kk`bigrwzf5u90^IJwXeZ>p0Wx0!6bD(d;)bj z;p}1Lca&7-bkvH79YRB4c7l+YC|ylvM{9LW>nLkla!1o#IUXoD>xrP5pF0N`;}!N8 z4ZH4dPaE2GJS2f87S`udOE#SF1vcmrHfW5ctv9Y#fLH2(zq(sf%bAc|$?h5(R;3>c z^p;x5Wt}@mhbB|rX?TK%m56h}Z6E3%U;udq(m@?ylf<3cf<^CKKVt4`MP zIExgud5@;*OG9I5>M7tC+3>sh@wtHjA(jS$2au|w zJ!lY@hUQ4ZS1QTNbje(oo7*7%|Kl{sUSgBAsFO)HyU50K?l4+h720}hqbtVPrXcHd zNI1)jjLkNnTB)?dP5XcGxdtlu)!EPZpMrTohpA40mw{%jrMWfQ0H0MXxN%1eWJ6O6 z3(Wc_zk~I2O2S!PLf#lO6_16sm0ADOCg3-J*7u`zIQ%C(Sf|d?D%y9}tfJ(3#K$Gq zxw0tXk?MnPvb4M#2&#=69CiJ#T8d($H88eptNPvTF(S!cX4 zRY|)@mj-@Y3qb{vm@=D;2|gL?LtLc>vSHyxxH)?29|RxX&e9?4`0U(jkA^1FpQmAd z8*KPDcQ#Ez)D}cMJ&Y%nqL1r9GTJ%kOrts1AV(ZWJz_&^0NQ@^;T0cnKU3*-!_~$3 zsx$3hjD}c)tP?H>swL3S??PoK%4oJB9#@DW_l}zh|H(0NEh;IThk3IPPlv{+Y3+R4 z9}B8-x@e_ZFdxHp`Qc%qG&;wrAe!GJ5{Tsg*THmsNZSX^&G zqs2a%&in*do)OtqIpMBa!9YT8U81YdXw}tPB31i zpFndLg(Xo!GFr!O3^yTd>v?LKc7=a}xN}!oIvu)luxmh2Fr^27o)|-)b%wbt>q^Db zV1K$$C_dC!WK;UmuBIJvmo5I)oM^fu4Y{vVns3%YM8|Dwa}-*LbWl)hLvt%lYr2|t zWCnJfjTaPPqYfy;x$R-`l$#kIPK|9r#j`fpr);n%W_T{4Sv$hoQBg74f)<7SqmEsf zTAN66+>CMt^y;sn>2;2Zkj1zZV#d8_AvO% zTm-K1d0;-ho7E~(y2-)=C2VmZ+){X_#lY&y|0Ksz(PyX%ujL~{QlTZ0^QF)g;P$CrlOYeKrAi+XS%QpR{w87#}Iv_jTA6 zV-WxYwu_7_-?1ScwIQ+_D!T#UL-TH_H&zV)fRdX%1ImYY=hAhA(8hr-HPj5()Vl6h zIHiO<3?Dkg9iGqEhEo3Vi{X+5@&8h?VRZOxSPGr&> z!?V>iQ|BIZB6V{qogQhL4@QPc9c@K|)oKbcSSeTg91=sH@Aq@{H>UKE1~^$m@Qr&C zPk5Adt52bQ-7t;IHXKM4}vt8x4)*5+HcWGAv|u4K~&*Dc5UK*hl&WG*1i9 zqSxnQmf)IT0|5; zXgw!6-VFx!Rsa~+Nw94xJ63nZaQM2EBAQo-Qrllk+?;SzIF(%#8D&6%MP0LT z2%~2n2~RP%JSm}oRPtWeCv$Kv=kn1G*r0vubZ7Q+Vy zNU{_JGE_#lOmrn1y^Cpo9cB?vT;#H?0_ahUv6~r_z&%{rMJ|06K$l|EdU*J3QW=7* zImOa?F0q2~*eAde=vXb{~!L?Ruz2;w)gc+G}9#ik9JV@wIe;2%$MWg3SR>~mIF|A-Sm+@()MG`)E- z1U$_GwESTOjhVm4X!2Zcq1dE&+-YrY1ZKg9N94-p@o>I=yu_7iOzCO113pp2s}_)V zwRYSS4Drrjh&)dH;XGGc;{yfzt_CYsfC$($p2=~%6%6)B04)1`kYQn&SDZ|I4rA7x zpNU8#&jQ3^iM`0N+Ea>ex%%g(ATXCI7e~d_9YAGyeinlI=w8;KKBAY8Ytg~=N0tX) zjYy#)^c##pz!uX~{dI75MkVjTdRHuRMbX^LfZoT3-m@2-c%ZhF4z2Lpz4r?@LZ??< z5%lRXs9!zgj}=~*0WpT z-=X7UP7veVKeYNWCMC0 z`e9A8VegR6p53Pf1YYAnu6KJ7{aM7S{S$N@Rla zl*PSeX?E}JHXTzNvFj?>Qi6269jey z-BASt;jkg2k951KbaaCm3Yx>JV;o7e{#KX1jv-zoNT&{PrU@Ca(8L+ZtwQ~ttk5TF z=tqj+EX&=Iq4Z-F{P{Q*q51OBeN3z2^}nB2Ba7Gck;_s1I<`D0Q9|hNe)Un(lV4%g zcC}yIm3>Tm;X?fKKk&KtEA8&lv}2zO?Lz4K7nP|v?zH0W42H`cqu+1D*wDKQ_bm;V zmlH7Vk*3Ia>Clf@ao-5QWp=@agsw@E z#jOa(@S*KZwtzmguSv6i&SL2XS8JnxU%3{=4=1XS983acJocxd*n0XfwN|r-NR-h% zhSqLl56**NRZdrDW1-S?zNRUUft7!YO26xmNEJ=Y4F)~S2W@oiD-91huu#K>w=E*d z^jvrJrS*L<#O=$9a9grZ>1`bqL1#Q*=Qf`>%?P*p*kRXo+6&k9iqiijKc42f0GK2L z*5`eI8Z`$+qNL^-lbX|_QvS8k)zkP@LI0#do3${703AuEHo3ZD0SZv8fz}T`XyX}0 z4b-<#gE)8&wmU{e#Bb48TXyd!eS4RFe&0@rfX_EN_OrV4cKu9?;lMZQCwH7cOqDa% z(-qRiIuZxHl~+b#7;+^>PDQ+HTxbKH)KB{K@%_v?y6QI9dgG>kwCW$U(i$Lw&(2hY zTu{l{s2J+j$(4-TmaRb7`r)_=L2nBgY$t1OhceIgqti#RoKurQ+!G$M9Wm(v8}?&9 z4!9fKZwI=;->95_se{NRY`ddk>6wqciNKS0yHv;JzFNcD=p_1OA6ov!HVF#{nC^oa{k{QF_H7Dj ztB%B-v|&T*!|A%Q(XwebHre33N@3Rk(>!<`=+6&h6!#?s`@9azoiv7heQ3Q30uS0? zpRvJmwTylY5&BOG_LL6Gb&_FEK876qU_<=YkI2k|2TNr%Ei9T=J{BE89rw9n99`(> z({KS;ad9xf1;D^C0dN50Ygk!#Fkq0S^+1zg)68P%;Qi4l?4Pkmi2*OP0t$1hD}l9j zy%S`Mxnjp8M%FBDyhxC>am+xIZdlwU^w87j@BT+ZS6QJ&rv%WMvi4nTMZG!zmAOF{ zEZmq~*VY&(;S3zGO5sjx(M>V2RC^fg4LgYF1mh-w+&t{##vD5fqd|?Xj*c%S>Sq?z zx}9++(IqNaZqoyWaXcy7mA7)gsCq}6MV+ABB5#0fpasq%SD zus!${rmCiWvmuhX@guQwRbF`;YaM9_|6EY8E>bK$K;gV z9~wsqufZ{Hw}Ea`lq|s=(QSp^7D}+Ld@{ZMx+}x+u@vxuE&%QEK;vB->|4It|I~{|v}#!x4mPJtayH9R+nQhmOp~o}QHtVEJ0t z!PbKBG?)wC;lo3uRfT2Qtk5hSiX*GJ>tf=m`KT+AK70$MJHv)I)r!Z)`p4U@Zdi)V zpc`~hw3j&q&^$W(4uYebZFo0GJmXJQ3ZTzY3Z^d$qw<}x5!CP=YU4{%)bqNi#xtU6 z-W(G`uJ@t(L7S*&2AhUydb4oa@PVrxVqjMM2OW*u%-TEQ19t9+kzUOB)&}{N(*ASo zQd1K|VmcQSe+XIbjY*KfL=F{xhvLs1q7^?+0kXE&pAT2*-HOsn!z^at9`xiPvf2Wl zZ4_Csu)`bWCmwgD!yU7f3w0^YPi>8%xKA)#G|7fNeuzm2d&K-t;diSf#pdL{`&7mlZ`)v+{4mTQa&2Ld!|sz`A}~rCDm%XMH2If+CX$!^6m^Ns zq^7SBwZ@41dVm~Br+?(A6)jj9z5F%ifCeipgeZYnXu_~cr(ib2t z2t`9p8c&FY(%*mU>SHV!N~_jkMWzK+td%Bc*t70?RF6xopydIeOhn{RD-pbnX2;Oj zWIEN&6K340atTsr+~B*vCECaB|t<1bsvS%^Vss(bUODP)co0s-x7e&oNTjk z;-4_Au1boelA73%xPb0%Pf9$Cs0uTye+8I~S!>$xJ2dncsDNcPe+9%>oralJkn@F( zNCXZ36&`7pM4e$pg*(L}ncq;IrZScmNn9inBwc0LQ!BlZ*#gJYuFWV{G0yGSAhB<@ zVsirw>^PdZ8D%RxlH&%elK90Db!yY^Tsn|q0hM9?j zfW&k|T1lYG9&aRN+13VkvT>n;outEJi$`x`yoA+s9YgD* z+@dGU9qX$Ncb;)=39YZh@P+<1Pi>a9au*s`+B93EG^;Ez?SYrkR)x6R8xH_$r8f}E zH^yAoJ}!|;+Qg|o&0RL+T{dLy(`*fMw=v#RnS5JUllwGKGn}ppcjp^THpIhzL}qae zeydH+YDK>}zz{~u`o$%wnS}V^(q+exBh~HSf}Z3XM(gK@l(#I$#DonutDZU15KS%T z$EnQ{0~9O<(E?$4ba7X&xM(^T?ask;58oHqTG3(NJk?!lbQ^BcZr1K_>Jba>7b)~h zt>|3689hG^C(e`yMW5|MXQGf13sEd>-KB9cild!M+;*!t9yf1T6&Ff-5>VN<`Ne59 zvCc;n4-@Z7bmthaD#ZU;5qS(9h#|D=rno42BOF`YUhum)C6!vIbid#7V3$Nf55EdzQPMakB!uK?8#u9P6mIs(PJY)pb~Dp+%}# zc-X;sL;*EuKs^1|{9&BxYCmX&+!FxFxrd^b+_NSAl!uLLKPVC3Y9iSDDr4hAlFg%R zSBB#RDLx45D=Q11`&eKzJWv2LOdBD+bn*zzOS1_AHBPS1P8ebJ*RdmL_`_&IMwmo! zjQUh-cPC@S2;R|-TiOhE8~12qhz(_+6@|x&-fIgwD@X8F_5c(fDuPy_v}+=ko*ik2 zaKFL^dYKiJyO1Z_qaN%~d94r7O&sVjHa<;uuE>VB#fQfQ1P(0)6fpA>nmnrP!bt(q z&3j7f+qzUVIYW#lo3O(pOgr^Y|19p}Zf%@*zAUD{br7Bb+BGvii&n0TkD^&!VI*g4 zn7@yZZR;<-!t#6TZr8@kh{ot91z>x@szGjj5fOW9o?ZWRF{p1|8!soZv1<)a>Xo^z zNRX8ovY0L8$HEqyb3qX_U8E#lYLy6^?g_sw(6uT&`+SocCj6^n7;mkDa9bhRfL*sM z19sFfnC3Ze5eZV&8_zdwn48~kdZGD!R^dKn#pNdW@Qd-Ovg7fD75C9#xE%lf(Z^k2 ze5Y`~w&I$@`YCk#yYWesKMhXo3oH1E0C46Pq*(Y3v_{&}AC;udNadW*4`|+DgB_@B zkUNBy4{#@856*CL-_pis;a%xD{T5j<5EeOMq;$h$>+6AFApkW6^n47 zO_}7zc|Tau=*SY+d>V(oC%1cYLbPh@A5jwF$^!|*6jZU}LBAZ$I`{Z!;;!&lCGKqF z_((pK#EQaQzvVp=V&(Ms`+hu)ns-EMsd3at4UaE;RSM#xE|A2B)1iq0HP!4crO?XZ z3HXD-EG!_$LwY53;Iz*GU~XN1IUfOKKLy;|3fwT#J=9TbMe5E-j-wj2d#uzl8ON^j zMB}hfcY;xgqin?iB^JebXn?mx%pdJe#Ze_fXN}y;F7Vl)I4*3~7&H*|N?Edkp_RD6 zfzwC=v%OJf+jD_wYV3#NKJj1)(+Cev#2x4EVZ5v`U$kPjjPP`z7Iy;9AG;wThfZaq zBZ@Oh0!2J$72)5$GHg=<&SVk`q<&E%PFqFr0R#oB65^@al@Lu2O+<}6X%+Fkq})S^ z(@kr>OkC^MEcbHlNH8PUZlk2RU~Aj70CV9DT?Lcf>G0&Zr4!zElu0<#lzkyOPSZxw z#xXby!-68p4%;*n=-eX-YQe{3hSQ9BqDYY5cHAhl0JvE$n1W{cMy26;D>jFx)dgvx zH0*dnqBQ91t>D)L1K;Q(oDMh@E_c5If5-~nGSyw;*lR_*KLCw=EXc6M4a%ZN%VFvWYF^~_ojtX8mb;rVe6$Q7h6bRDab;*1OZii=+nNu)7-U23 zZ$)LZesc~&y%h>|sgBBq4Aid1VjI>%iDg9Kj+ib${w>tPdgmMW0rw2H&FiqR)?UVL z8{!?K11z=QrLfeaO075b_u0qbB#sy=yCN};aul{UZ*iT%K)xz(4xcNQz&lP?*cWTq96m$WSo-+o#Atf5+?C|G&RerTZnHV4QtR5Tsqh2nq{jDlMfzSf6qyrhaBg=Z;#b~o5Hm_glFxWkO+ z#_&22O&(^UJ5cqfApD;dXx-er8quQ@`rR#+d$#RZS54@v>LL&!mo}L%Y!dPP{%K#^NEhhVZ0xIold9 z?_0(?Vnk}G0c@@n$U`t%9={wx^Te^zXvSFuaYwLVZc+%{bOrJ-+Am0BXXIFu9fXOK z>AEWsrCg;DudpI=3=Kq3(-yMP%!Swwc^7bi5H1_Ejq^yWNMch1)%+XgF&H z=0=EVxNauAq?m%kL?9Qlr5Jznp>r{UY)df)41}9IXZnwm3;T*|OebL0sR5X+M5=Yq zPY;|drj2Eo1Kya`t4oTbaVM}*em*9hG4zTlN7* zigboZluh>3ab~faBjMc*?>OElufg-kw+SE5Q|K5aH`UjWZw^3arjR2GQyj$neG?4+ z6_u5jG+7+EH2wk0JbW{3{du1l&D0MDvh>0&Xc&G{Sf?~B6~DyP{SV~v&VwI(aGKWN zibToBS3W-21-!fgjYIx;Nq7$J-Wm{OaRUKW)8(?TOmSZi$J0cD6_*|EF((}Ec!dj( z5QuBqND2WQCu_OT;9p<`N9Q{TxCo8Dcf)1jyFqLvS6aal8s&lyRQ$B$Sn9A7i%-^A zu`2_xxfnsYr5ODuRtGRmDR|S0_W>+^ zk(I!|#0v0XRMZpSFs$C>jyH}e><_Kj7?$fwP5rUEIj$b&^B!YsW&O5DkY&;|-n4yQ zTzT^rcMpt(@4g#r6T@iu_JE@1xqnu8_eP~h6YS988TbKXv*D&P-2+`#5#~b{n;lc z%)th)S@V*kBsYr~RpaJTks!G#pI~z1Zwd$8j+}3k0_v;+xGgLw1NP9{5fV4w3AHy{ z1=I!zV7o$2EOuo&(kwc)!ySe#I7|^X-B@y@P5{lK+BNk5b9a8F$t{$p483h zRUcWL7hcV{vk)_hN46%TM+S3poRvbb1|(1j`&AP^p5p7#O#a6B8f`y|1W8+qk2cet z@)q!p;^P?iqM+N;y!!&|iao0oaHqSqqm8()+ZE0hYk)D8;FxOz;7l3vW1)=uEW`FE zCsX&m+rn_rIt!a?6~;Z5@&{4vI}XIW!z>o2S=Ee*rd4s%IqP0`TdY}OtPM6S(Q5%# z3{CtW3SF#s!1*H zFl=64;MwEuhN(@~`*SNcuP$J{tM?*%%~n_(>MICWDl^}p#lkmd;m0xPZ~UE+5=o!B zJz+QqyZ9+o^_)ps*A7wEAR}{|1^Vl-KCJ#oO^Ky_MJbX8 zV}uQ@WRe^L9x{o<$>;{q|3%$YI`ubd)PJO?DqR#b?Lb$@cv6gOZ33>gsT)Is=BFgn zn@3!6@ZOy72Xr)3@o2jKQG{Rj+92;zI`2|CLqss0KVFv-uU7wlDaCviAVwVK-u!Y( z5=B3OXyQ|wm}6L0DI1dEVwah500Uw1W!x|tF=bjo@%q<>t5dLBX=937{~B3lEw`{T z$#knS)0TO=0qAQopj;6b-{O~0d_5=2aH$6+zG;T)OmV@$)MTn$ zfC<#k7kCn}LgmCe0S>y8ctJXU{}Iq^ZPhQs+U7DYdX7F+o;uxierhZ&dvcKfKeF}HdBr%XUO}O?tH39Ej9e=vMc!QILdsS#2szL_0+8~yc*dTVdqs+)D>1yJS@?288%s7JrUbzdB$*cP%$f6 z42H^1pFq^okT)b+TF^(q>c9RJ>LH zIWoG}uYqPr_g`ch5?33n$}h%ha4wn;tkAsVyl4qde`;Bb%<;~Lcm1eZO#PNfEj5l@ zWSSFi+{13#o<_tJ>8e9%@~;80w7Gk)EtM?65`tmBLT5ufqzBaJe8Ai$Kzp-IP<2Xn zKfZ;l9j*iowF)x(=jeJY!I{sqzJnkvYKI_=m;O@%c#*x1V>ljsUtOBozqeEgSZo!5 z_z7qKEy0SHhc>0DwR#J!IhijKr0beH#iYsK?O69CB8S_QgsoNyvfm*jtT>6eFg@^PUv-(qH*+!k0Wz?V-Mpm1@?y( zjJx0^&!nYM!B6feK6Dbtt5}NnCy^jYIpre-TN~$4$uDS#I$kVo2d7}4(QOBt9Lw+_ zB_!&$k}nb%3@hOMB)noJ!R&*F(f7YW$UG%vjztJ@AGz#n9LZc?^&Wo(KkMd%)>-`8`)Fkc`1qE9<@A;j}2`|Oi!h`Y5TNmcqqMR;(l_*=L#ZC$lq?(1 zo_H9~VkKpvRSGQVVhqw)5a;?3jULnFVJXwB9UWEPvTjyPX)n7Yh8)?)BQQ9 z#jU4n{bT>4D~8R_^yC@&)2%)FoawShe{h-{S_2mrb7aOp`8qvXjYG_lvM$kO@$U88 zvpuQCben{Wr<;bz%VoCac(U;gJl6Ln9fQZ_n&L9l=Jo&BfU18p4qVQZeJ zHTGUI;KMqg8Kk68Wxl7KvCjthUq2vMMQCctySbno-{Yn;>$q6Qhx3m*d$NstY>;=_Alb%-crsGy zWEbpE`amJRt0VGa3552U^mJD^lDBNIM{KZM2|nruB|>M?2snl) z)PXuGnrf`h5p>KQ>`A7%LtxAOY^c4hsB9V64+Uz4LcL5!>M$^Hn%y=pr4*R%EiP@!#F`aXkJlZT_TV@13R)ievut}}I#Iz7r-CWh! z+c>O%U(jvJK=#rTQV9{HS@&sUtnZj5C+eyl=44Nrx$z;ORin3PUpwp~$LU zf@;6mP*3|&*?mIQep%SX*S>~v!vZkrb9FQQQZ0C!Ay+;yhR5DHM5Ny zZ7}P7FohT6h(8?Uf3e4Q6u*Bg=F^0%2)snh@TEC12NCq1V0r> z%-J$1{-eVDPRE4e_{!7uIQI!~ijJ>sa9^l=oCu%;$6zLi*COj$XJylznVxtf3)`$j z44qEs*gT6(H1fNLF&yJn#Gaum%f1d_#c%8yqr{Vb>VcG1wOe$KC6+(@Zvf%4s zJ&v_LXwBu~R9uxCW7TZ4dch^Sj6F)geVPDvh9-7_BqH<7-c?Ma0{H_JmK=OZ6E`@ir^qi^PT`WUeoy%3%}YK~S_ zS$PZ!u@+(I)?z)O?nfu!EIrsOZ{1Ar;Wqq`5^KE#%p*3pUcF3|5P3yK3?*6 zRu|bczGwqIBte-6ET9J+HqT;m5k@B~5T>=7D=X)DbYgWt5FzJ7mctx&waN~m_m{#a z{%sR@CI~67{*%>7`q^#@yt5UY+1Vw)Pljga$STu8Jfz1|_-5Z~6|WV}H4VgMDV~lj z_k`DFWGg2#Q;C{p6(u?QCo3M$Dp!NyzCcNn10;zW#U}o>`737)J9akBS5t z(C!Z;DB?=ggYOjD*H*M;J+ZNW*VlP@G<00H@+@Ci!A}H$vsZ!ImWpL=?8r9S;9LZ; z^V4yQa`D8yhnDSW>GaIio)qjW!Y%6}#w@(0)^CYp86I1Q>NEj+bwzW5m6(1kaV7&} z?YqX)75j)xER79ps=7t7F}ys$T)w&1GtgM4VApD}2e0!?$Bv;OV5@v!*fey=g@z|f z{Aa68Jb#NbY5DxID0-#}?cF0vQiCQ5bGcnI;0T8}sG` z7)bSfo=i$`

ngf+71DC!9{n2f_LL?h!h9~o>V&^nx+_Iidp{+3v0G%P5L@6vV5$)cv8 zvNI(kzgxBb#izA#I*^f=O`h=xP1kROAL%e(Yl42=d|GDywV;{z z+eFd0oDfRb>WRhqDlDU1m%&ESv@j=~+LWTznQfCc6Ej-MZ3wGiw3Ewn@Pz?H_i(oi zS))U;ZJ5tx$av%y8}5xV7smSecJttu|GFwCm*&p r4Ay4Q+!1*HMQ5))hKPtOX zXm4?&CNWv$cI8B>;j^EmgceIB2iZFL`uBR-_3!sW!F8HlP7Bke6zqDC7xE39msrdDtDn=Cp-bs>^;s8 zCStfxgpqiu>>oq-e_^Bz&Akgt=5CPksx^6RB+bv}q|hA?!>wND6Qxy{bvV7pXD6G5 z>lIq>(NMrdUn-iJtGwxbJ`~NH-YpU(C%dhjjCOn^LEqOvnTnEcazZKL2~Ri2JHbGY z`aq4{iUnwEVZmI~T*xdK$qQu5m_UV(nzWlfBZsy>>`BA272LA6vQZ068Up-A8l7vM zn=d1^AqpB^%LmOaq&z>jm-HSuKvh9&+~DNvM^&R+yda>`z=PyckDqd&JL-#3p#)r} z34kx@Pu_mHh0>n8k}8%vd!=Y~-A9`u{JN|xm^#V@!8>%ubEK2kGrFaFg3MA`?$1v)AW&sbcXi#(B@bnWR6+yoQ1BJ)cK$#%uY$3=TMvtblXL7NUxeDC0 z9Kc9OuZ7a2is%c@aO@(}PEdX7;H6pJbvg#>OFwGtoEJ(ZuVGAk ztqtRHsWd(s9Afd|Sh}Triwnrl0rz4~KEHUo3;qCU}4SxsC0ZuM>#~!FL57>ej zOAq$RGpF=EmqMC#A-n;j@@;G$Z~q=BIBpa7k&gn##Da=&8rFp3iM@>Lo)HC~c%}0K z5?`SAuc*Mt54yHfFto(Ok>U7&THt|(A(yGalgk3?48|n}8v_+|KMk6=(_LAdmq5E_ z=gAh@=xu{7_QMJjLHibrp8dPGmJxr19$R{{jWtSMr7n+05D?BLQQP;hTzt7rRK;bc zaWFGHqLT3*rt4!o$UBeJ?ohz>IxuI1feUK!AoD{u^evo`Qb!;?Jisz=S6(+NSqcC5 z8eS8lEIK?!4BAk_uUJmC@Xb91LXc)jo$bUR9j(&JCPtD475cjP? zUR#kUy-VTZ0OJ|oj4|Pv3VWJ{%|pV#?o8F9TR0^c>|`ITqmU9?;Fh4dg%sZ~Bo%y) zamdX|RIMh8$03{l$xEf^FCYrhyvl**b!)H?PBuRnhjbawDi{RiJ~ns+5`!ECTi?i+ z0Y3&%OeoFOJ}MF=8T)-?Y!t(gBfiEkK8_!(q;tv9L!Uu*$lY#=AIfMUf z-9Uf!sd^p@{qn!_q#13N@CXV{=Jk04H7GeKKZWkxikb4K0I_Vh~dgJO5$n+pT9)*=Z4e%zx+OzE6=c#o&m-> z1-({>=AkxuM$q{DNP1{OevYg?m)r1HNql2C?ua7*vhX|bj5>2gFkzw8}HlneMj+eRObVu zDcI}&tEZIZ*H3S_*yq1}E$JW^7`Jf6}y$ z%WU8aR2Jq{1b7e3{fsc`6&0kxV!CIZvBd_n(GSB$0G%yHAjVti>_47d<81}oq```B zVW>|&RllDfL*JgmXu)BdnAZZRK%osa{#IybbhI8HJ3COb!`sLB-G=dtQuTCTj$60# zmKvRx@<%ouOEn&Oh?UQ>0U$OxMi$7iXQS;>t34DhmG%H=W&!G2STGkFN7H*L1@V*+ z<_$A0T`DcET$k!^Pq-E~b}opd_hWIs@NApZnM(uggC~nW4fpmo+zPlx2X2V)&MOvq?=a&jh4X}t1M}*DpsgT+P7W?mA;_aP*!_N3W(2xg7=c~Pq1rNJ z@42#qFv-ZzN??mFkk=J^>u}C8^YEih)^`Cs@c8Ie%L}@24Z)c8>1=N?mG@0ZG_say z#S2rxvg?%vouvOvUuG@T6l|{*Uk6LXDK6eTqe408%tXW*V>Q%KI;t?5y2nB@X;M`| zJE|6|AI`TS50}VBBJK#!i417uX_jjg22;{`o4~eF&kF2hotBo8|qO-(QZW%6gMei%CZXhw-^EQIB^`<1KYx> z;P2b|ixXm(Z0<|TdO3R=?Us|{strA<{5fX|{rUH8n2l=f?J2%ysWp@N%W309PSO72 zsG;f9c&44)SZj=0PW!LG%ACS3-cjOh9HhL(+nEZ^7Nk;-J#F#L=}z7#OfBHPwQD_e zdBC2}?0j!GV-=JUb0RA=z~`>>B;lKhZMsrXK2~6tbgoSjE=U1tF~VYz$PtcXAz%7G z$q8A^%%J6@7N&53cK?FH9P+Moh8cU5;QKVewXMCA9e4XAX>{yfZdwTM^ZQ>LsQwPN zFr9VkOnBRRXFA^Wy{~EdI;&T=JtEO~Wx456uwEI{@a??C2C~0?a{yHS1i`^|h25!o zJC;8W8@n+n815edxNHMZ)sk~=b$jgCkjGo2je#p9<^5=XU$YEr?*)GC9UF?YGVCqx zTg$L`g;|EYUE!h5-X6vR1vpOwT$x&%L>Zezjg~&^^ZZAgr@{0mHt${7=>79pT&Vqn_9{|QB2MsN`#w_Gg z3{&mz59f*w(NMT-K8KL&UE^ty>FWwJsA+qByxfI{UXggna>ilXm1fp?i`S^W-u4)< zVpQ~Z0#Vr#Ow>3k+95V6i4WqU6J$bbWr*)M4Mn6dZl%cwMnlS|qQCb73}dl`^;QYv z2YA;wt`CZK4WnWES>k9fx)#y5MT@Ia!(WTJ>@FJQO~RlR!=q}-4W2$d= zwMnIk=OZq=p;EeyYE2$f({h2g9d#IqBDv10^*W!{43={N>hFUJXOD)n>uz`p;FLJ- zv#NZzU*+8vm4O~i<>r~*PJwfZX}3EOQgG#?LC_`b2I zDG9V{DoQn$PF&*ci7j6G~Hc&$eyp*$Yt*?`5Hy)_2*oj--Fe z+Q!k)@9_1X_axxk8lcdh3P!c|ohgYQJdPno6d5Q;o>g)>t?UACQw?gw4DEbeQ)5h16F^V*6&K?lTZH z_p%`st(IM-Za9EU9AE+De^EHwSiPE#7Q-NQ0jw&>ZcVRW0#%pU1S|{MNk-y5cekF`*y`w;#nL?d38W6#Vpm{Q{S28RXqA|k3H3IN6D0cLuhpS zB>E(*HpUpOP_h3t0F`!qAYn0Kd7U>~?0*&aEu}k5r1q!Amo_1ky#?hAIra>cQCyWb z*;ubcVGC@asM;=w>yU$7`T@^5un*Q0r7?e%F9*D6{PSwGGl*JlN>$lhgFcUGBTJATyDiPvI-LHm<1Q{9_eChM61|(YY zGVkV%lPU66v^S%!lw%!!xpMC1@%95KX9G-WI1AGBA9|%}MTa(cZ#7ma)zQ88ss2@s zcL9boEE+CmwZs4chBAb*J`Ej1vG^^Z55)cXPhH-&#vX-#pN5a^I~QUQL*Q$Q?e;0g z{r2}f=(oRfr5wQU>&DpwqnWg?rF|L}nV5{e$#|Moyv|CpzOV45UtbJ)1?tO1`FGC_ z=2xC#Y2$WeC~B=1Yq4)BD(TRcuHA%qEPSms)(Tl`GRuBt)n@n=d}mky_11ylQ_75D z+w0xe$^fg&S{Yyg&Qk2$F^gQ%AyKUgsFdK#b#U&WLCZX9zRep#XX_BURM=!)=2Mje zi=Xf%ZLGXxRY^zVHo`>9H@4V-HY%k(N@)OFl;-w-OT9M@t1ekUlP*BCYIXZM6w=kV zL(#)F{MUSnagITh@W6ZdaM*&se8-!84RAtl1hC$FB(jtLv!_k@Rsb zPJy231Jo>dnn;vBVG3XREZBf7p+62ZY3$&=$&tf@Z1T1kQT^j<9#Kt<-PVte#CB|J z?p=j8zH!x8zrna_-d;Jb>NrL#_j)^0qqlcftBx2l=i^@orF4v;Blnppn=-xby`8dky^o8jj@aP|!N!GjnsihUgZ z>$DG5Bj%(?l*D|`mwsX(kcl}&r;j1{IZko{XGX^?RcWx=>It;i-DvpJW(&-@;fhoK z5aO$ty(r<%^1h`B?r?QL5j+0t?TVsfz-d-Mt~&tiD$lf?;s?}nGFhamrfZ_O#**Kw zEji%vp9dd8^S4=w!U3Iux^v?T;__(gKIrcDi_-jSjZb$z^vT)a?I4y_2{N9t0{YwD z^8J`(c)|~;>HerlRl4sN*QEwz1hUUHq1z+gJRHc$qHqjnfbJamfTbL&+=tT;G9N{m zxA?_r`v2(He`FoPk;l9pje>P@fU5W)n%#sKoT z`=0d17&j=?Y7452;E|DOTm_872KmtMuwa-fmRztT)5)ILp-X^N24$yuLB#Id5mqp{9Eh!V!AR$vy6iv*d4kNDD`g-8A+3z_suBj(idY2K^IVGhk}g0tr0huR|@ znIggJqSLN1`$wkMF*IaT%CUZABJD=lK8tc{6_aC zoUr>c6y6aGus#?d&kc0_e+WD8z^aPo?|YY$1X5{%5FnwGgb;d%5PDDOO$dqw9+Y4& zlpv@`%WcWhga9gv(o_VM5=0PCASj3mNKim5NDxsF#rJz=_uR90&++&Eqv7V}Gqba^ zv$OpWfH(|c*zt%0q%x23{` zLnQKn?<}v(e>e(cnvTRa+aM(M8^*jvNHOMU@0G-Cg_x6wIg5mKN!9uH#fZ3f6H#d% zV`iAmoizLUI5b-Y8Drt*IHd*WyQN7ugMb6?wO>)P_x- zG3^Ap*8@__K1)o2F}y6QnVi7Ko<#YJbZvJ9w58yb`6WVYsl;5dFd`a(Q-^1NiDl10 zr%?2tbd|BG)>Ii=X-$>s-KSle(v;BN_zEixO=b#jXvn+$sD@SU#_bmc+m_ehUwjQ= z^^9MugN6j`Y87K*N@NdxgGGm-l9j2mj4mFmdSYs8AhDDdjm@Y(O2@)uS@_Y4K?%6t z%VzC~XOZA7lEPlng;`x_T1j3bKJHtn{{o3r++=P*eX2kI7s(Cyu1E1m(R+C7(70Vf zvj(jqf|udiLMTOhJc?y%zkz{s)>{FkDM@?h zm%K*o+$=t^z!$8vxLd1hKTiyM*+yP&k*O2xKAU&@8Pzx2+~z?(eY#>(yzPy9;Mo}|?Q2Eagt;7- z`!&rk%Wtn~igm|zO+$IJ4(*;1;~Re69$lWq9*)?%rhNEkBWw zBlzm%rt%*6yNuuJ3DQ4O`M+k1Nr*3WIQ03 z-B@L(IpI$$x@$9^JYSQMWHZ1FZJpV5KYsHzdtk!dSt;IbT z)V@|%aks*iD@5z3(y$3?9P4fS^B&KMO7HfZ2m`=rnosUhrK6>D`*r7Ke# z^N>tzr_8lUnfaVqVPxL^HQXu4YlyZ{rBT+CxqEqIo?XKo%H!7KqWcXt+Ip$;E6!4nG_^J7M6-3-x2XpIhC+JKS__UFUriS{~Vo@lSYQPl)= zq_=0rr$I+!=OL(mm1^!?$9kKgXyK7&5q!sFY^(6tBrTa|wpm)^>CnPmpSB_bxm!iz zh`20v&fewKc={uteQ2ZYka};MXSP|oL40T{cMIB+2 z>O~ushPCtCxEr&Y&(k%;xQ3YyUQiX`9Ji@!TX!<6imwD8_p9{0FfY_3&xa9$%}ayN zwD#`0Y}oUn+s;x2kTJ58n$_g)YiZ$p=D+1|Yb`b*vq3_X5-R%h#I9~5oujQ9wK~Fa zXG!FvTd#_LNQW$ED(rJTHbA&O~$2z-fuz19isr;2x`J_~NlatES zsz2@4yejRKHfDIUkO{`}IsM%&cxmF&M#kx_n1Y_}I(+-&g_Ur@8GfVA8^pX|x-m@z zHtyk0a$zr`LBWctNkM$TX~d*5IOXt2^H849)18R5P6MUXSV!Xn5!~D1Jr8jfgSyAT zy$~O!3o6!EO)AG7k%n#wymN1Ntg+A<48%gK9Y~qMJ$>ADT&o0dg#yGID7{@vbxyt$ zhb;FBP&Fkg_mgBedI)?glowFcN5o5LA{|+)2{|u zF=xNnEgplNH5&VB5SyABDk`|C(den&V0Sgv{6*2!QeRZsvN8DM*=1VP!zsCWPa(>7ltf(^IfhP)_3!{8Uqs;7Rv!BAw~ z^CkBAAnZ{0F!r2{Guy_Yn)nYnL^KF%xHp2Y?+iYXLWn)rweRZU}1^Z5N z&Z!&e5D(wp>#1S9*Jnyl zhDBZHn>{SG&C%mAc6($#?Nd}pnO98Gl;u#EUZcd(8@s}jNnzLhe9k234S2A=m=c=G z-ju4ot_UcZgt%Q?+#->mnTQeGs{yv6>e_&+GzqlpEWCMh15Y?RDS@9Wz=TUe<0zhT z92$>1fxPHgfU3l)&xFQ@gvO8&tT9c}r2Nssyo@*UB~gGs9NqN)5bJIGx7mYHq{-%`+njv4(w>^ zKNwJ-@`Z2zhkRj$Bra8mlrNaDy4b5|a1`CWmhO3)?hp~IJ57PV@UT0UoxoeI#$g>x zbMtOu(!4r%=d>)#AD9NOIjU>^X+U!dYIo-#sNIp8-&Tl5&tsUOI?s8uWu({@ep6Tf zhNb>*n);9<)t~bLx+0nT?)J7cAAoDiJu}gVw&K^GGkapXi>~DG@;Kh(N|Z5l!LL+n zr5YcInnq`%VB5YHz)lj_i8ic}t`@IpiB}>Yhu@Fa*<=5UedP&vHJ3+Fmnc+3lFqJ$ zI%d9#ky#T>`u_5iJ034BQJFtfFx1LRCbq7|qieMau2g#FIYk5)^8gkW!@mU1S%mARUoxRB4e zk(a?I&NG9x)mlvTBltUy;BZY%?s`5*{pt$?>Kp6vBW9zu^j|1~MjwSJvTJDztUD*P z!d-o*u?*Fdh)TO5Jw!>m8UUruLs+omQM>tP4%*E;DRYh@(`q?XipV3&abM_j@DR+* zqZEqFXGsw45(^~6n1~w2lmFMsd>?wNl(0#WfR3UOFPzZ|ujS1{i+oeJ&g%i|P;PYL zd327aCFd)JgXD-fu_6wh)b;z^((f4kNVV&}kY5pQ8f+5s$i?&B@vO=soaw}r^CBfN zvRtxweXDT(^h@a5BNyq}QN=}+&RBy3@|X!`7=L*&xcAw(_u!Ku zxb9(*82ds@u+vjt^jSe`EH30>it`mIa*ZOAlaoSRGVkt&kX1GzD+0>XnaK7YD1TIv zK2=HP-Nb|0K^tVhurB*ZstRbZszKHc<^TFHU=QIjYms7)pkKkQ;x311Nb;}D!ASQ0A!nG`qW>ec>hx3GDxx_ zi-qYSFt|K4nXzgqvc4%o+5?I-so!(duyJmy` zDvR;6ECz%H7lU%#(ly9&)0T*k+>|G7GP`6-1E`8K&$bTb7uF&&CK!lMVZslcN)p(VxT>7gJtPqfr3 zd14~yil#oLjoUUOZ5*8^V*3b1kntuOZY}QErVh_}sZA(c`~4zl0?o~;OYz*;GSSr1Lwr99f&=4}1aLv3Qj28R+`0nW+- zd?O3+PM`p4s(WPzX5Z?#MN5t6dk+L!D$O1n$y3@%I8OP~IB8VF_`TY=su>>$Hw|Ra z$YCC410=DpLZrl{_y`6;xhIho(R;bQbYgdvC=*^Yq~P|#&+ym3)@d6h(}Aa@m?so5 z6k(3ie=(zfJ-R6`&PnK*juCr?#OY zWqO&=iW@FBJ|J^2j_bjd%TZ$XqSr2#@FN!7>i59ziS2Egfj-qeS7#> ziCk2YL;H}VhjG_2{H8oVf83r}7lpR1#Y^37%kk|W!!%`#FX`*>cX`a3h<*$NF$O8Ytx2on?1LD$Oci1$D`Kf~No@Kd zcN```97=F+pafm|_ z6px7!s+Z3c1+221I)bts3P@C(^?rV+KW=qg88RHaBmjZcmDzwtl0 zBLjjQ%F=2?pe&fBHp=2vq-td;`O;kzftSjv6=RXD80C1C``cCKzZ}nt#BonT?^MuQ zfwnw=@6sgS`xaj*(0j(G8F)$CDiA~l7YNHIlQHd0qHgG-ti_Y)f_Am}j^8ow^qVD0 z@v*CcqRZ)9lN*i|$73vb4iRMy>9#aSEX`mrE=f}D@Q(6?;56ce~{PY3F7`jZfuTYB}TQ3U5e6oBbEY$1}%wh~V`;a#wO4bQFP8 z|EdUDG(tgw9f+0+N8dq08G_8iuuxe(G1`OohHHAT8O7L8Ld%7vo(?s6yMH0fC4OJh zv~sP2rx(^ztaK;eY>LK+BR|!X$eK%Nst%>$X%|lixwerU3{|=p9P&5RDM@~ysd1p+ z_&N9Jh^7p}f=fbm{R#8bWK*Qj2Na=Ne_6P>1NH%z@x-`rsX6iO#hF-O7RQR*ZP2O+fBv?N%FQoM!oH%9U1i=U}@5FXr2X!JRyqNfTU6XJ=4iIlwek>Q>dphjvWS-Q4#;KB0exKqT3Dvw67=0_ld>tGFKRL^EZ-$>T;$j0 zEv&;&RQA+k=Oz7Hm2RpZ&)3yLGdgVpex9Ay87X^P$MQTg7E!l~@q2Y*EoP}{a+1;qhw2D`WfGKj4pT|Q))A%uxAuuLDsLzXP501!poh8`cINr zB@#XsP@gUTs@Qt<5fYuO7DZwh^15tt%^rKaR$FvfV^_$e| zWcq!{Qr`T2tXx?VE!+Q^2<2a?4~gH9L`C^i0p-c|jT2$}3d=-AhVbSs%!(x2mwpf1 zQ;aKX{7TKUv7gcTIo9h7+fd_zx7+^w!DK1op=J3*6?wE!IK>7;O*#%QRoNz<%T zBv{I3AAlHIN-xxveK}a!@FXZ(EMZ3!7^w?RLtZi!`NUye-A@#CaRs8GF3`d1BFW0+ zT`qR2&Wln!|;dPOe){5_Koe!FuF zAKwAGw^$(@s2She+avcdSx#TNw=>?>=?LvpcviolipL|@Jv@P($J9#ecY@=Olfcmm zkjw!VUPtbXb~-|54K=| zKUW+%d!w1VJMP@GHdh<_$A8IL7Pty{^W25FH~p0^<#_RA{AYGXmk^osR9LAT)%j%l zvidA!rI9DKRa~j;N^@94Qw3vtdg56M{?0gl)?}qf#PFvvylc|pNXCqMt_0p~m?yC7dqQtdZ8lm`N2t`|hfQi)A5UX8)CSC4X@(rCzm9!9SSXRC zT$MzZ8JK3MFHW7!wBeo+`mrZhiUpobK4%o1B*FNfyy&wmeZ*Y!jgEZS8_POk2M-;E z8vjU_1Zmr&ifs$Fn1}p6wb}O|R1nuM(*#G@AWt1uD)ql2^v9p$*zv2_esy)Br!p@Y zIcY%oZmxE)ZR;`Yc2UE{=c)89*xC7MW@L?}Jm1;+-LbP4CH zYj?$s-D40+;5(=Xr3~K$%0M?bRU7MR#v)dUCRbqV^bY}ZP>`gnE|VWc%A0@%SL43ttus8msih)FCJ1iHugm4-jd8r& z%%JcaYkXgXUy#WhMgMJ%Q;(y69bG8m`-p%j7$T9s_JpS@uFf&|N-bs;TpO%Pq#ufE|96qAmqQ!43&LGpAcwo;njT_IuqJB{pM}<4Lm+NGh)pCdC7l z^W}_oQ2$%qpqAr1v$}-|+eC;jYIC<0j8BcXiMzdkUhyn9ZIjBcXKq-RlLP6rp%x>oJ{%I-f2~8N{MFQV67jE*XB}eg=h z9!5gzBnxj)23dx}NA{3z(L7~ow{T$;yhG`r{c_{e46OZ2qacdRWW^GDM8i@5A?&nk zxVMBZhdu0w{e-ZLOQS&dV588S2VI?;{SurdY^~@@%dZW@Px6+cJ*d|PIrv7IwR-<~ z*ILsaX4@&pQy0QrT1r@&1q-yGwydcQl(bfa(nf3Tt)~5Aw3=)QyjuanH3qOTHr7as zMXdx%Iv2beTPCRm7M02zT`r>>-{D4?eKx!s_gIKKVNB;O$8R>tz>_x!`D~vg7Fk42 zF6?fQAzYa4vLQc^8gIu{qsBrSL#T zp^}_wk#P~HOvG|0XEYS9I?##SFFqHZV@|Fqc4kk*6Z!O0-V382TPpm~AY%E7n zBuY<04n}ET@d{5}oEvv20>*}B5%9`EVCaHFY8cJ1{c`9szq>~ry2S9Jm%HQoz&Q)d zXUaZ>0)e|6Cin2v=cixsm-R}Yld@7{o~-jN|M;)oGn z(jsQ0@o5Iu9`Qf9mjaT=jZZV!!>^d3V$FKbe6}7W zV~&{qg4QU>!qypgsMm_d0hlOu!mbKnJ?oI&W9(yOTx1NRr@}1GQ2x#aPZd^z7a5GX zVNDY5tE|HZ{DEzB3*N*K3~wBnHc)gwMM5kp)#;XZky*XZCTGt_OR z6Pr5_smFL@3ubN~kiH_7x`*&bcL6(5$BuWv(yUP7+n5#dORPu1 zmKI=e?_Sb9oX>j4)4;VvC*stDbJ1be8f>p5?pBDFMRRAuqKmgd(GPX(j{gH&mT!I! zwe_oH|Ln+~z1TtFXDp~ahV zzh3q(Ov6mGp{D96YENMox<|@QXXw6+qOT4D8cnL?CYsdLJy39^jk-*yk|{s?r+c)d z9uw5hRH|vv2%c~Yn>q|XWru9&13H=%u2HFnsqo(deM?1C4A>LVBb1NZ2kIX->UEt; zjkJHm9;U)g_?*KqL&Noo2asJ0>-MP3TPA>7Z@pgm37E$*mT?13pLEUZ5YTmmpbib9 zmLS*7Zr>w>_xl9YOdEBeP9&5vOdZ6FQ3gYTQvo zz6!64G&$sTrH06*5{`Kqu(Ge~mE(F{s~j@pkYcdfN>(eCMYT;~G<{`{^1R7$7_+&J znyOPt!`komFo!skBzvODCOwO9Vf;Gb_Htai_66AEZS1i+n+*BUpYAHmBdJSNDlD16 zSKUTis&Nv)g*M=P9Z1TqI1^BI_v^I14yK|_YgXJVzP-E(k3I$J4jXlwPNkbBntg>D z{aLDcSp}wtd+YG{zp=Iu@il-KZNTqzAeFn>H*lcpJn<5|vg#X(g5*H|mgy<>&9h2x z=rtephF0^WV1qNB8aSLtybP5``mHkbGx~Ve)yC_j^T?B^0TnmxX*M7{4P&S}O+{M` zsN`=vn0e=0@Tc1NlXX6oKcNKW$Bd8xU8zD*{&sAcjZ&afsMO;}^fYh3|4gtBsVpk{ z<{>?0*$>#L`*bR~(8?)2&A@p}Q2$V=BGUf>cfWYS6U(mKsHKk73YX9}8*VU1O2SUq_1Rj+2U;oyLq5QUN@Aw*1u=myh~!9LT!vc=)M5P`U}Vp~ zeuSInO5#kNNaj5H6C(99I`K&dBGvPj4|_(+MVgJ0yFurYrnw)$$*I2mpCP+DIL?c@FGCPeAC2@yF zv{I(EH{tW!H0;|>*n_uFL6;@)q7$$*t7jx%{+B1#^_>Phrvb@`yKj4HyQ=c7A>IsD z=`AG?i=m7$@aQYU5qedF1W0PxUfGQ@xEmYmz?$4-;FN0{Q#kFMEaZmJ3inwKnQiAGcAfdZOls zd8@F@jUt^JXai2F;H|;>*;u`G7KP)574hYnlJ$(rLMZOQp0r^e(=k*LqpS2bo8kru zTd%^*b{NT=ewm#T#rst5R;)?_H5khz9hy4SLiO zdbv|T;j)|f@tL?&dTU*;-0@CnoY{gRcu_~Fe0L?#@7UnpOu2fwXm4u?o!hyZ9f4GV_1`nQ*LfZ6KW8+gLN|W_x-4`g#c*rw4 z7Ti-9TpY6oBKUx6-s&zq+iUz@qYu~UWdC=c4$v3kIE4 zY;xr(HQ>rSq|V!HTw@qr_)>4#YrpNt-K=p*=Lt38GZ!WIJDp4Brf9Qb70jI;4|AV$ zgr6ZeJ1-`8`QLANy5mVbV=h)~ATajk44mK%?9FNPe(zd5y|%Z!t3E%T3kbWCSZqPG#wT@nE=Bm@Wv9liB<+WFpLJi8xieF|ZeX}t#wr83y0&E}LO?arE1 z&s!IdB@hkIBLrw$e(_c2xhdWlK69qexH8dDN}=HxN-&LPk{@p1ZHyg^M8mH101a#L zm3hMX-if^EEGhuo(t~MxbsB9xc%hNEq3cgU!_M;nE%(I2P`>(0JOBV>98dosvmAf6 zF}T=-9?bn!=h6iI@+RIoto|0!dJ@r2y}j{1x)*nAezqu-k5BTpaMdzg)c!&gGxW#4eFEuW>Jz zgM_uZ1mk9hf)?K9>?^c+NYDV=GQ5Pb%-P$kRLbiRW9w{V}e8osgLN3PzG;+qHpZTWl5mX*0<*tXk04 z+lHm!y6fO;FPm(oURh~1rk|r$@9Bek_S$*F*#rUxbPV!OEUmWpCa}>q^avZ8Rx-wP z@HSzKq=qj^4birHuorBIxfX&}5fLej1p(G!vw4{|^%=V#>0|cT`z81z6MPTC&ZzY- zM)UMFeZu&W&fZFFk4?@_)PXo3g(cK1zP}3!bagAen_$)pcI<@m^iGB^&F@p4Z|sUL z^hX=$l2rKnt!5CSHR{jO0gQiJG{_o!%^))>V$V`2Uv};VqDJweuoa>Fjjs!0T-A&( zsqv_?@qyTZVZo`jf1ZKX-dDnVsc=>0D88k;Hx40L@M_zAnl z17;>c6M90>b5hW3M?s}``eU;AZf^zG3=*WQJU#ukX=7TloiG4<2H!{=P*sGt!bWhj zwc;EhRinfs6j-1RO7#kH&l7y8&g+AGm-gg23uO7Im0O#M*wNc2NLIpTiMair(aQHbZY-W9%q3v2H&n|WF%KlaA{ z+Xv^gMxznpak6`Y8aJLOyGJ%|6rCy#wlynG9hNcR;G{n?LR!16 zX=Er^+%~eyhgvLaW4+CQz271He+T95>A!2mdQ7?Aws1mG%o2Zv8D4M8TeZH^`$?&--yZ z*1gF2B6;(vXjT=si6JjxXFuk{y!bnP8}XdT6=;+t{umazP48jLZ4={O#;4Em8jINH zoBA_(t<7j(e@6_c$ukRlQF!B#@a>%OxsUb@8ZIG}+q`H(`>dUKKTAhF==O{jooh<=J?Pbl%qg zd1qtrL8v_{3h$hU@ynxLtirc+?puo&f7b`Es3DZHoi^zEI+RLoR#{~cDN8&k{#7C9 z7gdm1d1(|(*^f5-C4pxQzroIM2G<~m{)%T!_KKYulyOz4-w(qiBa}9NPo!N9-cy_; zx-4u{{Au3=o-)-J!|J}L`$wJkOqa9z#alP~M)A^UBm;(buptsWSOw#qkT4_r?#Tw& zn0?<9SzWL9%$82w%k{_5z08)d87d5WN5YIi+KoMJgFRt`&8d#wF#1VvOZJw8y`jR+ zJ?S06UbAu5**H{TM~C29(Ed*&ZT%X5g1#CL5z@30wK2RhQH2+^>(_wKNphw}dSEXrGcyQq~i+Z8O{=MCc#tI!71qWUHChiAaU?%J+b%|AA_=L4kZR6CIk z`&HzdXL_SpODP~t6(IchNpCV=GRs?wHMOymw(C`7CM}`7Q)<7OJmI1*oMlV)-6|We zj$)sfF|2{|3A}hVikiE`SBZ_WNf~LALN+g%gAvnW$zGtcsae3@X}t79*yKeUah@|V zek5vf;8$?l2|fDZf*LeC_JI_zT@_%uZ8DE~-W$i>wF%g23E0~RyXH{`#vUN0+0Bv3 zSUq-KN+?w&WX?obF5CdiBu|A=uGl2}wB2lRmdTgBSxDmz5I#_TYg9!5P+V>cF2d#hCPZ36zi!&i;or{WeZ7XoI}Rtjq5L%WHejP9Y`6-uTxiQu zZ$~!7h8=8SslS1j>W)ttVD55cfF3Dgi7KM>O~dg|yjX`vJk>vhG90$hCTBj*^NF#p zrS`OyQ2Rs4+@UhlUiJ=T+iZ}xg|e>A{P=5>)Zo0zC_cVVe{{RIFp|40Sr=6nUUv!; z!+^rr74=28{+$hdPDh&&D~xX}^y2A`5BT0S7}1@71G8FI9tI@lR|oaSMp0u1F3R}5 zKED-id?;3h1Bw&<+iwv<&#m>gW*Hxd?7gePPfJ5*vHBx#m4e^;#q!+j{?+;4>mZ|( zlZ^HbGOUih@09+ryl^r4^l4JiR7H>(8{>KQ;Qo<(78_WBoY{qo+3cmkm2A$XL1Sso zR!aUdg|D;|!&>RDdu!poHU~6rZ?mDPO)p!6X|AGtZ)J8!@((EdsCT@0`)4qUNHeti zoX|xMXsQFs17M#hKIqE<$j^-)+KfLB%VNJf8jwZ&`u*WyuM_ZK4v)&zSMgJ;qj zerUEUn%ix%1!KX{5;;Oa@>+et%p5G3wR!RC{$jR(4Ye^dKNO*6;D=^sf?9Zvy&$o3 zRV<7@jOE%8Gi?Z~*}wdrH-aC1r+*mFdl!k!I}*D^#lqYTc=0CGY508PuN!RwHvHcL z8nBWNX{#=FcUoy3QPW@UAHm(*vAXe%je5#PwfgD}CsAcfZo)qzc8b8ungWHa8>WFsytySbDGVp@_S?xo01B z7zVE3V{be5r&RBEg|~Yq#-?XK_GV(m!-4m!1CL%T?0CT2oz>qZ+HvA8#o^*U@!rR3 z@6sD>P0SVGV#(R*@>4|>yCmc$HFF*$EyI8qWZpc#)?Gb)^%i}klr`{-1%-Is^G zUD+&2eO9HKL-8s`l{Dn%YOfG+pFL$mKkkT*KZ0_??^msbb6u?qJP7vd?YQV}iI6rskstT}6lF~RWiaj#8iqwy zT%u-}!m9|O{*+Xo_Qil`8j<002h$Xa>bT&+uDaE$jxIYeil=`gdsWQ4kfc3|B-2Rp zYZQTYI!Su}KP6#I8O9GC9uUi;7kjH<&V_{hq6nd}rTeV68(y1sD8!}zL?b=x!s7Rc zW?f^C(yUFttip4CK%+F$GFEMm-pVWQK|X++B?GlerlB##xZ4BbMPJfa@_PmG1M>u^ z<~ls;_5j)FyW51M>q4xo?-w>OPK@WDkU}0+g;3g;Z~-$pIX3D;0qWiuDuL0U*jJeS zG#VIYLDzIZBsOM`twsFdqs<2z`|y(C1IzQj+u;cLUWhg(Rx`PLppos~V+23-RcCa= zKVT*Ita$D^{xX(2zLy%8NR1087;iMnb!5yyOdnWFj5N*)-4(C=#-O!hQ{)pe*MIb; zu!thF$9DaN+40h;c*o6}#m}j?qJdZ*2*E+3pegdQ{P+zt4;MfFH}xMhp;h@8Oz?D& z$hO9xNF>%1D|67Q@h)u#irEqL)*7<8hNMn9=~ttZmPnke2_UmS$NCN-GkXjaUVu(o zLyp&wx?o%G(2%5M&hJQAf0f9e6{NM=OQp}L?=z0nXvm9%WGw4PK&S8mGgJSqR3q)siD$k>EaoF|xoS*!P$goevM2g$`c$j6 z(2vYoBZmts>ubt7f@19PYA61J&J2<>SZ$+t*}w#THFr+NcdnKPVI%@(SLjExdu3L`)XYByt$Qqt*Xu5 z7k1a9_e`A9r`%n4&Ga{((hvX7ckyY_c+ViaO>_))FleR0on)0c2~4;$5XYP`LGF6m zQR)*;QYZawHqy6bk#I~R*j|>?i*ntI2_VYFaK6p>re?HtB!<=4C$a(5kKSCVxMQlr zy)H_b-{~^Rz0zv24m=u>Ht_y>AfY-q3-8T%Rj zqsZgx`8u$Dl8rqL0XAL-!X#>gK}jM|V@PGkVmE_=rC5DtpIQ0ndBtIJ%(xi6Fx!EU zaz3vk-~R*;9I3AzlZ99H?i*CTVBnw-c}^3@(c75K*Nyl^dp%jj{gfptaUc{o)rxDu z=w_y7!v|p#4;DaOX$ByJHQg^VbTHIZ5z=t2im?cq1VHfQS)=`C*FgKFY9#p*Tw?@n zq)Mao#{IuRHO1`lFdHa~wC%qM3dY+1=4zjSVuMXd` z2K&h8*wC~76W!GHt^jUTfmT`zg{$$Lg@eL*_h!B-Y?BTBrZaj{ny)Div5--}{lC%J zE;x5kS$=**!Mm z1RIfZ(u?hU^;y0odR3y8_@*^OdTs<_mS@8*var+;;mR~dtH0meqezPH-a4qdn2$Ru zWqqp3GPf7DVh3#!_8%}C2U&J>XIS>8gxpXeWLY$`5T2d3B8K1n@t{yXxP!kE`_0C@ zDztX}!d+dd!=;It*1y3~MVJ1G*`*&JfDm82pU3gR129st@U^yjtGViM{9X_A@y3T@ zzAwNhBh2dNYsiL3^kCy#y*Wh*O8rfAEKmQ;7lRJn0o~UDje+(oHd|6>C{)XfO>_*8 ziXAMMh@N)hKjFZq6nlG5WUFsUA#W%`Xg^^PUv5x;&56Ixf$y1)LHX(4FwNJWh~0{o zVS=g@FGPLruj=~330$m#=k!G`h5OL^q9-sOf@hX9QZm@2)nKt_#Z`$X4oAq2I;b>$ zs*KFe_zEqchac3NeAq$LA525NbbVh1{oiFcD1l7kQL zKUgG|Sob36{VLQP&UIz?+IZPI&)lgJ!XLhSFgB7DV%EMuKz%AS`W?&{6c6{|(J3SN zyKUsfI+^?#YgQ?)eS%k{^2{BN>1>w`^?@Ubrq7lv{LMX3PA^S#3Ii*UW zI!r5d8J;Zk@crn$CrXXS zt3+xrT_5nJv#~bVC<{hj2%iafp)n~cJKS>nMVk9?IrGxnG3+hK3hXBBSRS_szdw zOIl}E=bi4wNcpCu-B4-fvOg|e&VkimZk;JNlm2D{Ulpc6x9xe70wz5?+IO0-IUW~j z{uH8qU7qy>dR0pNGWR-4b0#d~hctigXBg4O*3siIF|TN^S8+hZ=1 zcBHv&=*2cPBKk#N603DY_S;94S}*+-?T$=aas*Af;(Tm#j6I^)dX*!3tx=0k zdI>W){qR7;ceo)zrBZ7qYVNn0alH2e4EK82sNI~Y_br5JpOnfzrebNOwCf%pCd}T< zti<0sgzd1?ZP3b3q!FUp1URW<=D>;k&`GI?R1FO?ma z*rO^IOQP6KXLtj3(x2Lh2W>=}9N+K39&ig)FgiiQTjjZ&*Z;Zox5( zy|002K=UnE^G3+NsqIm64yY=caQuoQy)uE5den>u)Z?`; z@HJ!;C2PFJvf5h0y+f*UtNR!mfGRWaql^#5?B4LBW}KkeoQU0-xPCpk80Z5A|%D?@e#1~h> zu`f&FMTLmnyLigWn}wz49Qda(ZonIY4s1-TIvD0}Zzg|Z73R0A9uxZ+r>{4wkoJxr zeASo0XK%=g3|iM$;fqf zWrgy?YXI-$1aGgyDRusFEmG%c5fNV7T^zBwp;zs@!Kl7d&! zm8_Ilyenhr+zK7sw@FyMD|~-Q9Pj#>uM!4u4p^U#HC-=(9g^GwDmTz^rgvRYo!?jw zGwgHX7U^8-LaV%iF7yw{y{>T4#-$lbh76Ib#HCK$D>|2gN7FZbja>D3^LJ6L3B_v2 zf7924)hgCwd>l?I8h7VgE@0MD6mPc4SAmb+h%N0n3}yfasz9o*giXF=*3U-mZKIN7 zjoOUSF3x@#tY=h~l~IvnQ94J*2cEQ{AG4up67H$3zWTUro6zeOv=xF-{k6p~^%Wa* zjRmE+iTD;AH^~>G-$g$7y^v9&$WVe$$-A(}SsVYGVl!Tn9jZRfxGsa z4UBen7QN@|io3NZ?((U}ckwFWE*TxMC*EA6G}b=Ccc8g;kTmRJ2+*(*3d7LQp-8cR z8X{BFRyw!26PE@B2_Il`_W{YBq;Sn$z~Q*lZAcBi>F3dMLTsWAAMXUml+Q3ecqeib zzl3`fI7LO`7P^MwfK0f*5^f9CjDbf3|HBv$?MAfSE4kR$5HNB%g~c~<9;&qe1A#c=EsoX<8UkFmLdN~dZ6xbbNQd*pM| znQ322&qKaM_NJuc{=Ziuf`Rw#uqgSYjp_}DKbCBbp2OS!bx31 z^k=?qxPie5hhQD7FbxSN9KjMxIes3$axv~I393eGU#|OvTo=M!3{LRBbvT9LS3bh| zY2zH1tA&uzOqW1WIJ?-FjF+ZJxMqVU#;2;4DJx!f+?V8 z$Q_|`DX_is1&pysa9^@Es$0L z=v*3#k^1L44U?V9VIBU76WmlkmHi{(f9Y^T>4L0b@jPw!&`>%@i7R# zjwPMs=d0rR_G_g<4nisX%^!SyaCZ`Zr8-EW@qz9jWQ2h~BCi;El6(5%S}F}_rC6{- zqF4vY($Ry0(9~Su*1^q%Zt@tM_IwSo80kg`HPV>Hy1>o9_`0|jkOZZbym-=VCFIhd zUx7=1AQ9Vj1i5tf>R~nbv4@Ar&IAkP!RFX%d?3uR3APl|OBCs^Tt%e+LBcO+a4Ru1 z1Qe9|WLJXK@?ieAPJA-=KiA-MRlejC6H$M2ZUxn!l^_6*LnK+gO2${zdc++mw`_`= z;3_=(&0&%JrzZX=*6mAS;x4)na%-|r!VRRR9d!xq{!_xhKaeIpEV=*Fxs)r_`O}w< zjq94y_cuEECvqXJ411g;&_vvue`6xdZgC z<74YY$`osJwEc`2e?S?0VPmJ+9MBp-LrxLsle3?9xTR1Cx2vvt|SOz!AJX07k2+8J1tpd>DLdmoo7@b7)uv28R!B zQ8Z<`rHa2MyJg76oFX{0h&iGKogV?XlrbXRqUUh#G%luk6(LhCjISNMOAG{)( z&#vLGgPR2$*u9omM=;8b@VchpAWpD4m&A#g~I?tkP+!F{Sv%Jm1_OhsX1oY5wZ0 z&uMDetf$JiX5~!t)-=8?Z+6MB3F+!6WJwEuJNCHbKcez+DG!p;>%*Iii(RJKfKwfT z`&;>&v$YbqS_LX8vSAQoqKmDxQI`oSn-9}B#*0p{chHI!4M!$d7$Juvr=_H?R7n_$ z#1%9cQHkH(4tp6-+GKow+H_uup2OPvlQ5-ots5FOLlR-^ilIhLnOb3nzXs16hV3(S zfy=)(+TT*+Tc^#KOf7j@N3`S?g4#@>S}mE#bdyWU8QmqCoDq%Kf>Oeo+u7d?6FH>n zI0eeBTs3<5iYB7UM%$<(Y*fnf)^|mgw@6T5QmK{!W)GJ=EqlR6ook~~OxV-S-yD-T zr0aVs)p7(_pd)+72HfHdyxbi@=8^z@uL7-JF8A&cRrt9c=)6m8)U!4!Wip|?(7#na zEBel8K7FLwIa?u}D$1Hkh%mmScg_`f)(H5IRbOO-#(j`Orb~Ed1#XRApmJs2Z1+&v zA$4$qw++B4qQifK8wKSoNBW`IPfJ-(D6%MFDfPlKZ}msQ@@PPUlCR{PHJb$Ky>=V^e$kG}B+7{Ufn|Sy-#RLF1}C;gu0`%=M=e`gaXYndq4z$V8LA6%#kj?+zLX z(1h%?IU^$Zh7BXadF7D&7);^Nm$X4ZqVZ{lWf2n{RWRHi%SL`Hrg4JtmhzcfN7NR3 zv9cWLgETrNS!G8e$(r}A@a;L`@94ywH7QA|7oQmsAqE$-9O2Irobj_Fqkyv*{>MI& zn~<;}j{d#wu-H(y{%W3aZlw7be>OV?>Bfe-+?#ngCe_GS85@64#&*h(@euDe)^8jb zB8z-F7RJ6Nbw>9bF!#ngd6l@>_P56u&P&~Wu_0?T)?(@Y%AXw-zbq8Lh`N)f{EVLU z`@12c_Bmmentbd1X!1m--JDpDlk|hPM#Sy+NgYQv6u{4%fY{|4Y+q{U_dbYr{;#yb-wG0E2eARy@QTB|MpomaC&LD}oVb7J zT(a#`Q()Va5|L>&DG_M^d4*-%1w&!nssF>hnhi_z9=l$N=&>z#Aaxf`g}S39c7%#0 zeX}3(w_rnUuuKcK_uxV!BPQRXt)>G{kCxkcUXa+iD%PsBQrD=a;;4PDO~A~Opm%9E8OG`OUr<}_aq^Hj+hAj^mrB1<64ct3tij&Ol2s#X@H3D2!`WGU z>k}k)Dj)lsaeD1}KV}J5jV#aiKZ>;Nl#PGF#&<3BkL9J0!NV$?7Zn$B-l{kpF_c+W>i>@`UWn5YV9c6uR>`hR2`^*8K3d;3VSUzUxxNg4Ye zQu1K;JBLQfZP^|vWr->!dxn23TWBNBw-M=hBi%vUX|BIIFRXx>3c7-OHzv@JqdHY; zvDc{1?IWXj+U1ehiD!J-c#eSWuu0lxlSD&5mWyG@&r;*dD*IHfe+;{5<9ui57?B=Z zhTF30--$?HmAjUhksg@#hIVpZs*>?5J-$a7ABy=F%R^{8FF8l)1anJ$PbnZn5s>qq zaOo!4QRTqy6vU>i4o#AJQ3MdJ%_oSZmswKGvx*q2wHMwussZ2l+-P|Z!czgMN|yKd zcV??M9lZs6T~e{89GnLYV}5z|y;QeE!Skst z@9v*-)L10wj=wSKwOPQ5i+b`me{2RlWs^e1Aw6@ITS z!-epz>yd^B*B1J}6xLZHJLpL2{>TJfR{5*B+Um$w8j@nfL#xs8Pm#z6bR>m`>`BO8 zY5ixCj-03=$*0hhHfLNS{W{WYwCOI7PFq4Ww(>iXzatE2k%sUgDWheiDV8#h=rXJ$ z%4sJ@)#qJa#ds3OePCfF%6xLcj56k76C5^v4O#JD7x=`>*!-l`7;MpjXTIhS5mU0i z>)Kxv+W&eXD6OD-yQjU5nTtkz&Q{bY7S7)_hh`#gdlFg8mity<;l_9r1?%X>@3m1` zZR67nrojs~_`A4<2`*O6gSb|!fDIb(EgP`SW%rvf1Xj}>1oU?lF!%$c7hOLd70*LA z`lDQPgs54XD31O)i5LAmDuVC)U{odk&qj!O)=|t;x)`&^ZtdD6;BV@1>ZS>P^ovpQ zdI~)0>QIJPbvVtN;ST+Z{LHI}Hq*AkzNdv4ESLqEi<{SxU_*&vFML-ny`OZH^|?*f zPXBmbcyScQ3&s_np_fFaSMHJ(s5m8%RFssn!{p33yF`&%>8<|N(bP~kZ$m?EEvYS3 zDjahtYbG#?f2Uj$0smJ%aXb7D&pK`Q%VV=v-%W#`D}RovC;IM(CI5da-#Tub9W%PI zm}-B}ChopVW^nUt&H| zF=R`3)aY0-TffJ~+Nrb5WTGO!T5WVqQBA)|^i>5-832mf#5mr>ezAdn6kxUpzcCIs zq2yYeq8Ym}bw@W6OBcyJ@fd2LF^?$@>H~1`N*2zy;Zrp()%_vJkZ9vrG3YQFmuC#d zWqH(ek|QwJEtnDKI9`P`t+ z)~IBYqRA^#tfvcbk&L0aBI9WX8RQJqAO7=+KN%M*6aFm?ə=ssFpN8oxxN52+8 zv%WtFv%^lB*{$Zj=P(L*S;)Gm%d%Q}@iBiBah~Km5~#GEbHTM>jD-ruj7BptkMprg zxGW4?j93)p7<2Iy%yAtH4qP8Il4|4dAMF+ozpUqCVVA{-uKZ=Qub?LW_fa(Qt`gfx z#Zo_9)PHm(UMG6Ad^w`M4co?sCF@fc)HG)_-n=m)(^Skhja-yrm?xk%E@wdiH~9ZP zg(G73+tBw~X!3cOM>qaX402QbXpfm4aQ7p<9PuhdVXh`flxVk);(NItAxB$n6SeYk zkpCk&i{{ZQZ2r%V0X|zR$CXuxEqlJi*z1sudq5UpU%=>=b;4IbpOXF1=Wl8LTQ>8! zA01uI@_zP*O~7?$0Y!P3FhBvM`J4PGGQx&D=I5YjkapTX7H1^zsoJIz_}1^x@k42{ zJB*{*9h+9N_@;6%%G;jrk@yKZ-kf(z;87#{%F)+2lBRh5=pTb@PxCE*pTpg-IOQ9G z>n&+d-Ag)}5>L#%)#VB2u(D@77~^_DFUVX`klY_lm$$-k(RD;0t6{w_<-DiKp%}Df z+KObcWc`jVVT&%otlw7b(vN)WgP7UVOb)jni5VWvuWu41g9 zS`<2_9k`q!FD^4*0xjsiure+R*?ZGW$FmpW47@S<&!T=d>PS6JAO5r1GVmyBCJ(vpkHz^! z{A~tn{Zb$??FXh*k7l>x^)qi9~$g8R*3gUQ` z`0@?RcaF8eMmfVi{li}wCsRnVg(~LRKY^KV!#r=pQ2E}tiSm6YFgsMt-M9R8*)|*I zZ5xK%Wzk>$nuz|S%|#W{y6`_6_rCorrreq*Fou)0yFJn>Jp4vY2#>X6UuxUf2g zR>wp0<;J&_MR;2aOIu~~>FQV|J;BH-EWaH+)J4ig?jM7D@9y}^yKwtXDCQJ;8Gj`Q z>A=MBE>H6?zB#g>9MAmMUki^6;`eHB#^&{~eDe;u{H*-iShXZlj!xRsdTAJs{d`O{ zp5(&P+e11DyIY`e!OGAW*8_ZF^?YM4oes(LW%=>0LP34mM*Sf_l1G)vPehZ{RO3#- z58Ro&OIfISL;w$Kz=9SiZ*kN7ayx@6v3Pgv zQ3PFDIUPwv#kDX7j}q0#vhYZQSj404q`Bewb=d+5e^H00ABVOBBJvx!=IKa`we3jC zaA!y6C$a4k`L2${!^si6|6|ziHZ2OCwpHh1m~H2h9TrFD*RL?sKcxq5jGS^o^3Ush zY}Ae5|BK0Q=K5AgV`yzh)2h|$mGbN1QuO9^(8?ltw>YJ-qC#_EgkM^Wjphjh$Cl+U zRnD)3n^x&dm<6d8pU>oe$oY>?8D{8qre@e(Ld#I&YZ;2osUWXc$#3fFBBXWHrQvFc z2tKQ7ej4s(HD%ORssF-RB6uM~CBP znt86Jf}5{%OG?4rR3pC~ZcleoHBYDEm4_@|{_(N(d5xO+;kZDC4E~YM#er$Ok5Mzf zHQpd};_lSBbX!MEEd-9=1oEnm++#!{)L}(_p;mr1oJDft{-|?lRX4Oweq&Y#r<;ty zRQy%Zms0r6oM%F3%pDuaFCERR#A;mCd(~=JMLuOUJW{uEBD&ZC65ChBTDo3J%&*3J z*@)dOBK1N^S8U;^TfO{y*z;HU^gFnyM}>E-pWlGZwjpO+HA4<57tu67gl9I$k7b*s zhHt45(lB`gT14gh7RInQY`E8?hU;)0y|QDVYoq)c?2IIStrD%C>}r$z@_gFcW6Sf% z#`!VqOB?%(|73^omQC_2v9MB6SLI8Ux(X6di@ z!DFAoE`wj2!Ga5H#20Nu>}Ad3k>H5y>OrPDWm& zc98U9^y-#y=s%>0>#B$;lVHsWt@3NKQXBnBsp*`w{b@q$`~;S8jqm*hBc}7+^Luk@ zjnr42oq;zz7XLK10`J@gy-S?&dwoGN*7#5?NLIOK`X_A+7}pjS7SeB9f2m1OdIB1oZg71XSP;wTDYRBc(j~Us5Uy0gpKenC>Kiykc_4 z{1mnx?7tSOwxLe3ODA-SYn*tioOrYwu5fIAMgBtP{AhLpdC=cM&`&26gz=7D&~xJ6 z5xbc`b%J6(H;X^i6%iGodX6uMM_$$?9Ua+iC*Dmbo{_^8j9XZiy9c9knlv95&hxtE zhqKh*L<~s&O^E@PhZJUxE6aaP8&{r>&Oj4s{F@#P8vG`rf#o1%-Wfe%j)7gqMe!BA zA!V$TGD?*~30YfV z_yp8GV-xcA|3`?se|~k`%CdJf(yH+54wd`==sNGfD2gwRdkdtJP6!0j=p91uB=i~* zItrmkKteClA)!bMC6wIUNfi+k1wo|x%9F ziID$F9iyIz7aQCGiDX+6nQuvi%s#6lT&o`hdY_7>X=75SoYLBN7S>MBEc8(RY<_3V z33CPTjtV4K_536Rm?Bp82p7Z6Eera(XEe3W)m?Ln;ANs8^@1xO$?o;khX)!JL5{TV zN537x|6?8)3b0eDFe{_Y>m^(qPx}zCg$m>oFKXv|H=+0^j|8@e^Q9cso>RW0s`?5`Erj}$Dt73|{Lg_e<)3gSvn#ARk8 zc|bFIp;?>~#N!H)oIoh*&pP*pOMS!>@t})HZUF{zvs)0?2d5DA#f-|2?H_@{_kN_b zX*jEaYiYSfK%_-JF_D9df?oRu|2(5(8?Sy z9{%F!EEP?IUyt{4Dr&PW)DJ9FnwYSGIc0bZjI(yAESi_JebytAEf@?nw_1Q-c?PZ- z1R$be9Qd~dcrLi7ADc2bCr-O+0ba5I$ru9*jQ3(~LVD(Bdxl`R41Y{VZrL6yRZQj% zbP)SG5nJ1Wu&dPlsh<3gEp_x!PBL3F42m>Cnj11+%r78o^^jPY?ksQyNKQYML$i+7vvZ1TeJrq414gEVI`?Qw@9%vt zSenvmnZ^n=jXl4j{oh{K(}x|J3qR>YOG50aZcOoKVf_2D5Z5@2U*YwfHWft5PMHT~ zf3z_63uWZD(>hhoGfje1^T`jO7Z@^zYM@)dk)6(&jtBY zl}vqnrah;G_KAhJ=D&GGj`Z|r<;ug={zE{2RiWe$UtiZVkmXKa=ELSWP)Gl>;7%9?f*+m9${F@D{>CKBd@n$_Cw`B_lodcBT)@E&ZMk8(t&Z4`JzhYuuI+ ze4guuN}-e7WjXx76Jph7E|$?b-PxJr%VO`t$c`>YUs8j3O7Dj!G1ti6ukv%f_oJx) zKPz&|;ouWOrx|EQcC}|E;@N%8Fg$^2g;6WW{2yjD%POS?2Yj$}>QX)CpCjmt6*^6} z+y8=JC*-E)Wyz&e{aCo&9)kCP@sdz9$Ag*H#Bg}p2%L06O7B&$WE@l$ggvtcMzq^Z z#6y`Li9MPB+8q8SPQu>)Z|rYtfxT(Q;?YbimJIsEC+H`NvbfE#gu<-PSGpw_+8$d6 z@4q0kZFkFh7)$&b&E2RlD&t4%@!M8{)?A?(kx~?ZKl|xZIOk2w$OJQzJklcEdhUJ( zEyoD%D20oGB#7PJiRI^g8_?Q^n~_7zNP6%m_j3%w9}C)Qg+?92cVEC^U10`&Xa?yf z<&T}8$n!}-JEqWdGxBFgH({!a)8gGr@Mkkp&u)HfXHN|XE>m`?YN)S73eS}k^xXUN z8v@z&ifCPM72K0~XikPS*S^A#Q0^r?H;MiDv@41to-`t$lKj}IuX4h*5--hNb{uZv zFJN`GRN_7O8ZpAI_%Y7Aa^q2yaLB<-1Qb3=EkHVIDHdpw8A=Bs#Qwp2*zqq@!&vM# zxcW2j+yGxMnX2kbQ}Ek6a{}1VS<3?0zuV9|POnB{J^=JK$T` zsIq8ixV0Ohl6G-Ft6J!l&2+tC zp_BhJHHdxL6$P3mb?&RA!Dt{4JOTq-HG5eQ51eSdEchN~JdNlv-(y{Qv4k#Ep?b^p zV;5(`3V7T^n`fcUF;jIbD68$ok8k2xDHW<$J&gmQEbu2lzqLTOnW1{m;Kynn!2IR5 z)c2-}*82uOcKiie?!X$^A=)(y`cE@j*B2r3gP3X*el2XG;A_Pu46OqX!AA^xZ8nVH z*CxZDqxusLV-2tQYZfvSrJ(Zk`YNX-SWpejDB9n)@1HzRM@u`N6R)k7&=m@l(eiGi6FD`s4=pTaX6eS{%d$?w$v!55 zhgBeEYt^)$Evz5SEWNhz2*qo9gu<=x^m;C_-bXeif_!-TkehSosnvXe?v##Q{Ml!dcQFyFZ?|xO6zJNb$TPFV<~TRr;Pfy zoqr(Rxso_bC8B=|Wb@ACl-FihU{ftH>fnAli@5i83HwHc!2zkNZLx4RSvg&>H*Mc} znA=~Hb4BHlub6cP_O{{zR^l#Ni03TCsTXrbYawr82UboZwr=#fsXIk_(7qg;Vq7)H zdVTmsF^xCM%(b3z_A;jO4JEanLZ!}&G`y7AO9p*wd*avd#Mf)tKQwLJXg7~xkWA}6 zB`pl^6|qmlgYtdd;53JTDVgUGJhaN%|BVUkT1o#%p;K(t{~A2dm98X|aLKZ_*p+d1 z+KR}-JKopPJsy{sBMJsFt;)88E`s84|HLm+3B$u4ahImJbXf7r8wlOKkgTT)ixw)L zt?d;~A^Jz2p!YpM#prtr36x>6Pv9GuWQkARcJPpceC#^*G)&sq3-8szkb@%y=|`sL zm}2)NBSg^zI)>O-ORT9zMmeJy;^~N(CKhcwT#+A*cP#uy;)`((mqbc%@DW!;2Jjn3x`) ze}q}l!iCGcSwPX=!E6rp`P!D4x!In$7az>_VZN^r#W*10KPYf==)e1Iwl`a_a9M=l z?lW`0`wwmai+O_%|AFM4Q_7P-Vv-_eoVOUn7Ox1T(bERHhXC;Hjk+5C>%Ix zm%BH_@*FRRmo|HGtlZ&W<~}=uUle_|VM0{AD27rppw~{qTPtuw-`L^MHzqIiZQ&_} zrvI5jgM9W<+62iStFXy!$nRw@Ya8u}IO0EvFbN;l+S^`ITQ9L|6)X*fWEZhM_A=PE z;h{WMdSX*Cckx9rpO)BD3f3rQVDqwncJ&Tq34SP!

Y;wb@gYFRTrauzo6xIQ^(%usuITb3CyTPUS{fKPvCJ$v(f zUK+4Q#-sC>$;m5sl%`)`G`b}eu*YbJrN%$2DbdjOGOSM+D;kb!{L!4;{=9nkO&UiP zvWKzbQGL8v`GRvJOsVc{G}$J-r?wO7`z%1Uk^H`K?;4fWBq*WP#TeNt$Fze4t;m<`~A}T4;;*|CO3G?(6)o7Wk`8Ua|K0E>E^G-}qNw<^sDuaH&39 zbyR-=W=-~VN*{TabPlOK?HHc=SZvmKp_|66%W-E=L@#Jz*0aBxo&!AT*#Q^b^!!}t zxlri2x#J?Lt@>r#@Sz&E33s8%u11YBnm10zJv~?8R^}2yv<#oZhziKK2UCn?={Rm&CcgCRQaE zi}$nGUSc%O2P_c_pU5u_BEL7V7s0{<;j!GHtGVwwJh40V!C%?X9%D--H;f%_X%Ep_TFA}JWTQM+I+po`n3iNF%GAaw zsp$nA&Tt3j@2!#0`<8@8niHZ2ZXUL=SJXb0&`%WTzE6;a>^MCO!K`lxyWJM#H5T$J zGg;3w zxMv=5Ejr<@Dtr5eviY4H`L)UtT*1#UlHuWK`-MB(!|gl!2D8DP9XRyK&ukv0{7mLS z%7R`|>w#6RGjOXtAZuz}EToQR61giqyTDzUBek2Upkn*Z_hA85P)m26@Z{=uh4oIi zK(P`=69|{}(n@!aZuWB8HVOS&K-us{izC_UMHo(~nI&|G!@k)9+-L@p(>dgARL-9g zcv;bM^AcG(Y~j7W;cUn|sPPLH=vgzAwynk;n@7M2rrT5=q^TpAVaa9vx@#dMF`gPKkQB%l+(?`CEQ@c^r1< zGozEE1pet~4`=7n&?EosF@Yb=3DA!9S3^+%^Oi5mZ(e(TE)vCVH@7Os@Qx$iS71}h zBM5f6#p2TJ-%MEO$$>DnIDS=) z(?#tCaEmN^JNb2Xq z{v8Fl#($(%9#&^OD30eD7}{ttt%ihGRp4sd%+D%~0z3D8uq&I{75D|0VbIhV{Qymk zU7ZT{=B6;8kNXu8Q;nfAJ-l=~%fZoAS*FA9}T>X7N zK(*u1EJ$-mEZ(N%!shlx-$)&K!UTIo%-J|miD56~7lif*2FTt;hnLfSl1RKh$%Uk$ zu=ON+O+3$PqV4uXqd{T8WDE-TB@OROa?xl|c+IoCda^y3&7T4T#_N;ZwY=%Zr7}iQ zxR)_)T3r>CR!HtKE6+yEMxR+G&=|zgSgL9z1I@#Bu|U04$sryv&mL-TndZY{r`dzB zP(qjv3TAaK6dg7qEd;;vWj!Wf7;A5Vw#DilpTD&NT=dy4ILjQ7=FeV?KxZ*c&@&Wz zLOG1(14g8kV0!@7CRxbiEo5>tO3t*$e{Pr3Fy|YoA%5>nu?6 z3!BV_(VQ31GYV993w@{@Sfe?p4&JV{-z?-`EMy9;y*(GfM&BUOs=e4$yE>v9E_tOa zjJA2izfFTVmWS-9U~2)F)oMy^H51oWbL`SbIH$Gid^9qgX~5Gq!EuU#gp;+wMBJ^7 z;+WWySy;5_VKTwNrUZ>HYVQ(zC~G$lldpvl%ny%Gxl&cycmE)lC1%?vXiiDB8&sEP zRvk+!E`-vcv-#D=w)t$)Qks`h>pQf`9%la?^p-2Lg0uq?`-6ccKMGB;iEW=p>USn8 zw>W!_y}tH9vT{um0s5_=IAo7=yz*u;3pBl?yJO&d9K;s%srgO6e-Pb{21KCg-j z*4uF;yS)aZfA(^;!uM)qhiZ|*<`x|hEIeITDJ+U!lFVwZwHIJj1`a5|f)WP!u~|-g zpw>>}Tf6Y+i00!2(juQgclvP#|8etU*n-o-l2B7~Levx&Ewd+R6C`=8LdFqvK8#8Q z*&J_lUu|!o9k-y4m{C+);cL*Z;=l>2sMjtORaAZLg@y9eOwp?+L8~Mvw(=}) zqYS&~)zKOY;<#vDMk~oL#3VAkZrsY z&zx=Qu{VE#+2&PAx@3?HHyu4u7+by(y~BA=;4@aR-iO3%L7}3O^M~rKF_fX(D8`OY zdM}tQm;!tD4K=q$uTXPqOl+i*82QgJ+pxk?YCu+~Hq4UF;80hWJQuC7^;THb zs!+E7JZp^8toRxk^_{S)dKwO-GDUIG=aUzJ7k{c=04O-SY6s>G+zZf-O2rN-Kym{L zZL{N*Mmy|9wF4IP4;C~v>w({*Sf5GYV+Cl;l962uMLX>UwFeezt}NCi%(e@~I+%Z$ zi3!xSb*Kh zwg=jJ2pEnY)JxTvyJqjf3UC(-t790$No9?3GMp@3DuOfn?FCuGE(87CBH42Uex`wE zx)*~;>9~PGY~S~GFS?KI+6P0PZb>flzmlt9+a~B=D|D*C4d2^qXqzphjb;*cS$BRw zDE3c5x~!03Tp?`rxPgV)kR%L47c985W*o&#UjAe+t_2qmE>-|Lb;`}f8iSrazZ~e`9t3PYGWA#C!W9F(=`nT$ z#62ZY-Ic(iZithGnfxtUtSSG`pm4b_VvI}_CxE$Si&kq|`ppSvnYRb|uzH_l`5{E^ zN>K5&h7{245DN(@tmkn&Yq$FPKp%EH8%xQnC4YsP&lf-1`^^bttF8~ku^h+XL4IiP z6-SKmtBnyjPdrVIn4U^W?HJg%v6ktsx$g5KV(d33fYm=?k3tB=rMW`>(L^Sr?|%{# ztmjheCnh${0Z8jAbJ7cli2g&5?0aT5f9Kwe|JiG6rNc$nUn1PqJ{i4efJ!^zi)BT{ z@i}qf<`y3vF8Y60QS>=&AE9-UycC6JxXYyMykF5rC0TfF%siT}ZvG8%%&8JOML=EN zvbU(S)o1KDTmE-@gf`Ja9cQLevF`f=-RUMt{ajJi=uSyhkR!EEEznOqLVrGs@;oP@ ze<)BoNuA1b`0_#CY|0B%R^A&KA=Y-|MSV(TS1O7b zSKt?U=mCS2Xd>iigk6Cl_m%Ko2Al!~xmWDfF;M6_E41zw8YvzBC%oK+k~Ytvk(2B9 zm%V{)jwjko3yqws&VR$X+AV3{8Z=`dA!9)0g|K$lP`ukb!N0b^srMgz9j?Vq3BP8* zX(cWp3|&r@b%O#z<(mF5Z!G82*>Qh*N&|1(F%>R#*b{G}!!8&hT5?!~(UM)AHDw_C z)F3a`^A-ld;0SYT4u}vg4UVa$sWJLd_o*>GJN|F8j`>*oM<@qcTyHOvY^x;MYdW5> z`7{?}b-gF>6k1tQYL26g#HL*wJ1|xoFBxML1}!43xC@IJWx0L0P!u8cM1MxRN$%Kt zv&?F`AHPoWK2~@L5Y*FFTTm;^C>mdH-oyC%O9YFbhJIdwWV(jdFLN<)SE_Fh*N$13 zhh;eqi4f(8+#2Ob$Cc7j#E#U#Au^(cy`y>H?D(=RFVvA73lc%>=w>YWB|L)3VG{=b zw`u&&!>=|rmO02Z?)@0sRqAWTu6b}) z`=uw^!pi(CkbU6Ig7CyWCGg0UfH8q5L&Wc6ap;(*RB%qBDHT3*UHKZRT*Og&TFFQ@ z!W;f)NCe|Mr7#oaA?FVRSq)nZzi5uI6lM2{xS0k8eJ%vCs#=Fg7QdRgP?5sc{taRw z?0#xis15Hyu<}}&c~o7962xm6k-~MEWGH8}>!73|BF13Ds}HQ$F&?m`y>s%==2Ld% zqP;vTQGk`yzL05rW~5;_E-2dw3OU%;c}nABR~j_-q3bjHY`!l?oEniiMD8j3TPAhY zNQx#XPgdX;eAL5}1$s`D9`$^rTaP-W5UZ#K6%i$qpT)(Xx@hLsx`iX>0ZpgGycU>lH(S*s!mM__Ex}82Yk3q33%- zlf~_gWfim^Bzm8MmU~`mVL0%h>(2iKo-PJmb0zSO0o2W_GR6Q8!0VoXaMx1Ug%T`I ziz+JIwaB6tcg>$I+=g*~c;BIU*>@$ek1(Pr?8$8(VS%FTqtDR0VvF)2JX8bIa<^D= zG9J$u8X_mwU1Vwitx31246VGQgjHhicthDF^$Bcwn~h&IPpn>BXyk`Ak7vxD+L&y&w62yZ*{pyc?>Rm1X&EiHRI;dgn$^TxFvJ)d?@;_n)G zX<0rjCKPd)mup#s?H^Cz8!oVx6(x!vh2&oR)X!9`&v4>Fv}nbpqm5Rq@6;@%m54UC z+qh`Gyou4UCCYpE*6q-I4@?l?|9ac!J9w%A2ZK6fvXbHY(W?LGu(b`lA zoMHg==xaER1s*PTS!xq4ym1yDbpc+D(FJUh(9aDhqs9gW131-}-5!C-(We&bCl)HS zOl8qNP^4T_L?6yc^dAOV*SC`PtA+PJ3lA@(OkqWuvuc`8jA+LBSYms<8S^Ez^=F4s z)(f%N78ngR{%>=Geq-V4wN*;1A-Pozu09apAfKwk3ySsU$}X zLTHHxArlYmnJzZk2NRaxw-~T|#>}bzI@z|=KjM5M7 zjnUf$JsS39GApg!mnfW*uGgTxyVRRq{9|}wR*hd4=a9$~CxS0a|)|X8hjPiYMN#lu;1{pDo&E1G;I33%I6+zg9Cj=jP zf12zxXeh1Ko0Yaz;}^|cMU^<+a51>`vd@6VJ4ek6f0URwC?#ZNDFfpwycK>~>FBgh$-5y2iow+atW$gaN2Ryl9A*?DhXr z9lsO}1OXGhoRvaByu>{Tyz{aH8!`|*eMB+QpbOw>d41tFx>YvTE5Bb>kgf0@S&04l z0_Q^&Gq>izV!Sms#;#DklRy=+g%w5$tJ9iFaH0aH7ENV>-${#WXd%}#lPQL_YzTVf z5fVC7g}S!mlYPAEKQf2{&DtOf`8_k4ih9d1R##hDj4fg)Vg;O85rLxY;jD?~u#j@h zBpC1*?TA$Gph}TX$VeN@9l`wBv5{zMKUtvPTcCV9W|cbG`PjWtEJ}MS@sAX|tMjE| zJv17<*?kN6Ul*8~Fq)lg!g!3PvF&&HG|j~<`2gAQQcL&)WFHM&Qj^sh3u2Sv%vJ%9 z<0e#FB41CHP@LDk`g*DccyXL~h>Qw#&eoCPEH{&RX=%lUh4n2?7RDi=tkHN(jCvv^j1e-Do)%&Lfc-aM{T0mZTEogY9 zsIhzo%51#Ej8QR^&-4$V%P0$LxS2&W!__n4qpg#yk5$&m zMsO;h_>V%cK4O%wD7e)Y>Iy;C5=w|E1#)aEIhwIIa*U8mE0<(i=hd|K{)$}~m*=n; z?TjUb-`vaauem5gU+kjdb>M}=M)|M6O8~W3vMNw;rmCP6E=7%&`??Rw6b`5<&?K+W)jkE- zs?FG`&3AulKUmV*S5h}@Y8X{=Sat1z#O10u@|b+>td4fa0=Xp>z7Ck;5VU73L5nR# zHO$W}Uc*}O3XWvZsvsLae{^1!`!n9J!Vkp4Q57K{Gj)eJmZjFnD1(VR)5+>GMBNvVg<}lXAlom@)Tf@PWKdCS;S^RPs#d$RRm zYJDt;q?UFw`ktS%XuPJL=UiK$GH6d(>}TkRvMh|*LQ(AluoRmI%bRuIfY{9*0o>&Y z=*yx%XGOIg7V1_Dl{)v9*ma3u5NUWr1yUauxDkEa-xk(Y3yW%mG;FmA8Wv)wb|TB+ zWt3_`$km7C`x4`CXc=?e1eKw>QL?7x3EaL znqRSa+epD0rm`p|kpF8|QyXky4YaUmr(p6otgvmBU@cc!G)M(*#USOhuW59F<~rg7us_L@h`r7szf}>mepGc zO{J&pW|a}$Ay#*VMQiKVn_+iE@5W<-*re~!-*z#8$_%L^zuMTA%=RB3ABe`>WqVjz z1a=5JQ^C^gdEj1{!*q|ZOcRXeiJ$JnJaLV{O5$Rtjp#e?W~ z#|E;Do7g(O2>HQrO){Z}iy~QzlW^sd|2H-tyYmoTK$a)`Y)^O!r{Un^(%K%W|1OE; z1wu=ARc>JoF!&@QQ@sPm;;%DEV27s!wz?%iT_Z}1Dzp+F%o9^UYRz*Z$40R?C*hwz zk*PjZQq@Z>-geKGj8dC--D_aUc`WG0RS>lq&9>Z-TVX_%QU{sv4DZ~HJ%!`rl6Rqq zs0NCNUz+-&Li{R5Wo%Ov#ZTVZXBROJB*`S&n3JH5a z>+2{8|B6(JnomXH6H%MoToW;>qBju0%2(0s6KNHNPh`NzocrB`IoFo38Y)b;=Nej7 z3#_sMqvAxa_2N{0%+w`$Vuk6BkSPpRQ=oakrdP1H_Bmq64~s9e_^u+rHVf(3`WDqhFr`wzqdg43Z?L( zfJG0;O`saTeGfJMNV4v$EZSnc>po^}|5{kL%`9Hi_J@eN6ssgEI;N6R(MHJy|AG@) zdOyRarJ|M0RbCj2;`|BQ-6$NswE?--Ye{x66j%G?(%5KGitos@x~XZ=Vlv*qQ&sD1 zNufg}{d_!fk*428S4F+<2a+^RCF%W3EiJ=Bnk01{k5B!WJkU-0(nF;~UyLm*^xY#< z*`=mJQM{8c&_;GxQrTL`Rqy<)sH-nw{5K@zZxx~!a5e3!1#(HMdLA&*@lodgeT|q* zIJQ0TFi|KLEqR!Tnx&p^KUVoyJOsc81udwuxwi6G7PVzysdhA*qlDI2VjHPgyL4#i8SOKRuIsQDUi6?eqa5e$ zh||tU#%~IPRcY+-V~u`seH}%x|JN1_|0z!uQAJ!IhEqL# z+1~s(ARwXnI6u}b9*VzJ#au<@9&X2~6W{jduTe>c`XuB;E*l+YW0B-BVG zRNqrV6}37Re9bC)&haSB7~4Q`dw;jvhtBt9%L5%XwRbJI_pTxgs3$NY&(uj?4syie zJ&}~>B`OQ2Gy1Ym%OTIX;U)62%yeXYU$7%W%eJ8B8)&i@XiD~D5i+kXmIUb&{07v6)#$G@p!{T z?Au{&g!mw3fKIe3%=KjVY-ExDOH~gwlEqR#m*IV;LIb*{#s$< z)JSZ}B&HY&f4SZG7)P}Buf*S0@C=8M`m*}5Xw)|? z{A))3`F`D$I7eBna8;@*yaXquvO~Taj#@O{I^fG@*iRL}MwE5% zM<2-5?qA$dTx%|gIKjxBh?e%3lOF1fICofM+@i52Wc_Pt2lJ9c7H19Aad>5T&p}F9kTkBemZo>=!c(XB1QGs%|@Jh8=Ukv=yQNH0Wt+1hg2iV1Gm*7JMJm znIP6Q5=a*j9^rD~L>)=3 zsZe!WKu>oT=k@U(0b3AspfamOpHNShNkulIwqY5mRbUzYCHh?jts4cQ;n7#YYe`$j zgWuZ|zo(0@RjelZ3gm%?-j9_rWtJFIW?;DCQ~6y7^;1zBu!{r72g!}7TdJ{?L(X(e zM7YxY5LLxWKCh;a#CnJ^9}BACD4_jPjrN#`EIdE#r1LxZ*;RURD3HUh^2LI73cEgj zd|`ICCJummB})QtJmOVHn9E-|LfG)}<0ILtP00Tf7f>nRhy0?jxqEu~A~ZW%D_33g zxTSFlB=?&Hkq5)FraF8%Hh}G`MyQrzK_{8f)O>>*IGSrSBzmff&TX;)&j>egq-awttcf03-5X)J z*&tzx;MtK_=g4ks~JsB z*n+Baim;W5OT0Ay8lutqu=sX*e@m4`Zg;|Aq_Mi>oG|uwQ`kU0{v);L)tIdfMg~_^ zQF%h|Kz72Gl|N8@r&ev5Pz`fJrp&~~&+%oUX?T>PsyQ|Is&1)Ke>trM`pYy4?`wvW z5pS+BA(Dl8=Y-gLnUOtA$i!BTY1(2*TWF^BZtZApn`dUsA%=EOb^vH()B*g=?Ke74 z8Jq!5Wsb891K6IC6Y;onTQs>NG7*Gq-3y*pd?V^kjAGI49HDrwhL^e0h`+Dl)=7pZ zp_6Q?Cm@!25k zK`n*{BzO;xw``<3mBRrD2WqJJQdLwBAuV5C85u!bUvkC z);Lvr^*c0vU+4gB7<^B7_f^y0D7m?ygB}JO}5Bn75)#wHcvEXDF;xSJt9@dMWo<|#m z`oT-oCr5!kkos-53SkpLinSm|?xpVJf1~X`)~sfQdr6+M=D8#w)P&K|z>D zYbcq_3p{~q`r_Y-`9%R?OU@X#ks*#>&^-g0K%aq*46UnVcQUhSL*5PUbU^oD*4<}P z2-}{H45XOZNiMc_PZs=PYr#`5uqk*_A?aRa%Y^5f6V}bO8a9UVTqu3*tlD}!j2?%q zITU@$PRZGB;@BUd=>!dPw6uLg7^T^4;TJ?O2_1*>e)y7 k)Tk>wQPO)><-Kn3;_>B7D8li5ev>FSnZ%AgraS$0QOx zCQ)&$qn1r=*>A^(XdusT|-*8Up389Sxc7)^vy1W(b88sU=m+UbA++A(_zB>%nJ8mBNkzV zO64E5?OmMyNYtz@g<{%#0Chi>X{}b$(!I-gyl2*=?uQtT#KfC&96Jk*`xp?kj_XpE z9w>h{%h3YsxTfO#k+jqHgCiU#TGvXN5}OOV2f zg%>ztwcawZo@!#Ws&#PzVw7)N=w0jSWeCqXg*{)0{$Q?z%u*pVC|wSj7{+%017(xv zVzx5Ff}1LpodT>VQrfgoVllAWCH5N?OOLfbU+ie6ZLz>M88FH@bT#LkA{cLMll3to zSEg}CO#^d?!fYW!m+);4;&`_#30-#;0);I$+u@N%))&mqd)KB~q6OB_0wa$h_d`cjZM1}qP+_Q^ByFgLGsxgj z5hADNA|&7UMfoZEI!5llE`!5x@eDz7cj7ZxbBpxGZIFdr|VSdVc*$$pS=e-`~NUK=ueEqofR&uq4M*Jb!c zauYN|U$TM)pTHwe6=>{~aG~{SOe0%2Pr%NefMoMutjCLXvIG!&BV0h;6|HLfz!Pwq zCm=cNUw#H>eTM*IFN6zdD$$`isQ+afPy%0h;(zJJCzFFgm`x5dnEr@4Q0?7S($Xg{ zA@*C7eObYc7*YOlrJ{^eH!z+F8zW-~*aTxJ!cxA0F%)8bcDZ@HwEOt8%MQ*AVk^Fa z`C`Ds4yOAe0 z)nm!8P>=5m_DFYjD1+hEw+%DH277`b9+=F^ed8!)TO(kr%rM%E5cRF22n*hdIofhF z*69gLTM`;&)Ikj2M!nMnbLeiY^mdV? zjxG|m+VNNaAX>t0%8zyU&Jl&Ji6&$_7m`{5OxD~AsAE`BW0L-O=|Y(j&is-(!vbW) zHH78fUlzzxb0*;ta&)}d_sG*z+QiI8dYeGMo5IfQ!z%5!l87_CTtt`dZ1a9p>(^$z zHw(Qt0w)G=>Kgz49?r!ziThK*8NK+v2YB<_i6782;3O~i;>BtXFJ6O5wRQJLs2G+Y zhS}f*WtcVk9OxLxUNxNJ&CdP=ha(`tJnH%-h*1}8DrXdfQO-QHL#-_1XDn~El}WWy zlcK&IspMnb4&pb>EeSLc35bY*D^@hLqiehzFR^1(tUh33FQkPyTqTP5A}t9_I^rm- zt&_BmRT@PU>mG$SzS=@tfeo5+yseFTZ+{HyA}8^yVC+Ct8AiPaZHc_6T%uTYa4Ah)*Ti37<6Q;0 zlS+2eIgAZDjZP!Q0!=bQN!{#Uq3#R;ovK1j>Lwh5-A?)qWjw_~o@gfPWgN)bUYnBN z?Ht%GBB@PkQu?qK&G!B=#gEPZ1F3v&N##>>Dl}exaR%e%MFBmhLaE(#d$cTywYvfH z`0y;Ce^{Wu{ueZuUCu?0Po6_`+`qAC*FKGv>eQ7k#(FA=A1xCcyntnb+LBsBr6Q;w!eWmjJf8d%j|u0kjza*eTBw!HRJ|yI*}Y4SFfC1@ z`>JSN;W}C`3$TY7NK0~~^JEleepgWfizRTO3cTD8yCQd8b=249S%7l{Q2Q}KbY*DS zyerfEWQYtAVCvfbVITeFXvC7PEvC1F^T$Bj|BdZ27aCI#+5UR5dJQJmnhkpK6-e*CQFUZC@cfNLxjSeeDNm9bkbEB zeg|Opyy%AMx!i!_83F9XZHE_Dn<$&O3yTYP9FZ8gP1(dT6v#JA*k<$7rUN5}UBZ;S z>j=YAgF#qy7lbd&1e^=@UxeBJ!a2d4YIsqT4zK@3)ck~*aMYbZLn*RE_J#mFFO`r- zSiq5w9S=>+Dvl8``Gun!>s@+D7~VN}<*8fU;e?^rSSrQZ8D%8q0lJ*B{D$sq`2$B; z8yqwD8;Y|<&*8tv(skO&rRBx5cCa2y@c3`V2DtCb>vdC$d3Dc-Vk;kE+eRM*Br7|+ z3SCmo=y$j-(QMzs>P7Sn^msd?xQypz(!JeSizkjs*ePRDYXYgIjcw{yFJqcyMQ9(( z8-I9;B1Xu{JwGcv-uT@!M7broTx9Xna zpROCJ`reVH*NuKBO7Gi#dg;|<3twSo9@k7PJUQQ!t&m;KtDsbq z^Hyeru|3~nl`O%yH!dXb`t=yF}$H`CAiMb^kT zYw`az)=*CLwGjVWpG|7ydKIm`365L2B@@ZtM(^!#ScH37{Y53Mzdg6azj@r=o_lGs zwR677s(CvHl)i<3S-R!GiF&u(LY%q#7E26tiY<~Fk|JfV2xZd-8V3q+%f`Zep90Pn zEO(APPXJGV@tYO1sL-67g|2ML{O)~o?9*cM&T6)A&9`mybldP?XIUJTNVnY&cE+%Wsae5z zeT6B>GoJ4CPsj{n+3V57v=*Xy9*@G(Zti+#5!)Lx;Uy8Y?B>F0Kz>nJa5<>5c~P~w zx3qd-jwWAd-V@t5WuH8_X;uNPu1q28(Nf_xu*;Ed9YA%g3W*)WwCVWmPML*e!|86^ z8p>XTJ4<1M;gv`?GwIkuFMaAet_{enEN>pK-rO$&tz`_|tW?J+exb2891Nukm{iDF zMq94l{ko8|5-OG_t=w%l-wmgu7OOWYGmH((iy>pLfhfQ-BGD1;HY0Fcwp4&xJTk-W zP)ly1?<}TF*@`-&w7Ui^l#MIuERMjHsVr`|m&I!4^kH42&~F8@MHSK7Py?9nM>*@; z{8>n8x4ihUlu9Uxd@bEd;#o9|I9|E=gBWKmJTYy$xxB}l?|z;c!8XS_z3}!wBl+Ms zXr5vwBzYtR7ekqiRc@YL435!g^Uc_&=0W%6$1{t`rv9OV@GpU?WM;%t7lP^m1*z8q zeTRio|A5V?Faa^pt@5Y-A^z>9wb;Z`Xo?p_D#P+a$8(f`(wqH(f>oTinKv@)NabFM z+u8@A{q-#4Otd{WD~I;`IXWUnHhS|@VtgM%POXIli;}zF!SO5m)6+=?$F9DPqj--jgU=mtZ{cJyH(Ly zTpMknN{C<$Lrpv)hYBx1bvLCf#DTAHq+I^?Ol}4;f8NA?9cHKv7Ig4rUNoC8I#hanh%zE~1?N~dvNPVM1@M-RhwQVpH*8evF>gd@zsckJrY#B((-#i) zFJ&*mo^*8cr8>3MjetxCxvGQ53G|Rj21;*~zForJa3}Vj;i&Kg>!cIIKYJY7lDOppfMV7PcavP-S6yWugr6wB>NmfOk5x;C6%nC)qetc_I| z72kH2)<#}+L-vDON~Kvh_uTc4aL5&KtF5eW^qY9 z(MpcH?g(L5dO90wM=ZA;l)C)X&dt?*m5TY#J>~W}y_|KmyO!JkX{YZaBFmanbw(@| zgBFs+5+`8(^|-gQ0{q^OhPgF1f4U&@>?8i>PxNWPQ4K>Is&QnBzOO^V+!2^?5{J9! zvzo%KvPx>5@tSIWBHre^IM$y6R2|HTwO0~rD-+|>r8;ftmhOCP?Ii*!LAzaRtse)?(QY; z9z6_q_b}hx-TiLL0d$}o6cGR8Imo%7JASp;%GO!MHAYmNB3D#*{Fc(Ml}cXJ-p%p* z)7|lFbj|AcwZ0}Czc%=v#qleFi^B2q6#<%!LcPt=4g76V;{}Gs?C49wQz_8~zUn2Z za;}ymXYP3?x{Wqx+Ut%Abw-EZcgAS1jhjMQlQ9_bUYPUw)V<0!#m>?v4$;Y?RUySt zwsb5e4n>m99cdxDlBk7aL0qZ2rQ_g!CaU)r81Jm0HMHDc&-49J6X5mrllLc7&ndu` zO#rcv<^ELTeyV)rCUFp)Xm?AhUwc+j(JGdx%r%q1#M6+bIof>5eAM2pH(WOvzuu1)gVn^6|Z^fG24D&jZwzKjeQ_Ai$EPRewTxyq7!#~#jE`j&xbD&uGSSOEO!wTZ1l^;+B_l)8Wv!l(&&xw3&ej zDx#gZO=;Cwn#x8kG-6v8(R7j~=FL8EmemHSHy`}KSq1NqH{F~@H*1YjME4IBWCkcd zFmr0&zbTESdUbu2ti`@;gZBNUOeM62vjqEKfm=KI%soq!5tP=Bi{E2+{$F$8VjVH7 zbWr5yCp|wjT);^E>{*C$-xGIhukx@t6P!iZ7{bVl4fxN34{H*TIY0`Ekc zYIn9k;(yG8GZn%@mb%qJUfFJiGZi!fco*hr>;ufX+aV&%bQHt`oQ)!jl z60thY@8r4;%Rp8;nQw*n;o;T~vz>(ybd`y|$cDEz)_mt^k9T@6b{4~4UU}!p#qfb~ z(4xD#%;TM#n{>#__KcYACwwaY-ft?Uzn37(I6Taqfj44Fy~#{aXyi2fB&>+pm+J1- zI;t4qUfun8p=&;PcgpOtEVXTx7d9H+TLH)Psl)9njI^h*X9cBh!bNTR^@P;GB71zYm(Bv zeEuO~c>R^T$}Dr1!I|Br)O#zb_XI(h1%l+YSf%C8a#*G`GV#@NG|QQ0!gP-WY6*K+ zIODNQX%Jekbk?+eW+trjNFW_jS3!pp3gPN1=y23bIOLH)y-V(D^k4TC!l;j6r2m=; zw>=Ul7a40%+~MrrXQ+Fs%zPg^JYQzP_N%vM^^zCK$wo z#m60WV)p`?n`ku0P8h+~gKe|Q;x!0FP5MP&R2;Y2tF}zH(MzC3iSmvg|Hd((~K8!>xQj=&XBwWQeDa&(YUx zHb@O|YbdM#jk6?Tc%~9si|i@g$&|Zu^v(5$)tl#UMI`-abM}5zvbVppTMaGThSC0x ziU{3~26@Yz{&n~CH-ybC$6|J14jsTg`T;GGRL|If{=|>%-{)3K-gH4sAoH>j2guc+ zBJiy+w*swN+o~v(=$$a!ie?Hnq5&)FI&T+IB~Xg01bH$VQY{u;eQuO&oxK!pt=;In zdYHN06)reb)hKM@ex!0?mi-pxV~4(j0WDCl&G*0?$TDMRD_CF%3j^R-8@7AzMU3k5 zU&aDL<$b911A@BoZ|nv6f$mqvlYLmmQw(7AerJ2z->w@%SkdpDoiKMal|5oWdZ{7& zqn7>aopaj>XWOT%XrD+oggyJg*-gvW)!dnCbS2TmsPq$-2+FIsZ~X~@oHCZ%OPX(A zbinzxmZaX<^k=MDw6WaTQrxMXmsO5ppfdbUWQ-=h3DdJ&?g0wYm(_hTx1e}W)l8Yh zz7J)i)TWChlwKs0g`9Fmv-ZyxM(VA3=wWA5?Gt%#?#BxXu)rhEmf9MNdaI;*%kimi zugZk)##baK)3t`Iz&}Pkr$=V#J6tYEeAFF%x#+CGE2`m+a$Zn@8Hk4E@f zwuYUF@MZf)I%CD&u(SAuWsbWA7sVXcOU!W}D9ZmXl|L<&Z(7YzKBGN?I3>HWQ`H>l zTCr|s8;QZ57R5rFm(B{4!IGwQPgnNf6b9Ku%Z&}`N}^T|0L2f^{U2sA1LUo}e!+Tf zKg+Fsj9aORK?f@PqPXtwY`}g#?Tp9>!9IvK5$S)S^xCbmr9Z}JoBHWK{A#iE2>#)d zUWk7Lr-$*6%=9<>CwbEg@^2;6ZTur4{UyH`lm484G)RBOKcdp#;{S_DzsbK1PY>eX znx^OSZ(ixa{M+L63@`p^OOF&Ef&61-`aS-e^63xxN1^n*{9?iMeEcIc{U3fYF`e%O z#C?2=9X|Z{N8a>M{-LGc=0C}ouJLdA()qR&{Dg1#z{h>@KX3lcKixlrf96TQ!>{H| zFCc!ySIF?w2jZti_(h-e0RG{d9?n1Vrauxt@fF{0@Naq2d4L7?J>ehu(_irq-}JlU z+f)9LFa0|I@JW9mzWtpi0AICqZo9bgHGA(jXA>$CzUhHi4OI-)3e^eK2-OGG2Gs@C z1l2>yuLin1J&+d()c}=0l|Gd{m3$hN zIKTH-e(&#GoZ;deL>iSf|K}BK@JauRi|Y_+RQUXQAHHkmT`tnN7yyx$&WoG>a|~Zt z9JjDP6c@j6 z@hcah@Xmo@??#F z@}_8f<1Nzo#v7*bjkizZ8*iq@H{M!}Z`@}1H{NQqx$$HuU%43>|K#>$eB<`Szwx$= zYI6I=EzI~Iw=n*VH}`BZHRBt%IpZ5Qz6|3lw?6)jTVpoNQ2oZu(fA*?OXC|iP~#i7 zRO1^rS>qeGUE>?K-Gv!QkoOwdWX1fS;u|+-;~TeY;~O_{;~O_{{*8Ab*<|U)H*WIA zH*WjJH{J*qF0H5E_`CYg_vZx+7(A?RuhGNa9X&EFZPZeJ8}$&}P((LzE6?`c=dklf z3(3n?o_Eg3Z|m;&R+)5XGyLE$R_TIsmb|j|UAnU0xH6Z~l};C3zsXreSFRgZcCV)^ z6E3-a6T6wN1YCAqd3zUKS&b`&Me6Mi^D8I`bg@4j!r#{qvOX7`6QnA>XX%CmS6qmO z7wAg&tF9~SuhEs;#+6&eZ9GdEe>!JHiewtp;RF@Pqp&Bg}$4;xaRC4FFk7^E~Q>~PM4QP zG!U2WUU$w8ryJ+_^-CK*GVR?yqtp5=MVn_?H=M~af?0l`m+0~_G!=gjf0uxGukOsH zY|#y8tI}!dqpNzOH%=G79)&OIG$>;@jK|+05J~uP?vTN~*rA)wnk8;_^Lr~jmfOWG z{Iz7MJaDlo4qQx1zl%#r>Ho6gx17~u@6nh0B#{mL;{pDjll~AADL!UnZ#kp-xyqRSV0z zee)ydEKPfpht+wCeTM~E=cms7nl114LeCI%(_ZFbeV#kl*q(3C`vUW9?O7hy=%v%4 zp@7f4bgt2E=Gi{^m9v(H6HK?haW>2-ei-FCpNkhRJ{sNJ78lv*A5I4Da`*(;!e?Uy*;x-rk&Oi)13vuCW2IMd2 zAU-({(d!~a)Fp^nT-@Vg;AM#Su0WK!3X#o)&z}(9e?k1jMdiOC)^oA$8brVA5XZS_ zegmS}O^7_VAck=9Hy2<23z3kU@2!mVtB~ol?mFxe%!!3~!bQh8i0`+CpsRqG>w_XA(rG_7G3F=$MfV`6U<4 zQXtN8(X0bRzm5?5xaiUe;x-r4IzyD|0+GKPL~wVA0&hbUdI#d|9uNn)Na_hOz86G5 zABgY!LM-YJ@rH~210cE#A$?I%Ip;Ua4?#A7aMWO6?u^C6NKK!h!ZaC``nXBoty6%g%L zLgZTov34~?xsM<=b8&wSM5*<>{@ZWBpR>P!So0-Bz-EZVEfD9whA6%RVgVQ5d<*e- zCq#koAg=ug@$6@ae@{RhJOxqlG{m*vAbOsG*mxGA&ISJU62#Oi5I5;3xQZ13h_-i#N&bxV+%nPi-h>T2*kx$Z`6NoG5oo;I7HPF5WPx6tSSr9p*%!< zC5Yu*oUa0r&4s~g0ZTwLf0Q709m>AMg!(jcDphuAt0 zA~qeO_h5((LmR9O#kbrZzPuOW(Uh3LB-qSG#j*1I8g zeg_e_7ox&Gh}m2m-Vd?!0L1fy5Hk)#e02n(@==KS#~|MM72=Oyd9J_w4Z`^c#F4WQ zEzUulz5r3>BE&W>KE4Fe_X@;)F8;a-k^Uz{lfQWm`AmuDF!eev4d&wU4Tu7_AU1H3 z^bf@N+Yl4)K!n_d*vdslzk87V??b%gV)X-vs}CW39z*y&;n%om`V^wWGl<7rkTCxdyXe;gX$;!>=K3yn&ea7ADMFY!F{-5MA>?RLTocB_F0{={>ygXF+d> zLOu{peIeHQL44{D(KbIsnE;4#fe^>J2o8n_4dF9zJ`d#SzQ(uo{Gkx{xOfo;fdd5K zE^;xiAVl*Bh?`t&F9OjZ1|m;JWyo*1NQ{Sws19+Ai^(-0de-D=@Yy9#V{mO;n!rVu zIuP-7A+~ezUOkB2^&!eNfOy5l#fA{)8bPd0fLNCZQJ^uz8!px~ff&>jQ^WKY&G2VJ zbBLlXAog%^y(Pq&RuHvXLtvtTjBqi$Eks;9h#5%`Ba$JWaPeshMBfe&m$;bO5hA=3 zL`r9fYh54?c7-_84dT!45Wl?xQ8l9n3K7&B;wvtC_JR18i}1b>8C*1b z7b3PF#G*8a$bk@>xj2yyad!|zzz~QELm|H6B5)W)Iu{2Z^tg}+@nkHes2YYc9#z8! zkE-E=N7eAbXX5za(`GnKNhR&di;Qf7qfL{$Y!18C7HT zY*h`D?1>ovuvInu!&cSs4_j5kKWtSE|FBgx{KHn&@Xrn94|^iU)Jy*7_1DYI_0#!P z@K510J1J=4Q+(=}Usdjqn>{@z7_|lt!ue}-g;+ui5 zz8U!Pn}M&t8TbO6fiJun_|lDmFTEM~+M9tdz8U!Hn}JW94Ga0i*uZBE20m#p@HvBl z2St1+LbVON^BQe;~XScYsKX4)g}RR!AH@2Tl~3h3sDhLOQ_FU;pwU;+((R?Ysa~3>Q_6xeYAy*;KM#A zX@IF5E1lHOluFT2jX)<2qNRT7h;l3O?fk(~OO$H?_0DFkH6?G-A!4{Ql$y0#5O-g+4EOj%bY+R^Wl3l2}vWwK!guLiNmG^g* z`kHvTm~tg1Y88k|1O_#O!kef>>=FliYlZte{OKxn^;_HA_;#LAbG90ye;UNpZ_^A` zAH__?iRLcQvyHi($T`(b>LU_+XyP9?X@Jp^TvAyZlr*g^oZE|bs*hZ051Xc#TenaP zgGKIAe}aZ(9n^VBE&~6HrxYs^fnHKHt;_onnE7HSXpE6sL#3DGA&@)0q@g15%8MwT z+*0aAW!&t9GAw(+W+tO{_llOPSMh2M?~2^+-Jm#73I<)ijUD)UOQr^k@Rr7kVk*3) z0U~kPn^Zc~N9rLsc|O7)co8dlV-ef>Gy~@i%qiQtIYRL-&2gJu^@`@cL{y3|X`Xey zQj(DS&{s+piNStSH<5VDk2uHoep0mHIQUDWMMCc{jS`7t{?Y*2PTPl|mRpB5gNBo+ zW#!uzekKLS1rTF@6d;WkQk(;&M3Kk|)HZ$IFckS}IQGUZD6+QB+6Ni~Nz>Z|NfT*H zjY&bg=WxjCBz0y;YxwZj6?Qgi5C0ub29c^cwjzca+lttxwiU7G%T`49%D^rq@z&2^y5v2qab@7hW!A`#S%^sL-= zq>JopM{HsjDrJZ~MWIpxEw4o(mUq4ooA7JNv-&g3mT+yam6gde?Aw#}&uUM+^|SU; zmJsXPK^jKIPMU^d!>21^q0YnFpS1FU4n(FdjL6IhBQj5hNyDi1>t>?N<+GGnk=&8Q zih_=$6QAlxsv8w9r3)pi!in+jhD)6Vr%i;^OC<6lw1Kf1ZUpJ8-)M%Htteg|YBG;? zBvH69k~Hi$k);2cMUnnHC`#Ll+Al%*bq3mt%KTd3_h7rWFvY1mQPM=A;iyj1aFN*6 zNqS8r?sk%5smV(I}&Qc4=>nyoY#JW|82(N&1{w#WSmOO>5)165)^zK6H zR@{Xc^4l&_Uy;YTtCT>cx2rC2U`NnM11?_ZO8i-c2mQk%5y+6Z3!E~;t11$*5zsU2k9 zvauoVdb>N(qh}A&v&wrA-M{Z4#nGytV7oMzcR<{0XxNHYwl?tK?Q$QJ>lE}Pk!F8S z5+IzTN%QKXrOs4r$u1Q8;1f1K3kLfQ<@P3te@09FX(t@^2|^n_Q6hfzV_RQRskyyK zJx=x_9Wt;tY0tdgQi3qyf!?I6I>!*V8x}(%QFV+oSme18LxOl@A0m2AA0ql>A0j#^ zmNZpCtTqa`e}k3!?Hkw_j%F=hWA6x+r|j?+&#%huN%ef{aKRLDqDfnVorNZ!0FneE#wAdF0n#GzQzq4i5Hs z$A7skI1G?%MML-xAmc;P0MhzL29S};Y9MKdw1H%D@x?$ABcBZ<`X&vMMv8Ji7^ID! z?XRJ7jSa@=c{a+`8)BC`nC6y)29w5FKbSbkAA?C5J>rR8tKvy){XU+=R_7rkOk@rr zzPDqD6i1EfbQkryaK9OBUZ+flJm6ZIqjk0YN?SK|;>PCf0r&9d-aVuKIBnuMH&Nf3 zp;8wr_r`t12R=r*tg&iK94%neTaKoAzGs4VTDJTz#QXkj^bOv4WwS8T%e{_HqL7ag zq`uT?BOha?C;u=<42Ak%934RS11V#0A~DwbL=qA&CX$fon?ziqAc^$a14*R&v=~MV zoHUFC!wtiT8#N9i<#b3U5HOldpu3MIg&Rgo zU8xf!wZgpC9pGFV=GE9kQzT3L#z~=O02Xr zm1uA=mGsCCV@Z2Y9!uJL$5@i**;rD}ka5IH)#FH^_2Z;OTDfiAuyQkAgOU~K7H1dO z*h1Fgl};pLE>9y(aV(8AgVz*P{NwqyQ$;dl3lZ3(}nZ#`@ zvWVT1v$S)p+$2=uEWQ|*fl6fUbhU@F4_D#|O7-dUX%=alUfHC;%51SR#0L`dktj(w zM)5``cQ-p&@F|tlZUPzeCr==5vU387yU!*NKN~uclwL7WN}{c7m4yY?WU*F8_iu8; zIA-ZiRPQ;7NLoHg8wCHJfSHpgfmtehvafNshOBQ_TEeCj_ZFh}`sEP4rsfdG_##K@ zPgQv@7p385dc+h|rEIdKgPmL4Z7D*hM@0TqFe_FNrnQRolgT{r*U4lK8$3lCOl25K zP{xR9tdua=F-3BwVQk_wWX4Z711Db$V~ta!mZBcIT;c%fxujA%a-|e1N;b%r}GVPB>kzeAg1c zKl8Om3#k9jgG@&grxLH)ibCRirWbimxNFMiF77=N)ili=7lQ{;|#G(>P#-b+mMUrVe zeo{mtL|idxa6_?nXmYDW8Go!b4oznry-Y)sRS9W{tXj$MTRM=a`pa~pM$ilr!=}w3&)DZ@kZ0^} zuS=t-cU*WMq@ z7Thq8tT>pJlI4NiQsOk9loFW7d;*(4pY*&F^T}FV!~$u8Fj36{(%x4VklxjEp)^jw zis5Brt(dq%(FKMO#c>v9ej(x+ASe4SVDBZPdOP& ziOy%2lIYiFnKVVzrfQiqRV1toq&JQ;NI8OY%pm27M7QMxwtP8(Jy}j*lUI;J53C@C zwl61zt}7?K{Fx z#Kx6UI_M3&l>Ab4|^#3Wffh&+rLWcN9CuQnd6qPCFtH`8xo#AzBmy0 zdz03kTtT|#$qLfVyedgIE3K5WsV1>4P_CDaIqX@9n$$jOZVA^C0_f6A#A>bXp>~)f zz}~34$N{?&1L)$%zpJ&&KOqj7&BECn8W*zhEHePVqBc9ArRF)%%Ly@#I&(-VQ!%j> z0sf-JTdX0mX!IIV;R9<(ENWAwUHohAj$*HS8O3sq>&+^HO%d~A73uVGYe`&Ov6jTe zduydk+9r2=Q0~{h5LJaE^0fMWO79n~GfC(WV5JJML=RvMo=_cNx z^F5f3-h z;)lLVdF$S#yeIEU!%Q+0w@9g`)XptZiYaCFo;1#s%6(6)cyP;%nu?XEC^CnKZE${& zyg9@V>ZXTSLRv})ZF#$`QkqFf;a0KnjBfPhR zzrIZxWDG4l!=P!Hq329<*c6T#0_#FrL&n!3wxp4Kw~NhUEO5$pDZwP|%k3h5aB0zV zQJU`ptdS0-)jr1>om^C5N2H~`Pwo1_`_!(@KcH?rco_m|emr*y~98M;oxHA2;JCk#T1W z$_}^l7u7`cwO!Isqh&Zce+#1LZ!^a)Z6G>pm*fk@yCq9gVe@wj55Vl_b_?&oly5EN z71s(YA@5+Vuo5q5ODz`k>SGp|y;wOu5V$e4g{hpZJyMb>_4ytVoKTkY$I=)RulQrp z1Ce+3W2wK1=lcoOA@38Zmx;Gi!)y9P4CY+F?x#?{qH|EP9rdg8=@0-}KUJ7K1WS77 zQ>nK}+SN~KBZPe>4K?u=ekMXP=DYlvIKP4^|Iewu`p>C`yFRDdKl@ztHm>0>zoCY@ zo5tQ2xTU=-MDCUBAY(z8=)hP&&0eXkadh^CV|%67jLps7PSel4i89XLH|M7@s^9Hs z4UJ4h*xwbl>d@;6L%$Fcc2B7OLh2;Mo%urSQ+tB*J}F#q2JX`qRM&(B^={UDt(lBR zMLLJOivGafi_>pu)|`!;#-jtscY`bcc62qW${~9gq{^(h5-t(aUidM--Z6E*a0yJE z*e~T9&5x;=FGbM7RK=Gf=wRyBm(mmyGWCEM5s|m!fCxyKay%%S6jRv;MU!Ic;6W+R zBqjWilw(TChp1*vhoq?{Ucq5;_Qn;;h0)-RGe$V)TyJiu7Ss-Q6?$#k4d?v)V*WW4oSzwpp8;^m_T5v*SDfWV#@HX2vL~2_O0m1nCkGIlxQli>^l)0kazk!v6aUSwI>4&)hr9@ zPh#`c6?e9!hAKEgO>^jk)Z5r8c-Gj7n04`_=IpSNC)BrX?gD2wcNQnru&}}3)9S4H zo>t)U_p}00C#jMPPl^!_rTlbKiZxZo{}eS!!6~sS#&rssjygSgy*Z?KGM%!!dcfK3 zUDWZHL)>N}WXvqJFQ37M%gU2o)aZ}p<(?Lu22;mRQ(gSehystz8{xGen=Gh05n>quf0wA_^)r z@I3Y2>hsjM9-OB=JnjeD2iE;Sz4yTnw4)9Ek>*?fBhB~pM;aO8F3_f_yg>DAxIp!c z{)w7c`iVCF&7Y{j`}|C$RQ^n*+}7}-FG|Cy`LFCklRm0dLV)55yCS-qMo~0Z{Y9}x z!d+we$C%~aPidCAiQVl?&9?9tvFy(?SbmNfzS+xTU-9DZ4(e#V*?!{@E5G<-&0qmEm4jauvbYt&i+_1Z|EU5^U9*I?8?@M+Ir zQ_brTOM96$9@W+l`CSQi6@8;M!7i}o*Dw6P zTYVgujK{k5UG72UQ5I0IOB#nOzfP<9>ve4zr}1?YeNUYKt7W*uLW^GNNg*zMFy8r~ z4|}3WZ~RRw{lITjy8Z83>BsQy3w=TkzI zwqSM}cboj`WBi1`u6M+uu?H-;BW6oHTUID$b7^nE4mjX2m)6HiEG>C}*IluA?EyJ= z#S*m#?6@n|$2{QaU9rL80YmPIT}2OAc26vI;#$x>u_?@pKGq+L?lquFZV9zt$GV8A zG-r+*fXqch@YC!3eCvW(CkQOYbLJ1ejumryRO3Fe$gBHe-_8SK9uO-oc|c&79}t*# zqt=Q`Qn1*ic$wM*sVyWI$B7eO9ma2CG|26KHLy1vQVR|lPo}&#iHt!7+Wa*OY#z}Tk)6J8uNhLe~CRL4~YC*cq3kt zIQehk#hBXrw;28~<@{J0Vl0zga--MfW0`G=EtEZ<`p0OCjd%Lm8eJPR9C|E9T}=5s z5l{7)%6KC6Fd;WQkz$N}kBe@ahN2T@RLN~1a(F*$T59?XWbJz0Skt<8{TyJyC#%I$ z8;UOahl;M%q#phwy=E#l@~JqP&Wjy54`tVsLadn_0_#urvo=BZJf+${e5w)iFXa{g zE8a#xWp-(J_x}}-!^n$jl6ufuS1!TguP=qVS5h1AxRG%QaY^bT4Oj2cQsnnHRH1SU zm-knPOceC6i5400j4D_7j4HQF!@KuP>S?NC#B+))dQN$Jo@-T|RE4U1zLu#P0uSm} zw@}aDb48D>MXnb>nK`Pud-wo5TFZ8T%(*pK3-7q$aed?aY3jJV2D!h!!|M3a`~fX! z#=GwzD@Inzyt8_M4P_?D$lSC}Df0B~)wUXiYS$sxe1np;Y`-?E%LZgl+Q^wc!$*x6 z5&s{%&)A57W1F~JRR1=>nwI<1Cginy7tETY#wY$BU~jVL>#wLEe*TJD_sJ{iH7aKO zHWX94omIPWz`z#N;p?^|%jE+LSnY>hn>&2;xPj^_w3)@){j&P@3nreD1avc#yU|hx z??h43E>_B_9Rsa3CfczJdCzw%6*+TgpjgR7|9WC3s|#|N>Sj(;GtFhZ?=UdpM|VG<=}M|_bg=f^&U*Mx0KcQmM}HT zQdZxc!qh=aSzYnOl%18VuA^aUjFl(>Q<9aeuFYYp(Mnd|xx&ih+vX|}SuzKyBfwp4oy zJ6U}h3VBI()LQH8M2jQus-3KEY+x$FURJkRFtx~@TI*YTS=~b9s>S_`s>wgYB1<^{ zP6fuhn`$`LffgY<$m(KS6P$IB)k96^P7g>FOqX}|cNI{2OWcB5rCUAF^M;l#)SM2^Rtk}BSI85ZC zi$ppN353l4L)62)P4KO&JgAk@(i|Ur2k~S6vS?JetX_6UO9mC!`u+(oD&Zv-wd17)q@*)FJ<+RT-+x;iPHKW)EoJppsV1mtNlLueQdVD|Yl80H zvijCg6D;$V)rAvYh@UxL)ABKX=EPI(0B3g%Ri{`@(8GraT;)Sr_J)tFo|SIG&l70< zcexb`{M`x60cr?N1e)42tuh#x@wn(h-CqDkrUsew* zG(kpyJf1eqP6sU6+7Ye=W66~Z6HMFvP2d2YZ0X}mC#zm9ZYR#ErKVe?zEQGeNjyH43^d13QVmGmesXBOkD^T;{c|DLS*$# zS4`!H$b(I#9|)1vjc4R}wUI{{E6J{<)AtR+N;U?;xgN~2A+kSIW+kc0+90BHTWIuA5sh;b)zuu7SR5*=Th*945lXG+*IriN*5al4 zhoUT}j*vVYW$8ka+C!1g8ZkBGkk0K9V$lJ@{S}BhbfN6%4zhZjfkPK|KxoG>#m%_1 z#tyQTspc;`$f>5(_%J!lK?#TKGC+NKM{sP7A>eFIlBW@c7h7Ej6YY&Dzm8%A#8gQ~ z;pSYzh)68|+ek3$j;dBpP4a-^6-joWGbC9W4ai{^87wghB6A5$jI$_rYPc9ZF|{vT zSP)b85yImzl^P)ic1*30p!x1Zh?eEWHn6+UqPxT9cq|qxi6>zrWp$4jbC*TR>akmn z&+Li#zk9O4Wx_jyljkrS-hE9r>JUZCof9QSZ7#>W7s?5UReXEXfMM-S8NE7*E`kc= zb`o6#Q{Qxw zsf!l;US9;`XErkvv7QJP@0)W`?t_tAG*~G%(lQyR3?~Pvb9R*G*i|ddG9K}n@rn;} zeA(_q^#lgu4|Nr@AErw;xr5Ohx0*xWZXya{s-l}{4|YAJet!Z=j!tB5;{(Zs$pN5? zP8Me&FhlffqSIqadQDb$crf+PYa-lXD!#jzqGD=ecUgV)pBFTKI2QEjI5^h^4N_l| z9Hbs`;@qMU$PFE72~Ku6Xd>GSDi*G>R9ge(mG%%}5L3r{h%SREpPsbjlAa>aBCoC| z)juFw7z%mC(G+<&S`3L?r&VK7r(PzFaZlPdMO}jCh=g&7*ftLCC*icV(U9WkranY+ z_BV_jJexTTXFL7ZwhwxVi79H+t+%Y6Fv8U8-m-d1fD22^L1EW(ETO~&EfhF$IIfcJ zNbw{V>K!8{%b0&@jI6%8&+~7ag874T;aV7T$bG}Th4&)Zw~y%Yn9A-WdLE{B_YtuH zQ_uQPZyFp+9YBf|eUuk@U=|kXF&iR>Vf_P-3>T{-C?_mVbW%)}#?dmqjg!^$M92&5 zE32#7T8UwoB#&gPI~r3m?EJ{%r_1(&rL;RZ>M$2yz3gik+O z_|$%42*=`f^`ojZ^^?_?TDfGOB`EpzC2%AGB^PfPp~iH~xS~IG$!qLSV%R+AsDDB%-SaiBS?Ij~hhG**Qq- z-nOez^19V*v=4;H%WH5o@bCzAl^S!88cf}>cCf6jx^cZOzKyv%t+51u2Xx1*jU&CN zKMjs2N&&=c{o)6}yd7(l=Ba$K#uv_B8DwK>o*qNQGa%}*Y6$JJ*M?A!iyBHBa?wyZ z$@tL8bsQsOIhK$TFXJh{hLP&b2W7TN5D%-E(kIZi+M6Jrm~S<&PNb@gN~FbY#guU@ z;l-J6!Q!g6C{2}|ISS*2W0j4%y1^muF^KtlY}5*@ZZ*mo&JG`?BV8Dhs3yNBiN{Z- z^Dr7L3Wiau92!Pj+Buo_-^^s{Umqq@`@Kk}L3MBn%~zd5W!_4mfq&p|8dSFqr(XAJ zIPJY-Mu=G=*5R`eVwQ+0`;oG`+{&%9Y&Tlx#9lT_#BQ50+7&8B%B0mckEGh(9jP73 zCVh&zT|OhZ7mlKBzIqfb`{pQWzaFEhRaT6q&3t(@Z3VwE6j?Mz?n7PR%s$j1biWeu zix!P`gn;)(i<3cEWwTV;z)7jJLhqzf^Z%JDM;V`{oFHJVcocPl;<4hv&llkHK2ZGrm|$0RSmf-rjJ*MdrOWCq zJ)GR?1d>ZnKx}W!Rd#z!8))1x#!8H+98=CPw@a0B_cPqEQxG>nj)LO7W1JM& zCROfkZ7bT@Wi zZRHuoe)S%yA?j3#b9XWBh+ixr$dxHxmf8*+I}Fk2Y{#y-%{!-_m= zDijNwR#urNEnIxjd1Rk5vde-~byVRij2R8F6XZD9-8EH5GuAS$yIMI;Q|xc z{kr}alt-;iIjL>n+K^NaDm9$lyL%CAC(7#E1w7+TMvniPnKTN{4oP(a$8}XYji-%e zm-Sj-gyeK1#H%p7AV=eEp6mkOl8bEW90ggE@)Bf^P(%cS!{$^6TF9>q@zrI;Jdqbt zL!fp?mAlwqYV-|RozABV#c$}itVql zahKO87>f2(S!xXG%PugUc}?kr_4iPl@GB!VzO{rQ>aUSn>+Yu7X@oQ~$dG#WOwr#* zc^2m7=dz2D|G93dEDe^&!{(aQ4p8hd7Gqj*vbyWdp;OrP$?n$`J&F%jb<`9Pf->|A zuN%X_!K!u;TRc{sne+S=3~}o^?)qR=>te@t(1svub{%syyvmcu(zdW-cQb$byCRq6 zg2-NDHQoFhhVZ|k_+((ev4J#uIJ?k!*$u_MS!2hx^V4|ZHpcFX7d-Qo(efdX?VTD1 zb(8*&>Tmr6p(Fk@8hPkg7YNX46`9Cxi$3@#TOU94$xbDG~qa{6tf17=l>4F?@)EuPOH$8IY_Le_?{+9Bb0 z#?5@Hbky2H*`3;L7rWa!qERt>A4hdrya&LL86ojg@f`H!R?84}v@Cjbmtxv%Vy175- z8`v$~N^fCTc*(!Ww|0s-wJOESD?-&Xz{e7*?IW!0gCQ~K>Z(h zK1lX3hFAXek{EWaI6Gn-HA{AdRY%6ztKFEh6BzpwGjLueyTRdUvJ1_d{fdcvg`v3& z^ZK42XYVzms8}tP=YPT=^O{+K&vdzsv6VSvMKio&SZ4-NZ=v8`x5v3rW}q1|x0=D~ zRmd#-Yn+H(JnPqt`;$F1%$42YUZ*r$xH?@{12#t-Fh@kE<`6Is5s40KU0WJ0!MS~# zBe&ARirWq1{L(8&tUA&Z*<8)seq|e14)^d(ctA+QvFOZtK!T*81qeMCBMTg*_qnK&ynSXh*@$gs`^Dn9*@(sS-3PX zf0k@bjZ^4^%)jx68|TbdX}+4~vCtuVf)2i)CAX#7rZM^<{NdTm&ZM=~H2P`A_I5V1 zU;LOB>P=1F9y$7%Ms^i!Hp~$BUMf~%{Evc|NBP6b+iAAy+>vwBU68vU9?q7-X*EwU za;hst&5=7&daf(dhq*Bi>qM)N>4x+|yi1=~;hbl>kERL>kfRUvFtQth(nB?d>46;m zNe@NEP08sNa6d9#9T~ZrzcR!&Pu6k#AyO){fXE){wzR!IXBYR^K>b`?4zIUH5ik3v zw-9p}F64bLgiLG6goM#bz0nfs3Er&uP)bktMtXpcqLyxsYynvbYppbzNBAJ*kq@(z zKV&AYb<}XpeUUrcR}sLKdbKj$QmfQ5hDr7Vr&75+Ej-H)>3{ht;VZLLR_9v0Ce7K0 z2lo53-sukbnybI2*b|J~E&#qO)i!GP0HmJ{P>gtZSGuEd`ou-nGv@3-rHQJ_Tf&|t z>F#j$({xLXzbr!p#^TcXaxm5Q2_yFnQo7Pdo73&QCKgT8_UPe32-y&%bj26*wO#Q5 zW47!79t-3EDtB&cq&Evz!fDz9*`7L`E*P2B_`{uUb>n}$Y8zvRg}~XR*!Oh{Wh*Gs zuXWQ{s#gd?PM9D*)T1sj=1J(aP!6G`{@Mn~J=+>fjq}V9i|^cyLy)6C+g2GJz7NQ7 z)tIlIaVJAS8BQE~wad`<#hLAp`4wYo#+&nuyf&2C*4vK_r}^0va`H7})z(mirO}$|sBPT>apEqQGs-ivu>BpcD;Z((8kw}*DM^VuW8n$J)LERg&6-9l>Q2z*2 zJBHHqMC&L7tc+rP97n5d8Td8D#j^Tv%B#AbAzF8WBW$Wsyjb?6N_Xyr%zd2{huFDT z)=U?^V@&tXN-yWK8yCwqv~D4t5%C4szNzgPKQVIWM2LPw$Mf!U^jD`&i8Xu-{ z_)n3eZ`PBA05>@GrtC$F()C1U07Skew`w^Z-9ya6cqJpEksH&C)uSD)Us5lm$M$A) zKRC5*tynDQxsrP$cU^BbUb;bf-FQ1~^!tdh$HXuv!Ix!staa9CJ0%9WO)<=_ez0Kf zct={UZ69Pt#fqxfz~vR=ohTwM77@8|On4w%sT}X98IxwmAvd$H(Nb9(#%l-bBIM}5 z?8`D>pg z*4Om-!2^(fc>rr%KZtD{Z{fw7L(^ODFvy&Nic_LpZD8Xvty3BXBEo49GoEI`7cdCv zTj9krt&X2D@|3~EoTs0SccPV>H5d_(V7@_{(L5f>^Wzmw5*#wUG)=gYal?kdD}$^a z1LY>^H3aEaLt)5rxjQw9$55m{AIhSTJ2-q<=BklqpMczr2}H>Sy)(6A?rsJNNd$)# z+9vCli1aSQ6-T_EnyGzQs7XR@zhP{;8A0njVi?l@fZ7$>nZXlA?wbsER>MR(XVRp+!YLZhnK%N0yP^L|xdY9A zn2`tI7oAsXyZ5M(NXL&^^9PzUD`k6{=?-I-jDmYB`Un(qgf$& zkg-Z`Ma^uNiu6}dxk?VAaHp|IZaz+Fv-Qt1?KK_PbsQ@s&DeoUt}YAIn9&nC`uKE+ zsL;02*mR`tO;Lkyaep&!jZN#2rC*=V0-0O& z+gb-aG8K6h`N}x=+%;P>&h5-c=JaBo5e~eK&)lc|vRhCW@GV5dF4+FItga_>cR$3) z=|ynoZMg@XK;#!8-L}}+__`k1o%_&-B5&mACmY#S<#ghcS2UrMrb8@d*q{>FwMHBy z=0!)9ApJy%QlWrR+1i=hCB|I`5mmC6abbad{7Jue29j}6qIy5Zuc9guk~#AzV}_K$ z>MFUXyE09qbgO2|AbY*+T3s#UrpyP~rpFhKx;PVao6iIPwQ{73vqI4vP1CCQnd95CuRx z5I(@^@CIgl{06HyZX?&ocrz}@_EaOw#fX@<*b1Bvphij0Cpbb<(FD^K4P49$2Kx0) zUNd)y0d&G$3n!TNfH>&xn+Tfl76h%s&NJ-!1P8dXc!KK695L-JL?kW|+IUk%GL|6o zhb2}J_m!$heT{f_^TxGN_=WaPyLSpAM13=6-Xpssjx<{ASs^Oi&XdaTxicVyG*K4;Haj_e1^Axp*r zD=thBQz6cM#kl9nncI3O#;tfbL7nS!L_;|uK3oZl-d7NwZpO~YxnHhCZqzC(NcjSd z^2%bOwzk92CG;^nSmB*%uQ1YCuPCWz5o2n#ozH(?599^7yp0l;LW3-3W1Nh~+S!C9 zaGjWXaI(3KU6S7-w7G>Hoj5?j=0zx+X~0OUCh8aWH*B}z_s;q z2kLVV-$kH3i%s!5VjV1t#eKXb+F>>%b#E_moGrx zB$hTgy%qa>-TW_D@9IJAxRTMg>@)V=!jc>p=wrxnq>xYcA>_t>V+g6=k4r*#B9G>M+T54nsaRLfsZ|fRvMO{DkC$U%>Z0c`)^=^k0y^?vmc+SwoP%Rx^=(8B!L+H^7lCa(k%1HN{Um znw2#m`{V0YQ1`i7z`_?(#AXVw!B^K2qr0Veu>a^>tp^9*Lhfg`lvvC)EZX*;QJo=% z-iFoN#G?$Cn|2%N4M=BU^X!k4F@lxmYNGN(hOoY?Le4AMq@WRn z{R%zbm%Gvl#NEGgw7shmU!T^f~{)k@v+KAg2TSFr!m5IQ%(t%g%YeG?*Ki z))>t9u#tCnmpl(mkD2robI)ut_P)vwT4%wG- zZ$3wE(n~AII*g6KVRoJa6z!00C}jLggp7Y>jGdcyh^<3jqrz9nHERa1_F;`G?F~+v zJ{HgnKc=?|Uha^4)0!$|{9vRqnS<~@s&#Pc_q_iM7*!USdxjIN`cRIdHGR_w>DS=w zhq8LNDOcqIBhPaN-;cxzK2Bf3K5Mzi1+T9`6&GBncGVblwF`2$;040jGFl*M>r^K= z`;m6s`NSO|H#{JS3COyk7mpoW{9_N~PWFPxopLPgl{3AN?(A)?EWI|kO^wv_${^(E z_xK2*PSChhYxpBRh&UB!4Vxv@jM=FAdbN1i=Vf0BM98&P@M;HY#;sWQ_EgQZ;{p3r z=XR>{?kX7;C8Kcj8o~6d&FWc$5(Vh{Atkd zk-Ji-Gm>lfXde~c=#1!3yC`*b`dDsFyUsW4gQvQ#=v!;C1y83Jphe!xx73d9fn5=F z9es2W#X%J;R6M>nVsi1- z1LkLFa~E(*D$tA?vttplDo*KKXFrp@G;SJ)%({LoWO>4?^#u;vLHuezWH&<8=VJSg z+fN~n!kEQoQuo&vL}~hp8~Yw@=|JYfov1;}8U62p*45k42r*j=&=P)NqlrKkgAkHG z$mk_mdu4San3r41xbBHc2Y$J}zzJ&i%9_fCu+QF>B(lo#`Z&TXo5KHu(nSnYJA!p( z58zUYClp#}D_%DOG1p<(7h*?&E6{8-lBef@?f_;z)VIi8>kLM=VwbA&P-qMVvE|MM zbYq|3-H@u39k5S3e(Yk*lNroz-jKCV+fu(~AhX?g7P&p)Whmgd90}T)N%!#x={%9e zA_d|_H@JEE{U#zLCx^ASx`fQ>i`i#@hvh3BCvm^ro(@q)rWm3&?$wHAH3t-4+=1sMImb|bx)ep-3pQJTm-`oXqOFwijY2{nBjw=(6`uz zPM{{T&mV_QGj;RLmx}PDqUdy_e-Bv)wNGM~=OXzXtaCFItTBuis?!HZA|Bd4G5l zxlv1u(GLrBh6jC0OkcEAlwE?LHWL=CSncr3i60DD$g6b=qll1pB;n z@&*4sf(uMOLuG2d27t1l9%PJlotB+_`=US~oUOgq5`=+R;xLk zs_&MlhZA{?;@QWoN34O}N8}h91}CmT`fqEEF%I={f{L(dnwtK#79lB;66iL3g_D36 zlczbU%h_CdHm(}#PvZ~oGfu_RqBSx2Dr0Yzl|G3Qa7tAI+J%(QWQ6F}DQ>_Zul-NU z1+GI#-wmqUw@@~O3&q|N`!=`!eVF&P+}7AzIOTK9p?AZtax3GjKlJ%}ntC{q0`N{6 zG2h_ywwo~HV+j35bXiWe+>GS1&5(Tx9|h)pBYV=qDjCyC6y^pG?WVhlxXkkhBUhh@ zUj$e5@dc;5)6}JQ3INBWVtbU+v$kNyaQvP)H}ZYE>8;f^;OrRW==Z7YSMJk;)HdMk z?-;w!RycT6>@9J62KzR7%3ip4R1T&!G1ArH!xzlPFLHy}W8(3P=Z@Hpxz9n`F}ba` zvM9{S4ZDzh=M%M#)#Der!-3{G&c!}-uW|Qbt0Oki-kMR4nmH;-(IjeE{7PW zdz_xV7wNa4&v7~I{~(thmwV7!jQA4KJr1af^nh#$Iznak40|!ea;fnM!A*PLZ{;{D zb>BfGzktGT#p@Ux?Qj^$K6P;DTREDR)}apRv+zf0+P2UTmhS@*-^q?t=u(E-2T9+F zxXguqcLd2Fz{>CB4*iKK_Z>s>W&HHJBGY&>v9K^av1pR%Bn6l7FZ)1zx64K-)CK2w zdKlL-wftp}c>?3wtEkuQ)Tti_EIxq(HbdG8Im8%SIC&5I+`Ruuc>9DHr#U^GeSyC8 z6r4CA&Y5v~`6;9ixd1OuXgk!n3rIf>-M^Q+QG5K%$Qy9kR}P@$T|Xgt8SMTKx#l90 z_rtaC#iI`|^TZ`2x4R6!C$+tQAeuw}Hh%J6F&`f69yK#q+aU#nO(3hvJ3zyLnSPMf zcc!}e#0&W03JMCi3Rh2x9Sly7xQg_x5O7LM{)~~|gsf9qHQz-|^p=0Z`cq=O=TcO9 z!zr;2!|B-#h;L|sgQs!B8Z^xv){ee7>6r#esJ z^t|7Y-suL|o{`meL^!?g4WvJX#51yYOU3=z2fg(fecig(K9}%`z<@bIjwLh-rQshj5joTKHZtG24Ta|wrVg?kW~uiP zal{7<5y6X4_l`I{@eb18gTrUVgC8f)zKdl2J@}QCR(1`D3^e6V1rUpE7aSqaLYVg-^dFvqHGyRAvqW@I*zydATdi z{EU$o{iSAZ3$bfwsi&5>^o_{Fp!&~wIh^Ke_#4TcpQ`!Vf!PmoD{gKP%XoI{Cy4tO z=KUadr`c`(L2?EDsKJS6Z~Q?VW>d;$sF0^H{sLOB`06b60gW^JVd454|3cka*$axU z&cch#Fgqlu&sRt;KzzbaxCq(k9*nQ<>u0Nn`FPG1%~~|m4{Y9o*BUkz z&kk3^DreW4A^Tl$_*tmT$sd~|xjWuW`?Hu}aQbKzq#tSpl|RefjDsqtceFryfTdDO zRrwk-7gq>eV5S4dowFUp(lLidAWGlc%BXYfMOkNT1I|seLT+aple+lY^I$VuSoPIx zTXjmof$r7_v~FPp)}Ni-NnN?%Y)|CqLyU5&%7dZgpV_9^$|3!btBLC>l z*lLRafCazEU1?pn+abB5$OoI-*ZfEFP-N;4I;xVxAVoI^zY!KVM~xj^d|L-ZwZt9O zOLAwUpK^LAX4LN%xr4zu;=cu)Vvw!QY5^S?BwUSsT!@nn5oXS?@E5$cqwx|hcN9m~ zSavrKxg6q*`Sl=#7)S3J)3WmlbEZvKm%H&=Og7ChTo!X0PO)>r%v<2PQ;f3!PQJy+^E@E#irBm5^c5aR@9GKTZ>c36J~+pY>N>y^5f|~t zfOmD`ykk>{L9CW?5jPoNn-38Y7-g^#&z>CfxesE(0wCgVET*>WTyM3Dac-{wD`d-+8wUc%hARmn$nG0L)@41yp8v)++id5)b5blAfCB7X-;>PG$tB? zp5WoaET>XCIJ0M-lQBe4gd!8K2`j}5R<6so_z7ECeXoe)M)g2RfjuGa5lZ5Sm51lq zs7=Emkv$Qz4T`RdnGGj@&dBl6Q1$?G_PIIFNep6~JtZ31r{LLjd6=<5DLL&ovDC`R zU-m+D%id6V6>Xl38bB;cgl7-t*=uwO?Txs*VD`J*kJk1%BOi`Yx;m?E2TiUk$kDHX zcYc?L7`=rTs*qzjTa32tTb5Dcz+DW+^gdiMUv;%*f0q0nJ=#q zuiNrcHpe5b%@EjdTRcE=dN(Wqk3BTr7BQ2PUoo-{4|@KI)z|%1+Fo0Im7V?@vg@7a zxx#@vrRqx*T)?fNC?GQd?%k2q4`yFgpM0)HfrePGNCyzqNN`V>BW@7}EmAH^>3ix96KiG0r|d2HBgl*hq&BFV7dtXq2lsC769YUuGkFYQn)px4DJYtmlbKso zG*#n`j#&s?17{v-N2fiETsQ%o|B|~Hrx9GPkI)>7B>7X zcB6R-MjRaaTdYTOdVkEScbde;Z7+x|T;S)GL|(<$K;j>Z;|iP}FbT5;6f5HzW(}eC zFfxTbbUPL}z}bZhG;UFugA#1=SnH~L@?3JuJfv^TW43Aob@esYaR1l>({nq=>}Hrl zdX~2%W2-NFa^`70GOtV}0%E^gV68qraLB!>2zj1Q4aapnd~t!cr`i`F(5H~Kjk+?# z1#~Dx`erD3DtCgczZa-))p6b)#(Pnym?rRajXNYi6^}U_;ZTH#vG~KDMOkmcEANYx9o_&f&utVn4fF6u=?jYE6mJf6!s${^0gima;F^`DKkZ8pEEo&FI1)gOkye`WWD z&TJMx$+B6q+@85T`SY*dY85TO<=;-qy}6LG-Lphy@kt|-=m91!|A>I2t~n|AXtv1vicKJAcv}$eITP1|Rd}YK zk-L!1nf0*~L}q@|^yJAjbF+zp%Ws&yTSvJWCN96m@-4hM)}*xCB$1cjKDgN1l5nR^ zS}553BDwO8l>MzKGrv&BaVX__O%{3iE9x5#Q7(V|Txmq*^>cjL+@#iHHSfZ9dVchp zz1nSJf0!#o^PLiQ#@fXFQZKlC5$=85t1xj>rV1`!<6vuXChj{XE`QXFS&9oACiZ0$ zn?EJIz=u#1*E?T`=KhTj3HP7LK4wqB_PHF4eX;rz^^qlNz6LYKdqY;tYQ~#e_@DwGRrxk$z3)wI1 zK^bZ3c?d|MC>sFBrSy;}+0o;4*hdq_+N7rM?Tx zU&z4=2VqHi_LJLlNtHgCrBc)s)553<^3qs}{cvQDc_`=s6Yq`xLv|4=p|@w%8-f2r zf>u8yXf$F7RK}!D*O&4jcByEy3JeNNaAmpujMrxrP0P#951&4BN)=`Z)Ud6yi}O@Y qfXabGFJ*tfSxnct>}NjyR8A=~o>S&b*?Z6Ks6U#0SFO&}WUH5` z+bHTS=}=BTFnvJfjMTwtOJ+o>P8gn+UcFzQ<|k&_AJnTGh0=18eqACI8pI zRzi(B)oN9*RlUx@8r5pot(I1+){^6W^z27mbwwG21h+Ls;nXOSo|mxoJ?%w>!_jwS z>ez8z_I{ZQ#%`%NEp)A2%|C{~y!j|5<(RnZeiWfBscG(R}Q(1%~wT<1)sNqbekjcFtf8 zBDxJoA2o=6&zBk4$>q9!mkeV?xe(0!yX%m+%h!7#;#tiL0e%#PegX2e} za}{h3u7jhjB7{yF%Z0ctrg&~^qX73=1CKgLeuqZCJKd)uze8J+G6PF3I_`kgg;F9j zbtq-T3@f+KT8VQtD$RAOS9_@~$mvaG(8&R_YH_C;#&FigKCYVG#f`T6v>Ga(OE#BQ zl;WXE5zG?Y5?c&6zhRQq%xgGkMC#BnRYr|khE5HgS&nO1&&yS75O7+@jUSgjW@zdN z)`aS4bZ~x@n_=;CTk0jCjNtsb-1l}TSJfQHbudxoLImA|sy1!sQ7l7^Ju^yiRV;q) zO1(NRXTGFyV^W8XN*gnlYj5(PeZlz#?$7#eZl~z=#MA5xX(->uD8`?dtUc(W74-abnYq5bu^bm z-w&Nxmdmq-xoYOv$`1aA15?KlYK|Kl&ogw{0(-umBhv?_jUdz!_3+zDa$8N6rKWO@ zM$+ibFx8;luMiqfdO_%H&fGY_cc%Nf=8w%7F?1X;DY1k29^`wEbwvK?bBWe?V?Kwt zOQx_wqJ#H2MAo6=$ht+!6&PIZS^Y4fPzA+vqga4ZWWdsc^DCfX59ZmptcFzt$&?%1 z$Od8V^G5F2=ew1%`uTq#{mfOiPzG}+&4fdCm%x!^M>(FK&yQ2GsVd>n5H{dGp2j>~ z3k>{;hLNpZ8{1SfuBl#nX`U`(8sBlXMmy{``n0C(F8bt9^Pl}W`Y3(6O+V{nI8C2y z^s|{4f1ppl($D6XKTDr}r%&hG+@Vhj`b}ldJ^EyzPwhYchdw=+LBFcKkw+h`^uueT zG@W>5{-d9TrhDj9fPRL43el%~^t14?D19>1&#KHTPoF~c>1A(2`lO>zzibhn{-M9S z@^TCMnMFN=Z{e|5g~$8!!{&2@r|a~o-p9k~S6`wq4H}Q3Pk+`fJ)uu&Q-mkI`lT5}{FiSEkAKh)jh_oox9HQ~=Y%IG712I8 zlfpctpZ(HLc)CHKDy$ZsjP#p1TZAVQeR}zK;ps2>O;`8VD2keVHe;S{R<`i?C;f22 zZsF-MecJW2@br{Ey?;Y^x=NosLtm#bcj!|S+Z*&rO9iTK2v0ZZXTO)9ML+Y?&we>5 zJSq978M;T7+4Ms<{cucl4t>g_KWtQ6c=FKCG-rgTyY#af&F0c?s_17qCxs_3eR^2t zP5POSK26;!JlW|}mj}X=hCaoaT=VExgY)I18!#Xn#KX?8I!7HOj@=e zk$=>uXQYiuC4Qev890Kg(yBb?9MD+8o6x&6_xs=w!KuYfYT1O_lVqlU?`&!2(mJ@1 zy}8n&SjO4g`czrN99+YWB{^@aKmj$nwr|3vwyI*u8phiyuSUr#RZ!JG%EfWVTff4k zb#oKMCY+a1bE3*B+3 zU#_`xhIo?6=%5|s8rSvdxxRaGD*SR58@RgnsIur*x^(Wuu z-3R~OD7U4v8`)2_G?CDe|HDuhD_5p#lv8vq%{A*9pg-itlm}VTr4LuW%V45OK+QEy zPUdW#P2BNrgB7V%?!F#TPT$(C=p}05;QDkk&>waf(29QdQdhI0kN9brJJ@LeSF?K> z5$8b}mD}o#%d&>?4vh6u>8`PyGpQ$4gBRbelZy`2nx0Y8pS*J;-(1?YDS6<18+|Cl zE3D{DWz6j7;vS}qQoKf=diM=;7kibaWF-w!WQhOj=F=r#RTcIE-7(D zho)Rg4=tzfYv%^0rgO{s4ds-*$I+H?eTR^CG~@d8HFKrp>p!?hFcZ-3BEP`t#13*T+kKeCpsB zH)rl;Mnn2euyB(H2e=J`Lpt7plW%Z$n>Q|CLhd0wc>5qd%{z7e8=G2$Iros(T=$_? z^8as{c=yg@^E#ebF(t%lhQ+HFgvry)m6L*IGPJzQ=f6>z8$BY3ver*EqQpg04cw>^ zz=WxUUdGJB7c5`R>vy>TL;Y>qeAh6=GnRH z3*Up`Z+*IGkP`IMrpVf9zJ6=&5|yCC*89sYDyTMFbC=t+|2yW^*mv(J1%T-4og&m9 z@0m3JI~3`;rYN@CeDl@`YsZL~k3RkhHU>>O+iBz0wwor1K&Q8y1OlPqrX17Ol6ahm zwDyayfk<0(_hgD78Tr=kX75^H3EFReZTWzP`5P{eH z_ynrr-2U_JTT7l_Eh3%1$cVA>@?HSP2r=q%84o>MFZ@1DEoV}zZ^nxzb@}#m5b;F( zJ1Jrhwz>C>_*aShbz!DPA-M~8tXr@DU9%VvC}PPmq4@qK0$cYzTB?+5|JzSy7F)oK z4hr+u&Ci-DblESxq3Y9RD_%o&AJE33jBDG?z_^-`$ij(5M zmNqE1i+}!MR7?`TFxH|t1tTQwL}VW}--<48EHNB6a4P}|nJ&O9Jc=s<2hhTRVmO=x zg0LCm6c)TRs5lH%8?}ol?C8xYiWFQUPGOc|Z4l2bttcU?{AD>s7EEP9(7#QIx~Ix3 zCID%G_Ec9y@ySYx_Y3h0laRGd1ycB67)YYPl63K;PDE==|@sGeQ zq-v@Fnmm<(hz$LXW{QP?41xDc`5?=iDYU3(Glhf8Slku08l#UviNi=GZuss>cJAaJ z4gXCm%CzPf(4AkKxY4R%israZ3q_@3NTzs3>Kt%hOGRH9o(1p+?G!zrykI&TG4T&O z1-9Z=T@<@SBlmVw>=FOG+FkLX_~+X_6&KVrDZsP(Nnhxcs`yd-LY)B$g$UMikRquV zBnk0;!H6Rx6&(sumu6ddN4nyOXk?4WLj3|ibRkT90teOf#9sNCzQ&QUhS@(VfEUCKmn&-6 z<(mKbM~d|Zfi7bDE~lJ=?B$GgwqI3#p^#Jls#3W{58_E3{LG|GQ7e8!`!|efj#5lb z?I?Dr+Ki@N_nXm)@{Q@E3GKY@x1fi1<%IuT3Vzq2Tm^_?=*ntkv*o3fTC^cfsmJ>~ z$~QGA;i>vL`|W_ku^5Gvr)R6&Z534S*X?J_*4s`7onOhW?mp)YInbD{L+ z%GYq~+DgBy#+&OZbD$by(j$FDWh*x+p0YaJrnz#rtcqP*DJMcz6b6kz+i|b9$|Onz-d6rM7sedzLEA_~&KHJ))j#k@A8vM8Ke8(hXfM`e@0bwv}3XM zLnVfo4j(a4hASt4+pJgqp_YSwW0UfCl|cH*Ta`=ycdZ4_M}@qzO*yVOYU=QUFO=`d z_Q3evN={VMzh9YF3^jF#2=QY30c9LGDBby*#G}s-Dw{*&BH|IyvD3;he*chixNMVq zeXG0)V39B$pPnKb68t!A(Ls;m`sb9dK`fr~iHGJ@*WuO|mDy^6@^`N&CqP_Xhg#kw z6suMl@wIEpC50I}dZ#@WfAgp0mOs7&a?ANb&|T#yNW&!rL=dd#-@Bv>Vk4UAyy|Y$ zYnZ};l7CZrP~(S6BeHB6=|(fus^;jx1Lc1Js#0mmYLy8mKIC(`g8rX&O22=Voxu&^ zp%H<$lUb=zi(CJvT&PlJk3$LS>S2_!l{A6(yxBU{$7t;{WdtSKO9ZyxRb7MFHfu`= zwHm22BKydf?f7-A>Vv|Rr>z=qRGll15EE)`Rax<6o9f%b_)9uEMWu6t6?;l3xw?sJY2nT#t&hVqlT<#z8=!TqRLhGcWM6BQ13pkhO|++n z%7Jn(tDE9=9aW~nHbjR@(M7di9Io%XtA-UzVIpn|gt@|i^9rZ2;qnlB74UNK!oDugtd9FnQpEB;yg zHPr{=pEqAuk;)7GLW{Yo?c$%7g{m9k7qp92Z;8FLafzyu_~#!aBPm|*kTJJldyeY+ z!hw(WNx~}C%Mc^Dch{A)9FxM?*xAMrxX(wbqq;&wqIH7t8&%~+`fuC<@>Wbxc73%4 zpZH8w7UHFz2SLkss;uZ!pRp3&y-hU^(z!ew%GjxL;xE5cRe(?`A7SKf)tJKh6YaXn zU#t2S3mP4}R?~vx4oMu{byVW$-0vigb~`R{)O1qf=#U>&KSFuIcZ~t>KCfC<*oQk7 z#l+#&msMv)PR#vPH5T9!S??JT5#mFcTlG5p_EnX+IAdu*_T6O7E$f7%BcAmKA7cyp zMLH(V+p12GULn3J6-}OPOvAnZR<)BI?nh5lA+c9V=BX9}dW8t-smy)}#VNGz>=x>A zsDwh@0o^&LwxE&<^*HNj&`E!e700O5?IF}88umcX3~J*Jt-5RB za7jD(1HJlZu@@Ga)xdBm$XKpb>yUklfl$Mu9tez^Jy4dN^q+0FM!S5UdNz)AsY$g> zh8eRx>I5+{`6i$SCMNmPtXL6JAA|6jPM|yf-w=?9%OjWHzF2INz@L+ zrN^n$WK};iQJpBNUUpjXRL7*x8WcxiFV?@I{!&&=+nZ{;sAl}aVyWpx{%%?`?z>2x z3( zD_;1aIz`q*>#b9t5*roT0E&k^J|g%IAr_YURJ{)3Z7Ix`+to3c%p7MGo;1<{XtGUh zf>^%<%}+|jsbU^hj}m7<)4o*S0Bf9hSnb-ePrXvMb8j9{mlN4t@(_sKbnu7_10*Tj z-zd}t#hxRPni9Lo33W$VVqf`DBDUpc2(b|_2@^?6Anaypx^e3Z>PHZYQ-sVv)H;0f zvYJ!?3Z_q#J5zsA=ZZWZ@jHm;k`P3M*afmrzD6PkAn#>ZrBKFSB#G=-Qa2DM-BK5+ zl~C0;+*Su6w3mcnB4mn4_9qY2kBXzQ4re}AZ@s@|P7WWSX`bFy&BllJfmw}z#vKlwC}R8tPzqT&#s3~G6x zw;StQYo-;Rds7yC-%e9i^wzFUAhPnkfnz&sY8Pvi(5KxrrsV@PI()N-W`?Y)xR1sw zs(LXMtSTa^ny9oL12kqx*HY_@eO2Q^tG?2tVdF4OZ`la5HABNvr^{nCfYgab7(^rm zuxY$zF*M9zf)ES$rPDP&d~vd-v#k4@K238+j4;z?Y9N&b!PgNXsBetPOtuebCc$0x zbd4D$UMByMN(hQY~ryi^ZaVlTZvvC>=j=Zm#4oqq-vQ6CxB3mJGlyM6;X~sermyc!NN>sP**63(4tK9Y%Fm55%u-WOw zogl^)6p4w*rx3E8I7M<*({_>Qj6C`vK%n`!c;_V+^z_O$>8kRKIIuBtPCPFSk7)5^9yO8@j zedPsYs&iFSTXbJDu7k)_K$->byrKCOLMB=n&D3f&IB-|{f8cTNGD#qNym_ zZQ3(XrYQ+Q*hEG@MrqOn%0U>W@7fH@gZqoh^ zaXmC=P1vuspv#Z7X}J3iZ5tWWip78J(#D94i|zxN7B2}CN%J5>$<%Zqv|lSGo6&jB zDkwL+z=H38rELo_GK!jbNvlQEkCJFXr#F#9S~9&UGH$W>)gxNAgQMRukj)hohx;Da zg67f;#)vMRBC4nObt|y$2W_1~hKGpZ#o~o$wUA2!5HAFiu30N%EU~y|uGR^$X{LGw zVQ<`%U$tz(W76;1JCG!gArf17pmow2-n>6$EiV?|y{(NGEie8)$nqpb_E zzN+hiN|qlQqG#KxBH;{gzwUKe z)lUx6{Q|@viIYd_&d6##evGcB7)idI03j(RyPEXVYZHya<09p z11}n$U7)jL<$PT~NUBCPBnY4bnsn`Mb;TSDs$8jdfNo4{%jw9*G?_?{`nIkqBR(4tOo{p7WhOg1FvP<+sT^nKC@sy8s>md~uepv#4vPHK` zHqGAtxfI`j*$Im8blHR8n|AEhLGD8nR<(G5<-2v{rjy;zMfZ4=c|d2zJNCk&J5_CS z(*;%(dz3)aGbC3I=;YJwdIzOAU*ZTT&P(Dj5w{Z(-6=v=rJNGT-cL0Q-#YPvz}xv0 zEbtbn3*xOUSBkgou0mXyK$t8^ z+{PPZ-D=Kny5kVH8~4bXgzg&j8st3YABh|NsUsVCWo$qBf#m4s{{wP#k|g}jBi&et zqmvL2L9n8yk92Y9)?BwAOppwL%9iKjd@ z@o0s9u&hrkqtk;HUU;dP^!r-T6Rx%BnI{};(=$)l#Gz-N@S#)BJYh$lek;@yqRp{- zJ#ruO5691PrjGPuoZ@KkFFT zSRVrS1;ZDeU*lKwY{Id-nI66=EU~5Dg>0Edp%iznwO)R%k=Ra8rfamD=XTUX<{Gq< zm^2Iix|99}#O*oO>)W6OLkU5r{jN{LsHeV{QO*<+)ATIAn=(WX$?tecm`EB8@pw#4 zE4n>Y??9V<#`3(!i@}$N>)!yjyDb_SPxkBI9IdYpN#=-3BErUTdaXgO)0ETo-HQc{ zcxYjb?slf0t9**>xd%k*!FTOd~; zeP!{_pWoIeLS_bhPhhlKPtKpoIMGQTkcjcWha*f-Nx4M^u=Ym1L$salpMh+LK&N7I zjO{)^FIt~Ojdv1XocD!ZK9@G^m*PgPuR(ExmiwrX_6PNIAr>PcAcA1Q8HeYh zr_|XO_~Uu!^lVyv;u45cMMYY%F;@@UI>9fqN{nLN-KZ@-7@s6ZMvZ`<924lpAaWUD;0LTL60IO$dS%{PQwA&wBTfnfu#ke zI0GatkR)LusVAhHB?Mkq3s#ph_`prh9kW1>p4Bzjg;S2U3Wi#c43nyqk99Xzvl}m| zVj!D%WO!YowxJKiWF#S&DEyu{ecIH}z@|@A8XMU3snyE{Hhp^5#K3ZcUd;{5#M~gS zwSnaZkJ=hoZm>GpFba|oFwFwU{*9qKe%OsCiA>AWdl?2o@VC?pcSigA84TzPr(py> z*5A-s)<32XHL&^HiV+6L{7sUC@kql02s(J;?WD--`vNBlA`-946x6r=pm`Ry<~~5p=X$QUrZE$|#wl;nS^>EBtP|4 ztXMwwkg*2DbG2tG*#$R5Mr$$-%d(CYncB=@(- z;GeuKdBvx{fV?7;6u{A|#__;3u{9>TDj|WDi8rC?*NjGCS@ZUd7x=>Fe;U6RGsNs?cZagt8~P_ff|(*Beh3b^B2@-f|Ly08NE`6%ziFFHX z{BSSCH%ge~18n=!CRTBtU)}@>umvQE#QLg&2^3|818oybI$XZ0>9FjSqHzNgn^H_} zY=TTF@`cP#H2neLfP{buf^|nz(;<)ppobkvW6_CvIVRk`rD-L|1r~ro1jdkmXtYi{ zlYG7TNLLeRRXV@vywbchVQCs&8)vd2%jarx>-#I}YPfz+lST}_$$d<09un?nV)Kxj zDJC`#S=Haf<{|$LGO^&hbGV5G-)$pJEckZGFtOmfbc_kKQY|$Bx1VInmWjJjTy>fW zvRo}((Vxi=Y2DArKEp-H_GCQvbyIa&A@^sSY@%a#&Ig&E)DlUY7DX=EbU1N=3BKld zavQ(=v5GXJ)!c9z_H(9IGRZ>}Z+hDl5yR=l6(Cnm0#h<#;w(E>nxF}UfP#tA@O8)J z20411xyB@S?jwpTePkl<38Q;;oa;gEoHmvhf`}0D+(-BmQ(utlphxf;#R@4x^^>wGLKM&c-gH^y)a0L_oNA4Uq(wjy zwMOK}c69lwNjSUayeOL{MDeSaO|?Wi?fw-?CqWt}(ln4s4V}p+9$28q88=OGdv2n5 z(q9sZ*8UA5QNECU4`C^$gn$Tw1z&jtBN2nqWsfo&k@XYej_JOe9VCO6Gk9#xGr1KG z@wK`yy)^7y9r;hkLnzK-4sCB{4k?yHf<_4BD zJlt+tIjp9)a%wquAI402dh2F*PSIjKc%x!9Bsph66GfOoGv@o+&b6*=XOEqV7 zFtb#1Vka|8H3MDEEY&Dc z!S@PjpJRx*3S_O4!c1$N<3Z$B;sCxo()@)?r9O%ujxpze@t;mJJ5l$i=5BcEB(r=* z{NGe_e@HjefJ;h9dbIDy1!`1zv00CAziyVRKt%B$^UN%5^)E6*Di8(5VIuBzaJErE zYb#D#Vg^+u3aDg5ZD(3qVOzFYK2i)uW|qsgeFqc+3W<9cxh%Nb3Ntj9rL{^rcpBX3 zJu|sWRmNKCe_&=A?ZkB;|6f3B4I+}9LR!1|WAk4SUf*+Dl2GO?vjHvKOM<}4F^ydG zwC>`~=2Y20&~T>|2qx_T1p-MVCL%${NF)SaX)Atfzqt*->!N&^eg{Z`l4*$-UjP2uL45XZjz+oxst;vvs7~UL5c(6pQJc&^NbV+R{bo+f&VT_abV{! zQXJTJRf+>$u1RrV=?(LWVi5&zykp)kOYdEOnJLx|kBD02bLUfWmg{1t9Vu;rWE#9oO!RLFZhXHA7C*X}Vi}Ch zl`V41UD35~Bv`~r=CT@KEfEu>!|Q8W&I0vqh3uUyI#i{lMUP2xzebje|22`gSSkt1 z#e7Lt+_<@ABqWs}qa(mzqHxvXG`WO8&A#m|wSm-Zg-OrtlJ#+ct`?T?ntDP9m^L&b zxVK0zOX=dYR*x>9+fn@>yeGrbT9%t#U$w9__l?OGNSa$foCU9&Vgc=Xkzg><`aehlKoOD`kalM_ zB?~3(W?DMS((BIa7WN{mvvVwv+D1W1XeDx)@vn0&sgUv-!?L4|6J0u-yU;@3h#`~L zew$@sZ?Q6ETOf6f0+Ot_>2eFS_)ik?FD+)gX@v#Ll4|Q3iBwlU0+C9{!HEz=gy>Op zJ+TM%IvBGGVqt>y7ld96#)6{TEq0;GcKcI{{M;#NvxUu_Ds2OCOcIBQIMD7(9s!eq z+AYhc;BE_>Cw1Eo;uF&_D$I@+AFzPlG7(qS+8VXHNJg1%5}kd-QpF-?0E#mfRvl}2 z&H|~9F-cb3>%8SvNC4##FwxZs@yq1LZScikEXN=blm9UyKX&npwz$s(_*|n8f%5*xwOBiq{Iyl3qBiX^#dq@3Cws|5Bh6mYg1r}D;aHWV%6e} zHLTlZp*PpJvWS1Fkrfj0iQx-E5D}tBb|P*^qID+3pbA1^0(A#MUmgZ$HnR?rb#>KS zNW<-IV}%5KswTnr3HQ)O+ghP}xyWU)J*@${n>DASRelW{TA$>sx*vZeoOlJopJM{=Hucdei^LsaqO_JvNtd4@lDf%9Cp*4h=^ z`?)Q0?CAIjLkE2D(-+`3++sC|?C-iA#D3ZmD(RwwWah8!u!0g@x(=9d*lI>Sdsi1K zwmo-S> zowTyVw(}1lUs_NST3{i^r~3YA1uY8DPD?yz-7c$ZlZ#fC;?B4NViMEUhd2LXy#`@D zxw5JQ3iYt1;psQ5U1Y2Mu@5A_+WQ}fU&TboMu;~hzw3s+dt{A6n`4}P(aI;*viRv^ zYgNcRmSD9+o1R*Y=%UG{Lu3uNHM*ornzDU@t-J!QZf-W#@JX=dLwFMN$I>2HkOngDrIXA zh^L5G5@%JkeIUEIJ2T$K>iHw9+d!!(-|+-LMyPd7uVFI+iP{qFYhnwbeogFdl+wr9 z6pycGlTV;;HMB7=aQbDi)|iL`)#YfH_G@7y?;e(^lniKVbBY0ERtFm-eWJV~_P)uBW&!25S=n?;6z*!hue;}^@lhszTKF>$j6OplWe6#0u7o5A`t6W zpHLckXSxmaYUTYGZ7or|Wj1n^-y60sWrK%0%f^!OM9v0D%6TD}2uXuP5T>CO*Iy2^ zWrENOJzZ-fuP@?nK3TWICZCVj`4AQ(czjIo*>Ts6pGe_h@~2XGXt_xW4^KBs;i2bt zDLe$el){5^mlPhh?y=2-#01*tzQ=9kh3c2c-tWjaFYvR=kJyfig^G-0AU{i+Pb9e^ zUX1*>&yF8#NY>3>J!{j7R`U1)#7Z!MZv^SR4rc-#(B3;X6C!4jhVNaqHI=P&ymnLa zu$ym#JS;B>6G@p6+hA%sP^r5%2g=y*>WX5n8>*wsJmM}7bT(8(S+y4iQNxRBH$M88 z?Iu{r=KpNsIitmYzrgig`$uxUUq1o4UfLH#QZrTln~J%(gB3rFwHHTmHQKDPTTsR( zt#HP-xza9Q71^M+Gq0Shw?o1@9T3uje354CG1?D8OoKmDfs^g_Dl%vDqxf6Doq1(l z*bec^^vnjqH{o!MeG;UD^AWsJ`#Yd0$sZZo+?eb`Xj6i`{P;<;QbBsxd2T7Y++F8U ze7}Od8Kh=HRh0zcot5n@nIBNq&XW1~>UNgQKdWJ9$^2)v>@1nL)wl11xDzTpw;kEm zxbF_xqjh(uyA9sd#4extmQAuB5mUc+Ko-Z!>gwIS~s%+0I-r!VepJT;~lkJCP z-Sh`t>?+Ys;~pTh$sZkF5+af`!c^l*Px~2&?Nl9Q?}d8V?P>VqRC|%_JEM2n$qT!O z*x5VM1`W4El4Bwy70()Bhirw$>z z9g+e|GM10A>x6pr>yzxOARMAl`&ulFAo8Aj9qLz7HxS3quot;OnQD$Q?Vz*Q1%y~| zi#P1-^5k!3+jGHcH=akLM&>fRa9_?>3yMY!s&$3M_NYkz9vq1NRDWI?CerRg_)d=T zx577b?BvC!1*fY-!xA{}Lwk9V5p_NW#R?uDy|ck?#a-6hzlFpKsv$uD?OCJZd+xD2 zXa>JytG#dnk4Za6LE-{ciy*%*^ba;4kfOoaucT0Mk!$0jsHZ)OP!*}g^(Q0Zu09g&ymEgODP?7St9dvZ&-d$G`KJmov zSF`u^qM1`GR^IM(e4^korf8K_!f4BGPkn4qIyMxJf3ztoor6SjdU~Rf(E&-tcpVVY z!G(L995o^4m5&gzIAS0!g!aQGrz2eW?r_@1K-e)FVqa7*9#yziuVmCQU$nG6B^)g8 znpeuf@~$3b94zm$lyk7WYgi=*v$XP69n8{7RCh2-`>Lixw6q;{9H1I1Q;EPH*__5}(@ zJ2+xRlWX6_0h!(u5=Ym*UhnDvt$p!W%Qum$(;JR(=ux<$Ck?mjk0mY6Tu?@tRP`>no2vfsb5CHuXJB>P>E z!|WFyS>dP$nPW*kfoH676uJAKIi;D01fm zRrBO_M~rBvPrrcMDN!?kCT}G-h9~TFSfC*R5g0Sxx6e`J`cSItr(ZjQqONBS7fV+& zzI(*s1*@6SIma#dzh6%9ypwU*(|&N6L|xxH3)huOqOR}Y&yI@_g{$6j^uY$2mXqsV3Xv`w4tJC2K% zx9}eaXiiGtm)~=U*W_nEa&(9IUtUSnK7ApXX+3rHQkwG*sW+*NMlZG{72*xA{PwZV z0Sa_yoY#);D4d@Ocdwx>Y9}OuN(vyNfEMR!oS-#-lKUp%MrP;1!r_wkc1NGHg4o*& zf=)<6%HyNyF-`|w7jnYien=3mLxzcp&+S4=LHXOLHkNc2p7kNx+QdrE7Ld>;3Bi_l zCwbo|pTOg7)toFV&8*>MS!w%PPL`Fb>Nr_en$p0@veM|wPL`GWUvaXm^owRrHvfCr z+zCocnUZR}ubp#Ep*$3m_CFB^dPP?!Bn6f55y1}&GpSFzIYI0D`B-<;oI$$CkI5o` zdLgY54IDA4PIfDqGOc*3VEb?*zT1o}RDBnC8@?m2;e0+;gh4$ihGE+#atx+1+-tXFDMwM3RJwB+#L934zzu zjGoPL3JX-2ysmyO#9k?2ZkE$7yq|v7LT8aJ0JQO!7CX<1M)3{jgv6SBNeeA%Gd{J< z2|ss36xN_kGZvaq%v$Y2+&RZtWbKJ+{pAX0yqKK)yBb6^rnM;U(;FIcCFJ`~Xgx8B z+#2Il<9F9ND;GX2K^6AzaI&gLr!U|^h8Kc}5Ir9DrLzwpVL{Zu@?l!-a)Rm~6eh8I zjt$@1@B9#w0Z9mmAP86Aja%=;`1&`_RfXg9OtUKv|8&X;dOLi+AbtZd-u{D=6;+bY zO5rPfP6}T)&r9KJ)kP_M{dYwQUps%7!q>LzQuyj}Qwm>8Z#mrpJMoTt&Qg#I%-Jw` zh0VWv|K;gZ(Bslhsr%H)DRp9EhPI@cM`qV{ofOJzK7|V$YBV@qWI6^<1MNoMj3- z=-E$lD8!AdqgZ&G^*Vqz7-U1@YA<$MX&?NcPc})kDJH(|%xB9sB zcvG^g$aIHwl0!2S3$8K zY797jp{oOgT?~~3m1Qm?x;?}tUgXy|>jgZ+OI<9JUbP&=v!XJscs+8Bg3#_ctTiP3 zZl37kw{wa9ti`)8@Mp&NT`aF|`4NbFMdgwMKWkmk#l{Y3sL|F52`ef4d%t8AG*yU1MN9J%rY7 z&>wj&FS>g^;6U-uTq)?=$71S?KY8N%UOXqg@G1KfrRTX?Nz2|#HrYzxpUJ-{QS8@B zJ8JB3JJHEHmTve%r5iy92k+Im*UGkgo55X43=4NHZb+U?2cO{kah%Pqge0v5fn1zc z#cjqPdE7q~o~6;@IUMU|N$cMw-H@bJ5`vzTag$3*OS?fk;UySMV7>ubByDXB-A#hY z-A~EIhY>cVyj|7ZTy~VJ)O7zNvb$zoH;~==S__*}(Cx-%7@P-9;Qi5j;$!>PdwK}3iirPzF0Z0hPB0QA^o{h}aNUN`sm z;2|bhB2&`)6oV-ejKGwS`@euGjRr|fX*LYb6edn&%Cii{lo`V%rtBRd(c`^Q(x0zq zxEDc~LbtEp9p~2L#jm>8$~uuZUURcxzIT=z63itbXzyG%d2{P*7)c};Okm1^TWkM{ zu=VmPxA;1`bBjsy0D+5YlaH1EPP!J$+(q6=N4@d>74FrLP$WshL~C|ZCu@zHr3k%0 zbh8wp;#xOL5iYNDvlOAhr|#`ywxIaTZ4_U@6x!x)2uKEm_cPFjSLv7IpxeSR*%n^p z&7VS>_qu06);Cz2gZQU|?h~?8v-?NgY_CD=2~Z4{grJa(@UqiMcP9v|NN{U`G9S5( z$o?0hR>kr|h4b*s&$!Qd3e^ekwerN`J+~x_`u8r#q9l=+h};eIxPsC+`GGqd-0YMT za$!W{f8BOG>503@))l_Bs8^o5vmv{d_*!`G-c1)e{MhY6i7V7Wd?(M{NJ(E4kJFT% zZ4mRIeL?hy;LRG(HH}<{|7P;M2M#5fE>8r99G=_2Zcf4kA-(WP7}7OyxKY@{R=X!g zJrLI_Bvvj$sx`5maS(H62s&g+%`qcYqNf@@UC#3bw6%z|R>Z21>llt_R`gsbe6F1~ zenWMs@xRw9R^vr+!*7!9KK44EA;s&4zU@5@tV{GJfI_myt!b4Fi6IrV|CT4)vVm6Mm1FRd>=QCpX{-V1KoZaywyZl41RUG zXAHE#IAyj+3G}Q~652 z6WF7{y|#O96uTQNm|(S$?SY~Dq#pR-tK#*es;OV-K5!Y<%XapfF@B#Y7N| zdg>{S?hdWcXnTF{69vlCd!r~fO;ri|a{$9&X@03RJv3YIJd-8Ao367Ma*m?e8Rc+3q@fYbZSg zA^a;2#hz~5#tV9h23@$$yR^`N_jdH|E4(mB6+YI(%WA=odwU_ZU`YrfLUe-XE78{r zx|2-?3r*P3hx$KQe9l-W$Vk~4?v`ngdifsB`~YYhu%97 zpG()OV0 zKI`!*uL4r2B(AR~O8kw)0O)H;bzxgK!%lnc*Pg@q4#cs$dE6I-Zr}Zj&~}A3=Bq(?oRg!Z$j<;x3|cSaT*;C z{NrsUQX~8yh#Cc?1#sV|-ZZlFwi}&W;Qe{t8Dt{>Syoq8o{6fqb+$$;l)fX7MIQ2& z0JQo0pa~^vd?vIi$vpxOQ2Tnz^2cKGu?(x8)d$J2$jx|##OW|uS51WwC?6}f6j43l z;X)%OR4Q_DEk7VTyuQ1FM_C^9L6RUDVZz=2&I3dRA(#kB0dN76 z9~XJg1=Xw4%f4%3C@I+tH1Y&`6iQw}igq=UeCd#(CJ240&p^rVndjhdTl;*n=}JO7 zUn6m-r*{MmHIo#;yE^%v0h5#-X!TH^7)n0x`2ttaKUEs<#REa(O=4fZByo4e&NN>y z!0;m;3lpse%l2!R5zP2emkbaGn67@|!lfajVK&cTo{J!+SAFskWb`D-?hj7`kwKD% zNxZrTAp>1L&RXU(3v;2vvwSsW%Z;tGe5^b^oAW_d`FKf~NZJmW3o$jF_}Frv8DgOn zVc!ov4N4f1W5j*m@%=7a177-pFBOvg7Q{ycUrX;?LA4I}tmtBLFbT!JqOOLG>wN6} z0MSo;tnheqgO3#+zuf3!g~w5weXQ{K?KU4dFhDm;w*SI+S*#c}+Ud&_D@Mn6``D(4 z>wA5*ATc1n35`$q#EVPwzTwARrbsvOsPBmAbvqpQL8^3;I84Nupyb75OpDy(K;y!i zvp$XJYd^mLGB2i~pWoc6$5$`$mM6|+1lf0=D9B5 zXB(IYNBpebpAze5^?pT3KdbjQD(#2eu)_EFp3tJ_?;`77$uDo7r{ewJh~~Mrx*uYm zw0D>|v9!CTh97jzHO)`y8?JjK`As;szW>w0BY9hkvkzVpCX#wW ztfGLf4zwr9FCGEO`rTLy|JK3}dP{OXYC?CiVz9EM-+<0f*0jc!HvS@2UD_9e+xbt4 zBiN#&A3UL`sx>OB8V+2-xYlA3p$12vDwM+9GwP1*j&kmfNjp+gDp__b(V`x;fU zW9>Suf7|~dq{R{*CU`ewn?2+`soASP05w|@!Yi%EyFT=T-WW_^+LMYlq3@)R{bzu! zZBGjC{$C3<6chTk6q#FZJG6~dIX$v+0WI#a!(SCLzGS}E5oPQmLreDN(V<1FKh)@O z`!D?~AuZ+7kHV1OBpNvvUuEn$7gp z{R*GL(Ca%}U-d&~mXeIYzxh9cbRz>m1i*q0|3)&AudeyO2BpRPfu@Z50SC6-@&9Qz zWGmR7;nY6{XZH^*k?Vq&6#$l@7Y@&SS@raHtPdT#hGJ@Ilwa7 zO4b0&XrI^uETbh?*0GG%>=^n%)kFmQcF=ft3lZQ*xtv~8eBv8V$M$KqM- z13wn0Ee=G5WTghp*wiUdTWm(hE`cYI%!)S|w0U$+8B{s8NdT*Q1<1ve1i=+WB&GqR(=V>$J^zZFnGMzN?!3)Zg)Oc(v!@>P;SPI@np3Ngrh33;Cc z!YJWt%)2;DruKzrI&^?vTOT-Iyq;r1^eEXA(qj8Y$tt^T4(x}xL-PKU?&#R@fF5Pu z52Ru1=YgOsgC-o681&gO5QBJ0m`DPVhx~XVWefiN`#_O*5zyX^{s1BgCeZ(hgy?f# zB1Gav7$FE+50rc@AUfw?e|-TLTK*2>LOwqA%V%y#42b+0I0j(=nS*r38TSJ-%=xJY zs;Y=2ZjTSf6CNj5wV-`NL-p|{WiVCNWB1htnRm%C1R>sq*8ve7?0CO1_zT2F7=j)r zScByK;xd6HWDi;(UPOXM1Ui-mczoU!WL{*bFUZ1rn?P_R#EaxhSe?8m24$`dtiXBE zpu87JD-pa_tR6ywkm+FyR+R~|u->X%a3_R5!~=Fho07<0fhuc*Y53pxpjXy`^l2iI z1P?)|Kxo`;`I}_>c-ghV5%~S# z!H6sqtkWeXw3-QGf+VPXt&jzee=YbE&>*^@6Egp7^a3J0c{_Lo+9MR6#+D`TO3vZzsvu}?OPED> z_E>S5wZS)K+3@rWi4ApkgV-PmLFHi#%D(FGx;*t5_w6oc_jl^MaF=C~@=Dl7Q(~Q8g?$Nflx_$Pd~O%R#U{1mX>o zAo`ZRwvc@K@wFoaVo*LlbuL{!A(nZ(>kA!)gd4Ip&>d#+8#zq`}|XG&Bt2GzeO6w0ANq zDfMstg26xBHUzSwe0)0i{X0m5|8b|#XOO|?_u%7;Jwr2O$9?@sY21I$0F67{<4^F7 zSUo0m2;w;?!p6y=5&{EGkADFJ>b)BJ3yO~k{zoDW22Ph~&^$BL5kdp1^4=*qu|j_F z)9e?}puwA=@1QCpice{+AT;1-PB?LSXs#>`ydO(6=(qty13EJ!_$EB= z(-0`Fpa>0jgoG>;RoEPI;XzwMvS9;%`B~^0q+@9}5FsqpeDH24uic0-|r^0dO53f zj-MEon`*@23zNftgWaqo1ZPeUHx(Vm51GZFOUA{p0VmE4zavYR3hzjCNm~i03oir_ zAx6ApRWay7VMe{PD3rg>hTmEv%b5~b@nJX!=1c)e7Np%A7E7SZJ`S@IXzB)uI88Se zgE({qlDCCV7piSwvH;{QUJD3n8Ns`h+$njNVY`b#m*l_0W)ypY7=G^8;UzMhDS`K& z3A2mPo}7bohL?niB+waLYWSpMOFhSwD!H;uiNnjU6vMkPAr?IJH_4~`b6ujwxj%|W z4KvF6CtQ-2$lts70+*tHPz;ws8eqmm26&{Y%xFi^g{?UJsyl{7s?U5ez%(Ua z1uMSpkNF4Ucv(v{C|V*WD$INT4aXFTRE|Y4aX2*+1KRp83Bg1NdBGa3t$$xSh9xZ9 z%f>(w7Q}Gl@ZHKWMYbwamG39Sfc7Cs(1^q$3*J^EhUG6$YQ_8p$zVw}Z3JZs{-se& zwZhJYDm$Qq#EO-jA*{ee$RLPUCBGZEe9NNe_ITjj9jcubM}g!FI;e0pTeQ;3;7htJbt@o0$-KaGvK450&c z;#sqDthm*bn70ej0TX502zG)-E`cyXm{U^xWlLioL)uI=w7(rw2Hl+%9ELw!F3X2F zY-zegQSU{Gk}sVEE#!X31H}VMH%TtWaJm1}ie>FjgG9`T|zexK<2SP<&b|yYYwQ zFcNNo<3|e0J-kSb*FT7Hnb_OgI7en}{8wJgTS}B1a0l=PW#ps6x0q4hyr+w>l;eUi z0!cZD6BIR2nIoWr07Xcin-dXSO2i&1l4#J4VY3{O(h!%DkI%aloaTwJ7<1nrVcEt{ z!3Z?Q(B{VpyL~>6ixi15RC!yeNFK!BvhIz;`^rYx^w(V>@;M~Dkk#K#IJs)%^+J(F z*tZ(jG{UN6eVT)~z~du=Z^YADM2lgVR+9inLiyKDU4~VeLb9q_>w55aOvfc16 zBO>!bvHQ#;#N8WiS0$P;M$ESg% z@+yfQR*h2wgZwy|L$n_lZX-hIUtbQ5WjhLZl3;+(4c) z=7v#FxG5x(vSnYQ#FlnVCAL&eih{yTzJ#osY<1>rn-@@~QTr$;<`fpf^X6nni8sD3 zQP55h3Y#@9s>6MHM`y_fencfwJ zHJQvs5a_=(Be6kDW6MRFzk}J@aOI*{2U9FU^^U*2qm&rU(5RsRh@*o zNbyP3k7Ex-LA%MMu0m8AO@rM@>C3H<9O1D2iM3ICb zB1Dfy{YEY^c>QMdX9#8Tv662^{X6bN<+qBQz8i(?G(`pBpW838_<_Wom`98|J03?t zJ5ckbEYilt=(2N#ER5djl-nxw+V)Mc7IL}ikpb291Jego&PW}cCU}^LDi*XQRT7Aa zz*Mo)nx~J2%zE%WTkK_7ml7!%%Tkq|Wnv+z3V}|+)5^wz<~roZ-T#lZ>kMq-Si*6Y z+$$Jtz>=F>Wx02`TaqP%3B8*ZdWX;gm=Jo0z$T`d&_l7Q6S^s(*Mx*lfKWn*012J9 z+FJ=Q$B&HPpS*iUH#0lmw4L4CB|C#Hm0YQpmY6DJs`l9>uvn^>8t zfc+~@hMM&-;yp8D{M*`zsWR~b_K{kKn)ZA^pLa<{WXVib?7kcsCWyc;z3eYhgZQ_# z*&t%tp$vkOZV%1c%l^Q`3i@&j5;>Dstf1}m30o-ZEJFp0cl23#+O50U7M}Mq+rouD zGE|IU#Jf9BBQk?Gx()gb^_BlrPHHEq~3U$J<+?$y1~40 zvH(%5aG7Ja3jKVXRhT$Ij|H+jDAV8+q@>q!nM_!`@4Dy{_HlBt%oWp9Hz`C4l*wY= z9PwXeHVxY~vfh|xs+le+`$<*{WE*4~Me9+2kln7Da*Xti9a|nNe%@j>636YbP|Uqm z^vuW{Sh-hr+||O3Jj$x8A=dl+LP+=K6C8=M<%BpA{=4kU=n}{u770P_DRvv zs&=Y&9iuuXb%<-%mi|w>cvWm-bbL&FOk#)F=!B%`j`8u4G*9-6Y}>mF*)>S+2XB6t zMI$r|Z7;|kdXeGBzY2brco$BQhr`MzvS*evPt0~B8~&9IMAZ0{@=$X8mfRLDK9hCB zv`*epc=1987<;4?`Vm*DpBte!*}B7^x3ZoVmb0wMWl0`&fd}$t(9}ZS%VMT%m>eEi z%HO()X@cHqc?x4xCgxsnwuXGHl~I?_r+&C_GD=lL8i~B6HDr*%01yhJ^9zR?Del3%a2NNc=sT_vrFtqWNSZq9Nth14^po6 z?+!zYa2Oh$Eg zzWlZDw-=@IyUdZ{-$n9d;VEmWe5vrS&zG4@Y5xj&5c}6#pKK4)fbEYFQ{e~PFMFo~n zc2nL5X_oJVc81?>$>$+MX%Ts#m?|U1PLVYs^}c+yyM*6+N2W{VO(EUFZ-xaa%_s~d zjqb@k$mVoEp}S5dS@}&D)6PI^Kh(Ez3QSzwB5W!PoIY?) zep3a@89Ufy8x4k7Wh>Y{zeYmVuJM=OcERp%-0|Ckm^=^@fG*@j+|&@_5oGBN6aV&m zLpMu&oW%cp>1SnQ$`~83`9HTH4=*&AkQO%n?&PhdKhgo(kb9o~^s@(~bV?Z29S zUh^^UFlYZ3f*BDvf3z70=?xf(aCs&z}owvq> zZ1-{#va)q1WKV1|A=_=M|3DI#a10?(XM@q??6&*gD>4(GB3c(<$M62Ad$H)t-AV29{&r;BO@G=DG(uT?!2dObTrxsw@Tk-@i-4)u z{Kq1p6gUCplr8jOT<@FES^2krQw%yI`v!C-m*^tk%6qS3E+VF*act`rkOXPyltV4eZXoAewE0SIR>Eajb&sa=ao3YtK5Jh z3#jf9(AipS+-JQ4W?}#|GaxK?*6|4dp#^tC7QkC|8~g%ztM2=NfZ0Ms%?Jsof$6m| zc6TxY?BQipz+#EmNM0nF5bTtON09Pxg|+Gcl=B&-1WKVBrsQESKgbRE%|>i=zJ`Fw zXq+fj4`J%px?aFW0jGdQCY=6mY{Kbu(|~UUoW5!mPzQ-qe@Oo#V7VwnSv^e+g;9f3@krIC25bzxmqt1*0`N}fQ3H*LCdDLIqO+anhX##4_E)!50`vO!5 zkAj8A0+iB^BZ3mbPMa_y=TI0?%0uAK^8tG>7#UwC2^Rtsq?bov12}vs;4P*A&ken7-i7uXUzSKm|^7$<74)0zaf$2cRCtT519C`cAH z4_qyv)wXpYZ@NSj1@flLtG0o>=~CW4aGcc& zSo}!F4<*&$i|+!jVA=*u21>zx_I$dssOlSNV}vA**e(gIN#@nb>P0p$2%Ll+-1~&T zgUJg6MJIfl76)!YTT%L!Ko4lOD)5#_Vvc}?8%+Vgc{4fy0Oj!$);tk1hOKJ9Qt^Y2uWZzXf1*^TM$*(kN{9x1x*x< zXP&k}E6^C5g#juIZ`EZu1@S2F=n}-E{CU?P9_6RH2h9?qe4JMh%h>KT-+TYeQp`F}N zK-&$Zje~f7cCSg$V+7jZ)-kA+Xkm7+rwQ5kz9?iV<^J$hzaZ3viM@PnK+tlGmg&pg zNy-w6;@eTwf>~pBc&DJhAZ|#IR20weii37mi4#yx+-I+hHKDkAya~mxCYn%GO%CGC zz0=c8C@z_4LUF>ZphD!nkv8P+k`ftASQOOXUaS^sw#J0#zO^VkSukciyw(Tdm&%P4 z2&Ldm2Com2!+?!J^U!IR(h7s4TY|n2jZIVb1iiw5Y8q%5>5=Z}2=(^|{UX%dv4=Ub zn~s`*J$}pt?5Gn#i-lmE_?rn>+tVgs@0>9?@AQj7Lxtbfz8a)PR=-80-rJz+q|vIt zu`vE#P+!sUH~z8SWku$7~(3ZA*YcUSPt-Pu#YGk2}(ilu@P{OYaXbM1w-6g-xX zsiWYHY0G8S>FWgU!R+Ro!d}RDgay1 zOi>LD-S@o}j%3Ifd%i__R0oBZ2#DeEq?@9ZFu`rt3k@PrZq3lp(U;w!q_5%-8oC_= z6wbt{R;)L_mm@Jh?uigE<9#LNjOCmvf86F?0~mp5+1DCo*akncB)f);(~2Ui!SRW;m#_rbpb!E$>sS-V6Acf>%!B&1A+%aOw) zC!#{=H5tN?5Z|vto5Szl1xGj%)%5Vn zM%!>nu#)R~#_}rZTHp!mR|KQZUNPyKk*Oslt%TLVW%goHC;SwQ`jo)T1gL(V%BrAY zM^b)2*b!1L1|O)TSD?Y5zDcF`s-#j!piHh;&7LR)Yf^XJRC|c{JNT)HHUnY6>tIX? zz`~Vav}PuRG7$>7jT=G=XrtDG^pV!D1}>H%1`CH_-v)QhvH9$?uDL5n{aN9Ku+u8! z8%(?0gkudj>le~kWKjN491&tN>>a8QY!Cq&M8c~QI$TN5^bp>(ToV`4MJi^_oz)>@ zs)90S!kU&dGegu>3eM1?eMn7FmHynrtWv8!Xq5^ULzy^3WZ#f&RT;M%%b7aUDHL;;1V|9o--Dn#kh4eWg4)&xpP+2)7 z&sh=@$>Ybl<#;t4IRWLg7dvjC6zJN5NYc2nG2|SUDxp;U*_t`&w2gx2x+B;XMr{sx zOt(GI(h0^?glwZ9BN`t+-yO1(Kg#!pEas2D{TxDPq3j2n4uu>->_rj+7nQ@4ygeD> z1iq(2j#G*sBawbK1XV$^@MNY>D18acx)8EnKoy!^4jIo!@aS5|nyQVU+$q$CxZb5j z)vpiQc|*(lA-k+eo7j)6s^{Yn)TKS|#$x6Kw*Q6<;A5HiBBUlC%Z4{08Y{b5fqci& zZ0pb;Q&GhK;<+<6n?2~({?NAY+4q@k}c6I`=&K&9JcDK>C$ z4J|@Pa0VhJT@!YDhK}cBZc!uD4zuRYgmpbQ)g7MrhW>6ZCah0bXc^kG80qH9(AElU zbn-ns)dO^mLzC&^>>^s#Pdzrv)1~BmHktXm_r}ejP&TjpWRY=XDN!&L5Zd2yI{^ z{MD{sXn&+@)Q7i2Lr>Qh8-t=G)IyMeB+d)Pe345>Q=d@!PLMM{bQ;pK>XTlBLT#YM z51}r##KhdXBlH&14mjzs-J#>?ZC=JWy60%9DWpz49=e0a(N-rzm+(jTUqd(W@ca8& z^KXARA8HD}eJ+NY!f)Uop%XY*JO2#L=3u$s3jLXGlQVL=`6%=tr(5yZ%woXPP)p8Y z>`Su@jb4Xtdzd5AkUEl-;SvvF3f0#q?5w94R&!NhDsEC2V!{xW zCQy_54byI-@3kV+ex|6Xp>GTf9vHUr|3J&Q z3I-xn3grqrP^Q(!G4qj_kZs!enw;47CEJYO zPTzyD#Z@E2c7RkA(PQzT+t#qb?qUOvI~KM8qf@sRVU396KVeeR<-6b>aQtl83@mHdE`}Y%+VvU@Da_Wpx27S4M@t_(dBs>dSfuI1Cf}PZkp9AvQXEU!1&4&(_RHtN` zzP1B=XBA%CNo?S@ZsEf*ie*lEqDHtaIMxc6ibjHtvEe+BT6HbDBAjt_AtAgKu9~S& z7`I)C;i!$rCV6d0@9Q+c(r9oIp=KdAQ9%SUoT!b^=exD!y(|CER!xt?{q_ z{2Bh5|JC|NxF`Q>$Y0@s{ISjLa2NhK;%>N>Kc2ZCzLvjM@-Up1yo^}Azr*M9$5)TT z7gPmC6)Af()loR`Wy14tdf-cMzruF|1**sER*Wmz|0cZae>XH@!txy_e%Q(425e}5p^-M4#x9%NJJ=^-B;~HrbP{sknW4a z)4);^k?!;15RC%XgmHcm*94uDVSy2t^R?db9MmY?8Tti9RKv{0jAVd{?&B>cW>ii@ zzp5xCMff-*ToW--Kot(;N6^_3GpipA5gKdZ@kOEeuctnb$m4$vYhwPZO|yuew!&|} zX%k_~e=w(ggfD+Q+$o|xe@yQlQI9_^=p8YTKPm=991s|98W>@+?2UsW)^lkF4~ZCt ziI5Bj>b!E&W?_U4v>zR@s=Ame8_$h+%@OagAmZyPST^U>pfm!t2K0fzF679TAa6qF zJ#HjzY{Xl*vpC{ckB{ZA0oI!%2BA&Cq#qa3J>Ai1)3yl0&0+b@2vZ>IzbnEN$g=lD zEaI^IyEh_}Bd9xQ2EOR18Te@@&A?m#ZU(-?IWzEgFPVUcpD&w{A9B@{``VLvp@R29lc(Bi8?SgyHa`i1rvKKA}`LA@d(cxWj>`5rgUJwO_v9 z{_LHn41w>SN9Zu{y(2yJRYZ=Z<)2ot>rF(lmGKjVbn95UygE*)A#*L2Z^^?#s~TjR zmGaI zM5Zb|?8%Otj_+^*ic1Ry$x$5!5}<_dV$@h(S2<9a__Zrg)<#eON@1z=!_gS6EELu> zQEo>lolt^Z$nh_fwMpGI$_22ituof?WBMUr=%_^95JEw1N6%VRy1>@%%4(H>5F8|E zpfW~qkRcc}jPBPCC=1jIiAg>Q_>NH8S${nAU>H71`8US=80pL3(+}q_d`JIN{J5qE zQ9p_3023xECy0O;3|+tFnpi;4njl7wKsln?JxpfRJf)Xlrm1t3Z4qWFKtjo=Bw`BP zv{?BE##T+j*^x2pmA+88MtM@iR)b;SI^`tHC!uEgu;3@B1lt~su-f^UsbiAQF_20#Ut~ZrEFq69a7a|*w)*T`}Nx3AF zpDO%tZ%h%~zN^$!Gk-`?bWiC+YR^=DLCP&7r&sE!$&*tQWVThLJ2~MOX$xQ#dDhbM zh83A%8#(5`4~3XT0xD7&#_!A&jDvCp8+$4cR*;@S)9L^{b@*20K9_OSu){C%W|c@A z4>XpL%f~xNpixldK_{v=ki|x(TN@wRCPsQ9KD#q&uqkl~nI<8mubN&UXT)497Bi^v2Yveh4)9MFB zFcbIJ(UJR*8fRj@W5PG$#__|MNs)&vj1P;aL>^@i{ia2BV?bQ~mjBbL+5De| zeiylp{U)*`QpbKXWIq2*UMc@gwIBFz4lau9!G4ptod3r9NB)~%SMuMCT^%`${l<1( zWEy+O-4t1mJd-Su^)Nt8zV)qDf3rNb ztgQ;4rzi_TSxAK2MozU;Z9y7-1M;T5ir%GaJm5aRlj@$In9P$Vs9qy&!im z7T6g5;M`1=5crnPQtf6ztt(Nzwm1G$mmgH6%vcE^JesW&}6xP^}jzS8x`}-KrJrH)r?p->f^pf79uZ>T^4s!89Nh zo86s^fDD1Xr&MREeXPVFcz9c7V1}u_uUc7EJ{Vd|)n7BF~l)TEk~e2f*w&1XjS z`afvW#E;*W&}Vj3IkQRs5^i`8=5U+bF)wN;v&obn_&-S&bDKQ8B&vk{Q>P!JglJ}0 z#@{+q&i|?Z#;A?#H(^`&KfTx*C4{w+6;VytKb_kfB}B9J`=W$s*7*Qu5q>C2h-Rmc z@!yo6;J@kkOH|$egXT}@ra6&6*7$XU?dPJz5^fNLUWhuwoWc5X6f)s9An&kd97puG zaDtF4QGO^J92DIW&fJV@=T@no$>P+M=TQYr+>5WGP+{0ez1o{7)ajn}2SvA{#~egC zk_?OJw|297@i046UJ(x6ETcDCK!|npK}-|ENE(XmquYpWbRYNl18FLGOU*3`r#q7Sc#~bTKNU88u6(svt`hJ&8HaiP&g+_HZFF zx(|D(mll1J$?lgPeS|$c%!uC39?G(!1?TFJ6TOoC#Vs$oKPyzm>iJvE3;0{X_4to3 z7Dfxj%<#t1o3W^oyA7v#!yhf9zpvbtVj4M86x|7}5hH0rNlV~rhiIVy_v{jVl@0J& z*XRpKnZJageWJe>6}SF?=;MeG4AjC78S7%GJv4eH%C3yH_gfMzg@#{8|KnJx!N*iN ze`+*scGITAuQQ^5z?NW)g~hkgJ<&ZPN`bd{6K6+fW61y|li(mW%n6I4vsfK{Y<09y zLzR?83pG@iwb4QYq4xUddQ9CtH%8+#eXk?YF0gD{bmc`J!qn}&pQ}6j5MJGk#h}B{ zUt#q`j1-9T*=V|_J1W&$=&kQP8twD{AxJMGo)=OI@h76`_fsD>m4$$ICVGmU(XPL} z!oeu|lYB$?+`Pw%B&rrwR22&7S)e< z#0b9eU9}j&H#&L62)^M{Gv*JLFJ9G-Igc))BI9Ce5ZV0HesCiwhF%dVVjHJaF+x1D zi;cm?BcOaxcXhIgpT115Aj^uegVMy9xXMcx%z8pHV`iZhZ>CQueO^v?$%!dq5FFNV z2#B6T@I?WKz`GuY;AMlDgJ=jAG>dTndMu<=)Gf-s;M%{|1+9I;SXAp4gSw}XK|m?c z%aps*|Ge!PV)0z88(^ZTtYe+Xv>LGzs3VD8CyGjd zXRMHont8=yvXPk&J?cI74=glj4 zA(;dg*a2lX*~J)CMkL1yrGY**Rwxa;)v-cpa4bDmC=JSTVg<~Cbg}o*Zc_VmI@X#Q zdGs!dda|o}zo>RE7 zT%O8}rEEGkmi9BbvE+Qmjb-cH*k@Q6AZ1ak6?!1_Ww-ajzhP_w})M zSW(GCi#U3b?H203Z}-RAlKgSCJcP6}X>;t4qI@Up;a0SBAKr@0Y=N>xowL9~f{6@0 zX7^yMJ&ZUUD_%uOPQ`9T1M(pgLYdHGlJ3#lh4!C`b$!p!TAtyCcKQN0v_+S=q4mAY z4K3&@H#Eu3*ncq9vT4}#8 z9u8W@4X5}2?pKGx5bL;KY{aHorS@^hs)ALJ5C!_V#JwK{>|El6DDaI(oRBgKtHlW^ z!`CZLNEyG@h!axAhT3tDs{)RcL{6vOcvW1S1oT01wMAjtriv4i_@kJ(9}q1rlO+hu zfHFH@6}3r8nUCqR5LDDGRSv3i;|k}JODD6aUh(OmI=jES4irj#Sb$L+=Rx!zf4ucP#4 z;0MItme31Ud2(qnJ#Lj~a%nM#gE4JB9t;|Jq{PJ55iTx>J6Sc)ptPJw-PLh+1~d5${6!wMrcV_pIYDh%`17P{%1=KfXIy2ay5C`!Q@E_lX&CDJff zz-pg()J+Q}B{&mG+D%CN4P^A`UGaa*H(p5l9RlKow66+^7t;P)MZA#q*N4OlY5!Yg z{7rO{$@p=aD|jTtizRynjLzgZY|g>sz*s!ajX#0*6H39G$Qs4-+h$k{^UaSJOZE!5 zUq60Yl{f+Aw2?W+>6Tpki&}H-_buYu4{FD?FX?`_8E)yqvBB~^)pkY6#U-nlK6~^7weKJpx=ymR3G2S1SpentY_~%hwJ>tT(0wt z^SREulyaTtFNqg=BfD0_yJ7ZvvT?~ymbj7!d*Y>JLTOAtxV|o4BMQUFog9XZyYVm> znE_>X7j2r9f)5PeAAd$Px2^moeq5DE6H1z%0u^a*OJYuc5R4A~&Vy0Tc@B;1MGnm$ zmpC*tFLP-6U+2)=xfTBqJ-r`#vcwL$KaBqyT~#s)5B`p~6V+D1>-Z>Rdw*kbf`{dM zCtE$L6jkzp3D`W@8YnICs9f7Efk_XAo(V57 z3n$e4zaTq;6QppfW`fw#x&rD4BnTOJv?AdLoHo7y%Hk-}Ca5uP9(>NmzF z%t6oxI{u3+*c7ED279Lv@zCo*vQgCNqn3L|IG`!g#OmHVH z6T)PqbVqU{@@9JiW{Wa)4>o*vyTSaXtNG3-~4MbvKz z?rhqhdpe;#8jBN;Xh2NAlpwYWp@70W9E)%6%kc`U-TbKR(BtbL;c)v~PNzZ(=GW9{-n#6mP5X(ew*k+ly&Wc>tCpRZetrLAn zVY?(}(#wtBEm>aPE1NWvB%UyKX~Lw5LTLThE>Q@r`y3L5&^p8^QRvcmyC!Z!!qo&? zdnIlct=D=7Bnqi(u_6(fx|+bT;6&8sv1y6h7Jx)$OWDR53Tn(j^vR^-k^=CDMjc>qIHg!^|Y2 z#xu4#M__9!Gy;qdP(FjON(3q?zAZ^#t|4?Je`ud5UVilHmbjgz2~}UN{8#7aOyugmIt8z8BMU-VNTJrW#BxMcMVRSRG9IMP zf<)m4NhqF~=q<8ANC6M#B%*HPFf#$lMA&FIX))J+)1_SdisfAU=T{^OJ(6u}5+9*^ zB&CNE-QHVb+zg3BoIhLw0=khclx_T-d@yk$t{!Uwln*}U(3kDV>mxMqY(0|L9qTj1 zOoklZ66CY&!m&iB4~J^pc^d*T7ZSI#O{aff=gQx4lPiDnEw22`JKXfI+)LD>O}|Kz zRr`XDmXBI$vIpOgv3mPu`m@s0dxorL-Fg4vdlAEErDB*Zr9b9=poa4p8! z3exsKY)A62Z%D1#wn=hONs~*BNbjrLPHD6?UKfdcy^i28=?TSVwK$(2U zHnKJMNm{_xq+a?a35j{XJV{8*v;C8V#GD_Pw2=MgUPzJ+y04gi8Jtv@Fk`&6n zOrmEUitHGkIV#DT!Snr?By1of)ba#Agz}NVuCYnjX>JoUEeY9qXPP~zCMK;Gb(N^u zNvPXkOis@P7MKvqgnvwISCXU)N5*qfc%QDO-#<+?aDQLY7*TZ}_?4^s*zb6C8~Fg` zgW9Fd#!o3YlFPS}_~mu01|_Y9unS37MHf5U-blKG4oXH&Ksha_K^{2tsZQ$XL)>7V zW%6AstFE1YA?44KB8c>Dk|P|mO>XFj)x6OFq1+?c9W5uLP*^>gh{BfQpUl3`g^Zx& z!^jR?6QWip)5{!^lcnTk^OSy2Ej*cSqZRSV=W)rxmJ4N4@();*7?}ZO)*l__D23|6 z?(qew$=D`L6QE>rMM}aTIGvZgm6g-q79$Ckq+s&(D*Eu1nuW$u-gK zWhw&Q{P~P#fY9*?&VBMU-VNWp7jGV0)S7D*@>7vVHQ-Q?tIXj@}s!gkWeP}$UEvDsG;3?s=u zF>^_n&&|cEl$*;h3%R+BS(Gev8iJN4m!i|=f*+IZq3P;mXVJv71-SMfY{6@vvGCuP zJP@rhO2Lk_*`6#kOJ}!;vw4JnYF-+vyT0dssD51u}$^u_33I#14Q>kCRI(rwS(dlGlRd8_%T7w=hqP z`dg;-Myo3QVu=@wuugeZB?=_aMp;wXqWhgBWwEI6)7?@8weR&zd5N)*D-o%U$(ryK z2^4sz(DPb9%%xO8A@I2(MaAmdZ$jyb3SV~X*ej+@T>r?n?USOTRqa&mI!1L&>JZni zE&ZQ%@v7Lw==hlUn8XgT(FsY>9pmGPnFXONq_8b41$AtfnGCo_ruGkX1=;ijY;m(4+`i)mxV$v`JnTqzDV^eLqh@Z6#$Al=VuH zkYM+09|7;4EmC4cun2~KI|+D`&~A7vjLe{U_Y~CTTcfx@Dcr7v0HFv3!-F9y>oJ+% zq=Xu5IUO{^IRbsY;RvLS;Rra6;|NrY=LjsE!V#!3Gvy(sW5tFvbxz7hpWv|gFnf85 z&>KIr60dSf-5D%ar|dy1XXlO-ulKf;M6FHvsJ+d^9ltdNb>|vW0%elREZ_ELuJ>Q| zalJ1*!1dnf5Z8PBajy5(zgEHWr{1T=sJtK=dlV3Liz~n5-6|-bvLKX&6z1KlLhLb0 zO77R3POrM#m1^2oW&8;0Js#@Oig1ws#P|r z{Vhm&V+(JRElEu^c1cD`QiWhuXqPGkD{F^TAy{2^Nfm-sOV3oSt8^e`+oJnH!`i9z z$dr%Lg#ylnqzeAx9FdAh7eEbBfhi#9do4+;I@9f8K~(Blk?5p=qp7J_-w;R>N}9Jh zWErVKlE}|X6_P}CE!X>X9oPH!dam~&gD&8$9)f!MyoT_AT>fso!{B7g7@+VH< z%1@ufl`osll}~0>LHUJ`DDor9Ql&u84_GQ{`93ST-s`Qw>)pr)C?9lkCXB-Qb*YtW zBx8nFfX9w1D4!{TlIDd{_g&lvX7A@Pv^&UQh&s$+xPFAguPZYi*OQUy3h~$F)scAwkSe~AS$OXdsXc1)w7c$cD6aAvxv>HMiPM)0x zm`Ry&)IiDHtSL6kxoy&hx*=vpjOv0uX`0GM1~E@f8OD{@s~E35O5F>}N2XzS&NLyE zf(xk_ZTt_tp>NYSX(3nzGEzWEwGf@l_MVznpDpw3DM=H~LGql(4f^tYZqQ|=+@Rb4 zkS26B|6ZK-1-4BEmsh5JBN|9H|CA=2Cb?s48hTBKQg?r6Angm{C{<4vQ`X;7wE*qE4r&av@5FI)Qlpjz zOcbhvuZtShH#SpXhC%3-14mN&GHnCAa8qZ98uZjU>L|ARV7EdoB#9{@Y9UFq3R4S7 z!Yx8A_*7}6`VGdXs92waJVE`v4apsur6olUIc{WHy4sG^N>i^&_|L7Q$PT^Q_lulq zk?IB2)#{%SacAbE`qfBTW3`m@=%9{*<{9d9Ri;8H6-U^arM9-Aha+3RyGF;v%pP2| z>Ra@BuszvsV6RvIfN0E_XfeSP$+)2wKC^wS=tt;T(;dizEOi1bC{!O65di3DZRven zlsDPeOpUleu@dX9p;pdty19B9BEoz?%D_$uC;6?^9x%AI+LoSPEUvvHZPaJ@2sXA? zcm3~))yx(s>JEsOkePtdY!u{PH}x)J6+2o>CXdXbADykpv?qV|tLH)H51b$)IX%>0 z{&yMSP7ie;!Z65{wdzKs*LbxQ=J!=kaVMqqGTxaWxzanM4h$M?G{1W3qg_d#aq2<; zT{y-BC=&R%C-Wt5OJp~q7@!`OxD z5ZC`cP@rUP(mUHL>(CdfZBSpZ5_D+sle*h~CvB9l3n|JTpL`rp(uaIy-V;PCHi)E-=uthJ2i)(c0bZ91zi zLPT4m;+QbC;Ndwnwc!uKgfQaWchqMk3>{ecSpCdGcwGNf?I74a9Q#*YlRy6ZT>XGQ z{_{#b%*I?m^s!98fYVjIS%0KUN$ncx5>k9BD`1m#dWIFrxa3ot+;d5=&C|8!^49nv}xU9I%#V!{X2PQS`6uZBDw=_T*+W`|4%`lVk-yUVn{=;uR| zLef_%#N-`SKm86@_V9-3$jF#Yj7$h+B8B2c>E9z`BqLLk6up(zgq_XO_Xdgye0)Uu zG9;v&zDyJ02ri@2y=(<1i65W7jr)t`#Ppr~@#LiRt=7U1=1w>Np!3Z1M-IYYyDUhL zv=bheFHaxIf19-0OhHq89kXLiy^nRQY+_^wl$`+!Gf)ctE~cmheJnH1SPR$E zw~}NWkcf%i$0ef#jXGsVzcZp=rNR>TjQ$*w5bq2V>Q8+#OsMazopFMrv)Ir4gWdrd zE{+0xQ&kzo{0F{q=GX4WXEfx0{X8Y38h;#^p7Da?J2E@tAO1L2lVOc^=H9nT>X6H8 z{JO%}x*7DS`;Wq>FWjq_@f(jozck1|MxboMI2HG|aD?*>Gqf0iGov!KFt?0lw&1q>gO5#;{i zK#jGh4E~;!Q5W;=CmW;Tc8L#(kYy3*Mlxzxen=l^tz(HO<_RNRdb`AyG-#Oxu z9p)^|(0YAHUMMV7n=|Tguv%}!gJt9f-L_|-uAeu_YfYx?$gqdPof(JFuu(w-GK7+` zVE{TU%80OlzjkM=@D$U)rPCQ}(Eu`bMZKqc5mn#7?_lfIk5Ck5D8AP-P`9Tt)jaGw z-3Gee&8Sw%(->)T*dnvkZdQ`%E4)5~vkKrR%gkt=_Fq_MqFsZ;>>B&nUSDA-vXa0q0zL{kOl_GP0 zC65%a%nr@OU|L0+aW_rW^(ShN~Kls>a5Mx~GHX0{Mk3$hDPpa7+?LKKA? z?J_4}e2Wq+fQQ{P_lW{v**o(PGGpn;AJZ~vh#8paC0$*<#WqoAh1I&2l0YIayNSt5W020@Jm(GRxatj9YO= zmYl0~Z8l1+X1+lAqLyh)6uii`BZ)C^Bd@Atj%*3?Cf`P8J%Fn^qdAFa`HyB<%Q3EE zlGT|!Xq!bp<2IIWn>&00%G#Z>>@gXKF&Wk^%MDib$U1E=Cjaq4S*YWfDd{Xo9+Bl> zY4L>YTGdx$?A7m0My@%v?cIg!T9D-l3%<^hV!HJ5M_EllH8#tNZk2hzxeRT;%aT|T z)xv>pWbmAEXYuk%ibY|I%olywm) zmSoc#?>sEJ!w=TkAGK|mK}l`1$5FW3s$F4)B)bELppJcZSDZ(@V@h}C8rNK69I{_y zI(C_}bMlC@e1a6pT(V!HlA?(Mp%iRD>7KpYzS5M8nO|E{#Gi2G95kM28uyD&i z+XnkGp)Wg=7YA}X!kM7#HllKliZaW2Ha7bW~07}VI!p!u84|wFV`$$ zwl4buT14l1)NrLcbChtxki8!ZK2S18MCA->ZkF?_R@wic<(&7pq#BvlKHHikw#`+7 zs%`cutgysL3n;Biq7rZEX_nZvFWyMW@wL2Of6l};`cWSPU2Ytd^Ek>Co zZZZZhF{~M11-GIvbGMo|=@W8liCND1B~`H55o_sX^1Vv4ZQ=F2?5AimFp>dEW}m1T zj9h6J_Vk+UYiPrzTpS>6UH03m$msw(He{a^mGk^gvz$?TvQgJfumo`LNr?o;@5@Gg zF8Pka+XJ77{Z6OMa<)I6eF?44vaQplP;ssbiONWUPzpAXe(@8+7W|c+$4l15cd|x;hZNaoB*sb-w57ebeRvs;MS5plK5>1FyBl&syF z6$FbcbJht}3VdOc6KhE>@9^;_`y@GIvHDoBlVW#7nu9Mg7==8Coc&^BfM(TmO!Y-s z%^Z|3j2xrUfmQ7sRLW*A5BALwk0=vE&C*?o$iaI+c}$LzF=fZVmr*%;uwex#nd72b zJghd$DbLD5M?Ux}H^&ZZw(v@mL(ee&u&vK(NLd53bYC{k!Pk&So8{nZNcu8QcH3I! zh}V#vI+^9%-W82DozwTuaRlF^WgXoAaA&2q-iM7cE>!!gnp>x13*IpXsfuf=A;dMvAg0xN#3f&%Hwj-*LT zs=yViKcT?FpUiSD-HNuwJks(cjo(%~s}R2#g<-os5x=J$G0S=5cop=S^lKILNndt^ z?Z4$zi2BUI%VrUMujO1t+EgB?``dK;*|&3SNb_$rO4xWa2e;sDoOl~aZMvOvSX5rG zr)GJ3JgWlqsc&+e;P^{)7|H`mA>LXt%U$@Kx3^_(ybakjIn4ksCAnf9lR8jjmupJr zn;diTx~3jtP3}FT^{uySE-JCJYVIAG@7!|_iE4XIZL`GI@?30k(m>0ATx+ChX$XDU zNoa87D{{q?)6*!kocg$2bSXlwYtBVo2FUbDU*>X7O37^{s?WGQvz!xkRj`0n&*`@` z4-8cRpHb*h?-RI>YHpVEY^z*!CMA(q=s_?sZF65BlYO2*VP*T=pGEb#t*2Q|_r5qe zuUyF0kV^w|9oVJHgm#UrVbOqGR2^!h1(cR}=z99KSy=s;su=0`su<~bYNV_@nKa30 zq#rJ4vWhg0K@$B#ZT&b zJ<6q%IuW&f`^qfcowvE;=xrRM<>8wSjKTq%yy}*u z+%vZ?G?V6KNX3S6!!^$o3DP|CuxV989=xJ^DZls1!`3RCf`@nB0a0}a2b$#^5uArl zSG`}ANa0*q-gAVhvXvZSq(El%&glYMm3egbCt@4zlgz?yNv(pgWkzAEWmG{}MqzSR z-d<5T=NFjed|H@?T{L3QIWOzj5IbEJ2*91jdB2E?Y2VH)X4{T=s0hWXw?AG?w}qcN zS3#YOg0frQ9#J{fUz+8dHMk0Lwj7Zslq%pmEN>syP=S&;C@N>)31&GDPR7Ye+lCtO znV$CsBc1VOLSMFrIWzNih>Ey$zFEZA3-KNVg-i0P(C1l_$J-Q1%Rk}iSJs*3Ox%=* z&Qav@Pk9b7e=|;>%(xkaI@|J&it00Qzgf+i;;Ur^YGO^qtNL@o_H}b zXX&*(C$hX=tdjU1%d>?}SMzpbEY+x4ptNY$StQJFdtesU<8dB-vj6Z6 zt)d71gU+3Kgi(0s6sfJ{u+&mR`xGLgJ6dZ@t3~Z4nlU6JjoRO9 ziAIl{!siiJdyNG4*=z8Y!6>MmG;|*Lk;F2nUqfT+tSs}<;61Hg9gPDx`D##+i+LKO zFj=k<^E4SO4>!yCCQ^e=R!}cSgI|B8FFU}AIE`3vmC<8*%pykT;8h8eH5zGUz#Y8Oj za`icyk9N1RnS1h5vvku}Xb9#wcDlnZ3+9w*YFb%1lSf%~>7v+@FD2ysBaIvJT(4RB z-)Dw!XT4@5X0M$5k~WRF<`p=QNucwFx1d=<*TtRdzPIz6{-h?{*`i6cBCe%v-ALjN z%{TvDLh>G`+xbqAwNvxC1u2Z};|@zJG<)fXppyS67xIH0knpCUBv?M|;R()^58yzH39 zlN8_27Y-p4h!v6?lJ@`lnAnywb4_wjieSoljTLG`uvwytfEl)Q(yeU>J#J{iFgsEhv>A7)!CYQeNH5&h52!}& zNdj(9G|L2+f`k8RezRcS1!d1Q^b;|oqrsS0n!nJd zbs~61z$OcAQwzIUwx$m$ACa60GTKtx1#4tRqEKw5B~~JOA+06a??{fTwh=UxYVA>h z(TMBiI$94hZMnV&7@W1VKovn?m5a6$8UYi1JDBILJ#H=NdYG5?XO2LFnp$71@IZ;L z5Ec1^O#7Gz&{F~0K3D`O{V=!`sI7&S(5PM)k`Xz>6DEdf$BO|8Eh4qoxvceLw5aXe z97xW|5UZ7-1y&`{@4PGOeqI-XlC}P#0#8fR-sS>N%+!v-Dp%n2TVp3!l%)+vhssjx zIrPeypBi+9?V3**aBZFT7#H}J0dEZ^PV^A5_Mc1Ob%EBvjktL|?H>N9tgl^#Rz8i@ z^z-J1)MW15ZQ%`HHPN=B*Pwn}AIMs0QC9+)5~~AI+sttz7l$^oBSjrsyTX(rEj@o? zL>qPGEOxkq7IhL6<5X-j#{s_SroCk=MtVbEtu;sG-~cVU$T2b@C4;n%@XMFldgyY4 z$x6w*!F=>>8m%3;e63Bi5gYB4vD!B1AWDU^Ba}2hMtJB1t*eww`?ixi%$uRD$%E?t z+1j7cUc@-q+s?5Er@30+s%X)UFfyy>X%|?EDPm@+Hb^R@fkVr+2e{iT`cbRl<9NA7 zy8-P%Y#eoMsYz^GShproRqNLX7Hrho@+7|rw7oIk;ZcC=&AzMmA+%)A2Zx>7ZlYt` zzDuj(CjDkFHZs;DMbGv0+Nk~1r0eX{7H|!HwO?C;G$2k<^QYFCI6l`lBfY!Sbs%fj z6?&24JvuKk=Q(9ncvzc-q+dvS|E{$o@2bNuk7)-ZtHVN|w7%wWS)JA1LzpyBxLP4$ zE+iQx&1l!_YkfQDc3m5b90r}{N$0phoqO5?qLvcz&}=C^A7d>=U_vMp+u5fIY+=L` zZ8L5yx1MSzAknN$_02Oa?o&NuRpRQQb0wuxonRe6=MEQb?D&DSpM6FumVF*hPT1=_ zVX~!eAv)}sxVVwxeTE(oYNMkQMmBv;m+1BqZ)=@BRF~>p5w^r<(#B!banae5veLq~ z;NYagwIZlWfC?LowyGU9be`mxUrT#ZYSq&fPI>E|iRNt&U)><|Xph_kuUB38E& zeT4262QPRWr*lH+5TcTGt6eI6o_ghp-WS61bsg!khcPsdFD%euPA;INyE0clQCIhk z1tSF=3w7C;iR)Tf)8^zvGo1%nFrt}+6g1SmAotINyjKD4I^E3QIyN@KKt|SZs0M2r z>F89{C_Xf6rYl9LhP0ibYfma(=pnqL#<7AnX z^MdYI{`l;o?q_bv$FAz=$&<`%if-zp2%{$N1~0p-vmwRVv@mLUUk4cXXS8G^X4H7s z+a%?0>(OQG$GVl6?Ee8l+Tr|1*9>ipR4z|a+PGdCq0)Gg@=>Gh$gm0dImGL&4)bNd zNj6V%d1C(bjr;OPTDX}jAK}LL*Efh;y$lVRZJDpFv^P{p7*_dLtVzX}G*m`P^8>1) zAy-m1Xofx9vCEIFIvH|lZNqL*+cBRu3_sk`%ETV!ls_Ibjb<97F~NmA7(By)^q$(N z9z3p|PrFbeOxkv8%`{aE9By`AxBw4OH}bq6+yjD4(`hSmIwB znvZEm8fAsju>8K<$NeMnX~&5<_P@&fI+#GthEI*&S6F3{#pRnaOk6_#ezY4=CAbo& zhK6qNG(CSNl1xiNvqBH}TATlkR1EwE_49+cLMJrL$5c{u^puG)E39vnzZV&%TajaJ z^LavW&Cg#AzctIJa|97Ul2>~?bl0T>WKVR$mqjq740l+3ejKZ zw?Z0LD{^^izJv^aTQ8d2-B0V#HWTvi<6;LV)x2rFsnBOqK3%;M!Tt9s`KORsw-q^( zq-_o}W`808T9)Kz@Br9gem=nt!my%gO_;tQzXcNH9;Do=K}UG7_!G&X(bD|q+*RBB zh>3kbUA2PS^e?N-VQ=Z0d^s}gFDoj2 z&U}B2+eO{ZZ%2y9HT57WZT{zQ_&~mYZ83{VxnT}{eQ#kxA5czPFq13#UUM?dLGM5= zht;nMCHM0ed05V}B92yy80ccDUt>c~sHp}x21YPnEtY ze>@$lcjAvv6ZNk-H>))LU5wqaLDb38ON18E)olHGjK>+tfJ~=H9kjt@pfA(Yh8O4? zfRjN#6l3s=Ok{J~4tKd~NP#X5^?{hE{*KJuxz%gVD$M^9_B7Uu$I;+s`d(;JoqXpw zvL!+?q)6`pE8FVnT{Sf2=6wbGA^HlmivRdV?*O!Ej;|Xp&(zc1Ip+9RXQDpZ zS`4IlQ}w3O@6-%Evh*te%5E|y7O|?i=nTc$`Ci>l(1z&CFbJ5)RDU-UhKqCc>o9)w z0j(k!wLm`vlYmTQoXF0Vv@p8tr0ou`m+Qr*crxhlqkde~)MsP@#jEwFd5G=2PEYrQ zuyCy2pnqBwr8<$)Z8S?6HwBRDoAn;VZXaDx>uy!I6WO{&KmB8?l0nH<{R3X5lSKgOY3=H;z0;%CXPX`7EgCBRz5iSNl%p`_!c-L`WT;1>(V?m4zTVXcuh$L?o z7t`ob%diC#Fh3wz1nItpd6*M`8JRbGO`WP=LJVSQUq%*7t!qNd2*VKWk2j+XOA!9} zjveb%WyTmrBemI`WE`L^_rm^-yO9+M1`oKMXb`K2WS~wq83E~|HekXcm724ASfF(x zY1xMAcZR_f7WZWt^q8<{f^;~9=?tbmR)*f7LS#aq#9koYBMV;} znhTAqnXL?-)j!TNzVM`He4k(u+&^nT z%^;b|GtSSbG3%{1mJ~IlrC|P58V@jG(I}CT6d7Tqbs(kx+PSi+9>aF zmX@=sk#q|?e^Qv?;s&iP3%U!@n4GsNKn42Ow0vP3V;@)-mTiD}BfVnLY)1R+hBGG`>y&$_Uw#L;kbk2%G$v4R%Xxf%uh04i$L#FPGtWGA=9#jWCnS8WnF|Pot)G^l zr*mQQ@F@x3YVw&5jAVdSNz>fN0fDW*1zJz%^fqNGg7)>B2}d>a6}lKn)BD%nNtmt~ z%Gr83wYY7*ke$%i+mm!md0&x^rE9cHhoc=b(DJUe39~gz2!N_h64G`S>|g+j3j7tMMD@#(1FT^H{pBL zcxd(HE64x*WM7S(GPc(W8)0)Rj3`CUg^t7dQ;ysRAIw?Om$dB55vO$`@lzT*3+PA zaeC)CLw7l`pJAIOaUEw!WbY0G)M*tEzD5QE`7aE81Ej5I9Mpgq`u|M9WlrF4Uq zy;U+mXre{(pq`Pff6d@0&zNRd2w!?oZ+n-4KesjZ$0)CV!?4N?AOnDPS;OC6ts$?? zGH5#d>Ofd0-=Bvzu?)fpzm8nE!0@?7(KWFx?}AM%soK8<>$t>lPn$5BWPq{+zVoFf zCdX~TGQ$Qfo(;Nf=T@%CYOr#oE^^m322D#bM8j^e*?a-6&WDBx8c~X489y0nxHMe` zP5;){Q@>-rGt^R)e9#YCm7JQZBTxU)Fkj2~2f7_61Hv;kDtR0WIB1Au@ZGu)_V7!? zYB_p`A=&-&dL)7S_Zp69ZA6Af(qYd8*hBf9Lc?rto~(VsP)$j8JY$GZlIg{Uy$~G4 zvOO;v`e?KO)UiMrwn9|Y%EVtB9ohAH}{I*>0o*@;!o1>O}Iqv}&7j4Sq0$rIc zev({y#m2+{cIHPzfV{oH^pUWlV`3QV-n(ir`||zd#_ZN(!x2u8f+q&pZ%Cxs@XWAU zbbjnFVqJ0*d6<~^(3@qP3T!ODQzfyEX8B(ll-P({?u>xM&6=eWz&y}2VnNbF!)JKrvmpKD`vI|5yIEE*6fM|4b_?ZMTA z%QreF{-{~5UCq%kw;tURM{8C;f<>!eIlU9}G&3H+M5q>-@Kg^wYe@`Y5$6-CvD~ou zDY6`&sMjjz%mF`D-fl?L6g6}(Doln$K22W)kuW;ZBVV^A!U|IvbA_%tT#g@@xaCFo z(TK;>#NkeztUfZawuWg14iCZgp>WPlR-AUDv58N$>*YDn%daLUZiEjWtIag;_nJjc zy)1n91@sacVbBQI%lk_cV>FJ*K*i4`R+qOdPdu#mgztebUqA;5wEvdG9Bzr^ZC@wC zsy2Cz@4iWV1e=S{x9<2k@sZ+^_x+j(tJ;+N{%?t2D!D0p6Kg5S%!7%rz)b~yC`_~~ z$$G~VtMoJBdGPwmg8G zo8<{t8J+C=FJN>Wpi||X2ilE}ocb)Ww`O|-m7~}YTjD$HcfmMSTv3s)+UELKsx40v zjpIB_7Q*Gm6^&ggvZWsz0#^PF$1CSoF@{!VqHktjyuc)gb5T$pK3lI->O=O zd?&zoPm5-5IBA6SkU_?ptc8zhlzb%AxK`&Dpbvc67%p#%GTOXET}2k!(5U4jie=iV zB6n|OTqpoI`9Nc1cTISk?HTN=XrrfN@|D`eHjnSvmZj|%gXO>$#!N(9&WLBy_J#!m?8vHgsjy%GD`iN+Zf zF|jh)Sch`Hvl(Y-acqwMG?xzyHHNyc)j==9x`mvOZ4A_ipGgKV@JZyddSqH{Jg$+!CLX^F*kF81qo$i!z^rUH7ye~2k5HuTL+E#WIt05 z8;_FbX?E1uOM{%r0P~IqB*W#?r;Syx33mCsQPbv`lg3F5F1V~L`xP4lHK4{&HCJ9T z!ucvZ`t;uwBW#U%j+)`}m>WiI8yHdZGw&MtX%0E8#3Q%D<;+s!kr&gy-1iML3+-rV8mmPyodD#FqCQ*xBC9=7ODzD5nm1t380<&dhb`AN_JEpJP7mUewlq@m%A;E(a90bp zmYYTrU9wh~G+nt|_<54m6>E~CSDUn~d@%$g!@lT;T097K=dYaX>hkT6P0K~*zoxlM zC$j?whRDBtX1YydvTrt-Ue!u4Y=J=wmE=8NnL2B+aD-^J53;Ms3%^E0%Nh^hEEwl+ zO@|26jz5^Pv|>t4#QkV$p=Ck>NDkp^XVJfyG_0M;0N|{CPqI~GG zDMX7Y=Uqn#Bd?lrJV^}OE+o~IN8B)NgQJ#ZoDtH5zn$~YR9dB+w_~cTsK~ELXMrI} z$K@wtQWmVKG;SOze^w=_W%*5Z_D!l+9?+Wdufa)Y$tZ8Ane>2&xVm;y10w6r@Fal} zztv6hqQu_Fq&F&~Deu=LX%gAupPDB{SH+wg?UDvm*Gl@O@kz=F0l&ng=LSPSpD=l5 zQc^{1k!4wuv^Z;G5Vb?+1GZX|I%&2H5yO)L_zfP#gOZ*b2@|?Kha{aQ^AI^KNy{J; z(UqZ{;lz@;Ba&b@HV(1=mvmC2tuV0JFXg~zw$qbhH48XFm^Cixe8uO5G)(?vQqqIQ zh~>J~NrDD7l)SZ>N*X3l-;)HJqd^F> z_iGYD04&jn@s|ThGqiBQ31H8mBtMM+l32^F**>n1ddMpaw21^D*D9!NX+$!7FbeO% zezi{WHZ5TCR-3!CR=tz`SU`_tWm_L?P>h#rHcB25>d7eWekqw7rHkE?wRpxdE&9nm zamkwY`#8bKfcO?I!#ji^L)UA-m6Fff-uI;B0GM^;F5%Ik`iDxoAhS`>90(1?H(`*x0b z9egHL(6wZ#TSXtpk2>ps}%h+g+Dn^HvS| zDFcMI8e2|b{!wP-Y9(V`v*+p7)(G=Z;kBmbe62zt zgKE$6a=WFQBG0U?`M4I_7g55E(MgKFa2STUKW{4Je==H0qW^O=M3^!{W2vK8x^7awt z0UE@dA-Xc4tLf8kP&tVe^n%X`WsWglb-&%6`1%&4NXYwMmpO%n2VNkcX@t~_|JIudn6o4dl@Bzdx za9k#b|51(w%-U@}tr7k}ZUF}$R4m}|d~==_3rHfrHZH}u05<633R`#+i=oqc+ zW!W(xB|tuN*SuGA696HQmGlKG+3LQzna}gGRY(5xnfVnsfDlH}a+a5GN@Ck}lQbwj z@07DemGP|VmGUuay_{PqAGw{BxC*o-{M^@=X~_Rx`str6(o63r;E4Vl|1V z)c$s1x$+%}*|k$vYLRRQtXis7z*7+^nod!aft4!1QZFU(#mKv~LrOI{v3bgU4{ooH zytIAFTrGnz2bzH_qjQR~z);d9#oZ#w;9HNq2uTCkFFjKfi=^w5^4yp#?c0<(@}#~g zhhC(SNVy;(}Q9tjFP2ncVZ(@p; zQ5XQ`yDHjdr1a2YCL93R+ZkXgXfxfdH{o1wZfc4jn>oFIHTH{7zaW+w4>6dcAW*9v z)BA_8!820&u%?q!ivI6jltGIL?0nGjN_^XR$&{2KTC|&{$IMC5w9-%5IAEp9zt2sH)S}}AW`D=N1Lf`SKBsw%B&J1n%9mO+gFv^;N#XZY z%LiALqj{}Yr~IlJK2QK;1;3D2x-NxJi5_f7(X={6_+}=+cQz?PJpGFlZTCijr(JnD zr54-%LyCG{^!?WTg2HK;I5DI?efBlQNyHj-Nd|B!K6fFbu=i2j=YaUGL zrDd4z1eI|lMY)Bjd11=;T8x_mlnkK$(4vnH0L z%s5Ms*YXuz*|>`BBJoOzczLO42?dvsU(F;xt76H5gYIhGWJH7gH7q=4ajmvRi??*P z%^r78_LGCcEvZ_?isg1%9?ZJo(i80%kEv^!@WQa_$-N>i!$UlE{qI& zCEmfOFb-I$@=c4SzlPzS6HEw89B%Ptx2pDU&Hfo;(GYWR2X#KroGxEYwLCX!CjA&N z%%Uj{;Sv&BUs*QR;y&u<`uA*tMN=FC;jc{2sY4g$%iE@ugMQsB9nrsL)MxXWiW1;0eE%8NwU|{F^EmtnJ zOIf0*(ZHpaEG^PT@aTN?ud6JY)<+4#vxMdR(v6qbSw7R^X$Xq{XBM42^<&Eb4UCil z!Xft$U6Nq?d}H}WBdLe*mF#5M!gubq{@K!*!VD94TKFpUlHV=cHDJrAzeR@n&Dv@`B~S|9$!< zM_;s9wG8XB;;aMM`a2dd0=3|4+%Z=zaIRTb*XoK8%m3c6z_;hx-gq;BeS6z7@&Aq- z!$xFiySX=|4 zQI!!Bhd0ki8#PkiqO-z;fM`B8z^awzjM|65uwU+2D$5I7S~Xp%Nt|n8%?Xo>+FH{qKZoe6 zFIoT8(03W&j&O84*um|VGwQ|1bZFfiewb-=#b7z6k5$uEu>d`Vb?r{M9%Zwkuy3Yn>9MZGjR3Qvsv|$Ca zg=Rtx7B|h>PH4)rBI5Z+WnIQ6=9lCX_eNWEK2 zfv{HvLFUb$;FV=p<+(x$FGgLz#oKTg>|*RJ#Bl)d=pcP1*6%IrF>x4FS~8%II27JYj_>V3oY=Fu)=KP~ zJ%dBUL3`PTd6xdHahf%lE$w5i#on7|9WBgd|IM@B5f)+_wX?hLgDoSU+ByLZhrVrX zBCN#h)+|60x`^)qRea++k#Y4(U%!`S`Ny|~`mZmrCTj3)Wn|M25SX~o8t%d)kVULb z>*V#rUT?NDX+#6ykqZ;K3?{!jG4Wqy?HK&^UhfL&eY`7F7$ET5M;Btp&9xNJtYl$q zm!Rhg&1Xf6tV@MrHfgan?ZtaT;3DLeORT>MASM9R8j^m;iJ2G2Z2n%h*=irjnk}>D z2=j>ptmJw?H1m7UIz$ZK$0l92ju-sdnfI(=T5&2EzZ||22j3tU8}4I)mF$DXDENPA zK&;qyA1mHt9qbjg&zqIL*1tBrIAu!<_1^~+>;)7|pY;o*dSfb*nLe z(9{S_eaKTR?WVP*2y`+HP8r4SGV6K=otFOS7tKzsvW^jFaXN`J_OWG`ZMC%$3e2QG zGp@B(WfN9g)Achv;QP)#mgZ%6MOeeqa;$yD_ui?Yn9L}R9v}_^bXNW zt7mH_PEkl0yB73oJCblz@H^O;nrhP&s!j8R1+v1RFT__wu)~-lf*po7)C5adXWi@| zSn55WW^7Rvn~t^o5qi4B4x#9P<^A6hZ|-9;sn!AF-&`K>dD)-w@xngV$>#;h35`^v z{qACw{Upr#s~$R3c|Qx>KVY6%XFn^PU>z*fVsT$tV;El8BItQKwQI%5P>*$4;K$a< zV%Pm-330gbm9>utLs+RzN4RgKEsOi4PYC!SDAk%3Y!PdUR~5EgP}pMs)Y@E3+s{(h zTI;f}y7moa{sBO<1M9$G7PW{E39h`~jaQcxUS0CkHJ0_6)et%v>kzM|V2XG(g_&}# zt(>ww>vQYIGOQZ?g*8K5%*iG!V12*TZUacPXHQ0hISJb~V))z3dB@TvBd#C;%a(;rHxMt zWv#xmHWptxz=TiiLs;=I)|az0-u4k29$*_`%7#WBU6c*l9SoqBk);8ko16&oxjx;tx%h5Kt`T<~q+F0FFSa|PwvZhyO zlXh9dSxIjHn9yZdk@)x?rihR4G1E4c7Tnlo{TfxG<#y|f81j4KrURVy-*DCon~;L> z!e^|-_7~El26ThAxL0BCXV?)pRoZiamFAcw@ied*{p|_(kN)<$B8Big=}}^=_}~D` zduHj)GQR0pjYX_8#lcwW=C9WJ!U@7P)FW&nr}!aMMK^qB7t9N)ALJZLs25)gM&Nme ztRcaB+;AuJ__Sn&TudetDt>RK{c%& z5GM9H$hp<$5J>tqgmN7xDDm@(gK3_aka^Fb$_ z4-%c7PQ*}P%`HRSUWL|G!WCDC#R~_S>3`b2ddXqy&%zT<5uEmjj}Ee|*@gk){ew(+ zBR-U69JLzRS4Wgtq)?CTJPLfI=}h1uHt8R0XCa2?Wj3n#vJl8(iWS2K5K5nzO~M7v zl6%lK9BU=9WhY>)m3XK;Q&zcc`!-<8ItwHzP>3*Km{k#)}(kxSge*PhcfWM6?67aVHAN5EJ43`gEciQ@C8SO9^&HqE6*d%fxMj|$z8?6 zhnNtW94Q>-?bB?o0P7Q5?a-L?SUAk@MtmRoFHCO%f^ zd9X^qn&J~^4<`Xzu%23;S05rLuU}m*Kx1gNdbEyuS7&;x_k+XdjQ$)^Jo#af*PU?Xco?X9T9Tqy* zS$3YY>^v$fFTH8)E(l#%;Vo-hc4TX%8REKp?pZ(Oy%yH7xZB`abJ&vGS_wRYb-M$D z_@96#{$MSPUsvv=&p}Mwh_@}DZ8)18#%>R@>R3jm-Jj(K+N!XEXt*oxd=bR3ATJE& zEy(fm0N}_=h+;Qy!FYc7h^kR+TPZ}8{rV&aV5+rPluwfo@k~B9Y=7o+!HhO_ojWFYP;VEw+-ItU%PBG<;Zgz9%8E^cys4A_R_^eYM*FP6u~`s~eVBWj36 zoPokF#E(0*U!beS))e6YGrehR$d+tN_VcP*=*>(eFxuY#(|{11Zn^rVW3#7Q0>h8F z6J`fwIM!`gT3_ohJ?418mmFd3LU>0uB@9z!Q^E?-5w>D66K$gz#2Y#Qef`&O9-(Av2z{!_JuJ6z~+3^ z#~`L|^fwiPgC8(Y7>(tI2qRdepG}E3r1CVy8$4EJF4JnpVxb7SX8IIt5XfN|3&Dg?vE2{CWJw!D%P-B#Ab(S<}Nlm3}>n}8vq0tz!ufCrNanhS)?sk z>BMrKJ908Yu|%oj4GYW;=2upjpWABs)M{wkEP_{g5eb>u$o5pMa)e7;#Un2SE2oL=u2}a7AG*{& z!iO%^kMN<3v6*eY*j{J%Y z{B1OpfPstnngR))9VKz%rmuJegwM^=>Y)q@{c30xSE?91dlq`{wrDX~%*)0QarqHG zU;&~~$o#3Aza71PKBCC{wAR2=JvOVBc`$0OP)GGPwz1+LN7%9`2rU=~n*!LDHnum# zLq{<70*j!%4L)9f0K5%rtJcJFFmUe;Mpz6CuHX)L*AZu6L@#*mD+*8O9ehU?s034F zfl63b16wQKOmwbfmMh2s?Q8*pkSW7JL=?oTN4Xq$AAKP?cy}4tvM-u|lbzVnwnvOO z$|WM~D3^#DM^zHhfxi?W3fS4!PV9Y@3q;$aTp-LxNg&{LWH(!9mRmy%6rnx|Mf*-5 z6a^XPXqZxxOw3eZjd2x*P!v>5(t96;KD&uU^`l%Ya$rV^VzCOI%MpuM5{tr7Lqo(B zN4Z!4jYupi94%uHvF}y6*8g%;k&uX&K|-n{25JcrkCIgk6+NNGgdR47z5rhl6ALj# zOe}mun;lv80R9;gt%Dj5bMIh^IQI@<=Hy&%qU~3ObHY@X zHWHMj?g}9A4Wq3mYiO%dn+0_6A0})>YAA!%O_&}cZal`vsq5LcB<#4dInQP`Ca7;Xp74p=`lh~*3# z6Tl+g7~D#@qbhpSRg@xjXS+$YS$=+t00ybKrW`=i&lDV{EopA!1Cg ziU#{fv*N+Fb}*xbj3Hv}<9rhQt=$#{(^@LDw4JF3)Q`Jiju(!x;>H#|`&zQu*c_{E zB)c-$79$Mfm5s-FR4{|r!^yJh5RvbXFwm%Sy&%aOgPN*!9kQin1Xeg{y6 zr4C^|5`<<_5V#0Tuvxrd_RAty^$TXV2TBbTGxE)G#f;1vW*ZT_!(AHJ9wRfNU+bA` zB#nO@cSz%IOp!G123(!e=m;FPqIuKn)BEe#&m(Mu9Hs>#h?znW(xx>lxozqKG}Ruz z9m$>zRc?h5{#NLXvBNvZdF)VNS)+jW6gz}GiX8^R#utno2D9Rkwzk<3KXexTA1CLax{X)aJc>q_S{XXZy#rcr@>GqjyG0g@21=O2_039$DUvt7T9Bj zKA1N|ghvdt2`R23Rbo$gSC~31y&HQY-4@CIIy;~m*e^h_HY>U`pig;iQat{|aq=6L zDgLphG8;S+Ca6224c@|JwsX9#qd4UR54_z*#MO@D!)@{>kKw{I#c(kn_rg^C6Z+>SyLy&3 z6$tgrMX10YMw-9-v!9M9`+N2IQ?VOA<@E~|`~FGN6r@K`YElWTaHefUs8C)LCcO<` zkuS4jie$%d6Fl@Klap%yPaihf-s@uhMTc0E)zX(MzxppR}c?3v8!~FN52;>uo>71EQ*23 z@`}T1(t^ z(k*5!{(KUbASQ@E0F7KOZZ{AI_B!ea0g8k{%Y%auHmj!oIoCVgz{7(CmZ}iWg3?xGYngc%C|96$UwZK!Vimv_p`(V~PZ+ z`{}ZRbooo$4yPd9+GN`=+D~)INjuF)3-C-EK2liTW=#`9htx#Eg5mLTmt@>MHqP=s1mk|@G&cw*fo9Jegqh6hhY3aE{H(rG>jPx4F}VsGFX2YZ7s zMeGeaQpO@vsL!W~*Zw)a(p*^o`DF-IGQvZuOIGy3iNl zDl`2?h?W~)`<&r?ZPk6U4@>&lmL&|q8bbt$3Ew&vs4Q&f*D%4Cf3XF!*IS1KU@BUe z#tXjke8CLMfMj6_f4$K4TC|)Y2d*y%5wbv=&k&P^FR`BcDi`N5tTJ=|4O{D=kh03v z2;1Wel~HFLW+;A_t+Q9*8HKl>?6M6E?t@fN^S1sOmknY^eugL`u4%12V)6CGqGW@B zOk{%+ez%SFdI0bW+v=l)N7!U*R#ds}OTvAQifS#(>nsb*Hnph+%{z?|%!Fd~4Lfbt zzVXw++Im$*zM;SL4BN5W)&RUG2ofCN-ah$duduV;tT;a=Qmk{9o5@;d)n>9WdGLtp|EL#;Lx)U;&_H`obA<7><++SdM>`K0Pk7`csvJAv~!qXn3{)&q?ZFcgxwgK z7E}iR5f1$Sr!+CFOcNQ}@&9pB53jcY`i5oc^~8k=^m%2VFZa-alGRC#$|FuF+xBa# z0KgyRkFBp!r3;K8P)S__DgELG|%c8u1}WHSRFI z2mdiXQi++4qYmuu6^(fmztNxL@tYd>ZX)ba*?AnI`FKFmD?RF*hjA^1ZlE@WZi=yw zZj|`@EDzoMdjhshbX7Ik=^T&R#Pht&bYrv#d4!teDhFpaPoK24g@1sN60Rwy9SYZ+ z0U5xFV|DiUl&z!JtLGF8viMZrTH=gzJXG_yQ(2T#Kj+SJFLBOu4=7Z#;GBb(3o%8! zTzIZ5FRPukz3=4ZUuVG@e}s6qWhKpoPU5T^W6%8Hj|Yrk3^#W0fNb-_WyhzmA<@uEV*JcOmT z#%s=T8m=j~5u^TZd`J3l4^u?Ldu}v5bkVi}X*lVUZHrKiMP7y-I91uw%P%x!g2==r zm_6fdNE<~e#Fuo%)4Z#$VX~_AqqLz2V_K{Q6DE3A3 zq#+|<;WlXH&3D6Di!S@4?{d~%+f`>$sT$-SE1bm zPP?*mJ!&rVO`Esy9n!Kct5O0JBKbU5-nj@)P0u^jxrwN_skARF0pQNZEC0ZO-p;p`*iWd(qHM;cSJ5yq22Q)d2JBN} z2<+U)lG(WnYY8`rcC-ik3XltfIblW6HwxxtVG17|!JIH?3O5h?;tRDfTq9vnwjBQO z7<6P_5s&7a=@&09En<@f8=8yn718JlhPs3)UWKlBxiv-H%TbFo3WBEc?wGqX|H>^j zPDF`weAD4PKp?|ZnOjV zvdFeV77aA&7W08dB)pmk%g%9v-7(H+R_uWTIL?5h1klCC&hOI*a%e;S4Wxsc{67Zi z#pR+}Rqb}6kE`(>#eB$-;zAL!CT%dbbCwZ$uxCE@4nhyeQA~e1EzoG=GB6HIzb{ED zO--Xg73|GfZk2wOyt0bnyTjisk6??R7;A}d7ITq(?9REXMcgA?_1qO2e7si--6Z>! zjVZEU*~Q!=06!^|)y2=g0htSq)66DfD2qN^*?n?KS78(Mr!C6}8qpa}Eo(gZ3WLhg z9ORbu#x!BOi;CNdIin9c>FBi$`cC7IZ7xcFhN!#o>c?X4L_aDfN{XOuTdvuvJMs7R zy6K?e!0ASR@s>ix9}$*X@jou+RQ$NyMvVH$_>QRf1XD!CCvH^KhuS|!D((!mZx!_y zxON0x(0aTTh;~$L0>@Nv=-mMRb)jW0O+Hg*J}WlXhCX5KaI%HoNKcGAB9oFeV7u^cQ#>n7!t+W7#2YWWwq^V|=| zOmWNG*$X_#2G6wmvHJo)gjo&@3Z6Uxj^W;>f1!@&2wA1purZ-y8~CDQw-7k6M5`YQ zp)^Lw<^s*oVQxd3k;9C*2q}DYILvK|NPK}s)FLsTL_%?xjT_lN5gS}2hndhOF|lGx zfWvld@7qF*xyS<&%`d705}hw{V@>UmyM%_uPmk}xp0=%~(OudZ@hSDu06)Nm`%A)U zzG%Kk{?el0l2itlR8P3%3wC300#ZZWX#h)m|DSsib&)&D^yc>MB0P|z%xGbsFD?d5 z@PdT}EUT_PxYIW;E{ee{<9OdU#Pt`saaaTY(Ku|r$c+O$ldJp%I*CD>9ZIKvD%0tG zo;ppla;Q(U@&(xWvWk?R18ZLBA=kG7t8_(a@WMrMkK#QAA$TT)#7i6@cwQK5?<`_I zo>(deFgeDz09i0sl}RFD*Tnc1_I9*uLX5b?O1s$M5W=axHO0tF+)(AXGicsLZq4U; zMxK0P%q8d;*{9Z+BKy?(61PuL7r9S7(gCbFJb*Pfvu>U3H5s}?alj>R*ZW+00lQ9e zT7zGgG2{|wq6GhuiQ_oUyrfIq4T|^zhz6Tf^16bBwqN3I@8wI}tb^8&S*mlPYVRR9WLjmEXGA^PJL6#|~d_Vb`;x9#1QtTTR>=qZ*ry9(^UK`V#a&JO$G3$@NPyo@@d zIJ+|@`$qA%%dXksq04-BSa6xUx&xQhuI|)j?&_#Da&^!Q%?wj}H_+nhfP2%ReeU2K zcnpySi+^9H^ETpr1&`7)cs%oj2kb8}2B+V0@9%HO8D&!V+{>MpWw=nNjv(#?isB9d zIC~Yqj1ytvus$~_ke@=1W?4xv6Kb`}JK50q%5$Q%C{Mc|OdDq(qnbE&<1OuI?*%p$ zHyU=nLbeocA0re>c30~G8%ARW*}DmY*`z`CC|CohH|xI$G>ZeTxR@oTj{);@Vf!%iu;c#66O^ZMkX|IR_Z(p&=RZdd6aH{E5PSS_&B)zDR z6ov~5R2o`zy6PZlXG{@EJ6|nJ(#5fcFcnG9#~On8V?nyTj+2^SCBd#lz$%_CEbv+Z!85dCPo@roaXqlQGbYgf7Jd~2FLl^wvhbQOr}EqTUj*SKe_dX0O=+Sm9L z5T0oY=zWcE+HqAQPuTey_kNAE3VDmb>4Hn~ERY8#NU!eVY##9|lZ|4`u}e`r)x>KbCXS z-cTHV%{3Vu5AgY9aN;%YA;(^G8C|dR8P~XnBs|DN0s=T0T-mt#3p1!1pu%0Hf)Z@c z8!Wzejl0U_3PMZEAoPJJgwR!nq`!l-Qj-Lr)0FVJ7pd3yl<>1R?K?$yAXk|?$Nsjs z9}vRW>F#Un^S3m`PDuoJ%(2(!OSI>%ag{y=|52rHUE?z^c&4e~W9S`D1)nOt{kKeS zt6cX$ewqqGeVPjH#!kCw;YkoxoC;oe+dc$Ne#R|;e-Ui`0((25H7lNLA0kFv=Z>$t z47;nA;y2lbMfMSJh+G9#71BHDB-AM1r##XsZ*7k_vrkB0f^(eCix z2`q3q(Ch}MnXe*XFg^hO+Wox5u{XF6o2+ySo>3w2MoqFAgz zIIBRoqdyN!ntc1jkQY$h@w= zSfYXfd35Vbey%+lECV3}d1U|{%d@8n-||XDNnN91HIy#+-KBz)cN34=>efbHG>@ zom`z2?XZsqqesNJ!(oWRUtHedIp(Ta&xVFgs3-dW#f2U+9RRqL?6MCN8~?>Mrv6`C zW7;VY;CT|cqDe!z(?iYqld1VcpaQ|Hr%}x!{5_2+09v60gOYsaR|+C zQ@aokAP76!b?X89^~#W%Zp!|j3c@fBVG4&Z>^5gNcuB+|cW!Sr1iE)AhnHlxX&^6r z&PxV#XcDbziw>HWVj`0wkWWt{KuS$<;aZ9WLE zdB?3&w{P=7c>A;V9NlfCh2k>V$)?7a7@dwxJq?#vcRFY9BgWq0v+NjFdQMYd6-Fm? zQ=>Hl|9^h+yXWeIq%?HdjT%nn0kkYDskR3`wpM?WC1KZf;8)nnpf{Ayc&-{ zRlG80XRPoCI7sB~*^l=6i?7_FYbqFCl*0-yL!6+;9gGtg^_#FRje)+x6pewtf*#@F z8Q{jOEB05|>Js~Ue9$;*2EI?HPjs{9ckOG%-FNs1DgO>1_Q5mF@^>K@HOESzk$vJN zMIgXbVIMEv;g_!d14rF)UH&fo#{p->65cXA)1|9HC2p6l2BGvXs**9I)9`U=lP50+ zjbt0n#0Mh;1y@G{H2L|Nv)&67myhQcKZIaQYXJMu9xJvf;k>`-&ifr|-sAnNVkg1` zt{~YY_ylivFWJy(Lj)iOLaW!-l+j&ish5=jBS?2Ts zk!Dr9CyAda zEZkVa7c;+80B_`gf8(#=zJ^hM*<(Z~gtp;ZcV3Gm*XMLV(Wz$#|keLl(ZoCb* zDS}lFrBp3_o)t|>RafJ_goVM=V=TWzDUTuaC%l9XD@vqxu=|e+7;`FyvWQ!Q63W#s zsEyswm(wJwnoyCYi4yUtbR(RSKPXBOa6L%wLs(D6+jGSkrCiyXAlho?R4U~GhDx6M zLu#}D-w}5fVv4x4u+(V`i90(gN}rVB2VYoiBk9*ZuaP1LB2VY(pi9i#L2n<%0l8%c3l?1Yq(j9mTl2Y=Z$VOaN5y zhT;*d)JN(orop3Ul2wUm-3HFW#k6LH1tUYmAy6G@7KfWlC5?lS!=ztN=-63u)5?U2wPp0 z61UvddaQv+)pC3eZ0`>;RATEN4iAVtIY8KxXVTI*SicR7}2^Jr!Vc{E!9Kv@gp^=xyvG(xQYH($gKWtE!xXi~?Uz#eyqoXR#1+O%b`a!fetAR8`47yS%S{jB|v0!bJQX9^$U~S?PLi{IYkWAk}2Qjg%B?s~L| z^hjAYNi1kOd}1`tebSgi1$5%Jd#rd7d`sl#Aj3G}Ag9yP9G?bt z4%~C-wDLKiZJ6PpjBNU8(ne8$LlyPmex_WLDVXi3IJuG6^?NXW>Nu?)1bE<$GOxRO zPd!(-e~;#M)xJe|%3Q&lP1-RjBE;2ZCGJDc1GuM!mlF*KUeDXJv?6Bo-J*V zA+%y2{zi1NYdn>xMY}CeKWc`@>`iy$@KCKWvzN%XKB6KM6p#b zN!hTpzq38?h7Mk}yZ-|Ibr{Qi3Ea22tCRzu9s{62#?yY$5Qd29An}V}#eQ&z6eAdJ z*JF)Q6(3o)I0YNB`1_?dYekE*?(>MlyRJHzN7?}3NgLWB4IDgIh}aj(;H8OM?vpma z#XNu(_^?nI13vGNtH!kH0DEg3fd`0hQ0d$&9cy8`Tq$DiI~@$T<+^O?&E>i(JPdId zUg6wzOfP9ba9>16?PuEDM?b^$V`Xn?3Y_&PdKEou+>rfzwvk2!;T)*7yi8kvs%XI` zd6{Rzm$Rs`g38Gab${Von%e+<@~Xs-X2<$U4+LM9W&q+Wy)(X{Sot5eK{C|_vj=&g zG`SOdc-8#}4hVnYA0>fm&8rohPAD`;&eIA1@Uy{(u>q&Llz!>oF!;KY9EyrU z3o-AQT`ibQox~ph@PiM%uz`u-)>W_*|KTAPHEg^b3r^sAf{h1B9M~J<+w>Gi{loH> zo1%m<9QH^x?8zKyu#5c+)q~6w0L5j?p{X$=KYomLuKjlggD?7o+rrBZE%R zR%CG|>19#)hn1R5E!b9*R05~HU1Z;=kbNWO!60zp0on1?GlXi1DnF_*-{TQ; zI`r(KiejJuI8mGfr;rzY7_JB!pbx{rhG``GIducKJT_36GNQSPrLG2uGz#`a8YNAn zQPM=3VOHr4m}pWri8LF^l4g@lS_gs_X9Y4ud|R)JSNH=kub)JP<9QgX6v?(nM0vBD zcBvlE2xHxkO$=gPBq=i370E5oI~#d=rp-9`ABoIW$M zLWNn&(=lhkJc-Ajv-ooXe^woWANtZqoqR~qM=MrhioU?` zO97BF>&Egt8h_ zG_!x{E~Mh{=L`Iy;dTtF2n;n?VB3DPtKe51;p)W7tn_6=A2wsG)L2*RArzotNXSE0 zd=QS#mW-8r4AoWHPyoH}qIm5q*?q@JpXk&uc@QjZywuBAmCf?TOJC>`RBf~3=)~cM zeySV?HejlgDKaQ zL$>VDfEX6NSPBUrfVF8w=~GPMqhm#Bz(b0Vg%89ReSmw8-D15l!@=*;f`pdr)5+2_ z-6nN5h(UaKdN22?pS#MitR<43eKtjsbw9dt0k>|ck!;aa$)NjHolSCuH*SkRK4h`e zq?bL^+Bi+>t~*+8t!~q$mcFXCkX-#(_jf9Lhr19}#%d}=0VSN3sCy0lM{!n2+JqI% zlcMzZv0-u-|6q#T#Xqpnesw?tJqbfktU{tnm3uwpQT7fqq%LJ7ICF;dp)TN&ipV6v zI#rH>z@m{aD8XxIKsd7RuY*Fo)BONE+h89WrK_uIh;5i`gzvAaa+Idi>#%~E(nwt^ z)hpP73lbash+@0CuIe`=mOC6kdki5?NC3a3mU6 zpN}zxj}G_AWsI$5HRB^BRsjCdBk340LlrHGLcV#R3 z<2zUC!1li``G^jaOsez!Blf{u=_OxP1(g!Gnp2cO)tsUPYTTh0B*%3gp8|Oc-1mUde+tOU!V|DLH6CSE^6f9m?6QC&_o3%g+75{z2 zmM@U%>wNzO*bY9S8t6T=o9^>3mr46V$*2ocS0S0K@h_Ljrs_8&lkkRQvV-~!$z%-{ zy9g{*4c7~&Oon#k?6UsXfQxK(Oaw&h9RChA$r2U292a==f6*zrF;BW?^0epd^NF~=}id1s_f25K+^-zZo(JO9{`gu^q0H1&lPu_wFzq0~pWM+KPcpogZ?cSAQ&2WxDU0@<31eFJzZ`X39WqIKug zU`QoT0r&9s%;UgqRLOF{l1e@WKJJzJ3jcA9Tz6Qt5iC1!U7TLmHQAA(#pukklObjTkxsWG<-K^tF`j$G8m&)KKoSqK-UN>skO4xi;=m%Z+#a; zKDy8OTpCraoh$dDH`@{C8^KzB0qu8H<+HTvLwbwdAG6}`Ex}^D$F%J$JQho+6}nu1N5D&GeJz+x3cQ=eer~hu*V0mC%Xxf4D2FDa$Mn8|a5)BV0OE}Af~hCBv^H}3a6hK*7WYX?TdTf`z)u~}}2RC*H43^7e(@0a?DXr8UQDML)&9ubn zPOEchl5pe+&3O&^sy7a7$7;tm>m;mg4L&4QVGGCh4Q5Lh4{oa~Q8ht1Y)@>InQ^pQdU%liYC6Le4c!f3!BFer|Gu2kc) zr5YAX{%pXYnt`lQvD8S{^SScf%a*URN9wN|q%M{B?;tak5p*j|L&08mtr%HekI6s3 z{**79&cIqRZ0Vmvx>gx6ad`8Lv{573=6zCQxGfpq;2m{3H67rKIEF}Z-xFrqFZBz_Cn$pDCu{_&c3|D7H}(xf z6x7|>pvEb(c<>AqpV{Xgzc>{lQZT(86vC<9?}!m|lV1J}O1Rg)RZdVDn-x7IO>&whs_-HJvZ0 zdlFfa)PgNN2Eo&KHIf)ks*_&qUbUaPOrSY2POk>0P+mdHs2`4{xr4$KcTmsxJUjuc>kz)h51> zBz&w}rh>^?zZiOfG4^%pH^h2)1FVnav$-wL_-rn(OflsDS7rFW%@hB3`p1XUc6$Ix z0ZtEHOJDSihv=uk|NXFP4k9q&tQ6sO@|ibVb{1kh@bL*0f<=gdS_r1AQE~`D4OV@= z*iKihe#a$YntT0o>M|q=YKRKu74(eyhgg~<;Sr`t5+40OBw^Y!E(y(wq`@8~p@~Wo zx?X^t-Aj+G!16K&hKW@xFw^9LJ%kGE-^)^zFoA_%ks`&36tCRJwAb!nmQGc{%;6&qDK4ykxWyHsqrA$_L%|7d&f_^6BL zf80ADfn<{qk{m4uDRe>!y_3)hA%zat5;_M0p^9`6DFTWRRzR94Dk{Yef)qO{f*low zH}qh@`yGf(gvAzm!}M3M{xOyJP#QJ=co-r38xGqAq9(&L8Rgr8APf)a1|Ditn6XO zEwZTD$leY<4$^#KK#KRO6PlN>OfO-XPAo-$mp(DKv;aDJo)R0cp33tjVkyxK-|Sk(*o9VVE(?lwb;Zd7mnu) zv;$?`+g^t}Cfe3BSxIbCz8|R zdV0wpKJl=%=*O;&XlOqHS(baU1ZSg$)tNwBh_bjaFoQ+b_*!sWth5zcY^=!lX z$0C7Se|JpKaMRej*^ljc;H`Z8D0Aa^K{FF#8poEZXJDbXKzmwdN8RYw_Bl3G%|Q-8{W-6e31!ya#?;=0E59{F5FS1bA29Cx(zOx+SEhuB>4IUG5y`RO-9 z^P&>Ov96J>3bKaN)l@!zyGzJUF_3nxlB>Ts$s0^2@G49B|3#2_;sUEenZP-_yfCLA zTN!|b1pbfhvM6oBbm&AWM*SU(zbzW@|I@&qGf?;+E5ZNUXjdIre2j{5^>coVa&Y)x zG6{z3@DIkg&Wk4HARlvEn5mrzF4~Ca!PCtmlc#{Q8#`BBFqx)bC!o>Y3R=sUDz0f_ z2+vI`-vi3YtBE6PiUFJgJ6BnDe>r$&z?&>4aSAOejF%VUTpf*B?yPcZNLvT9so)3Q z$o5gS;sVke`)*KI@*SgUnCr@aYD6P*3M~>>NpQ6=C&M|*{7ZP0E z>>bO=^mF4ziATAl0bT6IWRotMeb!sZrd3@X?8nNff%^$wlp6UWZ{%C5k&&#C@<3x( zZD*j3#sdE#&Is3tZO;WnUep4Po$e-~;fyZG-i}V9IykJ_{Q2x2Turz+4|P(B+nMGH7EVDWsyyg~f=V=gQBa94A3R8>aG^CvgY@`B*Hp_WGB@-n zQbWc&U3*0X6iE941&cZ?MF)$UQlF!oYrg2pxT`qPu{?DZ_O@_n9mg{k_50hDSAB)A zyowd>@>b)SJCa=u?ZY7pb{L$E3K+G3qB@L8DXuj8lJatMife?k4NAl#Mlu&MHr2IL z+{IIrMI;56TEX*Bu-ML10uFLNCKJp_m#w&`eXFBNbGLI0X0S zVti~k`EDy$Bl~ke#pu8}sOT^cC@MO<(Aw3+e!hbIzO~Ek+q>H2eq)*3zLNzuGC0QB{!-A1iemX_rqPfj^IY;u~uV3wK&sNKQ7P!BS=7Xh3;{| z)#30ZD@;YC>{3c7wg(y?=DMbC$+11{hkwR1? z=nK96n&I_uHHXGBYq;0}99Chn35Qb~W`xO@3|F50LDFrC*v*TQavw0Yc)zuBoq+}$ zF=`uUM8_6PDS`7%uLFNv{yfPGsOWF1`Tf#0(Fp{MExD8w;+nA(9pYw$9#UiE`QEPbvO!*R{$_Bt?a9q8~ z4G#)spJqWQ%LXcjGR{GTvPM9GP!>sRHuQr?@$$kTS6n4{D~FbFX3FpTx%xXZv3WeU zrLp$P{2zuC%Mm?Y5q7<~Prod^81s-%fS44Uz$b>-w#WjAG-4~~KsLDvE-(f{&BHP? z6GF{Q%oYeW^*XM;d1{rpu4qxrMTWD{`{L^`Tn9UG4iR& z<*Lhh7u-=Y>*27<>g$DBIrLRWv|@Fu{=a!e)&HkeRQTnJwFnaQU2#Q8Ml@4lXLLEhX?2 z4OnBD>~iHeR$^wtYZZPGUaQK)%jtH_vcT&TH{i94S4)vDYW@u~lbV0WFH-aGWvV%5l&337C(Y+m0#Gp_v=0a?Na)5Usfk zwD8a(LiPX25vu>M6`}h7nmi|38U3y~SAw=OXeU}(!dxstRyGg6$jau)MRQ#BER3xB z?XF=KMh064BSbN;n!1y9EJYhx2q%C7j@YaQ%;Cf4xmJtESrw|6ey<5{9HgW!3?248P zm$>c}HIb9Hb=oS2X?!4sw#sWps;%;>jH1z+b2CCh^Tgs9x#kYnAkmIhL2;<6MWz0> zFuy+DH8v5RiER`sJ15twET0(KsEXY7cTM_gDsngmp_DO4kr4w8m@| z@mzQshVT?^6>a7IMKIdig_+4aAH***iU-RyinP02UJIi*bC>I0al}+D9%g=pr;sTe zF-+kgqi9pODUJ)KP+p#2gu!nd5 zOR&cuRsrm-c`58G3x$1@Jae}-_WpH%eFTvSd(KT^|FpthMSuh`X-eT}V^Z8w&bZgr z-3fx5QGb?;O{nt}jrv)IdQYKI?}cB4dM{xS3KoAliXwahKO~`(TdZP?)wvsss{AX3JoARzDKoMc)fe~iBG@}swJrkoHql;FF5Ki=Blhw#WNLfR zC{&oS?-ufE2aj94S}NCxpj>`;q4+#Fm;Do=PVW4`DRgoNDCsRc?Zq`tp;J3Rp;J3h zcYYU7zQei=%Fb&>sm`rhR8Z&kGdo=JaIk2-CMWD%RmnitcfAxW# z%|ablTZvhCw>OrH9XPPl9T{lD2^`qzA7vca$>nq!X!VQY1Fhlk9xj~2j3Pm3pas&% z+KDjlrxPd!vL$l-1^xKS1w9b z@?6?OuBJAzIH(plSFor=Kw}x*RF+QkG=3OHXQpHt6P$e5HAy_kInwBC2TRf38A6Z; zWv0p6kGiCIfiYHNvge}InCz)2c@>@Ey;3>e0dVmc+XYS`X8;O0!(~n(X8;O018^m0 zuxOC~$tWY}M=NKDiVkvy0eit2B7lm{z&R*q*aEzvledGhciQKwZEGpr`yjkOiNbJe z*~+D(p&n1s5gDYRpz7(1Fk#^SdScl%^V+=*G@$P zym35*dUap48sNDYMFSqf6(s`v$){X>#XQDX-OjbB%0CyB{JndGSj%(ca|-2FMXU4L z_j3w~zA9Rtc?MQZ_ize4IO3OgKcAOW1w#RU!W~db-{6k3LoqsoTZR~bL85I4{0xYz zM@I^9w7MOcT{v>gq^7e9C(RsVbmk|a+SL^(eZ%Ssin4rze|tDQ2J>dL3V(A^G;RvR zxU6IfJVl!VXe0BYH`nng<|b4448O<}J}c7{+y~1tg>ZT8plh!9#Z)lKH~%P+XPi7GM7GBMydEb8;e#-LFo%G-Y#87zT4hp35vx{UV&KrAW$(Da}FvNF9C`Xi>tosaz?%lEik-OW}flJNosSYEKjU+ z6E=>+a0hFxf`O-K7(hab&tG6}g5f-V5e(lV9nWr)V7mb29agSe$g+3BO3kohp}U>TkRJ7CN4M z%5}FG%o|00pogcBjt5s(ePBMLXdT}cqSa45?V2j4F~+J7w5ZBoM4E+HXkT&lz%j+^ zXIu@U?}VZyy-XEZbQ<ADEHb6w}~>Zp_9DO%T19qC$PZqoIA_(i(DuS{Jx zzU)qs=iYY3%GHN`LQee9Ra5>`+Y2F<4|3AqcfBPJn8ZNyKFCu@^#=^qKfx$k^|yzr z`VV1y>l9V+MoNx zm2EL;&-xUO*4M=HI_Ri%K%PQ4)r?gxQk79OP9eOu2&=ZuW#@CQT+xm(rdfM}MOFT` zvhwF}{Ja;>jFGC0%ojd)O}E2yFVv$9jScEi;?4uagMf-X3a?G|C{=(`GS%&aHPTdf zK7Qf9daBzeR`u>}k-)7Z9uu@)15@24JUKAcT^(yob=Pt_O?6kr@~Q5900mBUNf4Uq zf;4KX>%Qo^k*Tgmp`tu>(G_N20*b=xDSLt&w2(_iv);a6LN|7RC*!QQ!%eUVC5s5I zGXA*}U%7VL#j&6|VGew>L|kJIY${80;8x$c3d}5vmgaYopMB?gQC#F4!3(-Y@&s~% zi?P!8fIGQVRv1TH<)u4jUoeVxn9we0q|2n4TOy_BR$pIHr3y1K>as2B^T$?EUG^tr z(cNu*Wa5u-ouQu0{Lz(auV2L&ogy!8zn?MDRhP|EbUXs)6y4flaf)v3@QdP6yDGu) zXd#Gz(^mTx*LX7$v>I{Xit9F!AKa*%{wzf+arTY(4q)%_0>pSY;q60B{_q1_Yiafq zOpwO2deq{?XiyGZGO`y`k@@#{9CGsiU`o5FRJM668!o+B2<-P&Q6tJdqih~}hKW&X@9)x#+&y;Mb3{>?SO=|j;th*?}# z>Y{jx1`%YVvF!(#n?U>!zX-$+%LMVe-z`D>bD29vZkxHKlHC6XY&l%!64318zbxfu z!MVSpyMo+4b4!GRbK!7jW!dLXSDf6o&Krwg{Y6+DG^r#W~G@n1Kv?jEPG&WH=by3Rj#qrG zTc6@6cLUql;x_Jq&g)nWNA_D*uR1U>lM73y2Z$(=EC*WMH|~aba@j zI)AEI%ZsTFC(hL2fR?bs8H@Q!I-IMU2h{DjI#e$V!1iM~w-9%7QD`rFX`I^2o))L} zvZutUz3fRmXUSeR*NL`mXf)aOTUdf@`)&Lp+kP9knomqXfI4t(+;}-R%w1#=pjw8z z?-pP4y2+yd!&0ZwCxPFUrH?etS-DtPR`7_GT?f47cAUcFGiHjSs;|Z8db_|lKW1%tb;r6BRcmh2| zEaRofj28nXa2Dh4cy$)TgZT_ImiZlBb=NOk8*yVddkLiKamLZi`CI@x5Nb+MXXY;r zX<6=(c*FDd@De2QZj;DQE0LqP$S_LWJfNO)Cl)0&TGdVmLrt~Q!O+{|l`~C^tlj@i}oc@Jo-|?f3bG*r62H%eCY>yp@N&A3(K-L3 zBtUU(v*b!PmZDv0Qiy&1+-mO4B9SpB$FWtD`A!%KWZ04t;fPSt2;Vf(Dmat9d4lRA zx^W757f_CmFX$}tI0e1S)?A*i>CU#t!>=>qXuzUL{U1}PV+dEB?tX$ZQU3K8c%JgFeYM<9`-TL0s+PNxGY-Y!4)!;DV-*zN zGhq9QQwTPoP*D6Irx0xK5p1@1lv&V|VipqnPZ`j~I}~)WGQA0!(XA1VAp9!V2mGRm zOlJi+H-+JI0KdZUkNWP$wzjfv1NU&}DHM%Ec#z9V5b_iaAqYkg_H}3ov+#=`%yN_k zVTDHSph*!8#UF3v9xX;;d6RqkSc--))cMTcjoo*O+Zki!p0iMK9p#QLU8~^N0Eb20 z{vwC+qs;~wvP>{eHU%&?1i;|j6d3Tc1qcQkV#DKlU5ew4Lpw(t@@zAAma_;Y<>g30yQaQ#4a!|KmA*;V%Rb|erVRDC)#FbTp##~=_gfZ8h zK*cc^=b%iu6;M<>d8d=RzI|U+`FkgKp0ghc!%emgmyS&KMV=Bc*%vUGOcq1~lWnuU zU{Msk#aixzs_+iY;1%cFv zSVy(8EY{iG(qd0`cTW<{u)N7)8?%&~W3eeD`e8i&ddQYd2Zc5xT5` zF6|Tb7rdWoA&S3qH8M!sSef42-N!Zxvj-1TF87AWS|DRP!7zpMP$pRqhFQuaKkfr2 zxw4wH^#zmcj6!jfY`~=?le~|okV!7uH#IU6Q^_JhHkt-(&2slIx33x;4DCNDNgUv% z$QtR_{hmO{TgXKtY?X|ME?%f6W9yG>DOO?uJt4@eKeA2;2FZ2*NH)x9ALY_eP~9zy zGTrSYJ{@5%1|!0NdM~DR6L<5>+AtklG1@Sp=@d&ZV+pd%EBHm0d8JItY?WJB#gq6&rg#!Kms($;iNmpq z@U&1Lm)m90w}0<)-!3k40ciH{1xwMU7~1&f6LF34R95(_p#-o(`%myg<#>v-N)2d` zb_+V|87z_- zKdy$d{?RB6T(N(qpmX4DtDU33`U@51^gera!8s`x_@u-IR*iPov9GEj_m74F?p0I@ z_kqv2mT3CHQ?wy~RAdPEW1Gkjw&E8V!qysP8N%YRmeUWgfk;_%syjk<9_Jn-p5=NX zYj~2S+#GA5J%LBX+l;X?i8mP7uhdW`@l~l@7lLx3Nn8)kW&gu4iO8DFq|{=aVG`9j zMJ?7DCINMmNmw-9|8fo0Pj`^XlihvnZEFUN8^4&0Yjri{aZ%VWl1oL;TR#DuRV;jc zin|Uh)m@t6?&o|N^Km=a#|x4j@DyzaAPU*R6l@6D!BqSrJD6ItEIT+_0`{!8tVfWkJOGQi~l-Kc(^dHGmwEjbj#m30#`MK^xq8{U}KuAeck+c=3klO%- zmUFss3b_qXD3aDnl#APqcF5)}#@3LBPWFwHk1uey7cO1^gSvgFQON{Op-O-P;o2d8 zTIfy{vpJb+0T0c-0{d%!aHNQ?d&HvFcF zZ+N|ABNthUwvo`@U@&aNv)sK+{LQ#48@Xn{C!EY$2|l2Zjnv>2LJlZ|+^>nsxh-V& z|6(B5(W!ddcJk^<>-D}>cR`oin#i=?$GIsKKUXNSC8l_pyBt3ipCV=BuuAbD+$vg{31+?oMmBp>smN=Z8|DJ%YV^#yO)bqTwioD=w6;e zhay%v)ybec8AYQV!rT5dh>cnYBlm|HV|je`u+a%DLAQN3V1q}6|5yjDImj}oH=dty zs#C(RaSDn544k)n#+549o^BK;KHy|HCOlL|b*~gIzhCce9gD|p_;K<+viSygd^zAO zuV!Z_$l71|YK!kV1Nt>U&Ho?BEPm%?I)=QW*xmI1WWB;xP+N#v%&IkOJYteyp?N<{ zGS|SKz+zB~3L0&sI~h)V43q98d;MDK#K&$FhuhgwE+5)i0#7N?HS%sGkA0C{&(Rj8 zB3o;RUu0|TYL#Vcj!o`a7PfXzc1D;yy9w6u^LZo5;D+-QLM*?QI)zg@??kJ-bPA_G zqiEv{?d^(m`NV+Y1erbES0ENK?&^%8MScE-wa`5iVLSBdMt2YRld;X+%)X(PEZXL7 zVlOr@S%|ziCRv<0`94q4m;iG+h4T>RCOmfI7vZtHOguX6aQiLrxU>VHIBKdFPj9}) zQwWNq1{9_9p0&zLP`tn>8j27O*;1VN??AXjoHxfeNc_mSD<~}L^IrmO?emQgx6}q5 z>2VERC-|$D3KY?tLT&x4mQ3Fbmyi-U1$=l_8SZO`0@z?j83K?kJWI9^Zk*|n=LQx# zFk2^C`4JcicCM{F^%6FVTgCIdon#d}MOy{76Yr7qN14ega`20+BByp)Ui#sq zma9Zd_qb1palG~9pi_7XY6^b%%lm*k#Ukrsi>${VcW38}Vgzjyp{?4d%cDbzqvWK$ zzC5v!aaT5BQJ=rKwz7#wcy6+Z2Wu;vc$QPBr4P#HyWMTX%bf5pCSiLJe%Q*L?I@#q zvIwu-`LMf3iA5~h1D)FCL!JuuFKf%K2i$e-Ul}G*jFobeDBx0%N$?bH64*>MiC-`` znZ&R7MJDlUnI=*2lzWIppt$}N4Ax_kpuBb>GKs1@g`6iQNyY5ac^g{gr9ctMDB36{ zhjPkmpF+yZCei0(0lge_^utV-a7KrRT0hF0*aN8GiN_CnFsm3kD; zD9oEOVe*U(tIN$O9JfK=de~>^eG^u|^*)Q&NP6cfTJNexruU;*jP!mCzew-L%GCRg zqwZlAdOvomYnbeL%)LmQHA#WWzra&S`DYE~f50eO`61l0CFO5-7l+C2Cjfz88Fz(% zMScEX6auF;0+U{HC&Bv$YhH5Kwnru_6aNJ{aaF&|S(B=HidMB^9Z+>b&19|WMEoLE z!=&Zq;A2DjaEb43B;sjfa))Z+Ka({H$Yipe}PPP408W==Mq zDtPv!d$+iQm!Xx8MF1=wYo3=Z*NrT2!1We5qIG|%Z1+K{@#6I!PN5k!P-sT|Jg3l% z8YncQ2G+FdvhWm)G0*U9B*EJT>n}KkSOW#tS`uW=;89895+@UXAZz|`V#^_~oOX|v z?l;vA3$4xDW##vwSB_6%uo7o`isD@Gt~*Jja58ZQvgVxrDJaGDo_nz9$g>f9xPyZ1 z`*H%YZ=0fYGL%z@Gf*^VS|758Of4baCKrDQ3%D~=f|iH6egw-y(^Ay(5NDtk7CI#3 zOwafwm8qyTT2a`7vf#h^w#rn)rG1!%yL2b6X}Ybl=VRz%cJRi~5yr-6-I?}1DRS~z zcN6hAC({YWM^gB%|FbD-Z;Rxhy)6*n%n(oO8-AAIb$2V{*IRdhitwJw>nHQyRl)U?b0tz5*HcVI>3YgXpS!b# zDVdgH{9iz~VoQZanu1g%okxj-soe(eNb~Fde$V4<%@3RfYsOj<){}o`NeMQ)T0? z+%*y>0rS-r22GhbW-<&XCXBwVWH@nas_NsMSUtC*YfOvk`U_9dy%Dw;$J6t%IE^9} z;1_jm3sQqeZ(Bhsy#8|iYj=(X()WJjUMwV*HzB>9r;yI1f%JMt(MX5z+dzPH6S@35 z=w_Z~jMbdUqALGWsp{2+S9xxN`-B1a`1$pdG4}1DVBP~`=Blz31sF`U)2bW|0VitzFP-hXaU0{V(3??Lp*OXz+S0P9-#?|Uu^DM#P#lcGcNILa8EIg^IVcQ<0RY{wB0aTXMadiKsUs@ZW7a~lm#@cVuTqa>k7TmTMZ%Nj z{0D0z)ml|g*MCga)AgT^>#FmxuYqCXdDxfhs`IeNx#%Tly*OCfT>uSom%b=B#kef| zB6rEESBAUDDKVZQ7BNm#_6!%JxCY2yd@M!#O9<2C!P?sSALG7(i9uH7otm8?Ico&$f(WJD!;HhqZ&%k^s zR?0Ci;8GCgJVj%U?L^EkVs66xOZ+0tzbpguadOR8Usc3B(*o(S^*wir>!!-lvnw)SLq}~ktBK2l8uy(0&a!#6On1yDmHSx?6!-E@@ zGnl2^1pUDfJzegd25b6mk9)hA%DB^T4-RcFZsy6hk8hyPrLHKI;f_ECJd(O2ID`HE z25OaeFQ?FoCQ#^<@?lP)6-}VfiY8P`E1DLq_K$0z`qp!h2d}t(f`VAylYFg}r;+U= zBGb7k&P{c+dB8(0=j?9{=5UKV)7sPBIS%FGW-x#YN?yiOv>AY4)SXsosLdb_zsL;Y z8kS`STiRNhL5Fr=25DGcyAzFK8nBd`U8q zpGCv{9U3Z2*xyi1`JQMPG|c+0D-5&t02QZvoP$C?6)1pyYG9ZZqlQ`2VVE@uU*fzZg9F3R>(iTgVMhee5oI-vL6xzLM!71d|Kq0@5 zZbXyE1PgKf@M>;v&vg61MheV4_%RsMLDu*B0GR!OiePdE3d~;>n9zeB?(3;#n*?x@LQyzkzcWRth|W_qVo|W;hx7LpSezhRiC+ZS%0?EhT(Y&u_d7HH zS;9@0;->c&WwxiA#oKC0{XO%=ek`v81C6ns=PA_l?gyN3O#L{cXww*d;|Csgj`lQ` zF}a>x@it?uUPQO3%KsLK@wqEe{*&veCqCsx&~U3-7lD%z-{d7qab#4C?C9?oi(h@k zRbHBG@lqqTDDj6$eVdWuN7bD*c6;5?LRJq$)yvI%w$ zg`g$BR*m5c|J9pd=RlgbTyf5~Fbg-jM@@p`FK^N&SbJokQ4DN?b#JUT!FqBs&f;yE zD7)#BS8ijq3PG~aDg+1t8)02;;N=mGY(--utbJp(5mtzD@aDAPg3(6Uk3&5h#dw}f z8)4^$d2Zz4xDr8(-7r&qw59dja8H3SC*zB2z7a70Sk1*C-`K!Y$TwDl+R!&vFpBn# z5bhg*;Azt3h6w#AW31*M7FGElX{_cSFYw$n|9Gyknt!~(DJ1%Hjn(|)BTk|D2igGN z*8)qReJv{kKt+AX^;7PIlE*B5-#5*6s%D4$E zh^Oelhwa08N5wQKPGPhXeo+{$lolLD+kgzXi`8r-+>JAVOZ%1Yj`XY$DOg^+41wE- zr=W&xDe~$#Pj*f%M$p)X@U$&pyHa#zJQb`KwfMWFDOmG)Zi2Ocnu68GDFkc(GzIIe zobqq5+WJ#76D$Rg>4hGry?Ppf8creW{&4xuNO-#$PyJO|1GTI!KX7WHnqIC=Q-P}s zR?cCr$)%z34NuW9cfsoN9NRE6p}ZZx2<7c%qAdNMYzvedP4p}h&zq{niRCe#LMT74 zP=1;bG|C}tN?)DiDH0zro(g4)TKw;WcJXcbZ+LD(`J#dHFPuUsUrbZGl;xT*GX|86 zUCJ^%7#@m6i%zhVLP5PxL5=?V<5W-e#8jw&0ET^O^LAt%*xJKR>U|WBV|{>2o8HYg zBAz8^sNYvmw?g>|>el#0P`7SUmO~$%1{)it9eR7j$O>}ybXX$H;p!l-9>P-y?;LsH zHt^~!M$mYNuvJA7d+#EB#aei7ntmWlYdxv(@}8u9Y;Jj=wFrfSi-f8Z$u_LmCm^NgUu4q?q6 zz-}UU%=J`~?pu9X!qyZTqWcnBIkKqFe@j!fa`b7CqHXg$@i8M*g4jjsut5t-7P1Tff45!eP5hyfeoX#mUWdsUM8FN7$ z3z7XfP37^w+|ywhk6yJ|*EDF#Sa&&08P@_8r;MC|8rQc4iZSSkS>Z{vKi5fsA%t2u|aP7HtG}_@Q8aR-KCXH`kZUXKkei3jdt$?Ekxz9(;iA-Sg1I-QQP4po5 zM9*^@MB`0kr`dPG*y$>k*U1!R|KKSUr>+80I557%DB3{A z-}t0)@!1je<*jQxLq&8mCd7rb+))mTs{B#S)TD9DT2E7v$cxaV(YlCnHuZ}>zA2&w zFGJ@mL1p*CG9f(!(n#jr0~3g>Qki-MGT9q7Q)`gcm8q2{KjgtR$Z=RMcvAW6y)da9 zEtA*7q>?jH#`i55pE_BYSPLbgV6q0k@LxTttR-z5U<4k8>D(s2X9&r_!OD9vp9VQF zr@X(Jnp1A$WSUcMM$t`k%11!?@Gxs6i9&PAS~72=r|S(&DK+kujVa~5&D50gP;hJR z=5o;#?|BIU&6G@*oPVEZsrb;88@rItc?wzbhtLYN0J)-qL`4 zv(Vo<3HOyJw-0#PIx3()aTEUv0Gs5 z)UY|hkraR_L9!>(PP4PvcH6m*P@JcV#rt8iGw2pWg^Ax3!ei;RU^9J2p( zpHDo-s!+~hQK^3qpn&tJBRn_FqYgG#v*kBAg`E3fb2Xek%PA$p=~#?hd?f@f!yfR& z+YVC86D);L7O_lOgsqm``>3a>{g3AI^G7{t_GJELC;e(^m~XogFYf% zLm!D>1bt+BS>CtzQ*WYz{>Usia4~P;mTKz2MQLXo`nYGUsDnIB&X~qiNP%_IRdh^Z z6m10|Ja`iD#!HWRjJva$tO{iX7M1!l($$*DK%SedAU9oEK_RD5BXZN#n#mMS!8MaI z48RTrXeF!+0ca(xW;z80FoCQmJq@Dn2HqvXSnf#l)U@A|u0n7IR?Dry$>pFB%u}>A zU`ugPYzO8h|KEvUWCT0QG=eT)dTS^nnDiwazyMEk$hBX>59E|Kf{RbX0lq^fSuhfu z;3=fPLxvGN%P86iW`-UL#)^*^V+FlMRsIhR=)dE+3Hq-L=zrrB68$R!`U)+Wt^XVJ zP=KH>LjZ#QKne7x4teU?>dIdZdFtBhwNP+>h(d6yLT7xzx`N<0+(?ycWu}vl&IB8p7Ec?b;F2d(<;f+{(Bs zXf5jVPimnCKD}FLr@HSLtS&EZA&(sMB-@u5s-1+)xN7@y?xb3tqE!prNwxQ4Zc^=f z{36w^FGIECge98Lk99`i7^c^AO6yfqRGxN5JtE4IBtVGv(GTHE?b4i-2p>(!wY7 z_G$v3^=NKUa_XC&{*LY?%zBhC>rslCo+wXz%W|Up*IS;0!h_{a9q1UILSE)+sl04B zqiFjGVWNCtp|_d*>vK;h3}Co3nIOe{f*C(M~wAGh6g=`flV5^Se40~Pi zE~k>c0u}5v8!92@m(wfCm*0mypa1flRKqt$4S#S7)c_RohVWJlE8-3mgL}zEPLafO z(Q-hdy!sKW)HdY=Vw~8D-RA7X$;cgkE@SaoIFqu!nmyJI+M!cQ)(Tes=4mA_j4145 zYb6id>FFh#CC_XScuTRyr=G_4p{v$$QL%yaJKSREy zmD+hGX=s%I#K_3=wY!030&Vrtwq>Z^bXoZwd#v*blz=y92^Wd>ofm%Lc~v~klk?Ae zhJ+%4FjbO#!SkFsg%%-d|Hrdge9Wt*zT$nBqGLe_JC2~0<}!K{yb`|eB8YLBaaVoC ze_JUp{iapGOT$}((sb-1A1c>cd1(Ttkf{Tu#7k2-mHY^()T?OjC2rb@XQe9I8C7I) z3RM9Va?@d)LhON}*$4czh-V|#w;HS$atg5q3SH=?Yu9TynfL=4`P;rhiyGjtz{dY| zE4l8tcRD<+M$5;KwGQeM|F{HQ;v+!CE|D`(?)eTlE-oK~-Cz6>Ml)wx%dpFyUe2!( zC~miBOvvH!kNYlrZWEtynen_thnrLz-y>N^8TTCL6 zja$T~qUrl`Zx`2tN_Cg?D^S-knXc4;HuF~$jF)5n=XqRIYs1WN=LPZZ$`Sw9s_PjRo_$%IIF(9bU(e|7+Jl46}$epixTSv0GWbF1) zwc<)w1+9F3bo{+n!h@;{%So0y>JMsRgEvWj_oRwhrK+4}s&bJZTmb^8vSXkNn%ThTMQ^~@>x zPmO3~PJuiQ`OZI{{^n%58Wr0{=2!M++TbVUt9hF~^Nn|nO(eGsb`57+-3Aje< zwuWo8<@6HQfML|Sa4#H_Ew{XKIe%u`viyP>Yq;_YsJGBPuBI^6yYsJ{R9Wy|xd!&( zK#upN2v<J-c&!({Ve_1aig8arfk4Ra#_GiR;hTj<)~Ew{|y&_FAMK|@HJCPvV1kt+d;g; zYsAZT@_etH2y=)b0m?&>o@fBxAyF~B`b->0hTZrF3+S}>> z5Px^HcYwKO62ESYw}Gh8j%ohi#D6`;+tkbi9nDq)nw1aM>diA;@gVRgA&EBaU?-{b%sULgb-H@~uj%maU zQ7Gerddb_&^@QxMta3Kq;dV7_-7c{mwtyNqkr;x3EUe!CqTq8xr)OIW?ekPvf zJ?eMl-d)ZqnC>7W!K39?iS$7=;Z~n0&{m z8p2c|X~&d8jp~x<%{6DFM(tCLvPZYUEzY)b>WAeb?2#}Wz@Lh_)>>VS{SC&f^Sqhn zkr@>4zJC7;5e`01)QcN1s-mTm# zH;9f{Ue6F{4Y4~@g#XA)!W2=YkM^p9*VsAAiNc?j8>+2idHvNMoWtGF*m7u z0e+FX7nG^)7wUpzm?n-iO&nj(d%KXlUYaJZXDM2#Av{Y-N-cP9QF-}hb8lsNu$6C< z*vqO=bHzRF~1NMVm48 z7&ITLfyp!<0nzA+f6k+`!sOAW-of@(9n{tSHoPdsjTS%&T_PM)K>f=m)Z(k%^M&pf{m9eTYEhgE|uFDerKso8!!BH2N!_+>PeQO{VIeF z4?-Wf9>Ov zl7DsT2w6(|S9?q*{{k_=zuL%AUA#l=13N0$8q7g zH*X_n5tinDW~!F_%#?zDX3N3~jGymn-%k78XCapVVn^jjqLb>JDs>9#oPO#Hol_W4v2)@al=Hj= z4rna!eU=5z(@g%81X~jc$$Mufd0qsuHUWai`$5iesrn<;iOexeSWp|=J3GN3M<$Jr?+jUZ1Qfn@V z_LBq-j`ov_GP#F0$8iJ;kej@SU*sk)cCvPp1#;U1-b!-OKyMd|ZmGf`?@I9zub&3i zU+@$hSi@~}5IKG0uIQRM?=j-da-&xHr#2 z#nG4gRgy0c_YM~=k%@LLib>5_idN;s8$ZAjyV=`93YYgjk;NFRPQMqZ1RgQ7b(8sS z?{qP;R0c1+z>S-tQ#pl31wf%6_Flj#G%5fJjS9MTRvU^I?eS-JR>5pLtE|bb6F`h4_&RK=^*oQZ&9HT>7E$LdKFU zRpdJZ$j(A$|6c}%-MT0YyLJh} z@V*IvVJDy>hMa@K@GFHOn*vvtXGVFeOJ@UjxNVGl-0vOg{0o)E0sV$)kFK30@DvT` zUj%5vY-|_-dK-Qbpts4Z6TS7s7Q9x_qrxq>`1LZws!86_7AUs96*ASt&hNWl} zLpWweD84<(8zo4X{sf3V{t209&16 z_>5BtaG(<4z@AP4STxVSy^C_%>jvQ0f&rg00|5Wc0GxABfUf|G;k3hNdh6PfP%+GM4$A9}0&m0X4%`WgQbXm(cfz97hu8@2 zb;o(D$m_;(c>`WI3X{p}K(rvQo1dY)ZXqv9!|1s{2`oyj%usGO6!V$f?goG7902SQ zXPEnJUOD-iDJ9@*4`e7`dyp3(X?K{U-D@RniMwsV(%julwUN7-QpnwAWT;X9D0yKi zEQeIiiiourWT>IPhl@jc-?7IRnZWSTJ_i7h&wYg@$mhPsFY>vsGs^P0c6Y;MGa>JiWy+;tPPFt7Hi3$J?X-@q9%z$r&;&Rc9geo z_1+3a+`$4~gn(#8+PmH21JA}(yps{p0YrD6Hi0cN8(DsZ@wn8~BY@QYjZ<*^-Jr@cWpHH)o+b#Ozw%vz)FWAhZPaj2AL zvF)%pX}mptk;dD1v(Wf~Yvabtc@KDtEHvI~mv_Dx5Zu_D9G0T>IxnONY%7_)AKpEk zG2A)HVZq&B&`mjZ5lm!pIyt#pP#-yZH}sJcfr@=3=b)UqFHj6;&Ux6IX5Y|F&U@JF zb{1euxRU#^rYUdU#Zv;_yaSWTn?bgKHy`Szy!kLMMLo{*-FW}_YB%M{8!#X9FZY;=E?psg!}-$n$@ zw3L580TZv8!<`cyl}mH?r*v1=)v`Ohe>}1e{1y~+VR?HC*xBbh4?us>L>@Tc?I$=3 zWnPipOU!HPlimilA#&4`-oefktczP$6sughFi+8n260Hy<1sfWdIEltq9=5>aA8vP z%%{DRb9kq(br;GnAUxy!K`iA$(}-aqOSw6<^pfGR> zZ}L2NdiA+8FL-lo;xnEeT-G?gYAU<#yPQl17et!{D1yx5f5?%{;%EFKv-nw=g@Z48 z0FC0)Tu|V)k%jWVFItQWJIZZG;qXON56G>ZkT9;qQZ&Y)jS5@JNw0b1rSrp)@p6B$ z$ah#&;jh_4xnf!m73drG2nzHkP5^-QfQo^hb5Ky12Z|BsAAbo(ZMpKpmtfRZ6I;WP z4r9%uI4^4-@kZFUT$h0m@4`H!LXfH?#M@@dW3PBq#B9!iBK-6oJi;&Tp(1=P=3^25 z2FGfoy_#YQuayG(q#i1;yLza=KCFid?1OnuYSgi$+{gr$stpTTM~3wb(#Wu$#V<0f zXMwBrAPp|2Rh6_l+We$9-5lcSJjty|vn$E_-db2iPVEkFO1#5rrX~KIH(81{u@Ek+ zsX+gx_kQs;V=Q-`A2`ScSm5;iXHK9+v;Xu^E2Q?G&|>WXG~ECSP2E55p;kyOr1hUO ztTnZ#veu-YLDt&vG+3(>sA#R6gR<6Fm9?e@MuwFGBf}}a(Gy1LU+n26Tb=Rtbe_Wo za65jTw}`ejc#1|C?7H+aWgmL-KQrWf!ve5#Jg_!?tpt_4aZuLTNZy6S;T<7EjS&fj9)#ub7*_ z`VGGbtl!E4OTxAL@fK)#KJ%^>m3u*XZQL|xs>V}j&Q!UVnllMT(Kv>1#hzA6I~~!# zY0!jmSNnVx_4(6!soV8kd2YI5-LaRtUEiNm)EU5D>UO=0Q}Bv)6}^niT3bbCD7*o$6MbvSI)sd^W@I|c;lUESQiJl60e*#qj-u2I8A0;^yWEM zV`jp44So^6Yv4&A>u?J<>a8{}j@cl{HdwYLMxI~jn;~|a1i*XrdwB|JYPW&(1B{}P z4t0a0>rwrC(=RdZ3Tcb_{3i^gKj66u=`#k>7deIGKVu+$l~eu|X(&Or>C2FSklw10 zW}8(BGHKZs^#Y|WR{r@tY-m)G$^Ql1Phia)_w8I1!kwpR+)pUnQ+jLMQ}K&%Pwib6 z?l1n}oowOP(=T~vi%wWx`!z-3b}U6>8p8OWycf<|gvsq!VFLC2k6ypSq6&XjZxumZ zy;VOrthc&9n)LBBHiz1B1!mrZAq#efoDGFhxEPXo6;AbodoI5U@peIP`P5Yyq-SB1 zxUyTbHmWK58lF-zev4d%$uxe;lF9$`&a*$*TTRY)^ZYb)d!RQTy6x|+hHeWm9~-*W zD(-UIjZDsi)Hvc7uMpd~3^b72(pwGWR)HjiTE3YuuBD9p!#h#@!`ng@ z`zK4$7JE}F^)DP(gXS3t7FEFW?N_gPr`v1wQIpD=GW};bMUjzU1Ftt3ZR%g%G+Q-A zKE2OgU2ty7aDOQ=+?eaI|B@-&T!;Oas6L=}ZnwX)ma56+d)HxYBn$ItCkA+7a`_wP z3~B@r%sq&wnweC4H1R?Tqw|w~R+23`NtQf#v(gvA!r-EPM}$ zguWn<_B#qiu`ESf(M_rE=N)xxswEGLD*UN^Rp;5Nuj)M0`&xCLU&Z*+>`fsHcAlJ# zvY|+z7&dgKvaddD0{>CjH_(}iP2wgL&DyAf(0#GKr$qrzR>(&M7xnNw6ofvi;!C%Q z$vnN}J|-MaE{ONR;bcywzIIk$-q+sISM{|+F`w>h@j_;mfB=T+O_on3_NulK*PBAN>$$?i{aVo zYQD|lCEj$hu%j$RTiDVY-#DQFx%qYY#mO&{ec|%hcjN99pRg*_O!>pUYNq^dU$u~7 zA%y>oVT0EU8~n}61~)pv1b;S6kaJNccqm|kKRA6YZBCg~%Qw+^1_k0Kc$iB_8>VSl zkVU&9Sf6oOzab{m_zlEc{C7c{^#zNfWMWfayK>#L!sLO$Es{k~UKGr$rJTC7Tr=o{ zkEi(3CEGg9g)!hDUyCRw7BK8AOcp*A?vxp`XW#HaAg%pq(V0s^TdD9vIw?NmkbJ`| zwT)U2)4GXNo*7$AV>+%GZJ%e9eJ;fUWS@877un|>z|(rNcxxTs9oAMEArGDedvVwG z-6^(mA!u3PA)Z2$t*u#VSzr^RXvOCx8uBq?K6Ngw8G-Ir4QK|nR zAb)0}y=HM<)+}+F7r}D{wzm}USF%zP4HLlQ_STG4*u9dahJcq;e!90}9s+h~3|;v5 zM5eO>oSQQJ4Zs7UFPl83$h`W#I$`tzPMjQ`=9}OI$<2l8QjN2k3 zFqQn^pxjy8H?Lg#eunjTx-6L2r~TU zvZ%SQo4s~FW%G&nZ#&t1kUc_F=b1|kpKC%J{y|xk3W0eJ79hjF9lyx%ZwJQKhJXJY zcZ7VRg>Q(3^=Gw&vC?{8KgHy`S&Fvo5Pnoe&-EhZvfC!qkVy^T3`|S|I0LhX)uRIQ z?tW@j`gu;FRcWBmx!qSeg;u43LWf`;K!^u8EQI&(?57O-n|{i$zf{&>Vb~Yifni@D zG8s1KrVM)(@GyoIZ@2fQ+9KrD_P&13ohTQN>8rV*w6e)lG^8LIt!yS{YfPQ^MVLCX z%fj@fjy|jFs#81pri(UMUONoI*@C5LI76FHrpvjV;33m<)7@)Cf5u&b*f(4Cu069= z?`l!Mzel!0?uod^@wj_&P%tG(OHo8Q*a-KK1;&^EYfA z^=xBNBK%js?e-gZ1HSF{HD=-V_!8F$z3mpA1Cy|cyh(I!Gw`L?aH`%3+k9KBh z_AtFapFJ$@uVxP<2=!|q!3{p^24J_9=kt7F_KEOgMaHv8r3GxB?`vIdGsreIb4DF; zKW_jDc%MnY-AceHE@0UDd#*N!TaP8VilElymZK6abW(YsuSK~Rp~{`dd)F4nf~r(Q zUi)EFy(fVg4tGuU%KRQP>RVO}&8>mWrgw{uWyHX0%OGD<`+xdx9PCRLUs~6A-c;j{ zsz$+Ul!-%p4J|9A_dZO@4b0?9X=XgHpPt)?TUS-!Xs^4195K|_UYIh_=JO{*eIrHf z98j^29Mn71WGOm6gmU$2j<30FI2`7BZ5U(KF|^1b?}cCcm^uP_s+>|8vfzz%+>~~6 z3U&WLp{rMZPND7}D6}cvG)J8$w`h;QNse;(yC4rb{0jIjB7DrzJgA-F1&3b-Sc#7^CKql&Fj$v-O*ECm+-x|xEUZ3UK^ucj3euLi^_WJq> z&PhRdMnM=!;hJ6`sV?7HzNMzD-N0P|F1o)n-Z#|wEeg-^e2=$=@Z>2PPmq!D9EB|; zJV)af;W;|j8qWpNTL^u6#zJ4Dq@QJCoho`s2PXKO_89=2;X7+5`%qV-QTHIm1^$gbx&iX{kxWB5fF94i9@dTR%M znV|%Tho}0wSg1d($hSe9HHm_o$rpGEssF5@{tp;Mt3QONcS!w*r}`3P_HbI!R|BF)pX{CN<_fGl6+2UFWYRnRm$I;jzGmrYJMl9dp-yRNE1taqmEWcod9F}*v z1Oy9D(XfyN1}rt99tBGxei1B*dDgBm4v%jn$}5jThqiZ?ueSvvFdkkjS|cajp^-y$ z<|%|o>pbNU>5QTg31KxG5Lqt5l;~UT;(eVu^L7VzzNC4p}(Vmu9;)%`Y`|8_wHV$)B zUOh!Wo}yvK2I3?62QW8z-jn!65I-+T7Q&v%q`k02_bubD@VBVX|BZqFHJ+RB z|JA_1Vm`BDlK)o&e+Q@hEB;V|@GnCG!vBQAKiud7rSlxDeg1gJ6J~28KUwChYj2yc z{QVmgl^ep#Ty`=9o}vu_TZ)Fz8>J>g=!0Km2z~O)@^$)sqJ7I@8MqYavfT<;xh>>M zAUB`DQ&3?x_$}1MzU&+iBWS!sx#EJ|-sLZfE68@Md>LW^^2%Y}FO67A~^CC^80T*)Iidr~q_(MksPq~u+go0R+@evy(NR7#EvoO>QG z&#Z=JLq6Zsj9`jR>k|h`7(H3S=*d!O>Gg?bYkfT|)+Y|F_1z=h#PX(i{2osspx#tK zy~YR{s4+LbfWGb?-(2x6TSR&H0lKkje5%ukm;WmI5rmh28&Fdi#T^SIOlQ-aRv%;_HYVu z28!lP$2+ZCq~=2l2B`7$Tp7E`dOZE*eK4NB4axlk=cLBdC&;{wHIUy?nY0G76NSQm z^%}_UI;LP2ZtgF000QsZ@8+!vS_9cXz?fW={lWLp7QDjuHKS;^nG%xQq)F$O#gVf44p?>!9|*0{{);Y=U{RkxOlCd+ z;p_s~4-D%Y6ZABnis^f6;kYqP$J{z{%;?b*ChK3ss|j3JS3sJaI@Ig1Ck|AdOc>V2 zb$5|9PCa$OQ*_v(>hm0FSen9L6a1p^*JNODAF~UD#Hn-FU9kR98ia3m`R)?Eu)J8_y&nljJxVyEb8-*9H@qqGkIU5?lm_leQviaDt@(3jfXn3IE6d{_*m{Lq3Q4{o(@y zEtAXNu2ERindw$x{gM&lKPvGlB*@glRNHkTmJt>+^~~7-NOCMOFUa4Xh&vF%u=M z!v`s>t8)rT9xm7I_q7rAIpN=+wucX**pgr=fWrDcg>|@rwe&sit46;?Z|f~5KIu!b z_Zg&o`gd#=hxr5EPJ)@IXqbOjFb_kS3FhJWMKBK^RF+R)|Jq$ec7EE|$pY(RPx}^& zX+7d2bc-Gfd+|9Tvv@PoMuN|a*OK~U9O=xc& z6eg1oX0! z&lq!?zKe4Xs#WoQOz_Xue{Pt?T9k~N#Y8SD4Rv{nHVaS)4RwFS++-J*@r&%@a+!9~ z__8|%?IKpLKJ4pgHV(RM8*>E4suc$VCsWj~%u`6Y73J}R5cSJ5g0_tij#E+)*m~IK zP>VTr8FytH7WMh-3|6+$mggqhXgL^0sH+CHj^q@w?UsYp?`#g_l>gH%;NUs7+EIoS zWETG@vnYuNkw<(<>Tt(&+4UtjvpHk1iU)PDY7V@O%R<2O6b(GImVmzla})5(@QZ+7 zHrOH{=${yK@Ij^K1|xo&=-gYvZG8#1^`*G!iO%&`;BZ~(jo4MM`d$)`V|kPDJk3+c zcpg{A^9Uno;~9J7fu-=Nf+n)lXTFMZ+q5om@}4!GR^km-g_`$RRO)|yu<<)%XIC~7 zAMqkM(sPtiq~N6Ql(@um)8ynkV1}DDe{u>@N^9sdzGba$|6+_g|9d&*Ww!9ey~3r!7^ zhr$>BtEYx%{~vAN9T-*dJnmf}!R!GEkOV>k2|;QSLPtPIkX{0z_uRWXLO22mgkBRm z7^;w^R|NqPQ4|Xzh#hGvDk>@;#4du^!1kM&eJ^j`2B7~PJhhP3;fG)UilZo=WT`~#jIE$iZZuKPH>S(yRAo~&^*J;pJ}hta08PtCw2IHk<4jM4xZ zY*{-vvl6Z-t|I@qlpbC=6;bdu1LEqd5gfO%KO+L94g_X%YUX% zcAVf)f4L)B26UO;c0AQ6j zdiD&HHLs@Ebll*Tk*eLm-SB35WyjwfOt@>jV~wVmSmQGP(Nf zOW>*zhg)ji$03%ss4+jFvZDtF1HXgqpGV7tjk6n<#4?IYtI;Lshk}TupeNiHgeH9K zoAfB#Sa}Nm*|P?#(BUy`ByQjj@K&SHf#(PLWkM-M4`j%!M>qG9Poha z0}H=PPxWK^k>A5KqL52Z(}=A+hnlN!urmEM3}TpmDW(x*`XN8S()g1Mu`+!>q`XfI zW~ToNuR`iRF<6=YI~+p%pBT(c|1t;vv*`m?X8J$#%4GTmZZiFVA3j?xzdf4sxyx(%&nTi_1CV99wzo&}poVEXT0= zQrrik28Lf?;l6Smd!#&hxARrUQ;dW#3E>%JmNC7{@ofEY3&lU+6@B;}9YO5SR+82}$5EX4^yqpcWd=5kR9- zMW@?Qlb5AAPj#u4ceZdOZ~&30KFlQ1hC_)2KrJNlL!DzC{dqCM-bZ0~aR6cO!?5RY zC}9Vvft@zn{HWOb=ukDCT0Klnr&bK}H=UXp=8U&L07Y;*#nH$Kiw4!Q4K0e3Mu$6N z?T3fSW#P`w(T`$-bIX@p17!I;$FO{03Hn;E@K;eFvi#TZi7fxMVI_J0K~3*VR$ZzY6Zn}a{liFSS=s&%IAS}ep7XTh0vCZ4e4gd}`$VHPP;f>A=L*MnjE++9SHsmv za+^cQM*@UC8fAW`l=(3a z5hb;H&KhdZGk=8qu`w9q6>KDKjAwYO(MgAmO`K~T%eWxwE%Vd9RTuLz@RoU%BhNH- zuCO`Q^L+Xe>r*Y9%^cf#HoZEGACk4NA0h26oQq1T^+buaI<|C+EH%V6Iu2t)aj2ZfT7P0sUt>ekz7IX<9uYFqd8tJq;Se@0w3-<9y0d zaU?TO`c|nJDH~sM*Ki09p$~<=))t~2OE&P;%U*6Ief`v4cBEXr3D%|lxX<~bqZO}B zc$?{Xn{f!?9oXL4$YIF_?WH+VdBGyZh4X@j(?XGwothO1G1u5+4!>erxTc=4ja0Yj z+!!HO*BH~m1|8|rXtyK37`g3zrVA3+Xg0Xvah-krNO@wtyPjhsFHbA0g(LZ55a%W<7o11F$9aA*4to7VV({q1!11^fM2*4Sc^ zH}+So6K!%AsJi7>93OqR!jfa$of0e`37%P_OeH7mo{ZnwH^xx~o{A!0I{X(RR}U&; zp@viK@>p5;M$D}74=hZ`NvrO#umE4J?hXT|x+bkvF|y4#*$#@VgOio`f$x8yN*~Oy zP(@!3`*hH%jUO~VJYahl`$GrYdCHdb-2sbsp_2NFD>qTYwShj<%DGa*Py+I7Gw_K# z+YG0lDIZNf9vSI(^5IN(9(6p(+k(8XHARrEx5SG5`*vGI_L~7fOZLhne zold#h<;-%tikxoaG5#U>2k#LVuZS$rdV&yA&44YaXX&rZ0G380fZT< z7?>#z_M;Q;4yW>)V>A^9XK4Q7;9+AS4t7HkjDtBEKuTK`-25+o0f2gkXFH_(ak&e@KA zJcptz`t0-`%qGVNtwV9o2~EX4CwT>mdtTId+;bX~glCKku$(3C*@ZdO0J<-Jo};3; z=NV1KW_vVs!{I|324{`r@!Co8j-PmOVwD10%w?Q5msz>a&W^G!$Trpjpm10D_)mdl zZFYHmg0qADhKau@u(CD|IuGgGTS1VA&=DEV1KNb*qC_M@-lGvdk@sli^5Z?!%c@hH z8GfRnZ>K=K+?BIS-lHSSF}z19uBo75G;fMCL_R#t`H>@?VOR6nVJ^8kRqJVU;Z*|R z^7ynd-5gVkmC7wDMW-_Q%!FWPWwBBZxKu~o!Xe}X079#*&(DH2;r$#;-4(#pT?aui zJXBJ@a+BVUmw7RA1jlv!Z*vIY2MGDF1y!2FJ3ixJ!Vh2rKk*-#=bSH>&rltXQ2(r> z4svt*!S8qhgpToqaR^}rh=G-yj33o`2fCD#Y2j8*rm5SXlZjsdP9_P8pp)Tfl#^)> z%F%`UDG47kAgh~o-pk;M8`7wc0Fp))(%>-KMA{}m)i9#%_!w^*4YiS@HZtN@Q6vEWmM zb(mOXRU`?-wBe(xJFLVoc&qMFZ5Zu=mM}ad5v%6mZCKYIF`qUxiP1qD3o&T1I#%-3 zs=j5y<$Y^l56O~Et@^P~tB!gQ7Kny(rm0m2dz7&Z<`8Pt<2}6%19CiYDaKp9YdI!z zIEg#nBJM0DZh3ApaEVq@kD9D;gH+=JO|lsaO_I)%LpHOj(0QN3l1aZm%xgUJjwIa6(t(Ne&^oUbM({`hQU4-AXJVMq*irkyw@-66^7e&ifsfY!YjC zkyuAyG016i{KeTLk#6fE-R2PWR@10}<^h#P!KHgo%&sFwS!rO#)f~)$=(~v5rrw z+IBc2?Lhhb;*56op`%p48(xgUU``>!9|fOoXHqb3p(!pF`II@M)W;a}iqV|KX)g0e z)5ouvG!3cLRWR7ec0%h>Cwr(Eo$Z{?V~Wmy?_(yRMmsa292UvQr&w~xJS{n7o|kqz zH(RTcdHz~tp7^p_OPTXtK(Kuw_~i-C6#FE%3OXma)wSB`+)qPwHJRjNs}T>v;7;-2 zpC~@XgMZ-@#e;v1Dk&a(V4vR&#LoL+12H0lSwF>tm06Av50-8Nv5CwsQ&?HP^(bs0 z`oZqKCqoZeGW3uo!(YfU=P?Xfpa_O69E}QDDgZy7 zsVzgEV>C3dL=8O_OH)H<;S)7f_J~*obTv@^^LfSy6*if$FQbS zye&ghIocV0Z26`TSwnMHla1~Ut0YD8=unw-cUW)7NJddD4h@ysaTqrruWAp4kI%t# z-!MOHdExl^VP~#=&S9Q zx_-;b4q(wd%vV|7c-dJ+Ha+QV89e}*=XRTHkp>q^o<8ZE;n>HsaXKT@pUu7FC1y*5 z2CC(fJ)8nJT1dv>(iKC7Dvgbk}V8>Tj9vxZq`ZGnHScoms@Cxz1zJ>fd2~V`Rn|=Viwvjs+y>S<`D$(gS~9wX8f| zze*LEc+S~FMxS%O?pVeV+&JeP626G#7!K!|(b9R|+10^eGBhBqt^DMx)YzKy{8llP z8Z6VY?TIqEMH%>J+S|_XXu8&d+SlY&kLLG)C06vLg!A5GFacIdUhgncBd_-qK9SdZ z3fjzicPlfa6Gn|0?=z99J&Fu3HUWht{(q$EZsN!)4M(upiK(Sb-*E)LLCf z4xvT$Ci2E7um+b`BcP6>FNe~i7u2IgukbOF*6jCQa`ttM<;95pXdV4@4k7g52|sbB zIu>&PVTLLOX4u0Bmm%@>x;nP=Vzkt^d5qK!Yhi`E>Njyb#-T(Ppav3Jlk?wpD!@H6 zMg_R1#`p_x`&@zO>vbrC0WL?QhPih#ahTID{Rl=r=*_Mh_=G==H@kvC5qRUxDFpKOiZV+8PNTm2&>-43hP~cFuKl;o?$%?#*+k zKX(CAVz;K#oJcoRHBBqD=$C&8Q57h)26>=>S1(Lr}jhH>jti{Q&;*9_WvjH zD%7d{SJ6B5*WWoa9ZPr}GW`W!GJTnsRkn_!kb}wg0Zg`^=T&R@hpst0I3DB02+KYl z%a|YFq~%c#CM*Ch!h%-^`)5@3ppStP-Xwa_>#ql0xB)%rJt%@bh@;U1MSv9bph?IF z^`O7;34afMiKfG2pqzT zQ2%j^<^3metcpK~4eCEY|ImL%wU#+QJMZK^e2W>Cx0e~KdR;v7!KJZr#^^1?J->kG zwq#p+NP(lPr3$`^*oWs(=jaOZVCU$_AV%jX#U-dps$q>C@=S%o3i8v(Y6Z(0<7}NB zqZl1}_awp(Wv^!}SbAWYtZ@H8WnJ^fD(lJ{>(9FW{2i=oHWZ;f6ARU0sj>F<0D)P}YV&r{)IuoLS4XYATI3D`)!c#n_D8Lm@U^e+PkIeha zImiAMSW%VqT8=ZkJlWTq7W?`@*%vXSV)#kxVzl~qFh%xJ!Q4r<@{U(Ibqa}3j#VM? z6Ju3Kd~mFqDnH6gqFgjp=JFek-UH2#$K)MZATl}n^7urKzI>K%&!1cUaEml-L>6JIUWBcBF>FTA*shE=($8RVrHr=5(G2SwZh(e}wmb)WfgEhpniTG; zP(3w?fsAfYife3OPF`Q8SJJAo;USHYP{V^CqTW7PYIwLBq;+tl^C~brbe73M?W1H& zye&Awe`S53c)gr9%`utRCLcZ_OPxX=m!(dqIfAtm$MRyumYT&dSPJt?N@_yOwI9e* zeQ{rwzrOgOLyNcXfg;!!ITq#V8v>-r(`(2EdHQqsgg*^WuK_<8EA>GD_l*gdVW^lq z{RN(5_4M{nfya8$JupD7{#?3tC$8SGh8p$@S<1`* z=_|?GoF_WMc2B4_$5Cb+6A*f1FZoBPc86;kWRNu+#VKvAq^);U_Mrq{6|96=)ZF?3 z4NFzp)UE4NOFt)98?(s^f;rQI;qfZkd`DYen$|yBjZ^C%tvKY+2WhS4-(gy!BaLU1 zlg+zyPq00892y&}L!G;)O;kTDvw4#Jt|i`gFs!v`jV^u#BDCgVAwp{&mK<91kP%uF zhb5af3Yr6-uqR-vEf0lg@P(#6_F#MLIOQ=dt&%nZ=F%gpX}Q*RrUANYq*mzI#YG~o zw4djoSAwtq0hPw&m$osW;g?D=JR6o6B12kfWn_~mt*hfWBcVoSKSaGRjti70+J{C- zXS5b76X495<2_!H{L9q1PG4enmiVxHLz8aU&m;JqJc-Nf7r}9q<36+jxqGS2pr%*)^I#jr-3XUpJ*V9 zAMZPmy$!zL_UKIcdMz!-kCNxcX&y%>tZ(=wTJud|Iffo*mgdqmuXINpdyi!}+ zBbP^ObWn_5Qtdxpy``JM=t?rK{xYwQ*3~{`yxIz!W+?#ci}pzXG3Sl*#;bWF>sB(Q ziPqfKA3jy2Rd)a(Q&b;^yK%g7xSM$ya=7a)G%g0 z`)O2fKcIQ)A5Q=zS1o`T)@Ao5NgLRb@HH+w;EAoLMLO)fKCFu;$m3ONMccaq zl3|`$M|Tb;!|H57-=EN1?J9q`CmQT3#Fnkh%0hz7%1;Y>p){G*H_EKQ@gy|Yn%SmE zS97hYeJZev0g4Uz;a2n=QU}|P z==Ir#htF!GHMhT=EqAqnmVQTX=@$?gZ|RL3JM~wdW3)72r;8n~U}5Lrnu41UFz5ab>+3FwV$BEo`;J@kt@RQH1zLF~r97#oJEn6bLUM@)4$s7 zwbc%h1H2fc(B=5vo?a}&P;zN0ZAjKSIU*Ti6+#5D9HY6a<-qLZ;c3xwTZ-n8%Tu)e zjwDu0ZA`|?ln!w0v>yJ0S0-xPBEtRSQc*;o9Eu`ry|BFBoyoc#wRl^10@KbU$EJb_ z8{jaeAt6!75lusK@hM8y>!j6=2G*_SR>s0O?m@2aq-8p$^K1xMA&L(0tvZF5p-}&U z&f3e4#XQ@$svdw_s?uv(oDZ{|(a0OfymR(@!nPt>vh;2EM3%lyp1)74<98J{AV;mj zMt9R@`;l-1-8agG~zNFN%;G7R0nnq%rd zybIzZ-FL+&(tXznzC(%OjFS6lnje*a)eqWK!}`pXxKl^497E-$STG^4)pGzu8#xRy zsXWXNDQ~uHKTzB6Si}pHuIFLH>uv(n`Y?QAW{csa~VBS%eKc(RB>AzuZ4k? zt)`4kM~6(CNeL5aQegjUf;{ck8p=Cd7crDx%{b9hos*^a-7GmYy@>g(aua)JVBjiT z%+i%t06z6op&dE1eW7e!S5sv6x~3&Wx5qlvXm)iL)Iy^Ks&sr3njMd1JF0C1hv{J;A=kHBaM_fKAM(bTp>pzNC02sbJ;As$7&MIP7?v7Srk?lcpYrlpt*aV-b)RY=KKQ2$3GS0(Klta7#?KAyWP^voj|N^z zh(pXVkmP!2#@=<;?6qFZS(@wZUKW4VBbb+VO#yw##{(OdJ^E+ayR-){PmGo$J|0+2 zw$Hw!bwlW)b>y~et-@TsC0q8c$u94kK)`zzlTZJG0VDd*5NNiz{9Kqx$ zCPTv^NynsF1SI!jQl}~;4KcZ^THsxCy=5Wweu&AZm>h_Nv zWJMe#4`NcgHYD{ic@C2oF&TUhBqJ~xS_hJJOkT(2G$teKLgL2cCroZ((x)CI12BoJ z4@o^te!=AT`hj!r^6qH>kB?$9zab<`FsT*~NexU6VsaRhP6?27$K)eSKEtGCA|!1w z`3jToF*)4`lD9Fbp9D!FCJQlHhDr6tki=ke2$Q)_W7?$&Bt0?Ng~=nB^lu8u5KPWC zgXCRIn%oOXOH5W^@*pM$T0`;#CU3QY(Jd z(f(d;56Lgdko=Cx_bHJ4h)K5&kfdTF?uR49 z42c7iEtu@Yq-hsOT4C}tCci^6*PGWB9v5LExyuz?SMDTf~O=*I&K^XDXoOJ z9S={m_W2Dy(Q?)LYo&Ix9uk!4KhNtSS7uBP zl8)46O&x=Bp#%*^X}R+9e63e%f0hFz8-1(d?Y^t_%Zuv5RBxuz5NfXD6%3V8R zZM{_QmjQRdK3}T$s{TI|is0{S`tOSR?<@N6FZBO5J^ya~|4)=Zs=zU3ygO^MXH>?R zEJcDS5PEMtL{6B!h}MfZy@=3@*u03!i+D!Kw75cdoe^s%d;5df-m%ye6fBRzCyE`* zsMs+x7k4_UOZ#-KQOyj5cElQf8qYflzG0({iAXEnu3kVZLxcMy+eRG;ouPHM1z?8l zqk;day8%lVLQ*vFV@}b)PavQs&&|{F${}hPm~YAxk523&&lU6tl&xlKtsE~Q5>oC_ zrQEqMvK)YsatGb9avOQF-MNjloH30u@F0cxeWTpOiFhle3bui>(LlC-{@U5H>l`iA zmL*f>z^Z(oGWG^?duD#%+?%M1DNu$iqXMV{E#VKy#sAgx-#7H%4*hp^`ajA$PgV3{ zJ*q@Cyja|eWxZH%ly?CX>tXjUgny~tMUXD>E{1fecS&3Nw-nMIFb2?%2O#xh2InB# zVg~2Q459*7f!@+O2Gn4t;HRm*=g<_Q@( zm};%&iSS=TU#yzBSNo4x&Z-Ck%yepoA>St|py7k4+U1v%)(b z(E8hUSc}s;>^&aUri&MRO4^?VKHnYQBG{T=U&h1*G(;f1C4cS!7{^6cRSlhGI z=;~@C##5k-S)~mWKeFP;ll>Y|YA)`YY#JE=bW#9?OFzP8_s6xmq5>;Iq^?;>DR~ZQ z!$nBLQ@B^+@-gA$228M{X7X*UE(`r1=f=DD+)iQ%lI z$?xFFc(k&&@LHk$ZEy!W;DJk(&>|&W!sK7uYB6ZpWVK?rSjH|l)~VB*CDtnkt}`JA zJ_;wn0&B~D>$U2(1ylwXs|7Rrp$JAlRiZMn1YaQP#MG6)L3>L)!2~-L!d*@`qTLHx-c7U#BfjbyeE9@-kry zY-3zc9vN*bD^s>Q`EU4)-aRsdle1*(#Ab+3t`ZI zH<|oEP}!(rtR7@?=TFEEmz{QKT}1+8=g^ulsq&L=Cfv!{p&~5^PA7Kr`0yi-@6?(E zh_+Tjy`sHsFozmb-?`v5`)nIOTskLZN6Ir-VEj-1UW=B_hK1$ir4ybo3k@0@GWKZi zh;&8*JhCTsn3;hlO{3MWQu%+EV#2vs`%_FYu}ku56Q`(?E#s&7I^`92Tur*)z zkpMJ(@vp21Q30qy#q`4=Q%wse0*138UxrW@|WiWa$H zTZ(iZ*7}HkR$za7iiwBTCL#6NAGB(B*k?_9E+@A)3Jw&T8SWcrJu}5&mJ!+|Gu3ej zGiag%jYhYEPJCY5DbBKT5HF_MPfev`d*T!W(BN_W<8D0zu1tlaVn+tVi>nMwgT-al zw)6>FNCdwoOc6ypo9HbP>lf!0PQ8J?slXx>rWVip2~-(#-D-c* z(Oajc?)3L0fgDN4$&qwCgQWZObuC=*+zDs2S~B?!Em0g~EYYk5FYdLJB@A!9sfAi{ z3B$)#mW0Y>D@RllCrX1R_>@*pyz{?dIB-gkwP!4-d3%2RAKL734;Vi`4TmxiZ@Zy%$z7nPPoHkP=PWS0N4W_Hk(|`fUvN}vx zmer8~C`d}4&V!`X>3;f*k5%dS5if52bOnFDEFL*A>WUmWBGTzfXj#}|43%Qf36)of%U(|a0B}b7aCr52| zd|kN^3lr3|#fr83P^)DrMs2g`LpZbbrOxZuzPw(w@Osk^uit*8B}SQUq@r3?m_gRZj{RT%)p?O@3u5uD$6I@z1ekU!kYykE3n#X-BR zWX!Ok@wO)N{HL%du12!t8S?t=%%)an-{|+uc1(^?B?l)C)5i|BFhpdIO+|On*j}PR ztLTnX`=P0{X$jwQr@;)jEiJ=3G(tz(wPYcN5gub8MCY96qA;{!nTJobVVO5WZCF;p z(zJwm5N53S;jbsJXyc0q<(Z#rGsFhgDioBjGcydT1rL=fD9@0|iG_hue4(unkDJ&j zD7QVTnvE`9eq@F^>*4I)D_EWja8;B&Z)-ip>%Mhfw$`Dj(GT0+Ju_6)_|*&*HD1Mf zP2}<9ruX^G+4F9~N%}_LXjN_hQDyMZk6<`e=(uWz5jvLpR;zCpGgZLYD^cg+V&}R*NB7N4FS&}|0e6M8{)91Pat}61v_nKR@L=<{7 zL^^G1W*C$UN;lEUki&k^9u%o2Vx`XRGWIK2n&~{#uO>5mi@S=7lM?;#>FqRADRI$E zrNsGIML#8YZc4G$7tmysEsx63>I*|jI2VbCmP@4F?InK;$r z#v*9Qilcf$d(uqb$A#|nExxs=IBCici{AWMs^h%`D!>=PUo2TwS%I!7`%zt0443kn z-dTp%gb8=F9Jyvwp!$sVRn%ITTpZ+T7nP43a@A!qmPvIi!)Qk25mZ;oW>}?Pakr~ZVO+0rscgB+pjWWERK2df zJi7*NcX~Y7CFD7WtBh>_q&rb=3wEs%m1YB!N_rC?e_!QxTtbEa$FUA z$Jz9bMN}dZ;K~+^A}G72Os-lcM4tW0GfnhhAXrU-g~?#w+Fe-@*n8;^&d?ccg#6OC z@LX7!Y{QLDWE*g?YKW^&IPc{EqD7S8+3GO$Um-59Uz6BYDwBW(o=RW{e=W!ilrP?z zlqmaDa%~o~nLuO>3t0wP!))Cerkemm(t>}BqZF~x#I6j%4>|9K+45ZQm~{^Cx38qrz$84%K|f|q#{%E9}Dg5gqLCRf=Z z4D4;IxoX>Q>UQ@>#`ubIVKrCXs13*-H@Yc|-}CQ}EfjyS3}tGQee2v}MYIlCvqZ=o zz-sIl;QCv6%plX5JX_MKTxUV%0dWs2hjUU}th^rOiW0FbKfh9T|A2evz}_N!h(fes z5Sop)oWm#Co#v=-P~1e0)T-Mgn8(65C@Ps;>nr!MGPbrWOgi7N1z8Bvq<+L4HK|W$ z^k_Od%tCJr(8Gl=PLIC)P`Nm{IYqlJTs)YP4G72w@nSO^v0}b2xw#f{%l(l%6fvf5 zN#r8!v2!HdUrM*XK8(!>x4()#zI1k3=p6D#2XB8Zp%tqm8M^%S4ZYn?`4V`|Lg0cw z0<;)XLc0|SQdq~86!1OBaiUjNjQD|(A#?cFLgp5b!Nm!t9@)FDt4x;7~4DX>W z6Fb=3%~kv+%q`-#=svk{*3AvK>V@u1A7t7#Wn7M!&C$`QWKz@@Oc@SodwFz+aOQ7{ zkb?81$-`R2N2Ag@e4AQ5>R87`lL9-|;fJpG1K8=G>87@jHm(dY!nf3rJhibm)(X%!_5cbSlo4|L zp@Fr;bXJ6R_W(+}dy4sRnSY+mrKCFB4wke_JpS|)q8 zcHxRPp**Rhyuc~}pgwHIO^Sz^J#BXmPI1*0S6B%`3snuY)Zk|q_7u|7!PQ0l!HN=< z-*hU$`4*+sFMO&g5`l(MpA8mOSpgyfH7!J*>ge){#;g?KPsmqI-`)yP4P#4?DJft( zv#yV6AbPP9L;$K91k}E27uQIU!AcPUmrh`k6;NMpzt9NYzeMyg&T@6cJO(H9P|-k7 zQ$PP5K~4R3<*T4w~n-ns{^KU~!5GMGL(lFLdb?a3LS!pL?go ziT4?pBAIvc`51B;nhqlw;({V4Ab;I83ho5C5_~6j!xXux5dEB_O)bBk%BP!RqHZET zT&mX@gLKy8LT}e@ahv7RzVX~0W$t9(xQLxiJ9Eujb+Aw#2#Fl-*pQ0<`Q(*s=%>`wUoq^q)Y403gfibuJ)ZX!%UC9ONK3`25c zi-zrqSeSg&`MSq z=2|Isnb?)X-3CpH!_+2d7M!K|A@AL&tKp=shU0$KP-Y~k;RRg{42@F5d{YgdjC9qr zf1#_Pdb%qmY9n&R)v%DUNorsjMynuOq=w(HFsb1dK9L%3m8ga*PFJR{8rsS=noEjG z^PxI7`wC`;LA5~s8)om!hV6~*zqu>Rbhm4hsBh9yTDb?-xlt>z^VNlq$2>6prude+ z&n!hF-kYObi^LG$QUm6z!DzGtsm_4y?XM6q&smaCfm z6)1;3fT2>xclUhq0fNS$%{W^Kld+mBT)#@@8i3IyOc>{C6BUDea$6LPaT0+5lM_<2Rpw{mfC?}k4 z!VNyW`3uxoxDT2TJHsAmsW08uv9OjrFbn#@Lr?_!0YgLmz~+_7vt6BWC|okzRo{LZ z$f4c8I@@)BR6f$=cAsT3p@u@1!MP%xe2RrhC!gUH>EyE#b+T%%Yff>U49IgmC2ldQ zq?4b`41;RH&VNHEKP-bC(>k$(tH~boTw6uRLf~6>{^;6l4w=8u)ze;XA%1u>Tt0T( z9Vjo(2fzL40yrFa;J7;oe>M{Jd@I&2sz{FWhXp_f>U0pvz9rjQOYV;E=M{r}3fcQF zRQ@}|3ea6FKxw)Xo!BoU+wB5{phIb8qiS~g7sst z44oPgKLV}5F<5j35ROG)i-g+SEmEpVdJtl=ACXJ0s!NP*ipf}p(NxGIsjAN+Lse<` zM5;<#RFbNGTkD#U%BCU)x`OSc@94jXvB&`r>qeUy|0bnW`L}e974uB&O1-cox*9qZ z9&)k4Asu|Cw@v)8;hnxnb;g~#j<=Pl*e$njb-nL9VDykb?0|0k{x;VP@i!w+TV_Fvna*(o_3uS$jq-Q1 zq`}v})4ySeFC!1`c9oOA?{M`HQJewTMUC)7*js&Zpv?cWPn7&>r)!L8!m7{+lqe7F za`m(|z<;`5@Q+2=Oy9-IFZ9OpB|GqE9|pteNoB}^GnC41elhKad;>JIBZyXRCNEYF z;{0xK5Wu|Ef_^ibR{3(4VYD@ftZZO0)+QTRf=^@vOBR>pAT~S#GaKe0)H{b6dtFDx z4%TX<`n@azmZt~U7V8(}nfV4cr8$T}6YIZ^xbBmEdKFfb@9u|nx??5@+A)pTVrCdL zy)S^$>8`7sk0+OxpFQfz6YrYEl*>3rnzz5TSiP%~go}XR`4qB$1%lxVD7UQuJum=h z(cG)t60tTQ3OMU5DIRdPvBv=vV@-xZS&vUAqK#+v8+j zlL_TzyM_}o#C}$dX5@R8sHKBlOVnJV1T?hmeo9yE>%OYJd>IyZV~*mSTGuZ_qx72% z_(8vcYECU1Ux64eyC+O@pjAbXTIs!pI9vb5cCZFq#$xrXl05 zrH0~d_(Y1gEiFm$6<>5sEAB4Nyy)5>BC$FT2Exq@gKDW23Y%7~C)Q;YgbacL!7RygUZB)49f7K%@eL^t2!oy_8`VP_)dWmg4R@nzW8(tJyf zu$DYtEvU1Y?ptWGS;#v)Ob$Cby@K4I0(U|WKRUgRjl@{v%IJd`3pad=B>9> z`HMqK)iCrJR`ELwk#!w^9fqO(RECBjhEf?==+fc_hHZNHT4h}C0vsn6m)-#Ds)r17 z>#EEoAnRfohMtjSvaT<%Fu9d4@rkVK%Mz{Y;3=1@xOEMF%QZyYwamx5{xI1vs1~d( zeNfvhSgr%hXW4-wLQ-_;Z_h+cLJR`7A3yBQ?~dk$T-SwG4af0|Y(}2zWqA5M~7^3bp`w`F-4T)P~m=(@8n0r-nF{9Pk%s}`xK~S zSv~`EZ)48|C|WwhK$dQU<7Ma7%GoFXaW%AWen1&|jVrD$QERb9xuMTxO`LzlRVel| zj_EbcM=*otHozAh6Fc;|Yoz@pXal$uQM}B`(`ldM5AX%rGf)gp`#3gZF=K(Y@fWV7 zJ9t6g+#e$I{q+l1d2y7HzdR!|%925+#=d+&of`X^m86yAs}@FY0;9OsYGD*lKSh0p z6{*eiD;zn^35`5fnvDmI>J=ag)Xj#Xd;!$ehj1c#cL8smhyo&7o)d*LPw?IM|4#ML zH?HayN$FtIvk%DCaEie8fI27i@B{S82(gn1j;}J(D?3c@hG#*$BY&2POp`zBjZfsy zdKdWdXK*R_*Tr2~>^0X?k;w!nSLQJ@41%S3TgSA8igHu9Jou}tti1SxYl@g_(oz0w zCUD*grltid#`MF7cS?a8U$zyf4!60$r^5lYSo!piu1Na^D1yC?p;6;YI^c&GlkMBo zk~X=iwtVrXtE~McfMNh}@uq7))D&cqcS4QvOr7vN%b-qp1~aG=0)I+sEw_Jzg7e$q|sCB&e2Kr*o!^3P`FOLK^zl{A{(A^yV{rbBC=7N|pOXQ1`* zQ>~{8lrg@}3Kkh7li#on)Cn15z2(3+8Do8XB4ez-+>bHR#&w(9;IH}Q`_OIJv+RI1 zc_7`+%rFQREG_-GT3x2D-Be*+qB~d~-H}>NCWYk=5CcqFXpr?~-j`h(2Ba;gPi6== zgVN+J4P>hW?;2dcZfjuAT~6Qg5|dde)G^#9eEvsRFlFzy&s|>ptjM}ptpkf4idX_bxZ)!0RI1b?jT!mdBDI#&yM~)M4L+eZt?5J_IbF^@!X}gJx$l;b zzYqX-NObQd~F8ULPb>fSOI##Q(5MRxYf5>MN?J+10MKXWtzj?6Rs$~ zQ5njtdNVsnrrKiz<*fTa5j|OHimbZogoauHI-#zLP|XVNc#+9U5TULXLZ7vFXNY`O zhS1N}(XX@u>dT~2-Qp2>E3t)v2rnGtX9A>laC^nmtPJ6OLdW~E6`-^IgkpQx&tqzf zw^<27{{%yyExu)7!u+L<`IZ#`949vF}t$xEuq-k?(t#(D@54S6n3{Y zUp0(9ZKb+-=9B-xfw&qy+}*_lR*r~35sa6C$b{jbj`gm_UAVlvFXQr(lqi>we~e_mlfZOzxYe_rQ)ZXb6o@ewOR_yMXjPWX?< zxJQYfSRulHUE#N{GW7=eI{xdd@k3Y%LJvTW{=0tefucSugy`+}tWw>!r4^v#2Pob9 zlRCg1BRa7nL;#?i!18fp4_+WZA5^FAa9j7Z0*B zgnOlqdxsUEGY`-r%RI&rG2$J6m;zazEyoZ(cRYm_bL@vGBhf#JWb=WelRrvy#Q@*)LRWt z_|rI;8n8l*(cs>#WAs^b43KmtsC|-qsz|{4`dCK?Q=itwZzH;Fo#Dl39ISDOcru5nbPk*D^|P#qe~}KKioY&QhxTV zyNc|!X$-8@e+#i+$ofsevizZORRk{%M^@V$+0nxNtW9iSSZH#z&de~z>4FV+9#7;= z_Y6LgeXsi`n|R#Btk!cMm8%5!()d$ye?sJb6 zS6M0SQnt$q_f2bleHrpl?|9p4mX#m^ zP}LxShj0pyjS=!pM|Ur=fR!X7c{-6bR)8)BKuHX9Sl`ad5h*BQkV*@8FA~qP0z}~{ zox*EYfKCCRMZWCkQ`9eAOLL?F8@w-PZEP!DI(BcCy-$U z=mh#J0yMx+VkL+GR5b|Tn=OTz$z^0-n%gOsvyynrs!gY{iRA-voyJlo#9mf{Xe>2p zkTPhPe~FbMA&%(;&RGFEfn!J@LiQfut|>lYC5Ql2HH07nG|d0XN)dsZI)SolO)Z)d z++-3|W+jLKRJ9PGu|A%aLIUssuEvAFDYdrdD*^2F)|%$pm6ag;0JPwzv0h`P2>%F$ zKiirQ-@vOoFy6+{&t?S({Rk61E!X;S)ZRTXCN&*4(Y|%98s#^wEn$?eEw`n+tJ>E? zIb1?wxYSU;YBf#4VTF2{(_PzsVy)cjba#*1gYJ}%S!pw_6u(Hv^c$9n*z7&Y&dR z(PF~A`Om`Xmzn`d5{{E3;dllK_w^)q2f=emu3e^FcyHsclif$e?~Fl`>sMW_Um3uZ zt74%t$IwF4iYbmR4*>iksk+9idf`7BV~8?FAV)HBawHSaAenNWZyzjsP6v0&K_u8u zR>4wdxYr9fTv9X<}dLfW)Z z4Ol;`q(lRPbO&8Af^@&<0w75DdoE%GsVV1K2(I$el$YnYQ~c7SOXxT~YB{=uj^|PX z^9(9>ajrW_@LX(Ld#6Hmzn|XSk6g%eC)mU*jA?4!6ME~OU;x;rN>rbky$B+~C%D8% z3`(-TZ;|z?A6fH;dulRStEjdGa%47~97)A9NU8@HxX%loOHv)PN+pvPfysnRACsvh zmC00M08^+2QVA8$pd?g102qD2?rkA=%yBoj_+^x-lIfQtluVUm%mR0H!HJPbJcC3U zvJ|`)&n1y6N{gc856^nTWbQKeXfc{GNXl~Sa=976lxwCg*K7tQxu#p>TKtc4Ra0`g zm0X+{$;C5BuCdGA4Fu06xtu<7X)D}MiDwvZB+_ABq{9qgiu9H)(isLNk>0e3^ua%h zR9%U5Sc$}mkw`p)MB1|&mTP$~iFC*!Qi4o=Wm(xHm)5w)*u>rIeQdDodS!!U8Gx=S ziCz!u-FQt&O$I@aWveb5Z?+Dg_1CMbO1RfjSCz1?6|H0gg5J`4|4Gmuu8OdFnVSR2lW1K8?r>@YQ z3_$JsoZh}i8GzdNnPQ^8`p@kftF#H!$Wd}?Boogd(GPEPCkmcRB5mU$B^)`h-M!5w zeq|hzOgD9zZZd!wG>8oLiQicQXIHZkaP!ejWMW{?aLixD= zx=N^y@c9F9|C}1h#4|{ymiycrEXByDq-?Od|IPc|yTt~^9Lcm!muVdXn2I`}E9xMF zl1%$8GCk`@CR7v~(i$k4)+w1dHIj*EkWBAA2Ad>2mtAco?ZB7W2syM}TNa;aySD5`+JP75jW2NWf4nDCHhIFG znaY+u4QvI=?tD2j`6>4xyn*gHQ4<;9JG6CK2JO(++^EhzS2qFw5(`^JTN9@`_Uwm< zx6MX8w-99y+h|PYUwhhJ$JR$)d)j@EJ#C{}rEi0%_?*5f!woy>{9d`i45Vh+5x%tt zup;zI3qxm!kDSrx=(Djf=`#nPNS`@MpX_2e(jnPF#71?o+_TTR=lHH@x0Q3Ab6*ro z8GTyNUT9_*^b2<1xdqU2MD%HQw0y2vdS$u!sQX#5-6Ww7`fP@_#TU`nZ&b$*s~&R? z7ti>XIt&JaZz8;E1?X!{04-V?eV3J>#UKFES`!eUyKM50yItaYR*DwOzSar+ZUw+% z)2&YNwvBjz@;-6*Cex4!H`Fq4({kmHFTrkVEmn$f*Vv?(PqG4Z<^f8`+c7912Y`W` zR{6%i0xdI$l_KQ*bmXI~0APH2V7zUU+8M}YK*9~R4BWIr=122h2~z(tJQr}#>%glw zsRgp6)$#0&P1pvjEoZ;su4Z2W<#2(Fp;8NEc}0C{(3|eY_9L6*vNzqHD2Xl2JJUSY z^t3?M`jq=Oah$PEYhyVb$KLVU7#L%mc!6QWWwF9*OUfMCea4++JF@N!+?*%QvI45> zp1~ZxK*n*<0@)Q-hZe{_!wl+)(2le~w*9<&i};I`qcQ9DCUx8RZ3du0WBc2^%gRe{ zyL$=_qLJfQXllHb{wGi`u66wUj(fJKyV*2O!W_3*jqq^{kl$)te|wwF^o?q99|O=p zcrO6Vh^5PBidY;+kTZS1P^PsRR;RMr9QvXgkfNxXlcK0EeY1+HHD6LAETqONQi73^ z6jA%5M6oTWM9oF9EzhN)m}gKianapa@LX!pn9bG(E%%{&rP$7RrUu=-S*dC>0}#?C zAGz-rJeQDe@IjjLv3s3(gViOZujoi$VE{rp;SwO_xrFp3AEbGoxDSgTSzSVUO-Fi- z0SM{YPvOJ?&n2Yann=w^?^MF0f41;KC&e_v&wY|QloXq(e-o($l z3O0~ol2F5yYl|ALMs86DQ~mJZ9kE4iEiBriJm>r^C3wy_IqfTVq&*MHq32|{l;`XW zMDTPf9U!1vMIvO{IJo~77!>xsTjcDo-F>4*AdlRUc4bV{n<*^AXeeZowDUX`ChZ)> zC(_Q*lC(4MTi7XMaiV%l^3QJ}WWT_OQZRAe%rJ|T_>M! zQ6a=rKfume^8JIVN_xt2lIf?k-VRP;##6Gps2{(=5YibYzJ%JppARO;5xp()7fwCG^7%zd)2!Ow-@~;$AHt zU~NO1UTkIQ#=%3?5}AKsEf%4W|b4`9?A)VNjibVcXz!jn&>bF@lk!IA#bV z7vLQYT)}c(c}5S;J>A&Yw~k+m#)6#>(OQyrQsx3t+DXZ0L`lZkjHulUFLi*74o*{T zr1%rkw!;}|2Vv=Y;qBiKY#Ojjm#xaf1{wW;Fnps}|8V3EMlZm7utXuN_@M}|65tKJ zTtpbk_2W~;$}@xF!4tBOsF?vpEcYB46usl^o_ zp)P*1&@z~0n$ydl+J+%qOS$TvzQNJK`VEPUbHg)vCAqQjUp3WLjlUp-3?iEB|<(%&!O^ zouw;5?p4opC5RsmysfsYctzW;#;lR5eDb*9a9M1&7bp9Kdm?Sas0_VV%TOw(7Q5YW zYA|?($>a!6dHaIxvUh~1b5tv2lsmIH#yJgPEW>CcAYPri7~#ICe+($tRZT*afmMC*qM?=f9B zU+TK~{J-m_TMf_+d_oa)Pr6|!m2UPZ-B?1(bJaW%<@7NpSoW&v=@)ejIp%8G%S0eG zu?(ZdkXcew)DA;U(fCAair!H||EU}6PfZ`jdU8bztj+sR6EnjgT1qtymN3*+k>`G1Dtz4zXPp3S5!#a6{O z8cXR{C^4)`R|z}(hW`28IWP1*7(f4J?zEQO>^8 ztu)a=q$p$j*e3F@A5H0mYr02#>cgysip1>oI zxA4T-#7dI}ISKm%JJpK7VvwMfXO7t8TVNOH1J|yfvI6SM<0tNmx9wDiZbfTPEpd{S zpk-R9O3So>o0fo6{}{hte9TJG67UB)fp4q;eSI0Aw7&csgA#H87|0uc1osct3?1K3 zgzhqJi;$P!rMRzY1?b2DO2`u!l#m0!Ku(jbxMWacXI6@kchHgdw*qwJ0Hp)Tt5aaM z;9^CH0zeH4)HaW|8tW7@St+70Rj07j3eYJ4l-QRHO2`3VL7tSHJ5M~$N)hr$b>zpa z03A6%iT(7W-5Q9uSP`NCP=f+3Cit;k@1mV*O!7mni*#cksZ5xxRgfq0X zgr3MUXas1888iYwL(mfXv0k1Pq8lqmtDT)5QVZRk7=R9ujCe>tM3T-RG+7(=5cim4 z9#RKLLa>;=(ybpLsf$^B^a5fuC$$j6RrP!TBoC`4<}+I4o#$F;EeBe7V*#h7R@MEH zqM0F(gqdM)`@;{Z*J$?mQrKmoaL6A8e2=Dz9}0o;@+hsk;L^~JIlZ^@h9W3?rh4%E z2_(&H7FridqE)FlEg3SC?hJ&!A#Y4fMoW*u?S4-r*ryxQ9bJt2H>x z`p_WHToL@RX|H4-fe)*7`#=UDoW}-xnhKsvI0GKG;Cx|-=RMJsRVAE_9#%HjhyjX5 zYWUcUa~SyZZVX6`*XdzycKseEQxMD)B%Pix+fIMGsu5gM4Q|(p@3C5h?rpu*-(~jldNqu~?596}PEEs}@~bWNt`gs8jQ$3WwD>pOJ} zP$ZVEjg0kz?cc|MC>1O%YgsrWdD0%NA58ADySPEo86#6N{WHlxkyciGf7k6bK|jp&SMh43`Qd zcI`F-iD6ScwQX=BeyXQO)N{xa4NUvRpO&Ov4;Lfb)vDM#?M87&(^;N*BA=BbZ!~+48dqjB0QH$Z zvteA}x#S9FK%>I0y=|(Tunfkk-g7(;ihZmq;oPm`+|2-lbL7aJR)Xge&RtfV`FSt_ zd52XcoM&~MXBmKS9xR;PO7L95`IZIek*)JQZEWHXR+o_erX&500aAV$bzATZ!uPWU zpNw1NSt;&$#54s$7yF26%UA{=9$%c0(@gMO#A&M`4=sc{lk}$SwZ!w7NM$t%Wp^EA zcLpGoA5YI|CwMNQ?7~pKC8n}Uge_OcmdgNyEo5147r}E0TMon4NPb)3IWM-enuKz* zj&d^t5Xyq5CVK?WC6pU1C>O8vY!q*>nuPKd9px(wKq%X-%k3d}E}?wMf^u9z&Lr_8 zt4S!Y=_s!;0HK_rT+2uTb$a!x7D|k82 zAKM{_yKA4xIR+0A{%h!$EPuMgb4Y}yk&|#lied%unsKCJ1L7sou(@wY;P%Vw@Qy~EmSD$$M+EZ2LxwD#ynXD)UDlu^Z z4ee9+VWiSqEVV-WBYZ;@UtPi_o>+8V9YFbP7sumD2MLz zRJZSfau{2%Mpd!JTYE9K(C^H!BP(=g##{J=KaD#x?9gcVF}EAY439d_nB3u=8I6t{ z+3!iRiStY{?moWoB2GpPkOAR^}ss%k3*=9hr0{BS>6g#cB3%5n9JwUHuX? zg7bG`iyRE_b7Pa%rgiB|cCr0D$ko&xRh(a#i&vF78`I0mGue^zBsmg=-GB+Vb)tPhC;RmsYL)yit-$ zpq1#C4DPVYb5Viif>~1+tvcAcDw5rONp`l7>|YYeDt;u>S2>DVf=|n4=`B0nm$cVH zdRhsj|8Fe|x6xqBuJNU{!a{3v3A9RV*+{e_Qr%%i;Avk1Pgn>XFNuKvcBFFyyd7bz z($5VPYxgruy%eH*pZEMEK4$#TEFf{l9UbTekFr>B67-7uh8H|l0>rmg8t_r~Z!m{X z19(lk6XxK_N|j~J_i}<{NK#H2`S_&53i6}fTCn_Xa7G2$XVa!A`N;`S6$?rFpy9nQ zd3K8mkD8s4CY-@$hT$p;o-fs)HeH@Q>k0jTw0(DARYlXc_XG%J6Ci{HNJ8%&LV4&A zq>FSAsR`uPKoaT$NVQ=J3MyH}0w{_KND&A~@4bW$LgAXj>qSL`=zUE7x^Qk$poA$QigFeTiB0bUb zrO#Ob!YqhuW1BBsPWv!Fm$P&?EN7R@moA5}k}fCbe7T&}_=kHEs%XE?=ZpRZR~eGz z2;-ObBvg-%7Sd5G8A!y%mFKOvQlZtGDq<+rIP+-?|5A$ z3Wq9D0;;s?7(@vu6;(qP zdj(>`bENEA&;k_!umxfVQRfKm&X=p}Tk~a%m|8lh0lE4mw$^Z=!t&$lH}68|S-ASm zCw}4TH{U|v)$d+dYltu7HoBfLssr)(2D|6^4hNX&wtW4~gwo=YV>SN8jf78FMIj4a z^VTE;T=Q0hp(572WmUqzDU64;QjFzwM++oR%Y~vAqqX7-(f&0NA_o`LdM}hKu9ku~^@gPg7@P{D_a6t4BpHb<>07!#$%6ME2|J@wgs6D` zakR*c4L(Nv!Ui8B8=TyK#5P8MSaPAf{}_G`j529@d1WE<9vsX2nBe1_?L$Q{@KZNF z=bY`@=bsngGl#m~U_UDEa=P{%RI9l9_%)~~zKm=E@0ks1h-a#HE|jb5ZP0RW_iY6S z$70Lc%B$~Gbl*Mys#?7Sx%8}9MH_IE-p?JBmgD|)sNi#BR1krUrF ze?$lv_4-Q?u$DnQjMMcTS?SEf6;Lz#u_J;ZT_SS} zE1AVrxagXq7}lQtnE}e*4-jWweHO`?S3h6GUIfu)g(&7+#h!*ZTtC=Ng%A$K76h!x zF|NO0;E4C#?=F<)_ZDek@GUKP+z)wKxFQ;(L3BqnzcYpGI2vb(UpN|PEwV7bM)0vR z3C?)AkqFL+0ru%R@Cob}Uf`V_O^R}iMlSH;{N%;?$q&bfMt(BfUVwWxCr9$ZdF-|Q zR+~>__U63A%=Pxm&Zr zBsU7`Ud$&Q?prs=Os~lIr*x~rvkKZ9uy;uk0=P{8c;UPMsdf(bHOYv)ztW{&WKPf{ zt8k-8uwP3Okv&{HGUVrRh3)@kM@bIkdr;?l(VU?3Jt+C!B8i<>Bn?trp;qu?!1<~V z@4|wY__SPZSRRO@gpuY1eQ6G<_zr9Zl8Q@nNDxbN8(eo|V2AOGP1gNJI-9oeytxSF zwpt?B)#LZkbv5+kO8jaudzAJfmjlw_6*@me)t5>$S zwA2uG<6@)z8W&37UgWzJgXX+dIpS2S)3W0IV8&&NOG}hFN0ddSGf`aX@ zKh;S~VjT0Ub*@Mm!puL|9>Sjtvj_1THSLW}7#O%59%Dbm1`r6G1ou+}uh)Byt&NNk z_8~lfj6DyZP#aDMj8@!n5^NhGT1&rzJLG5Lkf!js(W zx`Bj5j9qRasc0Y}0b`ej0Lmw2lB{UoPe6wfCisduK}Ud8IP)99ZzQ!Z%^r{}2m`4G zjPgujOI80xgnUaSLP>LijsU3&p*qQe2#{(Z#22=YWNk6fL_Kcz2~{wd|# z(qyX<{Zm9sd!)7$@(KS$cuD{CD)bU@u^wF$UaXJgoyVs|8ee`qwUifYW$ziCB3h7I z+uo!}(J!q(9+RK5*7j(At(CnM`;DmeJewP)Q4=Vi^F2>^V>I|7A>g{~z98Vb3~CAw zF0Ct4YAB0Xrh1r&9N7x+j1Kl_R)ElPWm0LGT$xlM320I)@R}{{rkHTuWzw#m5|Fwx z8Em8u;!lt}es)Q*UE?x5R47a@=zp>I5WD8D@f7uQp zVJG2*8V!^h4J34&AmF*s*Otk1q2ov@sx{hAt;tquiMTLPOOFe~6MaH03W;h_0;+{! zVM;}{;;332)T+*3?P8B-D~OP&+ES_7QbNbC)$LxUf30pWNkO%C`l)qHsue<83zmxT z#X6#w9t#E&AoQYms23%mUV-gB5vFXY*J6LYYW1*>V|kXFJE4|yxjgimlO&*GMVIS} z6(=dESQOvT9ejoN#H;41$m4t3>saU&rn;g2Mh)QMkyna`ictb8*7{X@QAVk#m?prR z+k&~RmwgWFMPw7rr1j9%=|K`uog_n@6q17K4DwTF%s)^^e+wG$P#ubg>QDlz)2J^r zC#9k~T@7`x>y_?jKg;G30a2&9x=wRRf}D5T1L_2<1I6$v{05SYSMk>PC>G$^wOl?d zOgo^w53kxue+L>s@q&dPX#O>=TLzpLpyHzWMFNVodDaJ1^IXT;3^rlj7+|kY`i8>9 zSA{4h)*W6>pj514O2BMq2HM|el!{e6$5h2?)2B?j&rm3lE{8%1l7RJ$yFT@RDtCPv zkaVH5RySQOa3KD~7d!n118(@JO4g(HfQY?^BBE-Ppf-F=RI!s%G#z(mwBThV$e%|H z{pQ;Jr82m52P}zrFo^mssFxP}M$Q-(t{mxbs13tuVQ}d~p(X~Grixz}T$-Bh8(d0) z#ixkv{~A7+&UdQ~vcJ@UOo|QesWYA{a??_T`g8M6gY4n_S~piM-e<5Kj_;BN!82}4 z2mxbBKc>rA(swH1|AR!CHxt^kZ3;q0{w**)ThnFae^xrqfHYWv?@h78)_1y?@f706 zP9_)BPD1YxC#<##j&%C-4T129_n#+8GT#5SZ|O563iJEKyBfEe$8ATnbocqo2h zCwM430g3lxLu2RpI$g&5_YAX7^k3>gWN;!YxB?jID@9!D9zFeeVv+EuMl1<5MTw^YMw3?XR%T3QX?Wy}VLJ&)cq)yLJ}Rc-pL#!+6L_xlm17 znQb7o^?MLVO@w@6p-OnkF zD!v2pB_ZMhwONknXB=chxKU|&*$l!~Jq9tKP^C|pCnzYS9=@Ul)ngFrNkOzVYXkvp zO&dP@L;G~?=t}tv#Bq`nZ}uKusis5$p7W4Re9+<(keR!P`Wp~`ll(Xt`^$tJ_=}7-Q)HOB!mCqHhsO6GC^Xm${W}xIf06G$l>7yh zArVilC?u#8%9SOuS?5W85{f+?7$1P3z`|T;dsoV<8*5-RiygyXR?0~oZ8tHg!_SkG z9%l?pF%-~53=l%2i5Mt;p@|syOLivWHn*qvn}d0u+J9kViT3ElM=64Vn!5No&B2ZD z?ScGsU`iBUHUls}RuIw%eE5qr0`LFAH>|ghXY+hB%!Nh}VZxQ>go^ye+1M(!U+`ss zH1~*7Y#YgdfiNhEfiPgLo@F>ga$%J1q|X1EIYE!IK`I71ACXjK4haTxymdG+EU6Dq z{@gCEcMHCJ@8|YhJp51}cqDa|>Sd55Iom?{v@h-YSA%Pk9LPO%m6zxTbpqW0q|X>E6ZZ*Lm?o~T)BZAXx*#`)4pB0NUtmJ0&f zFc1+>O}z4>Jz3koN=`uz(EMU?w-*xBs6Gj`Chi^lD6$!r45lAtdEWW+x z2Nuw$E<1@7Xay+&*Q7q%T6b2-ZLNExAezHlCh={nEyVY3YeioZrRfxk!e%Q+1Fgtv zxz81~8p>0XSZFn^yt3J#S9>}z+F~k+Q2`CK#yW6QU*Lu&;I`QT7kiq<#^jAcqcz^P zN?POPtE4sld6l%ri%8{rCv2og8g@|(4z$J-h1h6~Cy8HZjVG{8-Pd?ncXrk{*C}W%VYIKC6Lg~rskn9VH%UdS1PN%B3=z=mMXXUh z63t$LHIjK5bArwsQq^NIF(ivXfPnqkHTL!z00?ixi?31!d;BWHV82RAc@4JKS~5mo z<0LtdZ)-1K^ahXIBc`*7BohigRu}vObAm27q@v(oCXVRDz93l;V5}KnQRJ9NUS+Gj zJzGX{BFbVNWs^BUM}bsCNohN*6w4r45M{9$W#V>-H(w^15a2f*;J!JbBA@kolPb0~ zvTbv%Rjr1sfAg}&OAYIWjOfRTlT64u3cl7U`b|}Hf-XCxdcRK4kmNxAQ9N{yY+3aR zKsS;J`0H#st(DIS;41(F%vrj@mnsZC=or&fA2mjy=X)?&;wa(kYx&u2ecRa9X6qMs z><7O%cCGY_gq8G*(^mVgNh0~|W%j7t@{q^3YlWLE%>T@=H;evW$U)uY$4W5yU2A+9 z;3uNab8njoYr)raNXg6Q5w_kp0{D#GIC|uQWVOgb7bLU{J`a#Vn4lluD+uVvp+<3+ zZT=B^I=e#hVf6gcS{c>7L=x~>q8HZb&k||tRBscD7k+WS-SpYZ;C1q0qHhHY-RZ+3 zVqU&-VM=g)KMLS5Zf=4T4-=JHCnp%?2pYyXO7YlC??H(g043%Z6iU8JWQBz95&ZdOp{StVnf&13ZfXc0|MrLm+R}A=afSG@Y`HJy5{kLr3Ul!}dqYbt zag&2$s!a|`#hn03z-;)c1*PJY6(HDE7TO;xl%K$c$qlYn>bmStJ1i zVR_c`(03fAg4U~%fPFKNXI%F7&2Y%%*EjJ3lIolKOGyBP8yge|)u9Ab2Ord+RH2UT z8n+d8$lYeIO8YO_Icr5E6e_{x>kWUvCVF#1$I;zuy*|48kQCe&>q&KTfKCvZ2%+Q6 zZ)oR{cPyH(mqVLkVeO4yFT;ov2^3b}SPJ#tKd3&1WQ+s~1|y++z}KKyNk?!=Hpdrj z7DfBX3T<&AcX`qyO=yuC=m&-*oG)sZqe8$|fLYuy>8vM_3{~kSRq00PDoQm7#1@~9OCqVLkH@6XC@XzLl!~;RzB}7Z*N5VvK9qoM zgpb8gDk#;_=A+ZPp(*Rx4@5fD>07DOw}cMES%27m4G4R2Kxwv)q=t4$wgYRjMBf3q zM6i(#X)c0|L?!*hz~4ea@v=RI!`^UK?+xcEl86SJHbGsrsy!czsGy7??T40gqwITu z8&zk;whGut6${Yei%hEvPl$ zD1A(Gl7O2$y+9f9GGiZ-fLiu6Y3Z=i5+W>guBE>m15ns}6iOOoy+SAYLXF)hb_+^q z(_i4pwh(xYqn9m@ej(;PD_lHErM#Pg%d>Jjq8No$l}oA8gb^Vy8$MM;v*DO;y3su5 z8%|2O#MY6rSi7tA+FeBwaDs%NML4(-d{>boW!YhpjPdvkQyrfMUHyg#eqdVZs(%C- z0I`n!0L6z>wR=#}pAM|R{vvqTrguzu0h=s(uJ~$d0e?JMw-ip*Eu~`JQUYefH=8IG z>vn}t-L76fVm7O{NsTtF+uECC&#g@oux|1ATKi4%_*w^&imJAQ1Qj6cX{9P&X;!L6 zNCyFUvEv<4L4+YHMe$K7d^L(vQK_1n%pC^bje3_bL#5u@B(M6uMG}xHz8giU$n*k48n2e6Toe%NO0wmD5(3&yI35*8(@oZQ5P3D)8ZLx>SWalzT8_flXKb81-u* z5HRZ3QvAZGUrS(YeliLU)`(kM{0v;53s?6ryxibE(vV$!+edWqa_j2l*42-jaX0JF z5)QwYq8g@uT+;ESjSUjz_2?}gqZv*Jc#LMyW_gUpr4kHzQh$8*y`HS=jv;9;I&#bB zqTW@^<&~@w@AhmMu80Pr=N*tn+{o&?rf(kJ(n49hn-!Vf zw2$L`8(Toih***hUQ>#4=;z_T-7KHd$p3b75gvCZu>;%Un|*^hI|h;Pt*KMKIgguj z;sNx>agHc{HO|q6-SN$yWzLR_YYlLeB*+ z&d*eJ^kijyvzGM9x*!2qSHC8 z&}XU;2Is81g$&NE*&=tXe%WFbom<@8S%oM5#}TQeLq4%{R+`!EuI;X#)^_gf@ zyn1y;2qpeBu3mk%S)TEN{%DTS*-1~pBktSlIeudoiBjmAd>+xd4(a3(tt^rqebv=1 z)K@*+BHc1dg>fwqM?9j%r!;gt%W(vKAm`OCLS2hTwEW~<->+8~UtibR4t6@PH-ga` zu~qe66tTcoC8Fjj0TMdu1e+v`ZsO=179z^gkS0Ki2{xa4F(r2p(HpBt!Pb+o4SZqi znqXV}Utn>jO*I8Cpg+dsC*?UJ8OB2U#5!iNI3f)OUMEhe@jUe(LSSGQD`Vq?YCN^a z>*d%`0tC|oI0Ty5D=0i!QN6}BDgD%oj%_wJQKfMit4$IVta&};Ns4oLdm@}yYvpJV zZW2Lvv`KtiD~FwZMtCYI(iD|Q(W$iqwzuZ0G(Kc+d|AG}jiV-8NT|r?Osft-+T5+Y zeOpHbQ<=`~9A)@7Z5?IUhV06ef-Jse+OUJ!Wxw6dk!8w`jb7qd>0D8w2-c5&nFLrBeu9@{dkM!;nQ|btjZs?chqHfePzH#yQQe4x@NuXxDmi|Y*T{@`+xCS|INd< zc6L;@<>fa!J8H1}BnJ+=;B9Ky1$ZL2Sy+aWT^&^lsMgodFz4X?yE=B7AT6pw&rF2o z*!`DwbNm`oR|x~Xb?TTl|KUZtI|}gQW7-rIzZehc;Rs<(R5lLH-I#akRWPVfGoX&} zbjt~!WJ?Z&e_DuNb+?HF(Xr7=+9EQ63UH=}BhJ>H$G+m|$X+45MK>?#QAML=(XQLX zeEUDV_#0hUUiJOu?YkgPtm-l z2nNg4pPy@HHH_Dok`@S03B((doiv3ZH*Y`MCMOIZK&|!aAHmf`=O^E+KdP*1lC#w} z*G84gXM&UIoArdsYBjmJ>zn_kPkuGI$-7;3dYlIZZTG5$tbHao<$Uv(GUwMPH%)xA zHBi~q+qTIAIWSk)KG;!N+p(Qzyz9c}+L}jC5$#3Y@+i`PIFI=} z$_Z*uJb$r7L?od4sKr0-wL%{0uGvn3YFPG3)z9u1X~a< zxfo75o*3y^$?QZt)GJ=sE1o2vUKk7-y+a0rUL&cf)qhP|y(P5@rdn|k3<|sHRmynu zO;?KIp;DB9N_86Jc$rZuD%H=dlE473qU=(pD=(D9?Nw%9Lpg!A8 z`W&&+2ZO*$AAMU4pssL#*i9Zp86sLw*GPxbWQCOGcH7ROGX-WRY__Pzj; zfO}$5JM}%Wq9g^wgGF}Ieph~{+!UiNq;HBTmGsRc0K@no1rxOg--4O+rlS;#B~Vy- zjR}Tf$r1q=igKixU5EVGk5 zh#POhO-5Xwk+o*mxQdp*V&5A+0&Sb(h~RM(0xH@jqjEfRlEeE&p0`Z=Kh8$40{#`q zK6mggPXWHzOO_kw`vB!h~ zcOv{Se7d=*sq`9qDc}|;fl=u@1OU5T76AzGJdxeb+!-(`?O$m-Ic<~EA3zwQ5D)zj zI$V)mYB*rShwoB-Tl19WSsyy;_%wXzxY4Bxdj1!RXnC#SE@>1R`@+;W!L&vgvnsfm z;19whK5`T@wLe+_yz@wV1sV!UfNT-zYd&(6u$fAuKMnc>CY^2~qt~CB@*>jdPrxBi z#%OC^*hw5h_4KRL9XSKo2WE~PwD)#NTk{@Cz#)nI5nu1pTYe5n#+ILDsx5dz@dHO~ zb8Y!FyuPUlcxZ0?@URPPm0e&vLBlSv*@SlBpL79*hlgGO7x%_X+z*S_c85 zIH=Vn6V6==t#BVw^#OmBjLD8BTHf8VljYy-)0cyHtG*1YwB2%*_B89M5RC0dT6O5> zVsy0HzGyW}Xiff4Xw|=VL^BGdIyI$Yr=|qVcKB<@GE-sf)9K$pyeN(csrs}ZhqyV8 z#r_$ z6*>3NQ4zMsYSt`XSs>m}fnoHHf~k&5sn}5|0kf4{t)n&KTg~yp!UgLX?0C zMeJ}CV3dj@uX5Bo`T4Fq-3qg}iA-wv(E`Zk-f~ABKQ`&FraK~S?9+e3A|n0j3P(|! zi3iqg>>g96J^YJf6I)~E*g;#V*Y8S_F#F8lIwJC1j%QAG2J?xl9YwT^J^b_4U{ns0 zd|1=_Of`MVs;0-KI=he#r3bhG8Ee{vTqmhAqXev?nQNhnC>1(D89pH`cOV~s&{;|Q zTbJ#LuWS!ZvgLtYS#c=OG_sB!a#oI3UPeE*K*4@o?y{1#WzOmBFXE=sS zy#NmNqHw4eC8*&@sW=>aRCy#bifo$g1g~)LpK-Xj z)6v?*0V{Z{e+A#$~S<^1@@`_ zhhsDEK4tASPc*N&-BBl;c7Mo!7$U)`#rTFjj$-`7un`5wU??oxfMSXVvu#->T|)PZ z-F}D+i1P$@x6AVcx3I^d3fAMp!!{QJPF%e>=% zYb(#XGQhoG6wmdei}Tt6oCwnE%v|vDdB3 zVe51l7d4;HB>FLc5W!C>EOfcHeAa(@=Zf0zqv&BGG~SvB6*-IxdGMu*;Jku>5lm6?RE04&sV|n|Hq) zxNN^TtyFz_b!R0uno21?-Z4@Tuu5LwXMcl(2UpI+NPC}TLu>iP1(+y&OsHOatG&M; zcbkYF`epXXx*Q`>jz*;baO=I$WNrTCOM@1J6GTf~naG{q7hLuxCF$^--4X zqXopNs$Hh4KWXjS$4yJOo3C%o}V38KlEL(~o`Pe`Zq{q`XVtRu+kM@%AV#~tZkJiO8WM(q6ebDHa_tPL zRW!?W#4j|GQM!M{Hi0(-zlxXa-`8$|`JDjyg!v`Br1@!8igJEE7Ja0c15 zA9nNKY|f#q3&}5RBvXNj4t$B`tjRi%9B5nf2RLI`0-<_stE~h7BEZ?&R0IT;$7{k= zHR#XrwS(B6II3EoPs`zKUeqsruc~m})V@zp(bT>p2&NXkn$tNc;OhgrshvX$2va-j z0By6MtlA7strAARQ1J!fgr=4fj9U-If~UWrKgjRd3cN+!aXTr9!IsS?5e`5$5o|Ga z8+>i$|0aUj+Fw2(t^E}Oj(zr$3H+{={%Gx=3XXUDss1K#IJJ@*4C5vLLDCh)$}*T| z1v!nCW#mDN;qr{o9OKt92len)Z2~N6+*X4EHvwS33K!9>=%?!J*XFp2?r~7AqI(iZ zQO~w+6mo!-u3{BU`n-QP8_qE-OY0d&|7ZHJc}EPJ#yl>{mQ$Dj4DSKsp-QUgTYS%*}7GNBMj71!QHF?=!sWWiG-7Ios;cu-Ct>K&33 zh&qR|nLt$KFBfwb(PAKJte5)$6W8Jmr(LQ2oYw??Z9|F`~G$ zOY}yeA)P=hAS&Y;F06#}8cQG=NtZs~w_rTUf=A9$OFGZ9p@fQl`HND{syW62l@BRZ zvK$*v($(^B%pq#(-+`JC%fH?tui>6=ly;U4Q$pycGloJ|v5cdzUN;u)mz~Ot(~uvD zIOwJ33Ickm`OtRn#JSSSIR~&UBpXgcHXM@EkPRfkWLdT2hoo8mmE=IPe$=Gv#Y57z znsgPmmFTJ;+5k+Picn0PickVhMLJY;7Gso(#%L{cAaRv>)ggJ6xn3pEEaI^0*r-{7 z!&0*XB*Cm%rNdIQDkKMLR^c#h#kz<8w`ThB4ZuXrC?;w~38>lIRY5aKMa}XZHfxqr z&AE&@iFl~lKwYzeBmui9x}?_*>n>>=NybUQXp>r#K`r5vObv!RE~>Zbb4LKg9Ty6S zu4v|A>566(D6GLRO;Gc!Y7is3R#3R#LZPt2aJQRMv0fD%6sx0t` z>V8-Q0Y_9H(mbJjag4K$xvs@2buzN`eb^@i9q%kXg4Pyd{(0Cdrq}I8#H&F$oCq1; z$rZ&HIfv)wl^VcJgrk!hh44K*5&x{u8WLH3ZKA&IMfh^tW@qyVVqLvJVEECMcM<&1 zm3I}t(3N*Rg07rA0gK+-sKwb|4T$H}8#!lLI`tjTybu_{&Y;zR#Ja&K!K6 z*1sBG{kt=qPi^ch%EOvC$Fsqt4$#}X6~Rz2^=C&PHO zX>jhKf(lYUIDh>}E*@GhpmjQX$yq@QVMjq1xezsW!n?ohY{kMAU7QPV!NLRqcfuLJ z^RlxmBPGT4fl_=#2PjwGryR%Y1MH}D)wGP)Rfj1V^>|s}QEAh292MTGVEV0&&Z;)n zmarDJQqZFc>dLiL1>rMiHPgB{BmKGCFw=kd`Z{3It{;&z@`<-b1(B>ezbnu^@OXOD zfFMSyoagWAe3!jO1i}f#C_%vSYCpo!>ecGz{E$s0`Oq7s9+iGJl_a1y5|LkR&QTf2 z_>QEaef;{UvX23tMMtHN-6q=Im?>c(Lsg5uf(JbGu@nz|0VSX>82yT~5TjIV*)^{? zYp}gU9PD4BWy48c!v=WlymwD$Qxh9>Der>X!Yq$ED$VkUqtbiaA)K)uZwi8`9!K?Z zz7`OCOoj{ijGho1Dab{oz}ec_@!r*H;bRtcf`I~6C;AF5*D=7*BQUsVqy!^SP+Y44 z97T8_hGfUZYBh@62y%&ufvGJpI`BVn!wD{_!6E&eqqT0wq^Imbz)|Tg6g{lwsC;;WjAM`E5#`waIr0{QA!Q+!hUyc7f5C3qjE40|t1Oc!7Mnw_b1nyiyg3<^s`g+W0p2|Q(m-c!8(Tu8_cf;a%MOHzblt?D zd%1#FLD#)Q@I%+VQ~W~Lz4KW1t{Y4Ny6)8u=U4ur?%7V~0(PE=h@SPdA{h9o+n?XV z&t(r3W4U_1ir1F!BdK+Vni4Bj zTE^@CqPvMQG+^!r*lDOUi;Ws-hXQHWy6`sDhqdy&h zw920f0$OG02GRT&wI{Z+Qk#R;`?Cve)q*YZ^Fy6!V?Gkido>nHPZo}rf|D7HJne{?~LHv zMsy1?;mc~aHOv*|D=n=o4CsaZs)m5DSS-IFpv8*i@t-;C^3Oj2KT&~XgC_2vmHAap z$IFleakt0Th})(*%djSdj!~foaBV}qPSfUBocx8*3Wj)+c*#;}tVg>53d2Ga%9wXG z(BgiTGyeeu@N5Z}!)C%81bE_fBE=J*QLSbPXPi){i1>8Wo4`~&9rZQ=!|wCC32mws z8a^Fmr5v8?2PN@Kt=~&^c;yeh({=4T6Z553%!MiiEtu=`M5>4ib5SZTZ72b=eZt{b z1*M`jF9~fw1lA<^f0foeS`IFX)=u4LbLG`6i;al??K6aL7IZl#JC%oPZCspUr zJb8K67ZAlVwUwy7Xr-XO)_g<|(d$uy@_OQ(2d&&m>Gmr4f|oIY$5?=)+j}ZFx;+Yx z74?^1QI|{=rN0Bzm&ze(tCt|C+N#T^&V&VX63M1a?npxQnp{&}6d>`WY^h!+y)ETk z2AB*dE3_;(b+9}uaJ_u_mxC!xf+<~Ji#zAWX!9Absxw=U5wik&tn`x-(#E^71J@D+9tO9Z4#h*_Tc!I}zY{^^`Q~ zks_PnrS~0hRt;0|dg$-PQ_@TO;L&sLLr%#v_``fblTD!GtU$#%_hJ^H)~=cgVO3?i z%(TkTSI?x9i5-J41OY9^ijy2y7blm3$yiGAp|f6eN;>OBBmrw%Jukc+no~S4ypv?X zD&K0-{*aaS_`a~xUJpnDD7tMwPz=~zIVIipHDA2TCcOJrc<8sS@Ni3q;wfK8sp#t{ z0kd`f1w&q1WN>$zMH6y&x?NNe{+w){fw>OBC!G?92@JCAg zV2aPt?>!YA{T@ZfN^6`cE3HbVx6-_BCxUcq!#snA7=7Y(HafpybBLtM3e6`}WrgNs z%J)^2kb3x*pvdqPv3Oosu){JuC3ws5l=vmXQy@DyHp`tQ5EsK!J-7V($3OswweKJI96T=ewLm;ERQrynmrqgb{XncnfgAo0-pK?0*|p z&X2b`a~VFZ$!Y1+HtmL!88?N@)Tf?-`bZ3X)P*U`OD0YY>U`5AeI_qnvVa;=~WNCJd zq+(59rfT1}QhVBOaaF>U+PWhHICNxwaOlYLpOKENz!}xo(7xt9qwKr59u#^U)-zecQ{7alA#`n9WqJ^Hn4;ure0YiF|eYallI zwZp$TXZeRr;b_Am7I;>5bM!|6ieTVB=YfV{yzvcZS)N(Q8Ak4W6;n9UMMa*KE-K=z zbWs+9c*4(07uDpfTxc~so6SP2Dqnd8f~WP)@=43$UJ4>u&6VlO)Q7Ae;T7l~4pf1n~)DXYW3e-4f5w?MkyB)WT*erSWhz%T+8VZNK zVN-i}($E?e{7-v#^; zkY62GH^@xa`HMtXToamztbuN@_I?kPpL&APV&r;S7dy+6Eu`Y7K%bCQM~UlbWW z1zIML_sR$Fl-pI06+W*T4zUWJmsM2GoS>@!sd(JGHc1s&a15npkgL6B)Xt)MiE->@ zk_maY)p_?eC+NH(74>kFROH>(%o{(x_d3ahyvOUjrEU&Rmr~$`kk^?WkQ5Z#xkTcyoliH!l(SvKE%XB z`5~pKz7C;^;yUC-f`TrnnINDGYJN_>uJ~mU*Lv2ElKmU4l5tMM1)F4#Fy%euGHcfpj{y1N1}T!omx#P{6NAVKU&eM+#KW#FlHoR}7%Q&v4 zoixE*wt~UUH47MgolTR9gmdrf+nRP!I`kYDRZqrBd*LE&pu86?Dor@_f)-f0czmnj zkvdpMt=vUXYvqG{5z3elVyqBEr4{f;;I?wEXj7H>OjFwFTD2#bla@OjHWOqID@dVK zm_H=cb&rHd6Q){=(#FHJC?#OFQx#lQO@(o0^U4KzRJ9xQFY%4IBNbimvGU)pM5QPJmCCB( zs>mo6m3s4{S*g^0!)ow|YOYP}B;kmf9lI#)#xatBEs3u#-2e^5t4lXYDynwPq}n4Z z)$o}YrJBCN20T=a;-PAkU>oKs%#&)mIx|W|)eifp_I`|OB&+(H8ab#{#owe>6-k29 zD)u+2)r%w*wQ33pYX1K6Zx#d2M=O0L40xy&#Y3$q0UK<39aj}bsi;-C-^>j*rLOD0 zY&;PUwHl*qHHIW8tv=GV`h=vSR#Qz{ef1Bt(vR2z9%@DLP%BD6tv;>qD#<7nwfe7* zR&OwdtFhxhmRN8zMQ@ZHwRKIA}o<@D@`aUDtjj z0d?)=r>pB9=&C=a1#sA5C>&}<38>Y$7Or)SQiWEwSOMN#16zzCExfYS874Mj)2rD9 zx%6y&K?VuuQprV-aE>4tGbLQC&uZ-&6tMPpy#uW$1@Htod?DATS$Be}mYpbCHLLy! zuoZ+GuGlF-9X~$@9L4eT3nV*&pYa2~W(AIC(ElfRVFGR}T0No^54{jmj;B<8rCdO+ zOYlcI^;4ke~)2;l2y50vEk_ss~XjG2-}l2-~?vthJkiU7oD$p_*W zMoT`plzq$;mIxR#ZFD^$lEWt!!gz4aL5%<1)z!>0mh$;?#Zp@G{oPy_+4rPY@C#Xs z2m!y4^*uD~l-@6On4=O5Ra5^35lZtXqdl$J7R4PuaTQ?!=h=LTcfQ=G7duKa!z#QY zpZI(0$^i#2<@z}5U~P7hq@o4~FY%0Jz3Z@BBmsIrW1h0Keh4p7eROOA@im^*+$p0Q z3>*|cY}hC8K_g!ClRjY@6cx&6Ck?c7wD#2{@7lV4Z&y_<><_uNp4i(}P%HR{{2J0` zflZg!vxzWg0|yl6%?jtp&-dL<7{#LgP-9%Kv1j>~E=;nV?c-`5LD(6sBdRO*e7}wn zF(NZ|#9HDPcEnnLWZw~IU6LKKK|j|-|KPo?zw1-hp5SA*=|%`x>FxiJ-KLF7Fa%4T z`TRXMjPIEXZ@RUPcXeZK1tI&61*XUKhwMAAk<6;^{Pz#pcittbsK$SxF-70uB;gOvwFGkqGLt7tEQH&cb(yOS7B|1-gR68ns%L*L>A~ey&?#~sAHio zHvV>z85@6x_=SzXLpFYJL6IA86~aS(c+{?v(>30=$s6+YU!> znJU2$C-tj;qsjCBkd~L%^0>ONCkjF~xdo=@F*bQL?_Wa;;a6sNh+(0ZL18^!tQtS$ zvTXd~Bo!43xhxvLG@mfY6~?NPRMG=xb}qpK2fIpTYeIktc7tpr#BKnW8lW4Hhp0;M zjKSalP~m1tu3Xy7Ad2`TNnDbvkk;X{G%AlpEzq9vE2$Rj8H8Xog{T(MGs61`g|KJz z7r(G)^ykwYu5#v%fiE~lq_`|zaLg3cQKVvUBX77O7@*Jjg5yx$@te;>`OKlNH`s@Y zy9~d-54F*y&r8~5*p|=HyK{sEyyxx9a{F%KWf@4Ff7vRKieJI|WP~eH`vLNaKq}!S z1F6XXqThXhCmUn51A4ox9_i{7{k9N|w#N`6>!kAo(%4x-zzAWcAmF?gM8tV-&rz;~ zfcuy6T2DcK`bk14?>|I^ug+TS1DYUa_Y^8naR=1uopKUzW?6%*%2{`s-!6lXi^MkeFM3yl7QW z1ZjL@7>Is|bHg`<)HwFu62EZlz4fQXP8wR}|4ecXwVVPjd@idxluw=H%E_O+3IDA7 zYdGAgecd&S%_J3yc784)pjn&=l`3Y0pQ{8z!PI|CqGoKh;x0|R1)OKqpL~CidwQ_v z0Ld*jX5iDl(DU$NqGfjPp5!C6t_)-ur@`4 zP*nGTZ$Pb*j^L8)TVJTzCa8s0P>Tz>%Vz@>&YQIk&INP0_%v4pzj3l?Ou#l#gYb15 z9x_Fl>@6mggH|Z`WgCBmuE=k~=m_|=mOu4syXvdUA10K0Rw%;o{R3TE1?0P$i*I;& zPze@#Rdq}32q9N#M~J#ALoTMq=~R9|*@70j=r@RH^Qcf7rDD*D5-{7DuE|YIZ5vxY zv7;D`BED4piZsYouE_XO7a}(fjgEp~8XD_oxKcIuRe3)kk>(eNL7XN%M}VGwop9V2 zu5QsvPyIUYK*9;1!-=~pMeKOhE21}w5kbbZVM0AHcJav9%#njr*i6a}p4})4$)E|^ z68%;i;UR+(#JG5wf}upmvs~~)$CEC8q2oyh$+A1348n9C9UsMu&vLcR?gOZh6hS`j z>&1kxS>yM-cY87Scro`#Ofu6nzUO^pwkwVm5=@MP9j^{(ls@ijR}mZgO_bNk=$oz) z0{W)kprwRwI;Rp0c~a*-m$xj$CmeFU!uS5-%FWyM(!$c-jjzW7t|@_F?puj>S`yeG z!UEi*U6Y^oZu%W;VTYQFB^0tQ0k$Mji%Kss*Okl0%9Ap}!)c|j$$4+_Yw~Caex19i zZ?1+uxvKsMFD-SdYtPT&S2OmCZ~m?-|AwXmBKXYtS|G1C&y~!QeX}NlO5#|{ICFx2 z_5o7y%*Oj970-u20-g^s{Af0Z=z!I2g-UFQvnc&=jqg7~^@J;{Oq zkZJ;Gv&c1>5B?DiGV(sG3;sJP2?-T>{)0KH*Z|lS*O=WQiO3d88ElQOSQh3J2M(&u z@?KZH0Qtl@i&uepMEuhDjx5@o2(LO{_wvDWAJ%Oz*DH;#%k@hA>vFx4@@?q~>PS2s zPr_bVfVW-liqh&rX0d1?4CSok)KxJn(LdcCCiKEjclQ^Pi9d}`cZWgS@9rHIt%)pj zx^h~LCXQ!8ikImW$tSv!UlFgBs(QR(i*vl*HN+j`*$KctXHAY(GK3IV{u( zeyg|H5!ZA!mgK|b-KZ?Nyc*ir*|vSa)GV0Wr+2TyJ|f9zfIrBh2Kb9Cp7GVd zIzb|rG{8LTm@77{mmpvT=_@>d!+m24hf{b;$ap)sFrRWNp)NB~#iuPsK!d^SsJ5Xz z_Li$UUst5mP_~E2hC1!gb=pA^a2a_vOD-eNlLXY}v`L$*{@QG~;wnzG(dX{~gxXLb z)P@ppK{DmNQY9FrVu)y~S(_g+UEi=`H=)XOlZDzu-jppANfJ<-n440Y+9UzBsc}=a zjpk{>7aw!gVJ`}u^|tZRMqe8M5Nbn#P#a1>ZBCtaHDZ*C+7!A;+NK8o?VM{5OD3|R zHi^16i6jC08=e7qn8IS_1$LUWLCGtssfS--q zVGCpw6l0NdfvY&h_yd8%D*TqfX`Y|43WH5(A{LnqT9gJ_s_$j)0%66;fIS2Rb=pBd z0z5~pbP}fmo`!gIlxT61h;3*}5XLNdgWjJlMAqq!tJJR*_UxC*7pZ7F5UF#qk838c_OKF@QsT zC>-iT38>G>yRQC>Qc<6;41IJHektK6c9#f;I^Dblv6+Fz*iDiEJe!*csASybgqHAu zglm7fTCn`LRj-5*R*#qH-K&Zge4BR7NPhi+tG3A;R(t4b8m;uyACsfd;uC4wbt$+u zG>aTsN(Nsef=d0eWW=U-mW=YZB`yZkmQj8(Jus%cV#^PPR`+%CU&9CExsTj@{W@0=U-a13t^=8O8{AVrd%g*EdjBV`{5D?gFPsHp6lJWC z&WN@w9oS79ep^OSQdGjf1vhIehWCy)Z3yiqczWMoV|guY9HXPs(pK# zXB>dn_FLo~P*D5swp_PP6%6UzZ7@ObIb^YbB*}pLAm7qIk}P=0g0LG7NH`S(`EZ|o zv&f8Xy+!=Ow%#J!n%w-y_QZ07Zp%X!?Q^+PESq`$^EI=GR`ukg1Kmf$rw16HTRBZM z!j}J?5HNmrT5tJZRl;yx)zp7QqFh1lmh6$@E?eFL&hzlLzPD504oE;(e0lH46<^RD zx#OEnY24L`xg(bi)$hm%%J_X_Eh8wIA?|3c3S<^*2f|RU9S(bY->SUs@>=&hviCjA z>#iUDP$)xt-7%saZtnCW3dp{8)VEA;k_9(+h7tnK{*wg(yUx+u9CwOwb7wNihi3MT zJJJWfK@#vT$>(?U-JLH<3Qk%+yQ8dWfM@O>YF>o3b?&jN^;&+b*Fh?Di!XoV^Sxjh`YQc0N#uN05RW# z54&zC=q|;o-c?;4tE-}k{eS$~KdrXB@~4#>P$Qrth>x2(oe2oG|H}j_P0%;CekICHQK5(+erAcK22kyh>UoTiL$mq%gg zD>=eL?(z^T<7Ema6DJ;b1wV8~_rx!BM)yD_^Dd8aMqp8fR3Fefg2Z{fJYnMkcX4vu zGkE3{zmR9nd%lwyV;9F!&fUXr7l#LwcfZYwiQ>9BM<-N{5YPz~yCjwkiX9t#AwZJPmk8 zCHMQRKgo+xyx#Ztv<~s@ZTFYw=6`X@vS;0^TCj-#{c#=T%4$^wz;pfAwoxQ#O}Saf*JX z)@xM)7T*KE&?2xj`@G2G7o$`RWZP=Fo$ODN7X#V9D}vD%Ql~#x&+E?DHE`#{ zKsK*Y*&WKCRC4!a+I>~q*i9ZoyNJVV5A=RwA&BQMy`Pl2FZ)UH`+V`+eOvJxzqce) z8|*Ae|8YlZ(U4Dc7Q#z*mUGxyTH0RXZR@$q*;?|HdhU+VfBDwr1yva`0?O*Uce4&e zbc}$`>L2lpO^J0A&R!xM@p~M18n|l*u)c&WXHR_ug@zz$NxX8rw26B?OMFT}{jMG@ zh(Xs0qzw9(v4Vj91*#pVU5}f&_p(n&KAd(OcmRgeE)$rz!n+$1MDS}b!NLK#(}Z>GK6C(gogf9pYrYB7 z6e}Q{rU0M{e%$~`Meyq;0YQbXnLr*%g@UOO z^OWGz+QB@Fu;v-<+{G<98`DNwSr`fI9rf zg#pF2K7Ywd>qpSA(t4TDTs*$LyY{ox*+i+$>x4gQGv35M_5Yv^&VZriu}S7g_TTxk z|JuZUkv02*79C5UInvrvGe=6rnIk1&wiBJ)y-ih(Gsh_~3PtE8j67p4^_P`8AdIDxt?e&J;2_Fuk}ojKrzMdW5fSN9ly&r)V>8k`FI_H)KJ zkM2I4g*;H*45vNegn-kYkOy+wlSd^Of~8JvvFE#usMqW>$Tq|Gvbh>cUet8wlGwwqAVzpwtd z{WJP^te!%=;{bOqwu7)mk9(F7(Bozb0(xAi8s%~Cl6*3r{6Ko#nYxt zuUqJWp4SS%@VvCrFgi3t2m8Vo>{AoicmEeK^t}{G`QEj9?X4$pSbM8Ya66y9_Ri@F zT_6Zhdk&ik;M)I1AN0P^39xl?J(8`H`;qF=*g82L(H>pkk$*1}ty9pVb#(trYfSlH zN=5%m3CjOcD*E5+FeZin%>+X&o*Mi0fpoxh)O#H;u{(wx7S<3QaCf07TK^v67h3-w zk1VV|JT>Ox^+&pg_*?(1k?s*Jnba6s|3pPFP*Z0-r}dvd)*Zr64eJxdXO41v*xL$1 z`hnLUNk1_Dk@N!=GI+*4l78Sj$onY1jqOpkZeZ|h;09(rl5T*oLN{P@aNAgSD_GOD z8SAdB?RdmTjCJ>n9w$ViM&CtbM5AA1ocj}YfKbusXI>ui%tqg+mE6+u?<2g?^8Zc< zX!$P)0$P5k47B`HN%Mc7B%t}v|F>@b3;Yf2sQJ(PHytd| ze@pYfLohI#|1*L_%|C$Qg3AOZ%ztfQDa?Oef`tP!hG1!)W<2W+Sg#N$Y5lE$(E0-) z4*Z^f%Yom^mwyiv{{(;jIPNX@>+dB|P0%Kf)se>gB8@R2yP#41t4a_c~CK{OC;ujj2 z-G5sc7@Xm^d*AKwH!$}E^&+V+G%#ls!9Y#@me}X;z{i%jsp2$I`CE^?JoOSmc=sTVN58PfRZfFFCzD2_SIu5e!S~Y3{PNrhM=; z_sh|@giO?~WD+6KuH^d2J&Uz@4B7Od2zKR_XSkUN@vLqf>LDL5-ZC*4Ye_hQHEGKy zKFLv=^(9m^DZK;%O$t;5nv@PdjO?uqe=LXXNSa^l3=D+?bqIOlW9d(uifqzE;JA(M zAqc2;4tZfQi7>(oiC{4R)7Q9geq~itsOi#PQ58-IH0!6VOucv>2St^F)rf zoKNI^% z96}~K-mWX{WpH-D*Y0cVRU*2KnO+n5Xu%#N3&u=;{l@(@a}ug=L4D7c7Q|0&6A_FC z5Y>QYcD&$+eP)9Ag?(ni6Ew5rSOoSH9HrMD%bh5)4dLYpn=!Z(mFnd=#mjSw~~TI`}29dKc9Xg zPtI4n05IEb>qFfNkfd|h;(f5*G5-9kzY~oUPYnDKAp;~b| zz)*974gjeD(2z|esmNRuqs-SXclTtUkzB}py3TyAIYDO*sWs~)hV!vE+?Ciek_8b& zSsh_gy@Uu}exmG!cHCGq&Y!HfYjLhgJRibl8VelF)Dti-R(m7<6G{|EWl=N zEA5Gn5Nb})5g-+H=zYgsh7~7S5Jr^MVMIfxt%XXeM>3%bwQaJATbUCo@=nL=Rk7K4 z=MR%2c*pJoi?ePd2l5w1X&v=n53#7hBo_j>b%58*2^IPNlx_$BU1)kUtt@+&WI+C+ zB#~cq)Gq96k_-8NrSo58PS9%zQbiv{fVCtC0*Iot9ZrAKp7D0S!Mr8<`%XbTu3S)l zzWQ%>D|VEWM9_me=tXma4hpGW&|4%&=M_nVph``c``!Y~b=zQY1ZzHRpIehn6KPJ+ zK_C^|KJH|@GOPm0B2=^G=AF06F^;1z|4uL$u_O~}(OBbIUk<7pWTxxucr&U3N%CyYz^p zB5(L^8?E);!JgMxcz{o{h6c!HEp1NFc|$77U6Z5=-kK;zJL`qKp7E?5$%TTq(wX-( zC+N%}6`4CoDl!+vbmn-w$J#~7>C)r?p0zNswf1HJ?;M-himz>9r^}NIo^pKo379TT zf_$Zu+A+dQPM5xfIhpt1!$IN0a7*GxA(Z&jIQVc7yqP%ouu){8^P!o<@8QCwX^nxS zf{0Eyi?5M?cr$Hf0ADv|PzAP%q~a_-J%FFB07pRNJCj=i_@qXj+94e0*|ZVIFeM-GI?_IE~RTeaboa z78{Gop|rs%ej!Eh&c2@GHaE<^9DKr#v^?qKFS@VVSd3zi3u{|7Uh<3^9}kJrD&^pz zE8XE7Cr9mkbGEX`DJDpK(P`Yf7UPGPIOCRg32kse{Ic84#`v(&M&^*i_Z@Qr-0^Gn zVij8sW%<)c1{`Ffq!?s|m^dX`NOIu_o~QF)V@}XVFr=dC*+o*3xhSSHpVnwt1Yft@ z{R+E4av}3GI`f<61h`J!AVmm|CK+c$FXU7WivXgil72WVLNW;6;sKTGaP+FYnXbzn zo>R_+>X1}q3ke2WlzaStI|j?SPzRC~0oqA`K4!WO&@QJG9;ZSck_Ay9RiMa5Erc_n zH%K02KS8peW~S@xC&1gZ-kH!$k_FjAs-XmQzzB{rp%o+-0xXpPTg`MGU?~6?6O}_G z2l9tRC4LmI_7EoPS4k#h|A%D%&`ht$7yZ?;ig;Sr;GQR!Ps{#cl0KYgI}IvDN(xA= z7%W=E`k;n6L01Vqgx z6j9U|6)8g^c%tTsXQ?C?0=%OG%rGbDYCx(`gX2W#dy)kaL|LT=it3nGZJ3L%{1Wauu*g$QtU51OK2;Pf1LgMeqP4}fnj2dbuqTsjAb%&C+NH(6?rcv zsmObpmv=_%A)Ui5{F|pD-w^5}AV?(?8AAhi653>IB~r8tJn?UUO}HvoIyQevTXvV_SM6 zO^CQDLPfw$k$cgerlxEd;jNRKPg>)NwZ-uGQl9EuE9P0orV#N^t#@^`-X#gBRNC8grxT-8 z)aPxgPbSMG5~C_7bX87}1l+^AnVWAYn^=p^>cu zpIyn*+~{gyl|9SZL?Rk0G*&7!me5flybu0K9xyrLn*eDfS)9hOeMB{ym4}C(^wctI zgr5XZ8imNcm$7+x&4S5M%nxthE>BZ!MIN4ix2Gigg}`A2E~jvtWd(-N(Fz`Ik0*xI zpn=D;szVJ@IIOU#Me2kG5frRezg%fGJjtfASgoT?)tXV$vx5CaSYfro?IqDq?hrcm z`j8;m>+=Pvj)lFR1*!2H;3*Ph(MRw}I8~$hWR2dDeS{*RGL(QSN7nI-G6{sr+%zfE zudZh-Ye!_mG2ALhTG>`40kqM-%F-{0&u$2f7DrN1r9LK=JXR{vEk^CY+5gXgDfoBB!oJfaCaa}1+5|mQ^kGAg)tg2WZe)mw#CXf(v zL&AkXfY2eKgbqpQ1Vfh&0Rn_`TS8TorXq?FM9QL~fCUv4!G>K>5fw$SD^Ef30isgu zDBw3Ud+yyiHz)7;BYys2E;G9`JF~O1v$N$qZV9!MVM(aRY(l;8H-w5;{RI3-D9(?B z;s6q=pc{NVfI~^BHFlxS?twJRHQmkW;(OLalI)}<*-3`bPU>GmIVnR#Sl}flnPEoD z#a$z3M7of!dn-W+2JA>M&W;4*01|9=wwWO~lmz>aU9jRDbGzuq8b>m963PTSF$BuA z?%6rbU6w?{7>>NgAi1QM<#r8od>H~UpOL5p>Lkx~1)srLkvtqg@;uqwEU*=$5tS*w z>ZZN!u|DSaVg+j%iL=}iXE{UYF1pVW=mCZ$fi`i0w*PN|l9WKpl|Y;s3B&;;(2GUG zqNIO-Su8k;q*`W^YHO}JOB`X%BdHEsQXOW9jFD5Xtnib7h~=F@sp1!gA&KDHzV4#G zNTLY8zB4_S&y2N|NQae3oD+$}0VL8>d1e#Ap(M?xHfbInWG)lw(Rw_PG%cc)$+chz zlBQR*B~2fOA!%}CM*r|UKR8;Y6z$VgggAASI4xv$9+(_wMdEM(iSx!#v!$&ViPIGM zX2{(qR>g&8`&WjUE5#DlK$2;JCDQ_iAeq*NWReU+GOgw^ZT>qlr6`#eD494bl8FOI zrvF@JwiX;pGR?Qiv~wg3qxV_cNSp(fI0qO)52NGJ%F~@>SP}_7Y@@sBMzd z>MMy3D2X^Xl86IHqKvU-XThN)(SDmm6#jP@XZ|P}#6(zLN{q6+6ow$NC@AX?V+CcM z7#f2zqkRmIA$rFA@2ISS5)2qpRK^*?13j5?N0FzlF&3J06vEo^j34UJ7;WP>J;ots zp~rIdl)?CQ_9q*__uQahcVkhEii(y*a#&#FaH|uCh{b^B5Els47F;4S^!q`3v6@)!5OhNlxDW-KVCaCvIDwV&6_~x!U0rl#8h*st)*x#h6h@pqnKS=rkU`v z=r^p@Gz5;u$l_~ed7>DcOr>6>=FMF(Y5@GfkkoO%+C;5b&8g#HLBb?$qznbP(OiF& zQ6!l-fMm)tO({5(WctD;lf2&xbA9`25$2y!O__fNLy%0dzcy?RZ_UseE0-Z@Q1_J? zUhskJ+hHUAhFp!6T)>j#;w(un4j{Sy6M&)3p)|BxA@lG`>${-2LEOX|NIiAECD!!} zL2H7$swwN=zz`(T`cfioaS|zF1T0KWe>LvR2|vxuZI+EkSp-+4Po z`Z`$as&Z9hZ?;hv{=OK@cGZ>#XPY^;91zr1@9eNFRA>vxggnlqGevm`C?lOQ`VoK8 z8KWOT{(!d;I}h|I?0Mbkn=TK|pGjL#)#Zb8&AxeT3o1mnTu0QtF|*~-Ys?hcvUux^+`Ot9@lQ5pnrNyCt6N?UoXjTG<&rt32R69} z-)Q!!fSZ*W*P2a?Zq-$eFnFz5)97AZ#>qgurwLNzX~Ig3MZ{Y>y%|cS?P=f zW^_V;Gt+SkhtkBs0aUE(N?6ZxD9!N~!1QsZ_zwQUOktb^FSN2~inxzA9KR#E5dopz z-gD=yOgV6sIn;PAR>pl{HWV-L@)&OJvI)A^QBeAPq88NpjP{d^6g~d3BUZI>BmA}6 z2vc3Q;3gWL&e&K9xfdM6;D4`l|BjT&y`9HjuHw(|{1ylIP0j)YdIBE6bPfH9fN1de}{AsyV1T3gFqudDV|o&dZ?*X1zG& zy!t~~bY6Yn-(@(jK6iuj>Ivo0c`;gQuj>k^Xy5BS1fSI}xn;=QfxJ#2f}7@0Btq^>V#eNL8s~CZkH5Rm&NGyw)-VkR5|^&}*&RWZoh+ zvSJkf!AG%Zuj+1w&J13tUJLk90Lb~# zIOYHt$F*eb`^{#8LunkZ2P?pFybS*07`YMJKikZ;>sE$haQBGwA2_`vc-Hu)T#m1`4RAX3_!tItr{vgtEmy8=9Ju5zQH4pJbZU0 zdH!Lun`p18s|d}3o!PF2{OaMLM}G2%xmDz{8n_qj>MOt63Y+0QYp4TDi+`O_6OQ0a zj+OAMjhGTye4@ShD`y8J$d>iz#!C3rPFx#Vd|tTtp|)^vp=jSAx4iu^v!7TUS#qVl z>K)6I1tY1v zL-iVw-l2v(`0(8|m18&!T+lIG_k`Kb(+-=<9YY*zKgBi|o`Ch(ZwyM_VfWgM%k>Uq z3%1ziXGWc3o9K9LtK=oFKmd6OungML{`F~dwrI@Ck(+1`uiQifhETyqycKLP1bK)~ z@!Ui7jaMGxG`1+@At>0WgcZ4m09NE7I4klH96&SupU*-Tl|#`(xa!HpFTtv}j@+{c zwzAJW2YW|Xv&NA)vn_FEGlcefCGZFz?j5aQSdwYEO{VouGLhHQGFkicz>j3&{75Da zAek<_2wsmvNv2|(Oh3K^2YBCNjU$=%#>-W8eV!-=*CKskiFAZvNu)-L^YCDC+7kR;*&lBnTZ zU~wEu5*36cDt_DSD6?ud7jQ!dr(QUo0-zkDa=eP5-)0=hr|d&O$fwYH>52X3IO8jr zOK=x* z8G?u^Da5>TXiCO8k|Kn92_OeW2=(z7MF{m1%8C$veh>U+sR-fmgXTQZ8LRUsI#UBe zTuZi^U#kVc!mW% z1<#C@njSNtA_UJW@AI+Q%vb{@aYp>`_n=!Y``AqP^uq@7X|XM9F;0u?N~UfV_b?#M ziuEd{T;{Auiixqd@b6-D>1^1gTYQtnqYMh%;0tNn5W?pqUQyo_-pwkK<-ddgvV71f zS$_J(;6&pSQ2xbW1MwLvPg^4&C2)6jEJ1CJtifU*R{0lRJD|5$Ji0yB((w?ZM3;p* z0Q_WYS=4f5n(-%4#6{~xR-C-bc^l&@Zt{~coH4x1c-PRh|IWF%b%954&f1@)xRpPv z?*>^c(67;x238fB&^9h07x&sS?eh-=A~%O3c<;2J_b zmsqWdszJZftp@$AZWYH*{9{U-9Q4POu3}qc(T8+VJV)wwXrQ^=t^C7&D2x8#P55^i z{=xq(_=mkv4j0#qmhum9{y*#=2A(n-8KPnlgj%du_THOyg+g;%gMWbAk5 zRPh^wl5Z&L<-JVbFh>T1lPim#8AV!4M<+6)#hlO;2%vEdx}Yfe;~&gTqA@FnQH!gA zJa`&1fDIU255_KuYA|+VSR4|rPIAa``yNr>L^U8!W6La0pax`oC9KU|Q-ee+TxMix zqUWukiN4M`v#YIbIBFnVChoXPZ`4VYhtkYeveAzq-PMdBNjFsD{j40!Z#8A*c8rhMY5@)lGu&w*xyfsg_DBWL|{TRywOeN8DS~QvRq(tw?{=FS2MaRTK`1#{CIr zR$@;!td&q&Jmg0Ud-$F`xumJ^?=oCcE0@<}Oonpkl33f7OZqucyQCPy+rhXMN@B<| z#_;BQlCXK)CH<<~qTWh4?O9k=_O9SfmFX3{y~G+O4>_m&Dwmz?lhg+{SM)}URg5gg zExVqs=xyi{_cO2xTI&%@kXU0rAjo+t0-0EG6apJzVJCkeffDrGL58Y z1B->0L->KU_#}kz7zkL=Rw!php$R^j1RK(eQ@o8uFp{0u#_k#?cKBkFBRkrmvF;3Op~)uWYaIo&;s60I>g09Jar#&^jo_xl4YNj$%`@%+t+=b_sR zQ)**9>PH8bw8rBsNl7nTN_vcx=E)=Oj$duPh146AR$FfgFXtBM$ z)#Z-Ng7{sBT6mkd#6-8HonQQL>#LDao0$Bu&vh= zUokw9{lX%9#*VPa0+z^LWLP4L)vPwtmG1P%1C?cwD>y>9J-WY$Lk$l+QZO$w$_}>} z0FthfwqaOefVDyl@K*1poPvoWmz5&geW4UyP9AMXDB`dKm)_pnT})?4qK&mI+S#=N zQY>Z#i0pM1*%fw#MfN%*3m3p&?B7gmU?qq)R@Jm26W$Hn`O~ZvG1zG_c+HNm80=K- zKE#kj8*5p#DZk(_63nY=tJ(HPkD6`IfP%}IZNJNg+4g%6JVQ4tH;Q#IjQ3P{P;g0( zSDiY0JIC7yZvLOm@ec7^h2{91n$0TGoO)YN?{ZPMjy8gF<`t$%7@P^BHls+fcUuOa zsWcq{OyHB?;4TE%F$FhppKeK2QUP_RBBAFBV8T*4MYJ$P-Zc|4xdT`bttnK zlYqr^tc@S!YJng=mjW-EOKrUHq0*ax7f#zZGhXEFZ?y5cqmG)kIWI}mwj(P%a1AVr zXF=AP9yr_z_3_D(M3R zLg!-})K&S|MhuIc=c+H4jDpk}JD}XUu0sdXwx$->O3VOHTEK9gBpC;gWH$_h2#iBf zGI$OOnCFBAn>*ZlMC7v;l3?R3!NxHJbsybson2RL12ch5KogcedEc2$FD*S;9TW5L&psmT>zR zmV|q)lyHashH%ziC-9_R<2*?^4j}3N9P4c+IFtn2Y8UL>IPVf+q(qqGB}=eNtmz~e z-4=1DShq!Lv3hic7j|~@y`f9VsVQnl#O6!r3a{=lYr7Npk=x?@C`j#`qJq?}j1%b) zKHj1^^?{EQ!%IuiHcoUt!HE+^|C|$Pi|$o$C@GZ#s94R(-bR8$NvVI@m0D?vcfPom zHJPksUW)u`Ww5T8#}Ggh&Po+PM{(%p2}OfYK6U*nJi_9pdS4X}u-Zg+lSOtDLr_x# z)4XE@hf-7TaUi^Ay7yD@E~}4(U2n-fqajRwi^0hTHZASn+?ApR?lFd>emTPXH!WwvDSGZQ^$eD2PUP;VuXr%HZz77ZTsX!*~*e$(tX}U8;x%i7#EV*)b zz{}sy4P8?h9rRvbYK0seeS4UxwbK@o^|4Embb519a(avy(9#{Zh7l$?+URkvgAYdk`!_}$Y#!j zT@O6$zP}!YoRC4Iwv=@+Z0S5N9t^`WbTEvORC%7UK+m4%NreaAyba~;S9>cNr-2LR zl(${&9qyTlZRX+VcqRmeqq)~WIQkodQaIXb{^f3SO_R_S@T3K!sJ6N4Yh$Ny^a=z} zI12iqa5U#S?@gjHD@XpKL46f!G++oA*Vd+Um-^N|7sKMfHagYkF==0jJn(J1)7UH> zlftHRd?l>OV^Uy9GZtq^Lz@E*-4ui;X%=}ig$;`N-+I6cBd9viaEzd4F7{3nSF`q! zShFp$W-|mOtV-&u$ae)pkVMOE60KJfMRSQ%V}9Y6>};3p#a zZMX4z(TN|0z)t*V&f@&Ylhs?(E-s3(A+44wb)sUwT7pB--xU-aLVK_v9wd_r4ItcF&3xny^Yw zEl*YHshd)j>;H3=cYxRuS?a!sQu-*v%aKK&*G0+iJBVT~O;vvXODKzp{loC@GExnD z)&nH@+`%+aUWmA8mq6i?U+9M3i+}0 zHkZ4lH%~-0&|^St=LI9_RAEKvk{cr&>Ms&*!W*epp^`Xg}&*FTdMDxhtZWXHm>&l>lK;%tMN9`O9P8aU#G<5Lv8h zktGl6&>iMJ5Czppf~)C%nDoz9+mBWyv;Dg&H(FBP%}3MSic~TJatOPz?MI z0w@OF308q`{2hDByHT8CWyWL8D$x6ko8{-=b2Xh zjn2@VD3a!!NcWWe;ZW)#4xnPgUh%ewVbIx?nYn!7Fg(^GViT z=&o*Z@R*uW#?y`96Y$0HZd-kAuB&##GLPYKpyj#x$a6bFd7x0oE!^W>Dn7IG$TL2& zI_@Ke&>iEsH0A8RdR02O=q4R40vP}1)ErL@~xZrSH85kpzK$z$ZD zsbP`F5M-m%(v*!BG6Z>y0-K~W9VCr#7*>K8IFZBPoJb}PAeml!+uK@jC=K)6wD2(3 zNvtm#szuN{@D~?BZ-EbhMUb1hROUkDj(5C^#8XV7NRJ$?4ydu}lD-ARe0!K4Oga?C z>_>VO#=L{SD2#arvtP20No5do~Dj)eytH9p-cX$7WEJn8tWm1ahBVGooO`2 zBb@6*5-UsrMM7g0CB-#XS4hgJOi@86D2pLZJ``S1&o%8 z3jUp@L+HMrcvFpWP!a=yMW1*x;agWA2oD5~XuU}|BEC*cWvy2h_azqLbtbbSbi(Nx z2A~*VE&?b9_!9aDAAHC!DSS+k%#*RXr>+ef8KseXKMSbBFrGrPk4dlkp z^;T?j6Rk1BgtKx-z}wrTpw}^+q{zU%WgtzDd9`Vx^wh2i=$cM^qzPU2)1nj-ef=YTkFjme# z=^a&Z2NaO?A79=~Ji+T?@@_j5*)U%uoyKs9E3Z4{&GqO`vx2Lwj1b-Dd#H(;bk@ON zm~>pTu+i$gmz#~_kk2$>yu!o-AJLubFA~Q&HM-ZO8Co#`qoHOW=1{^!!86kAa}nv$ z>~jf!(d=^x%nD|o#F|*TS0%W!r5_CfZt|Yec9` zCGzs;z>PJ1sd7h@4<180=N%?;Gk1XQ@>&Pp}qrY8$Ki*xoe!;K?~8VW_L`Z9D#^LJb`oWJ|Q z2T3RcmcFV5o4%os8%f_qZ!JSWF`T{`DK&k2nnL7LG_cN4Y{Wfyg|S^T_=W!reLiU@ z=oX*rpfdJ z)2fKxtT;`B+0FF)QNbM4Ol>+*t7yiBrpc1+1)XK}X{|5k8kx=TtIDjd(<)bhHmi>+ zm1;a~?-W8KaC^s$Z0j^zTW71bM)S7HowbWv#ZSVDJf!K=OwyEHiXU9f>QJEsnloh3 zgjBI2lHqb2!}X5JIWvDkGe?fJnBp8^da*v^RH}iQj5A%l9aq`6MLflz5Ul0NP4{2c zN39(CKyZ%m;iyh)?}vl-MbBMRQ>Hg=87EUdE~+A9&cG4ce;=C!-;%;#mrkvVl3(sA zsA;QAk0I5$!uOQ;lr@*ql^<$A*oST^zYqOXd9gE^x=L4m2cr(tl_#3Xj9%U(&vEPzKI#s! z4kCwj@1m+gZgl$+*7?%*|Ln=&Bo}?QWGu)*yJzsxYvFyg)K`vm02NggdO0a&nEVxLlXALKT)+mA2FgUFR zA8n!5INKS5x@fCSo@bRj(Y%Y~S83k5OdKmdUSo;FS&=v#K;rzlJlIljD0R@P2zlbt zd=H9mS@TGq|0sF>!{8*(MN6K)7=q;a(c6T{`KBGdmY?B>ySXrdT zY60Jkp>qwN!e313eFRpA=NhlO6h9S{dDg&8L;oz4(h3G55BNT*PET zw1MyEex2@{naAem5V?}u%Q<(ZZ<|qD9?9?>ktNM(Fw+ufH`6UGfu3!tmOxKw#6RAI zdh)Mp%)a6y%|gA&=D^eZ5V{6l%{8{Sq!~z1@Vo(n=MvZv%kX*R(dTpQ_zmUkcvyILlV>~mD#}YY7FL$8oS)rF9_i$R zJHFUFz8-GQ0AvgeS}9{l(TI?^CI4u%vPG6=p^U+Sr`e;GO2b~o3R7@5w3Q0(@>;1h zY#Eg)4w?&PF%FsqiD*2@u&GfidmPkIe%}M~ZbeWIgCRys1w%%$Su&r+DzHl`xrpkUG2y^8(9&`#y-OU7{7=o5kPhX z7ukCHj*0!O1Vt|UTB*ooA45oA=0(V{2eFV4X`z!otd`!Q=b4TBF5U=4%KLwrwF z_@OmLWiBO56kH@l z9i5RLMIBx67tKOl(j)V+dKv=pR6dqvn!-f0;cGRCa|XKmg^BhL6YZ~vvQGho^08Nq z@(nGWiaj&RcR)U`=k8Gxpq$?0n9nV=D&=9Jt~{u!~Q9RJwe(Q@Kg-w?4#vtapH z2gc^Y^eS@F(rZ0(=r~`7xXoU#!0lXxC17LUEy|5zwQ%loZInaueAZF_yVF(n;)TdU zyX=K@2IB)(^4$C82#0c%!}yMsqbc)5y2@dkw+%h+T=IQzEt)TZaD(C1O{mt3VQZ+&+zuW$L25 zM)N{QZqH?s;RC~o8`sDP68xE*ncl8ro6NSEZ95jUYtx}q zo2i+ZGL#0?hF{roE3nr!6|@=qo)K5~UTh?fT4w21<6)epHEYURKHpRs_4>_m`0Eq# zm@c74&+ep{^t?wj^#9MWtt5?rFHJnW5we|qBF%+|t$7J`RBS9}4Pkbl33zsSE|%!pi7hFtN6nZEqe zuDItc-;KiE2C8#cT$cgJ6}#IgS6o9QLd_|;_3~Zu&S?KonLo!jOtjU6nFDrUXSQhr z390tgJaY6be==@}RhHG)_)|o-okD@zxw1-xj%cIY$WS>X=xZZmt7mnqS`eJlvS<># z#Iz^PUq?>A+Lz=SB$r(6%N2~0@*Xj5l=tX~Jjr`pjlb}pA@9+%jq)DQT>EgUjsQ#9 z9Mo3jAd=$mXxoFxP@WKh?io!L$^Rzw^2bewSjyFFrUzUc01W) z+k(s4vk7&JwOs>kQ`h$gRAQ&pI^{cWY`qi1oO`Ss*tp^wlY? zl2Z$Pt&D?hWbz_keer%Iw*#EpzZEyZR3bYq_BDtv&8&@F^+8d#rxap7V*nc@<7AU1 zzWIVfY3JkHCBEy#6>W8&(#}UE4G52u_2n8T!{o}J*G0?sZh_2s{u{;dvR>|-1o_>7 zIWt5(%}i~Cc-pF^aILm#DeTZ1GqJ5230Y7Um%`oJ%0qkofrwGC;3i)!qcar2RWKu? zhQYsp2CRYw4FgKZz>YkgG{GZ1F02%$z=t65$VHV^vC#eY?7CswkGw1ZHB0P^La zRsF2(7EnJvYx^)OPfM%^+VVB;6K&NJYYG+%4d0!Yf{i`8J=Xg_n;0c}a)<-KZCE!9 z-v)~K#@susIIV!+v@!m;t@0Z-#>HpN|G}7EwdIUqeQ$kK_;g$Kio)4Q#^2i*|KY@V zPgk?A{y?Pxj``uNIxxp}qkWNANeaE))h$i<3$A|1v6G?C`EQxj=ljR-ZQJn3EV*qJi$ z+qzVF^jzR7QK+d?CN05%ojF~8C4F^_oOUXe)l*(K$nTMhe_IzTFI5awHm+-@#&2?^ zK$5Ybotn<3BV|60dofm!RUMPS03pdNR`TqQ0Wos-k%4LM+pretdIkO>U9WJ~b)oEc z7o&X>w4e^UtGwt*ZaxD9aO?L%JLTuk!@n`*nSQY%OL
Nl&AMi!HL?#2%ZH@5{`o@Uv3<@bubz8%gDdV>IKDSkYk#C*3&IByGP{*6k&>%s}&2Uddrew7F_=}7-zdbn!mewajrO9AZJC)Yo^|0?*NBiAX zKKtDjyVcjyCFV0-kO9xtfRG#|u0Qkf0kim z{kDURt!}SujFD0{1}BLl0*Y=j3aw zJ?Yyler5cr4}a8v5dV^gFW+2-4D*j%+f7!Ji=Xz*bvqC@D`qM`k&vnUL=E_N8GSfr z7xZCuD2IN6(NcZ*gX+U7R!}H6Rgi9Z@JZOF^FQmWVsy+@v&wDH`et}4W=8bl87(&U z;+O;m2c<8F_v`?;^O{Jt9a_2uvQUJxTS9~BY}>p<&QNWW};AGTHNZJSgm zf{}&b6UTVkFI0%m@-2%jbc4Onz=OVtVq;{XyE~`|>@hpSiogIHj=)}EB`5;Js(2Ea zT6&H6kl`uAe$XQQwH;xR1}r_rd6r>`ELOw7ZV>#1uTCU5^n{rw5gUPphEcrAx@gbaAl2>=@p zd>^x7C-q8Dh-2t ztQsZaYIf#hE48zO&1VP96lU`=YHtYmkx-l;3B>`_r@epi^%5LPlKtr**@$0#8^kcy zM3fAsv^}TcRPZ1M*Md#A1e?LIB-m7&V6*;)VAYjigE}k0I6o4M14yu?=Y2hG%_1`# z2(0k@CUlp+lO5=&a)aaHFXjfvfd9kXAfFtdwmQJc=Cn|_W9D^GOTL#;P6};b!Cw?( zz0$di80+&3zMD(OSdU!v-6TF``l6`zLk$QqE!lYaQSFfN{^2s~FW*A917Y)cXSK%r zt+QI={S5zhT;tW1Q?`#yGR{Fc3>p|M6*RmD74i66PkGVh&oq*|s91KO;UDQajuP=$ z;gA+leG}%4;a@KrbkQS;0*0d%{FjsJ4@sPCy>eNP(bXyYjtojE`}PQ+$sd$LDf=Cj zV2&CDlAM6ur6IgLo))^Y3m>p!yU>6Y$yiKH>oje6G7vz*S5#)*pAn*rJqM8Ao7F{m z`8lj445hYLtnK_S*T3+;)ss%QF^X*sSfm;d%^INMivQjM%AoTW(9r4AMU9g7@E1o( zn=WdUa8-s!3G2;}!J=JZVkF@i6oE#`F8oEKWS7jo;7f~4pcl&j2>(LIq}W}TZT-6- zcua7KLrjr0#@^L{P?Jk8pNj-8)8(mZ{#(UKO;{~lzUiVi-j0GMj|GRg9XOjux~M@| zwW}J0mAaNW2tSMSCm9Bm!$HVssX@382*Dt%tP(A9$1>P!%Zm0_mtWTKS2mh=Rb%pE z4gZy%BiK+rCf{Z)*Jq*E#{1`sc3q*YEmiwgWbF)AgtBFfTu8$xCuPfWu`n6MK>S5U zF|cddS<|<=sBGEc1piz|11aBmgG_ngd0!1VXeS)~Iv72AqN z@c{;)-J5A$)$Yw?jR?tG&SMY}&B_%wXcn}E<96U_Uf&gU>@miH4Jm)TEZN`EkXGMs z-yE!ItnaFJZmvgy+y*8x4%!CjJp4w6QtPV;k+nClB4h)MTu3L_K0FWaeg+FG$AG_- zWB4yNFrllmfn|04H|ouff_4eI%y6DKrv zHPny6u*A!TM?k&L%}9_N>-&qvUy-H$)TQ7`qFY{h&^JLOb^{%RB5gSSXT*0?35Z5^ zgq0-#Y&ZeYmX)AP0anFK0W^co&N*no{1U7Kw}6IsQyyms5OkdOI~aLT1f2~dV>z3! zg+15U-_DrVO?j8fP5i?=U!v69vfg59pzOedP5jr1#jNc#th=yTpynVPWb(ZQ;ZYE)W>a{e(r{`M|+_e z!C4nvA3JiwL*>9xe?B6*yE?5?tvj^KGD76yijo;Qe%pr*YC+LRPISN8i4%Q6g3CmU z1v(&3fkp_Lt)E znF9~XM3fe)yCj3*0)E-G%+*DMDAp8_THPy!|Pu#W&E zz6T%C_2F|lk=Fm;gh`NfThFQ-R$C{FOP5G49c)~B|6jO}!E=>`3_jLo8D#OLitWty zr`d|3#k)*YYfjkU@6Um$bv|n{8T{NH%HZcRgw6%5=%JDvw=*pHtrDB0cR5H3IgWZY z!VWTY7`cba1aNL75(kjvCwlwG2o9w|JPR0EgIH$*?(e47ICsEbT;r^S5kA|@;f^A_ z#9`A{D3ZWAl%m=HppX>F9LHZ2$sC8ShUaJ^*Eloefmu`Q$%%LQYRi@V{k=*DGRXt{ zi^X3|Z4}7-sR1GOC3jzbAOky(Gvw}E|3cx;(gshv6E(6ZhLKP8@>?H!bl`2qWU25W z6H4Pr!M5;k$MB(!+?)r~O*)jr7=qDKF~qMuLQyK5G-_jv&QdYNi*pN;Z^sU06_IQC1b1UD&3kJn~mToV;s5*pCA0y-}e*RZzI(w_t9-TVi#)QrD{ zm86k#pRJKQR3oE#BWcR_+=CTKVb=L{&Y~1gN;kZjrM%zUkv!k9@%+$QSCr+rR}JZ>@pzxMwOn~O@L4$4Un0`5WmafK z>&R9NK$N3+7{5?mwX&WZjmaz`yA z&NT#o4|SJOpOzHYWRp*T$I_svbsfjyWZCpd{$zNY49n1U97a;P22VD*26mFzE$ff< z*HVuiZ^%}j;?kqRYV!8U{^p(>Y&Z85DNGQ$TKgaas3mOO$U672B6PL(IR+r_@(cpV zyVQjq3qN#tfR&>O^6hLjLB7op6cK)%ts=s27=j|gqe@}y=FjPD6%lU0qI?CR+ik5N zfE%qKI5!&Gm2=eCu9~9_ko-x-9PadL03oTH|bv{A;zp zwfK>j$MpGWo4gmCG`jfCK+ig+7T8+;oMNQtitULUHI;k}e{m{-Hq!N4Hkw1e6sWQ5 zwP`)|sEG6kR_MuSsOz=Nt%Qk!@1&`y8`7hxs5}0msi=ETnu^$Shx#}uh^DUBvKv5Q zqHWr!J6*Y9q65Q32P&ct*J}@50|9U%60xQmyppnO=6rummzaw6`7GpT0GfrS_EfXb zB#j8Qr{w0#4>-@g9Oy02uJzZDv6~8V#r2vxyV>Qy(_GRMo;rNyYL7fPFOVn)$KO&# zwqEG3EpE3{C~!Mhrc1WFy5A6};u2d}6$*9l>#0&~PuUSoWtOXY3)sh^Zxp=Bkd$4+ zT9{qCx2H<-ZF#MG#6#cP9V=pc>0Tq^(Y;i| z>)H{DxGP#_-|TnG#dRyBi59E`F~F+4^+#{=dqrD42Ibe76X`hZw4Ei#E?WA zYjN5wo(kL{=Ce{nd#*+MW;>#(ygdsag2JZnpL27P%<40xide@A5f7}*dF0<77%U!V zrHIEii^ofLgw_6Sic7uxs%c_BD?tpfs>R??TgcA7bVs1S_=c4N22Evb=b{!yFY6NX z(dPo~#E=oaTgb`&AlO`}Dq|9uQ3``N7vA*Rha9zJ{ePFPwm%Oyv zpDy|^9K{kjy?HD#xVMTWs0kFc0B>;Rz2p}Y@-AoT6!IQ$?X0)DnKv0*z+=4*tVwj8 zYr#5yftbOdlwOW`yI;8)AUL1;8v^cKKT7{ihPc|!=*l|gyl@Mx2#wdIyMz7j_Aj#0 z14rFW#%_T9w!0ZQTK`K82)pBzm+y|VD}Xyr*#L(vH{RpV7uz*;iL*e3t-aydtbqgD zi5D4$41e*7zRiuTz2Q=YzrA>yVQKaNM9D^fBLVfp#sk4bw{`bdtL=7>!F&Wv1vjhi z0Kkk~Z<-?9a6L__V;J>wvSS-+3! znW#S0GgZj5Y^Wl?bjy?~%Ejc%-J2i_ee5CFVV@+=ZSvRj)JO8XpQ0H*I=s&SA&r^! zvC{%)!){agJ} z^6)nQC~>c5q5A2rP(MA&FyVeO?t)K@9G#gN#gH_F0KWS%e;onUOLvrm9Oj)?M_sQv z3Wv}O+x;zFpQ_%uwB29J^_l9OJCP>uof{bw>Kz6MDayQ4_0G3gmU`zD{-WMFRYva= z%71?~BT2ru!#}ii7ZvXG{~{{%)#6bX{iT}{;#{7)e4!~LO7?imA14R@YQ$S%U^3$j z-7(y7_f^qU6Fb5R)c{MOS|-C%pn%mNP;k|du9qQZp)ha|D@3$&E!yMl2naEc_h{j= zNP8KQNMkKVx?YnBsB4owSP7z!Rl}`@>jlq2lr@SK0{V(fh2i~p*f-5y zX1Fn25i)8(gE8!Luxm38q{PkloBFA+?*?dD8QJs6Z$Q|$7|LPT$7rdr?+-oZyYKTi zHXiAR(`HTe0Pk)4{4G3jsAfLoFX(ZmPTmzQgpU&>yy@>Jo?x<2wDd}Jae1O88heT2 zaYmLlDQGOVBEA#ec~VwA)0V$NCkzdQempQW`m3DEBUmgHm@c`yxLN#egpiu7Xbl)rK8-V^d|GmUl~42ZhZe-#7USW$w=i4|?)aaKBg!=aSE;Q;!4@4w%J`Q8SFO+4dpKeglaDQFJ2t-n0z ze@u*JjV8U0?634Xk|DHSgZ(YN7Be*I)o&B_+P|S!D|G`5Nw1|C(%Jddzz`o67Hb(p z((Wo7!;MP2F5zKQW}; z!Q)%T$ctNh)R5PG0&(Jpj4bK-prz-7459UWGNk8I3{84IZWH_GzoBOc)dobEZ`1&7zJ^&#W_;vtAI5Z`;UL5t(DY$eFlU_ zM|R6#E7|Jbfp=um3I7psiZz@%^0?KJ#~DHoj7tM72lTI8ZLZXv7ns2CVaVM7?bxjw zAi$9NlQRU>T91{a=Bmd^8Zv&=k@a%*@Tg$6%60JW_*e;>NHjmvFz2T=%%P-V4uE2A zIsfax2Gm`k*3vag)+|`lM4ch$}4536^ky=r1{}Dn9jv~rSBPhT6lYhB*nh_w% zJ1xpP8GLa3~So9zk^cH-Qb}OIDYNex9p*$L9<|CP&wEe#})TSAJ$#vVgNT z3%KND0dze_kL8-GtAHO}&*A*2uQ`CEy6r?@gy2w;>XQhmwx0y4S`X9%f~0CbQ1xtc zh5({Df&)m*Zl?lWVd+utg1?LC&q~9%Qg5icdP~>uu;IJ-{hMMdn!^Ud7=$O(?ap%4 zMSpvb7Bx|c%6Z`n>Tuz1)h}?A2&PGW?B=6>YP05b_=}r0dmuu=3phMZ1i{t5KMPkw z%R&sFX|v@HY&@+HhfwkgMrUcrXe~JNUQU2&awJY+l zMub{Za$C9b2;0P4nx@*DcVJ?^IZ$O|?jIP=lYLw<(8~A%#KnN0-sAalph}j#i4=Lv z{~%+rGqGT7g8p|%4CFw^vQHz9lzIk#ky6i;rBpfbt72N_*OGOPnbl-$l|b{-O1{2I z;LH_k4eRELEUp^pEvjA##6ufY@Oj0&iW(4VQ+bX(==J|!De{V4`>zO$cZn3uLmk+z zeWkiDo+x*w1l(&k70wVHBFnVBQY|Wb+Y#2H60o=yUN>V-su;#f(4rEn;-XTKmw6Wg z+k}r5qD5<=MSs2>VbKRHT?fCJVTm?YW3+d7D;O>|vqD7s9*g$lc7#P6utfVMh9%lq zjnQ5l9~dV-W`&6M`xfnQ>A_iM52G80N z76ZVN_TOMwqK(zUwC9Q=3{PYaTV#K*BOqVZb+VN;E!)?u?2&H(CjH~0zkwf|fTFdWR1nv@Vv9^&! zdzD0c8JyN@Ukp;~wId8c0sdi|Fy8_PJPl(Lh8ApE7;C-1caRG3ZLIKIyh~=J2O5Y9 zgLN;F+WxX}iW%&nHo8mU$O-RK07re7q7l@`mrolnrbAiYj z=psdbi(hUezrHqpBmPhPXvM<$QRmZ}{Txa*!U0t5bo)SS!J%X$uW}ptHZ$;)Sk78Z zA?!_qRbYM-Luj+Vcd#=1O$U(ILz7xA`Nm`5`DtpBoU=8&kVL!x91p|jQJ@Nv|JryTTFhgXFoO)%2!Xc1Bd}mOqFd2r-WSUJzc&WRT zjP-|__2RWktpz-=A}isnNE!|xX-4#hnVLgMnk$EpmFxoNSluNaWX&Q;Hbb*;MZTFK zh}scPaH$PS)b3T(l&ejz8{97ru!=9vxl;gp8Ngmt)iG!Bptz{<+MZL zX9zvimkzat`Z9*5p?-r+NvnX-{~GFUr6gcTi7d{Lb|@Yhs&**0F;+AJ9Z#)l zPDJOm4o;Kj#{{+rjv~s(6lHj>L}wkm5H+>(+E zXvsiPwr;bvKMI`4`*2R=eVPnc-lrMkgx<%M#yPbct|kK;CvrYcoanj%=LC**gfS3W zdjz7Hyhu(1IHyrgoanZJ6DK;U53UEiva7rtfi=`iJ=KN_ZP8T`qbPeb8%1cZiy>yNpacrtu;#Tp}E zH?H17e=|`NeubPJby=*8n-30vU8|`(!om8AuL)#(wA9vWGMZ7ts|KzskXnxM`|xl( z>81f2!y(6M!dTt$j<>elI2UgI_2Y!@m;on5H7{#D!f2?Q2F#g+iGq8id1xZiqj@MF zf6+XYKZ52VcGG}n7)x8$O#^n^H%xR%Pj%D4A0`?I6AdV$4mSbLG4xfnnkSO_*IWaA0TNKZ3sBRYzVL z5v;K;?v_e&djnachPBo9gq==-+nEHvYVanjLV2~%L)FN~~cu zOswr5!R{Jd3) z9bpj%EHyljVUf72l{~mSFfiP1I%PJU6(ZVGEZTGI2#YpgDM?DF%x+*s;(AQ+*~!yI zgAJ?*kza3--)ct?`4%o{IUY27mLaL->+PiJpxGf-h)BO{kv?KaSS<%EXvHmeZ0?d4 z#YzzUcf<7c^@7SHBYH0Dd4CIIBtK_X(_Un_VT=rSALU%jFiHxA+Kp79P=;KxHqh7U zng9585Cy>}0@nuG$b*j?NrI76VbDUbBfMeo6j~qMFc^tV!heQt7(4}5iifpfIN5`u z#mr*$4TEt^BwQ)c4TEWN$ofFKC}cQt;svU0i^qTiR>8{5k;;ivGd{#C55OO88C-c8 zUqK_M(f_VMHDlaJb;009Yyc1JMza>t1%v7v{FUUPy8@%dtqesu<^0x{bwfPd3c;A| zf?Ed98{#fI512mg47bn<$yg-`7Ysh&R3v?u$lMf|CthNd=;ZBl8W48C<#52V&m)@yv&2D7U7d@52ke^e7JSJtFshnLx?AwhNOia1dxoX?0uXe!0P2Tl76>8K z-2w+0%>7^>c(>rGk?I6HSuUJl4>pqZtrP4~vigI87KRw540k`0=AHfw<3+a&7$Br8 z2ww?;EGAjGts z%fxZ~K=eROUhRtZ8>M{y7(2r9Zh$49U&yfJ+2HKy^P%-wFS%rAz&aGYgcT(3xxk{o z(vE;nOiu0J!ex=aharjlg3{#aVDvMrAd!Ep>j+G(O zCoIzE?Fj4Rn4{Q)Rb{m9L?VA8lDu2ev{jE4Bp#m8O8c$sh^7)hoGF*=0JZA-aa~y< zV&jpMo(T+u^cLx#X0H*f3~?A@ahPI9CeH%w}W|`J)xIyxA57~YPay|(Pi!y&U-PCY&-$w@Pss@ zrKYVGKnO1u!Q3$HC0M;59xbnaDKNm(6MK*k^;WD)X^yJ)GTbcuhBcjBdwS00y7tN9 zD@Kg=2hTGAEpC2A0EO$I0NNkivOBO+)EuLYiPrhCW7Il7mLYVqvB?-K+1QMsDcP7d zhG%5kjZw?}!^kx>gVMgjj|d^{SaS<7q~$(mNCy(()X{4JSc5Z8IA0qB7$?IVCHK4z zI|?>Nw2XCPM5#v3NUt(ElvbG>fW_z?bPl9^V9XeGj4cY(hG(Hadn53uxQ#WLlzNM$ z)LR%rD|K^7srNH9DRm?JVd&U z;kvbsLTlw}hNN81P%D>1Nx2*VC(ZMO4SONMbsj?U=Qf^lps{vzGkjb^H4nk|?YF4CN z&PpqnLrJ+DK*i`JG>4Mu{uQC&t3L?5Ar`Sllj&Y->GfKMpuFGeu`2JkmLW)^t88L! zbkZm#{dfYf3LJwVdOSp%dELsNIQ8pj7n*Kz-QfLObmz>vC= zGX%w2$DxOhQ^%pNV*IE(huZk%k8>C$bR1fDq~=H3<@`u(gTKm*i(+g@xe=w@yWli* zqDycvX*U5HU}={eJRSU9%c#*PS!F4A6+@76X>)zPh){FNdEeVwD<3=;m?jo$>S}+? zft|T%yjs?d86S>p>-`jHW~>=62mTajYOEcv7PE_x7>{trG3vCKWq^<{NS%%WKZu1% zw_ETR>2^z*x;@^uAW7!^5{QzQw!r_geu2yyPe;%bG%x;wiQ!jRD=7W&f(C?IQJ%Zm zkVF|MFI9)9-F9Ra#P9m;w?G4z_*nB$OWgOztCyM&jF;J6iWZ8~kp)gchvO|(JKS1B z0uob`bm%u~0;tDYt>YTW03_vAfiyh=O{abvuu`-JOPQcnc^P(uwFXOBJ0#d$^k6t5 zjg>GR45T4>I723%r;RBhINTyQja8!cSiJ@nn!AP*!PyK)1hJAuFq8wXEQ?&h5#lyh zbmwb@BU~2wyBS=QzXix!FU~x|3J{N57>}Z2$O+(y-&a{FYW~X>{eyOdrH_}X`Cl>| zk;Y0^^RsIOr1*^$AgVuER4Yx?oupg+6SbO-`o^;YNILc>AT?+5)U_2tr`DGotJen= zPknl*YH*%t!RjD4yzEdhm?=8j;g-!bnMg@t`efe%4_~nD4@H z#})C6iE2eW4d|6|XZT`tFxi*_<#0vJXsH$PGum%_786W0N+!ySF~NSGchS_jzj&6} z{-kQbm&IDvY+4L&yK44jo}Hy3njr3A6lq1gl>ul){15_YMGOj{6)~MJ-OI|+EVyT) z3Y_*Z1VzA~O;i!^VTPcP>63{(WctrU6*84zvCvwWBH;TG!q>vUib5tED}1c`BCx{8 zy8mLVD1!LY#_EcE6)o9V(Fs#WR(Qe`Sn3m|_4DPV_lp}x}i5-Q2oE=3$bef1mDOlnFDn{o^Ih2B> zmnW(a@C7ggT;nh96F4evVvQyZ;O=o&mxyk& zh;CyDB1#ADIFyJ!96^-M+K3@f^rx})v;FPUbes}5>3Rbld zM5*Isz>k7e&X4rZ0VEZjx#Lih>QIDKbnLF_ByFQ4RijBt|BV=eh|;+`4kevSC_R)s(J)A$b7K zkXED1C#kGL31dawaNuAf;&qIlNorLzp74Z7-N zWzbQRwZ)+3T$N>Z$6)AyQq9Q@ii@yk>((W(BYWoTNJSh#Dxy0L97+QH5Ee-Jli%A1 zPl(>EbtF{wWMz8U455V@Z3#7&VM(ZwT&SskLn!MYCa@!+I6D%G14yV@o#3o5hoVp} zctgKqP<_MB^#aBma4cs1tT^M@iE3H)kb=>&>;Z73xGdvyG!W?}2QQf^5_D`33feJ3 zp=H?)l$MqbJMkAS9d=GGb6M6kI60546+-07v#g5C3SK3Vs2!`sNljBN>KvGuCnl>ykC#|siYfn4J+`BI<=U`lrryi%Ua`Kr z3?dXF)}5k4#M)EJ3=!+~f)KG5l*15_(NZDep2^{*<%M3s6j!$N^bYp)oWREM2=R5+ zS~~1FV2U2S>agQ$k#+jAB6Qes0s~OUHx>aD^1TM#5v9a1UMfoio zD|GlZO0$wnh6EGtI9o+qUvh9@4&U{>1|lo@%!e#TFr z(4#>Amq_~OZ1n$fqEDwDOA7;fgZNc3fLEIqRcLA?7ATb^6=+)_l_eDL-e~|QK5&lw zyDGD!aIZ_7oNja}P=_D8F&<zUn zyjdwVfh!dVe*~vzN>XLUYJV+x_Nlvte0gLr&ZBi;Z6B><#Oc}Pk^(htTq}!51#__V zbQY2g@sJlaVJPdfko!3yIt!_JS-UBWhB^z$d`*}rcuksdzD9a9;~c|ZG~*ltGlTaX z*;z=MWGo$8XCc|aq%hI@N2s%qXTwC#g^8Y1MA>QWi_VYKvb3u?*5 zQ+(~jwf3SarBY!YG;_(Fm1@dOPZo9-x7f=JH|9-M*&$#`C*;a#Hcgq20Bih?$(E^V z%3S!~bxo=k1gEqtngn0)21PcLRi_7Q8}~ywoH7|LHD$V>A|8+HfUUR(Pouqqzwn=- z<8d88csw2l+Olcrx+VbeT(~>G42E5#~ zQl`oD1JkOAFIaK%sh>^NKGiT!$RQ(x?PI8AG~q$>WXbk|&Yibh{(;+&m1S0d#>(R5 zBWss#HQiMG*EE$$Fs5m7sgajhBP*EEPz)VEZ>6Nf#d(yD#~+74qk%wK{2E&P(jxh# zPSZ-MV5a|{_|amF_X_y&{xa*lhgAks@VwLc;;5eB-JLu!2)RDpXIl<*(AtOgQ`}rCWc2tj-(}XrH z3U;DnY08JJ)htxXe$_PPLvEYKe8^*wr5@3xB7DeRd(ozH@Y@2W z)j>YIAlL-nKRC1?ILuRmP2x5`kF`;qrCk^tB~qsAF@;9e`5)+w9>T+@QhK%>15jL& zfdHCQK@F6i&6__ZM)p_|yj2Whg(+aqovs4*T!tX0c4gZ^gDOq|sNDTZzgA)@!=rNg-g{ZjVLQw6P!*?Lb$Q0a%J-S8-l&!TOxqlIWVOqGiOR68VArjino1HkST0X zTr$HmigyJ&%Cpb8qKw`k0Ol4~ep#?qY+|h>@it6XxvdQhLC0on0Hk@R1I_Q21s938 zSXH9Ace-3v*XN01a9VeKF6}>{1T&Rr`r2^YNx-ys|+zd{1=@Bvxr64)JP$dCF+CQ)& z_^jy3>JrT!ie?W6Cz|!z)vqXj_@>T7PCkwWV zml+kJ{=B08Jc9%E9KiuJ_VP~^^sex6VHJ7yd|{6Gl$D1ClXWWK!$Lh_Ry4nc!gwkm zh7CTL`P2U_?B>zK&pHFa`O&d}UAp<2y zkIjrB>Lv2BC%0WNPp7)%cp1beXDI#D3may|dldh7ouT6YjvDa~aK^B;K>l@&*;kC# zgjEj8fs;9EhB{c#W(H+{U?K`^4mNZ7<(->@O^v_|6}|pH*1kJ1s^WRvy8r<;l#l|1 zqeMWO0-+ZvL3#VnkJdzXkH#a=1)hJYwy1yn>V@SB-^cRTO$ z;^+5GDKwd@uu;kIjP=A^~q?ug{?<9eT%EDTDKVyX{Ao-EJunOj43P`@Eep5g)2PEVg{W+3cBikJ;Uq@zauG}nS zarNzPm&5j(%BK5A44qnFty5AdXo0mB0~S#-v*>~-d1)AY+^4MkZjY;z<7MQQ3+G10 zK1C=WazY71_moI(2(43*6`=@a69yo!ry&AJ!ZyIL1tXMQSvfSq_D)X2;b9pRp&a5= z5z1tiLGh_UPHkz!oGzz|PnE@D#)3`KrnF|-h)@D4icof97|BzZ=Tx3T8q1(n*Ble6 zWlrT#F;bGe1S?9k=;D+pJh>aV#qi|bP)a*Zl(H-+9eB=FHOh(-U1^54(S7W5(47#U zl;sYPEu~hxYr_4x!X3d{fk6Q0Lzc+tLN*|$3)#OK{d7B&`&%Xo_bs^3v7Z9m(}nDk zqf|_?^e8QXIOet(nQ+?d-BuiBG42$XwCW>@OY+emH-h4l9IBjN);cOiaY!b)h5fD%Wx{M7GqmuGw_mtwY_Rw1JD)O??1?7$Ht}4<| zA~i0b2g=Jn16|dHkE22#A7ap^Ua&i-$jrm8`htz6oN>z4-J$!yh)a%Qxaf}d2*lOO z-gA_Sssj5Imt=|^u&qu|U>%p-&Jj^uQqwZxk_?B6OEL=+L<+`}e36rgkLIgW_>1PN zQ=>xTl6t-ZYVdfC+__MITkcY`?JRX8oel6_x+#bM~j;N)MgxVDRH zSe=I@e`Wxhldg?YZpl|VBfw4iy4+8dgRX#E(&cs66Cx}{vjB00>ayFR@FpcK$T{sP z;c`j4Xoq}fzdKew{e~-EM4BrPjkT_)!jf@sx(H*7Q?A#lF8Z({bW9EF;xRQKLs5hr7^SIlGO&bE zgb67sity$5sVs^BUH6dObru4VW1$>I5g0BtPhK3Q0+CV31qC8E;4l1dAP^Y^&BZ_@ zbgFr_yrc(OeH)_SdDm{S1&alyOt_~jFQ0ccweL%jHzUSY6bD!?S>!z_dtXa^~ zA)}QVbU}oCsH-yyAuAdu%Tn%Rwb0tbSrJ^(#4vP$?r?UI8DF}(#m>O8G(pV7Uo=6? z1Ri1IDn>78Xn<*!g^Q+_TyF_B;wnm;c-b{XtYL&HN-H%WKsbGCo&@8XIHYl6Sk~By z**BWPs7=IabM}+AeJB#GVhj`u z*gJ@&$`>zI$xVPBc=bz{Yj6Qkh+(9SfHlWFt3(+F1qZs8bU)JbAzNj+m&|sFB9Xpv)NcqCvI{##L6=6P|5$(S;Gc5HYlq zz2_Ktv+>wUq8G~`ZhDxw8Dhna`?M#%geF>0EzY~hjW=AI%#;EUuoZf(7T%F-nszK~eN2zJUKHjvAwv+@wXv?!acmr%(jl2!=*!&<3aj_ofB85wzTn zlii!kI5~A*N;te4cKQ!jFUL`2jw@6q;}#WaWqR^1AzV<3>(lgwwR5RYx_gR^qLBG3v_Suzd$ z8}NyH!WOH!0x|9~_8UNN@3>BdwHzrce8m-Ng=1vxL>XI9t?Wv9lsj8C*4@(UKR$Q)G{NwDVzic9d62x$BEk zSjsSL@ul6hbGN3`l3t*MUHJ%&70?*MG zt5J7ZP$gr;sZvy|zDJ$bs|0`Xv|hYNoscfaIDoisYq@b&1re=#KVTC;D7xo!C&g~V z@??m%<1aEq+hHippCb-9B%8{)pUG~BJmuX|oMwc{5S`F~0MYd4^5~HCujVc(`^`&^ zUeT@NSn;u@p!|{dJt~HB4m#zkt9z^k3(m71<&fNgvgnZf2LDHOIN3TmG`P{clG|aw z1?A8yVYrk&WI;vnN^DWGOl5Zidz@Fv|FFvLK8~}<8JGWKj8&5VYF;Q|m`{-Zt^)s0 z;tvec3}2**d$7HwS1$R-RZ+BJ#VI)7+{?89zC%&fT~EYeDMJe~s=5<$rv)hzy1ATa z!bpM7W0= zxF?u1s>#z=>OTx$tO3;O+sgA;0YVR_It=vG`5Wg&v=JLwq2L&Xt@Ve?$fM!S#XfWP zleV=%94dsaH6oyJ&fmOhmO1NJv&`GTQx3CCn@%vxyaDAXgsyR^S>_@jGOvAOrKhty zw$O6rcHQ!;X{Uc@cQeOtSes8fml!$$KT_wtr65hH7iu%^|a;T2?pjU=c zS!$xP(SizXC|FUUTi3ij*Q+|(vv&!>jV3q=Q25-)@jJ!&HQiXs}pnwBEJ zoR`|vvTbyPnN!vK#T-ie#T-Dzx=k5cS8yoJ(Fwo+-jlAGDl^kkUl(^7za%NQ4N1Ap zGU#|hk+JG{Lb0(-264$D#`3`{Jyy9grWVqTS>3P34lR(P1D~7}wS@zyE&cnu8wn1j zw)~>oLWe!iUr&~zBV&&m)OM^A{kANFM8E%7CHezd26>NtO$~C6{ojIbY;*xB5`0dI z`fjGtce5EO68z~VQj7jS`c9LgvmKli$Yc-uHeeUecI*fxwZ%m0kQFIEA>|7G~5)Lb8?GzcRIv;82o~$Doylw4;O^_4yKQLX6V_OcD}4PDw~O%b;N^ zKTe5!JjM`yWqA%l& z+VZr~mZw>U4i3724P^34V!Vn9_UenI6Z0*2hcd4^1vF5L#b6g zRIA`1X@=K*L+oXYQG0e8?b*pPKzr-Un_mwuZ$C3mEdXC;xun9UOznAh9I3Eiawsvt z%bHVM1vG#hX)q^8qVSC&3g0qH)N@x&lx|t|T!{74q)3Cakt#G^Nu3z4<&;Q;kLOYs zGyZ=|ohC)P#Yxea(9t6frJ>^hD)z+$cXPp^G<4fS1oG@`-%inyF|Ew+c*Fd%j2Y+* z^dGOBfq^W8n%URXOs8t5Y3xFr0pne>w&M-!%MdE-Yjo&rmO+%Jn%|L9OnN*ODL zQ5!1;RK|({s8sR!zILK5gDPVM^tpmJo#DPNUS_4JKTjF`d5UF_GeS>jd_3NGLgQ1G zO&al`sjXMXTTE*7goZZ%#`6q7kW?ZYL3;c2FCa*7pZ>!LQs>@f1no{d0phM7G81$^ zJ+T(kK~0c4mlM>|%AwS|96-g=pGzGoIFx$#L`d(RIGUO%9-W|7jC!}x1SPGFSO)bj zJv`WLf_nPmah6MMO`4!J)9&m`Z8b^k!TIhAtfj^y5kQTMC#Obj;s9z>^A)~MfZ+A>o_yqjL zFjh%e&ipVc(X@hto>E~fwua=(TMA>fNAwiN>VUr}jMZUcPGPL6E8Qb3PY7+wQ&>1z zou>U6a&yf!XXpYLBat#Bhak$|Adcn&$?TP=^DE_7-T`tIc=gk z*S?Y!rtrqni7I5a2*wBF*f~_DBPvIsEXJ`9Ps}mG@bx-~FdTq#7-3+zRD_`yR8(>7 zGwa)rJo(~vVBQ0U88r8DebF@Rd*_X(|Yi4~zW{_hMxa{DU+NN)SU z=mgKOi%9@BVgaP*;gbwEmSxaFr~D+f(1~XmI48haeA{|=9lpx1F-gq}pCV1uDqk~h z1SfzT%?sfSD^0hLO;Y|#8MUECdR^;$ZxGj9;4tIO|0_a+NZ)0I7jkIhuq!kT1*ltCG4z@#2(!uuqM#mit zrLs30mE%@aa_l%d-40afbo=|0)amvQ85NR-3)!e#QqmyU@W=~$+z&-rHH8kh^U=|B zHiy#u#sO4}4!3hCPDQqS$Wg+w;3vm^H7xSYiRzSl>}0J1q$*JeFsaJh``uIXJpy3a z?G0BoQH$5WS*XTjJ#&XS8&4*AjA0GNGn^mdC6?MU;W|9fujIJ%!$&X}d`l?)9C zaFV_^kMkFhD<)58x#x)88oS!k+&)=N1)HIlaVoGN@7y$51)JZ7vN#pI0sqe-*nIE> zmHg42x%emriOJI}F-6O(-C02Lb|Q&y6=ZD``Q z4RI?Nw-nZO)WK?ekCPL~Mv>;2e(;T%%A?}NfKZBkOcX~F#Rx_b&JMz3PUZfMq`!bX z_)_gSQ@hDC7E_c?|7qy-oylr{^EWoCFcT}skd1vn6HpXMCpRM3q?4KWi*zy*T9j>n zGydaoU1Hf;{~#uNihBBHUl7y&Ag2A%*PU>N4{9Id>UbQ_7~V+A?g)?3|jSu8G{n)~&;h zm!ZfI{x@(<=9>zkgVx~{sr4%4R66j_9rAe#f6$nv|VRFJ0@b<53ZQRs&LwvjU9eRnIz5@d~=&|!>M z+BVDgf%|}1#h|oD_ftl$NefQmz=!U)OaS^C+nJAGU44Slq`B^S4G8K$9&U3aKJMu* z`+ejtBrj!n!ts5TXnF2!w^zKc>Bw8}IeRGSdz*{s53C5u@wdT3B%&6qI^UYA=0!10 z&5H%6$qTQJW@nE{JfHZ&9cRxEMQ}=FXq0Ro1{^RY+CczoU36Eq*PJHz^@L4z*F|@8 z$6Lr0AIs+$mn4k~7JDLO{x98+i-yy*pwfUI_|lylSu%BE5mAq!rDst(GXPD%9S}eh zF!Tp)pl-SB-YbT)auUJR(}-)4oKsi2U*!cNP1~(`5KHcMb7sDCILI%IB;oCw%L! zZ%LV=eVnphIdCYg95{fAmA&rnWMZ49>Vd!j#!~yiu;Du}@G+huva@$sN%{15?oA@! zbS-W)ybnxQ!}|csp!U;)H>Cio9=wTT`PAdF)A=Y@nr_kKKh1JI#@cPH7=R+h{y0Ty zAqP+kzxmOfEI5=}_>XR(3ey!_ENs)1gVF*1;-aH1v>qRZT z!e)|#;>KU(ptz@pIw-@Ys*4zXZ$c=LTTwEa;kN*q#`=ql<{S+OP|eF15=r0B-*pT5 z*~*qtQvTvj6&p1PwMtk!U9A#UO;@uz9cy{sTuL3h2|F^~IM(u-Ir~Zb5s(l(N(@NI zq*^q@DW@xwdJPETQsXL=&2Ca-?tn?X3`NkSGBnDhP6r%@NxgN)T@gN_8uN#{lS3ju z+?dW}43aV3^M|{oC^16|Hrdf!eg!YkuaTk{!$>By3ImV{t%LwFq0oLZq0g_F5G~vP z1rgR(tS~8B^BGFfnzIa2w1Hm^Zxr^_4Djc^iLWT0X4#}?PtM?aHh6||LJDEApc8Vs z@*~xwofQzq?J1BXP2(g<(>Q=MZQ?z5XThPQX-$C`+LA`VI@*$@_uccvGR7b^Y%ws1 zQTD|w1Cg#c;;Cx_dd?1dP)6H44~w0wDBx%^Hv6ik_ zvo(@~ZsV1fRq#S|{TXBgY?Ty@UWkqd*3l5~!3-J#CP@L6L`fz?a2;7BL+~B`B17=q z3~NI$LVg3!24pt`GQVe-u+N0*h9^pf;GS-LfNJ`Z+(!yXV1Fv?DI|~I8(vzTzB|+@ zN;8@iIgXjB3_&FQts-q<4}oG8NGKJPof&8GnM#=(Lt#|r1~aXc`Hw=LID1_vg38R= zq?GyY3{qx6zWZ8?B9)Yh$JfBO)4ucMxAm2O7xp~iD2{A$)&5I!qb_%^5uPXIAHp+6 zB(o-wexHi)tpYO$D=BQ;n6y@Y8R2JSTs4TK&g9MR-q>!@wjGU3O+`wO?EH`FaE6Z@XH5$|+WY%mZ z7nN)Mzbfkqt$rNw^728`0CSVRFQ?Ljm9B(j8fxl=9Cc-eGDc}PioHv;S z22>H%fJ{Nl*)R%Z3KH=bnS#XGIhlgwDxT4nreLY)jn#QbZZHE-NUry66_R^OX9U6L*TkWmP2?`*Otwq01hj&!Fbu~!BtMv=d!C(gEAWz#DI44twp-Dh*lQptXPwhXW3 z>FgMb>~Rf$g7HgMWkW4bfAJ}U=Gm%XpPH=7M+`ezm7f`atjZ4vAgcmBOjgC!HK~9s zUB|Ojgw4?cLZ;>ZY-L*RGc0IY;LOI1x}Hj+G^;@SelhY&eNW)KEfwb|!*U*Ln+(gh z2;qhW2$5mogvhWooudp(Ge!vwi>)!I)NYQlD<(>0SF9+JUE!3-t_%Qf(XI>%rPPm8 z8f8U^%!(ByGAo>tHY*%TW`zT&n4__$vEWcNE4IH$)b&2*53|X<*sd!TI1pDpQgA5< zniwXI0i8xABNMX^+e{{AKmH;UvmbiiyonH4qhD$2nVQ7BjR3mzXY=Mftc0(h%VNzu zKZ!Tl7?6kmss{Ym)bh&;Ej-7>Wle!R726lG`@hK{s%!$;?)s&WOKz8_zs3nB^1d{swBdIm18=xq!Nvn96bqZT}!z z3SL+Yjq_t5iLbhBn5#UvwR6=z>Bg=t+0{=nxU)NW%Gg&!IdtO~E@f;_0V2bV8`RNL z+y2sAxvZmSsN-WC18!_zVuM1)_OVW$F*3ci2XB&rorTBH&xF=_gS8Cz1F|0N?5SWY z@~H;H_TA}3Q9-_)6;??8*u~RYe$>S?TwKv5B-qJjvRm)y!uG3k<&q>%lTC)9i(nPZ8XXdE=_TJrK zdB+q~Jr`80yC+qYMnrrO5TgMB`ssPwdH6xp);N{d|L{EJ^;ez8UU6?9TB@}!MUrK~ znzPD0C0Qe&EUpcb;s3Y;U;CeYp^~-jDUZWG7|Nk!FPxazfF z9&SB6>8OGnaw#jpSSBe;dfKx|EN4)f(sRGzFep+TOkBcH(pHt|?HMmNGpLg3O$gx= zDX&NlKo+Y*4!{uvkhnl!Qi!c(U(X`(9xF$4|JiwJ?mx>i^y>TCJY)5Jon_<1EMI!c zW4i41%RIIIUVsHd*58_aBa#h7Y5mQK((K3qG&@ck;AtZ`l$`Fjff&Zu-T>w?zLqi2 zvrbfe1}GacPfaWTjA~kWmOGN%4Be8u$GGs@lIO`@{^QMy6K`5GWa z4dSGzK^#C0IyuDCNpL7N$N{8`2I&*Dug+6TizDzCmlg-1wYaq4gOBsRoL;Xom;8W& zqZW~YS%mE*1G5-^(Y(JH`XJl9PlpHC4sa0D*HhHtfwe(Q>w=ipWy2IWJPjtywsfKGnP+TURCMx6*Ib_vDTQ>QG!b;U{LO`8Z=Y?`i!!l zH$ZUf!Z&i-eLk>&cCG<8l+K3g|#V>7L>#VEYn#+3;iv z%nxbP=Zrs^qE1ZmoEAl}n4!LTnG4OF2u3Vx#uU#Kt%b_ISR-C|6fU4SWE zYQ!v14q=G}${`%syJx71Utb6j<6=+_9YTgn>30J_gbpF7(4I!#QgXlyPa)&QrA7? z$kBs7B1f;qQV8;RSUK{BMlVp_&}f!HM=|FtP)9N6u?+HtW-Z{}(2@np3N^xF0V{-G zHZRc?A>2D1Ep0124#6pD!?$yRGJLy3$!#~0d(Mg+7(E!A?DU{%Nu%OS1a%08vq3%? z2T-x~62g@nN=l^D{wL1&T#5JCJ5$3*Ko5u#D7kj_W3X8Qjg zMNTP34m=oNzz(gX`vz^(mFL_(luBz8mB+29P@qnaU4Y60N!I{)gY?*OD2*KlP_b(p zAm+iLGniM{B0VL^}i_@K*HNvh!i!$Ho`k?qG zl+G0sof}qk;vaWbu%tu7$D5>wk3(trIDm=`-r?yfIFyEOIxxUhZ_ZB7&!W;otwJ<> z6&9-DtH3g7`0(Z>9B@e7?Wri5uuSUG1`D}9v|ebT5A@M-J$lA-13-?}c$^$HiUX)o z;d{XVb0{^cERZr9rPp{v7r^84sjY0F1-QiP2G#_Zc--tmWp(_DO+Eo%1?NRt;w{Ez z(h@HNf6)>zV`1nL@AEWu{OZTAoTcUTmp!Fq#uZOlnUn<%OYc{_(b>JGnQwVY%AS{9 zUBph-k>omU)qnsyc?k`J>(m=LDI_l+f*{CgjU62(SZKUOeb$`)r2Pa412_@# zgWa&>Lpwwk{5i80DmUWih02Zi0sfD1B?~vA_fc>ou0uI=BN#5_Mr?$Nh8xl1JLpGX zyr?~Lk#ZosS)NB7S;!&x9X2tR$#R4{7Q;{6(6&4g|*> zj0tG!Z|9ulP*a~uV#}NW&h!m=TB-DwQ(y69i7eK^q}Ycw;J>6)LiT?R4mOaBeG_(gudCrZFh5Q(l*U3I@EICh z<1J4Od*ouJyeV&a+B#lECb{w+U|f^(-h0dQiHKVa#q=^5R;T+zE0$zM=(2821|SE% z1_H=|-@nMX&=u)T7mu-WG~KmWtfspbEQ1b!^jxeCfb?P+v`yPXUiiqYxRSZ=i3BysT)-pWdZ~Ew$`SHge~3B3B|i zIeG9y4?KU(+Mqoo4kc%T1E^S+IB&eEGCC9Rb~f~ND|?N_%5SI&=GP0+`t%ByFi))V?Dv}s9U|v zN(B*v-K2TvDB`1eCkubkypxp?y30tjOh8`fR_}l-9%pvHu=rOHL_W`0q?zL#4G7TB zvrAavE4bQp?B4J)^7K{DT=A_Yp#o`FGgKh$Qicko75>K4LEJZ&swOx7-sE9>204$> za$v@oeDd9IJherUC0bu7g!LC-!B`Yx!&sC>i=1C(sF~=ICCZ7cz9dH{a>#XXBC9|- zbRropH3hv6h_n;=kiFXyH3d!j4*bV2u?c(%dXu$@rl41!_tldR=kHiV!mmWpi?t=s zo+S19gdaRb#ZwF|Igy24fY(V!FsPEw;RxZrAFoKEtI4bm8K(&dAYp?prO?%tpFAUl zWaVh)Ted_UlwZa&$TqHe%U3~gD5+h>61C7;xI_hRF5K`;7pGZWLVChLdV*yT(jRYn zDhm!Jq{l*#UcBY`QGCbh64GxBq~GuipR<%q{?*f6a3~@DDg^1w-$1KMEY&heNQ*92 z%`eI_h|`}c!Y3#=l#q(0=H@T|9hOr~SzSWf&_LRdWf0QscRbYuhZ53y8tD?RyOvz{ zhiAJO%IXr*fdNv$SM=oGy`iI%RsDIZ-3;TnPUD*uOFW?Wz8- zRPCvLt1|)(%*(fJG#^Fsdy_@MWmT}?dwjF%H3Z6r8FH@%8VrOxr@RqTUhH_}?87^h&uPhCk`mPb)2KJT9l&N16;qB`P zN7lHh|5}fay3X-f5${~Ffwe%{+^blQS6s`Aps~(+vZ%MMP3&dh(3*z3&uh{;VXq|F%nOdj(!ZOI|{264Ssiis4iQKFZtHA?Jqz+o)V$jvOVT$94bFg!8d`Vl5d zv^=q-gv%44sFx>=maFASlTa!ROjKH1P@$EH6%|^U@b>7HNne9p|4?$hP2@)WU&ztE z2`5M9noh)XC@oDmfQr%5ghR>vez;7{KktDY;J!(dGTuF69pjm#Wc6|-C97EmH5G%m z_JhmSvw4SEE{)%QQ&V5GXetG7b5w-buj@eY#ZANB^n{4n)lZvpvH9dCkY!s=@DRaYYK>f;0L zSqa2$t17S5^mY!iKc$|xofyOl5t;*4o_g56(pdU!sOrrxTh#Yf6E1VPCv9*6z(7Xs zfQ2MD)1V{q6vE<_${k1t=5YJq=TEX7G&#(OmIdlgYF69n*0Fge0P{n>|rE&+p zYvgV2NW%f(v$~&+2(A3+s{_Yb1JtDM3$6G(D?*d{IR>Cf{T&35Y4U*#)EGTNhCk|c zi|<)EGS}Busx`PlrVFRzprnt8t#QBsQz;VUMU`7g#Y=xk;csdkvF zu?({Ol_fWdb)_mZW_5#%un&+T zuZNSOzFTYb-Filf`tDg1sU80xeWyv$H5yI|X6YXG)4(oXqj@Qm)JYSmcdSU!JsPW4 z(W8UVI`Xg%bj(-P{Z=>*FV4kan+r=O3RY*zz4k`hjjq@>>}rC|dYDUy;tjFjC8U!-ggzA^97PzBSJNJz3# znqg3y6-sHEiPFOV3ndylPDu|Phtkk-02QNG$vKpUuG}iKg3o=@ds4i_cqRouX^h`V zmZ2Tik5(y%^%Is$o%(^Psb5(%l^j+*e8#i?K#r^yCr6Fq0BY1HJz>qwq1343A&n~3 z3)X5;t3!mc*lK0gi?IwsTD!Nmir`Rc>g?X$#WuU78&aQF)=1lya6QM|nu%jV{Qr|E<_n4b0AJjgp= zWN~cdhiihy{Sk&k`Qgk{2qFcih5Ycdh>!g6bNGw=@N=tk_QQc0^20w{Jt|%u7Fl+3 z%_Fkqv!kLd-SSPj-i*$I08+F~e8(D0&iFSP5NJ(ao|FbEE?L0?4&d~KBjL$}6%pNI zEl4=;tX5uL!Dp41m;c$Ey}S|N<=LSedU*_&^71YLqJWn-(p%GB<5}h9-5lxd?6`xC z<6hoZy0wzNOnkp)>v> zQRocJ!5IX0<4o@bU0JO}q2y@qD$B9om+P^YFe-gkdf;e&?PPCFxor$MSHoCaD3CdZ z0Vt3;>{%7a9IP_}jZDuwFKJ?y#;fkGTM%;2d{%`pt9!j3v6|JORnrQPit8gg*_S-a zo{&0dE@hl*+WV~Wgw!c>_LKI#&#L7UAfZJ`4s6h(28{6T5wl64#H%d51b?B5Pb+2QXeqTw9jPS6t2=@0}{dnox1=A6mO0D?;MR z&;>>kJD9}vK`cz-S`mMdxK;$_auV16&nj^}Khf*96xW4$64$2k-Wd2;`nxSs>&n>4 z-VD)e=s9WTbREVUl3A6nbTiqNPtbbKeNc3)84C!e2D%i~eQQ>#tFxey{l8Se&nl$(1v`Z7j!M=4t$U%f+YQk&Coh z-m_u{YY`3o0S2I<-?2ts_+VV;E*c(aY5IS{#=SY-7UETnU5)$}4G55PzOn}G)k^WX z&Qn3CkJl(u^*;1GzKNYfWwJ7VL0Q}h`2)l!htS8#G_W$ap&U+%441Mp>$Tjio$sw^ zD<@CS_jYo;f=qEq%Vb>Aml3MKYgpz0YZAYUQw4AU;9MdCj!3^8%!3p~gwk zLhYHgYN0ltk)k!lTob9~!0N-k`hru!NJxq7l;oLZ-k7B~!v&{B>-jyvFRthJh0@w( zqV>E5EnLp$K&y-$8fV+#Zf8Fa74dTj?}g$&Yr_A91%CPxLiV;muZ-h2chEKn8KtZL#vqTCl-t=c>{=i$Py9 za9rgmEB5K!JRbFtrXEGf>~a7Z5yrRMgC)Ng9DHhC;2Bn0X1}1OrL_ z#wp~FW}egdi)NnF>&V|I8I7e|Ll-%vpJ#fzD00g44`Qr}``d-PwX{{un!X9Pcf$~1`~0aZgQ_||M%*7@ zvg|crGy{{HnEZsv>7O8Z5t3Brr1%FOz`M&>A&m;BQNc7Sl$Pr32yMgygp6K*ua9)U zc&d7S`0>D?WmmjqWxp?;DlOexy}7xCx@)U9aT&xPV@wr?qaf`G``8br8Fch%0SW@lRgz78HmZ~2O;rcQl}y$ zjWF4d$#a-|@em|mVdAI;NjxU!szdStCi@5oZ~I*^orWSaAV zy6`hUCavm0(higLm~6qsT_2LMnEZsvFPQXc0Leg1-o)fACJh@x@+cm|Sr| zat)I#4%CiD~(N5|m41Q6xt?#q&ivk&S*T64Y@2i*ea>BEV$QOQ;7ADN7HG3nYh=RlvGdy@E5v7>0NWbI=r~oyFY^CRQK)f@AGyO z3@k5X`X7}m_j?aUG-C|N3%AE5iZ&V|6Rvolv^A5qYe%1H#F9|iVBx4 zJM7&nrm`9bxB8y6Ph77~Fr>2#&yQZppz{U&9b+nqXIbu`7QRuoiK=fdx2|2nwq7RO zhF4QM9rgAXhgm_wzu&-rhGh_b$Os-VIL9&x{eBaAI)HKUC+`#DIx9%%zc$eS&N2u+ zWYF=$d>gdn5$dlsYW($hPJI^Ne!S1NK`pu;+@KcS&oms%UOl+*hBsCoIN>d6FAwE# z(apMF&iKanpsk)ve9_yXtP{Cghr8wNksbVR;87FjdL!b4Mff_r0c+8PqQ2U)=C9tT zMHkkbCBJ%y+j`0iC%u(LF9rt*O1Agdpq9lM_md*+LpI1IUB}lKSm*;}1E}5_KDP0S zmVEP3Yk7nTyX}1!;?HB=*1L zT_hGT5;H#YCOPH@Su@uCyk17l)V{LlE8c-7Y-A;#d&N6I>|@wa!IE}q0FDpYtr>Z; z122eIG)_rEeHz3GL)b4u?_ylYf~fNZh$J3~`PvZCD~5<}c<*7eh}N`!X-FqSL(*yA zxYLuKjuXKSv#ABwcE%q`B3+;@z7g7QnDoeFz9jkXZzXdn zOx@JA*&+-h$;^u-l2Sx@2E_p_R}KLrYsP@Gdh5fpx}WfDv5N#&%d;i5l02QySH<3R zqq^JLjOCKHG~URxrQJrg^B9h$0_sB7S~Y3oAZ)@$b*GzB0ja}JNtXW7J0!a)eECZ-g(WkgFdyV7 z4G7RrpO`1Xsv!$shV%B-HDYuYtI6r#wyR-(C{spm8(m*CV!7z1VTNb^xM=C#5njXI zK2x0s>BvfvhPTaR8vbNv_W2NwgOpq5UQvwj?HbuB)}npR%9&~trzkK3mNT3t_O;>i z^p{>o0h-{w()P9YA-fL>$T87nkPR+2#Tj2Snx*!RWq?30B9$eXqr1h!Z%aeH2m6r?oggkpY;5NUZNietB zg0S=TOgN}kt4dip@Oy6^@e!*>ZnJe2n|Ci2WJI56=v6hZ6A&?xJ;iR8Ye+}LPr!LpxV+ezqWAV2uufLHqo ziGP#>`rR!5TUdW-uXZkL4|=usj7@5yUdl2^jTdcVYP@!nny869P1Haa{n{q~m7o>1 z&)uXv+JzfqnYRn$I9{IZu z-UUWEl=S=6yWW1{TZWBh@~avU)Z%G**Ww6S?l12I@sGx?Jm0$@cKlo_|B|o?)0=OT{>IMB^ zC#$9XVE<;NUSnA5%qxW0sQCOgCLqE_iPTG zC1-)*Se-Il{!`F5IEe{=0B`!tyi4_d@fzz;(w~8gko!+{9~NtY-T48i1FFY2 zhI)KusUF>n_-fiO8JfY+D9tzl{jW5mSyA6Zg$iy7e;{4-bb00IPrc>j{Gz@Zjt{V5 z+#a6NEmaP2B-9FM2wA3+p;d~q63ihk&%hxS4U@(z1|8xU#zCO3ogYYBL0?jA14K!l zR73nlGSYAh$q4g@Ni4`8J_#Lw{%~xRZ$Nfac_PZ!Pjq8k(olESfB^aQ@p%%e8nSv6 zI6S9j$-?q@W>TE29pmdEhG;s>Jsz+{xyK%sOYSjbX!m%=7Udq#Vx>s&r)^=1zi^Ai zyc+b65h41=7VUNRhnjfEsoj=<0G%u4t7PB3Mcyvut7zW?Ov*7)j{ZoV3r`2e54pt* z5a>)qPHyoDEKGy>BL1Smd{GT1bBjUY(JhW;9!C(<>zQhA_^lwOw}Y78&W0)A7w;|O z>zLgyZtn1@FrSl=*FCr6*8SVmjxDU$9=Uq+hySK`l5o0Tgy)2j1aVK;&9_Od%ZPr$$j>H2^ z#6Y~od#+ltR`FcLZ@X9XwF?7|z%cYIV`A-0HQ$qA=OHKaOuO>pJu_Rz6`-?>x3Dju ztnFa21i_e-2{nAxqTUScn9Qw`E?H;mirU==)VKe(Rk{-WmBsI7n#uNG7&-d`+o&r{ z)QUgis~&AZjhYv2+(QQ9a2_g7{!k_Lk+4$Rj0VPS)1w0YZZt4KLy)W8^7 zu9mNW9SG8Os%{^;y2Gnc3v2nBh~{Q;$@V6UlD)lZTM^ci(7Cm1B)7KgOS<}#tuMcy zno`p~aGQ*qmJ%-phtliM>7^)o5uBcEGCk!%OL7$E&(_Q9*=Uig+P|)Ey_n7DQfT<^ z$Xv^*U?j4D#E&+yjG-t0U?~E)C(PfnQ(L{bo1A-QM zQl2by<1BX*pU)=V)tJ?K=gn8rG7zP$ri^b5`#A$nbf_+pSSF#xS^>08 z-BYD#<|}N=ui84qz?jM^5yl~iv5}a?;Dih-7|8T3>9wpBF}lh?yNhKI+Et2Cx*z>K z%Ou=b%fLy&u$6U!vrSj)gYsDVFLj_wE# zHx<~ShlX(5cc>1IW*Lav4jD9N53&rxi!}_qwBdTnliFW2Wu*vjLj!LImO*$SBe>z( zlVuWati}79KD-SP)!?LsD8f>9&>Y>OFv}pKDY`mM(H1J?ds4034@RL16 zPgC@U$6<m4g2&LKe2l8lT(u- zzDEG9PoOX9(s=Eseb0-6JM}QdPw*w#^X*iJsPnOm3wHmLcE?V2h`Johh>!3OmB$|U z8DAA5kE7~Nd8OHydIISM91c1}tvNT2lmaO_M9oRvIuE2;0x5j0vK1pmu1#~m9dvCv z?^LeM8BU2_g0ZB8FTnss^%6`!U;VJ5JHwZ*tR#ko5*f^ixUGoXoaL_;Z9ybl7R_&q z6TCf(Kk&Dg{d*}(HrtqscADp3ZeK)BotxSu>?F{UTRZI zqIB(-cgB)5UlkJWX01}b?D^nYp`yPe8!>*vPqlg^!`4Vj+a<`UW5|JXim53B! z88md2cPojn!ZL8^Y!zi@s;{Y98Yb+vu%96kZ(M8#LL~8=5H*Jbs5#%KxUUKhMTxf+ zMzRU=^tVeQQGZG5SC4V85Q7O$>2PN~l5WyvMjp z#_%ZvZ1m-PmO+HzPu4-aZ2U@693}!eeFz8>dOxD;Cx@J zphh>H;l3{3WXP!-Usc`sDuXMBCpoNs*u_1@_gXHoY*K*FSsTCGlU)I3z?XKILPx8< zeAVd7Y}8sFPJJ}YwijbJgQ|$Iy&=+hUsJOckp~yU)jVeR<*miO1WRJnpC)4H;&1@T zCI?V|razZD)KrZ6^CfeCo;aGCDOxdB$(%IbtBihgmO&j#kMKRUR|V;xX1ORc_9yo; zUuQ5i(d_HclP21t#HtPjYGfffHEI$EP?MUk@O2U#icPXN-D{f2h!_vqeYIB6yHIsyVKA$nEh z%3k%V$W>O9I_(ngw4W?G4c`a@=_9ysaZcQ%yg_vbHc|75S?@OAiWaCmU3 zyN`(8r=^iNj6^_yL%8rdLsVu(U>Vp!9{8<5e*1&_6v9aOYaqnCcY-eo;V5xZEL+V6 zqEfh|rsG~oh?;gpy5cX|5$U=wbPIGnIK#LFI&7n_clKadc&6_mTf_*>q;bHBP=L6XYb3JvBg)}Cf2ah6pN7iR7`Ez zKA8wHC~-Kn!2W$I@^Xe{P=o|B@W?xT?)x0eqzDPt!UzeVrD#;r-(z-*>#P(J|JuO) zJIf&4kfF|_@7IDtc(I0o7b1KkMOjt=Q1+Hb_xTb;4F)BArS~g*jadfagNy*az(>^! zNVm<^Lp;ukBD1z6d2pYvff&f(gga@!ia?EF8H5`$g1FtDSh=y)&;eo|D@AB$DYPpX zoY2lPSl-Ms2rXm;&{8n+1S>!opH~>)VsOIvJYkGc!N^ZoE}?~7L@URx_ZgoivKAy2 zmb$xNg{6Ln#^(^0`t2x$rGABS7?xtVR9I>N2nL>}j)d=-`zqQT@lNDYvFMR)LM7~%OLk5 zRSr5Ca5rZiP*=PiSjZHT(rgjD}9hUq0B*OjUG0G1v};UU=(-*>I;1s^X5A)%K8TRC|_-jk2|tS1trBSwFpV$YKVe6{sG2<2^wjM5kNa0J1 zCclH0FwFG{tQf$LS4)@?$O|oDM&d78!i+qe(-P+LHJ>xv5=Jih);B@SWR0Tj{HYoc zpqiJ%p6Fby{LZ&Rtk!td2KS1?YT>cuusXbKLD-pbSb3Yrpe#P;bQJ!dgSUC(2k`@j)B zyW5J&D>onlgWMSYnvB2ctCx!#pGJq5l;%UbQ1Y zo4X&CIfHeH!3f469J7LN`j)ML)u_MhYVu|TEJ%`J=yXIGhAyEbJ8+UcEl8qa_#Y(c z!6L?lB&ECyQifkaxDJ0YaPZAx^<|x}bO+(_Q1xXUHsk>vKvAUN!6M|DG;cBfBF$S2 z?ZFRY>RU#E;6d{{zTQdfd`$pdUhekLdd2-G9(BFzuPNa~rH~(PbuEn8sk_sNMjX@- z6^+<=L`5UE>Wu%ArMBWVjaWq^EGRi&g<-}g-o9Xkaph|Ng7cfFJ!_Q-cRy?QNNE0EN;jIYKCJQH|H%#{e$GBm-Ka?8m0R@|N%!(Rq zm|9Vz4O3_yoOY~LXhlBbYQ!?z&QkUZ(7X5+-20)_&M|5it*Fsca8}e3aQzF^=qAOH{V13=jUiv7$1s5;M9Mw{ZLSQd>R8Kti%114vfF6UhY5>_* zJ~-rlaR9kr8~__rJp>1k=hczg81#qijh|Cyxd99@J_Xm8GmR?I3jtguB8tPFp-*~> z`>TmmR+{EkkI}@_i@TPv?85%d{dLPZbrX#M!f1_%hq0YU)#T9&{^H~TT+)kgOq~N( z6mSM#d~=JP8lMcY2*zrVp}_YwjLXW*z6242(WD9JG~%QQ=nVd%3FypGnt)332`JcK z;DOMyZ|tab5Gfo|Pbit%IreN2>A4`%a|$V&)dENRd&c^o4n5l6H0yS(f1xenI@ULx z?Z2rZY7)ABR82x(>x=+H>3Mi1CUG1bL{A^(DkzI@92zCh#iiC3`LlxDusg37gq``a zV5h8pQHT6J&fh{rv3e9#x2}TISQ$Cy5m!<9Y_DN4vU*AXxAKz1?-tb<0t(7jmXQ_w zo$c{i`25Qhkr&+^(;3yhRr~`)@#ppU zlZO%Uyy};7EQ63k2JJXJ%rXcs*3exNBjc+3CyO?$6yZ%Y@IJvZ2rpz%f78Q2gIF#h z$7%+0V7iRVxG=J>n8->I^05Z;XIKUyhYULWx{_rOUaVo@?fyNCW3gKP$HjhDitz3> z@V>}02rpz1-nUr>;l&!fGe#%)hl#IQDZ+c%!21i!AiR)4o&3NtJuHM5YjC{n4~&>6 zO0!ak*A^qs)bckFRT!Mm#vD^<>$40(3mJ&k7B2@j@GlcdET0f|R0#VrI3etKOdtMr zvP?n>nE_sJ`Mr-vXSZU`e6m|(zt6tlm~v5{0dzSmTUR#m$JysVIdoB(kx?${C77Lq z*K1->;^}(LK4c018@OH*1L}&`Yru$^9n~wEId#3}MpOT%;xKCx1%_%D_qVjacuby} zm{L`oV!1S%9zVt$hBuF?pf~aG0ltnDBl|V?H_ydVHDIudh5;kCM_3Y2wDlNJL3FdE*g2G9Z=zU)QH1HT>{A1(=G3*u zy&h;LZT8?r8=F_2Y3qMb_{}8oeO`0>>{C^@ni_beoxh?bF}iA#t-B8}aiLwj`R)B{ z#Y#pxmoI7sg;s=+h{>wb(Lc*xWUHnDug_gcp7Nmlw6njq*sI|bX^@xOCKaaAfz6s3 zGQN|4raV5?RYWi>7{E|>!yQ`?2g$LqGUGhZ)tz%m{;4L;=(U37UHuEiXN&;~^?jrP zLH{c~_cwQ-XIjY$-Tm9dEsdCBeKt5q(!`%2Gr~(b)UScf^To$n(05*cK}Gx`kE7{q zZ#$l&<*e`|SWW@O&~h?V%5q+KL2WO`$U9H^>)Y!cmzRh6OUgDq{5>4kgS}|HS@1sN zmzML_diYaBv*TL*>0Z|Er~J8jv>?zgrDe;W{sN+jMw`{Wr~i4I=&T`XmCy+Re3)4s z32}odVj!zR;m3Xmp!E^-AcY@qmT%GCKJK{M6PduulTA-Ou5G$)mdtGDuOCql3n`PH zC2^mptY*a68T4p8e1SCPI4zLiT|*vm4;r2< z>Eh69$^JN7SQwCttT>@ufwovOphOfQ*NhnNf6UUzj0ib{NOD8yT)^HFbS_}O zE{<#1WH>+_Li?DaEf{Ti1C9oi`&ZJ&SqV-X&PqHer_T0Q73UaHJRu->G1^kA@K?K1 zW~gyd+c+|C^@MR`;2VaD_`ed${|&3YOMKN=>#=`tK+Y!!IJXpVnvOKp+x@r!XLp^T zP>wBy;F5OWxPXwkVzM2u4XC1It{!?3#+l4j75qi!s>+KwnJba%UzFWkT~76H5iPO0 zq2V+wKdJ!%s_Dz~WRZRpJvB}>BR?Szj)58ZK(PX4Y+coFoRecLh&z*H;sjXDjC+w* zGd4dKx3nkoCW1ZjsOZf&#~K#dn(_-7sJcA>kBMnG9{V=!<2li(HN$LL6|AAog`Bdb`mi170rD{ zwa7`LT3Az6M&w_K8b*Xu)kdTuBS%Jr7t=<>1T`Cxh9?ap(wL#b{<7DH(+a_hk&h|X zO&vz| z{g`wzC;M?C&Hqex`>|j?tZA0Bo+0~@p#kdwGfH3jl04auwsKL1zl3}=-M>QY*4WiP z{`Ql~A=!LVIV2Y3otsW7ul{W)i+gr&!2fdyh}2jNZvCrJ4&8c&OWBVFC&_*YiiNDj zef(u66_E`dPp9R?(Gaw@`;OHW02Q$fS9 z{Kk;0Rp?Ux^P<2hV9d}$GA#KKzzqwpM}{SiRUucUBm&5=K;M$Te|EY5DSN^xWnSvC z@?>6W$%KVq?`h|+*(v3!{EXb0?2Bf^urD<<9>cych@?Hh9;ehEU{76CxhYRDl7kdU z!AQz8H~ri8!Qt!`O>|K||Cw$e~ke8)To( z2ym93mV14L;{ny=XD_cQA-`DTFS&BPe~>t*DX6uF1xe>w7$SU(YUioI6y0`%zmfgw zDLH+Ezk&U00Aq;pEaKu?wVNTQ$EX+}&>loiU(5Rq3sXC7h%z!C@XC8N62$&DFx-g*F0&WvL>NSU;Jrh`pTYG zrq6;0r{lCTeQlsDn!Z->{~S!;2;+|A|54+pCp`&V_R#xLUV}!)-BWYnFD`(;xIqSZ zcz=LyP_uivmPyOc{EZlRYNV8}+P0S0cAr>CX_W|**1 zt~btN3ADrn3Aipur>7RPL|9@P<$^-E8U|Rc!&4uzOcV)PZJ^%75(qUU&??(LmOv|4 zSi-Nkq*Z(Pi4yI0X4g*~fL+M-e;3xLG@JfnXZFu(KC1*7fFiz2 z0VAcadWj(e^=%x13i-y88PefF2p}CkV14GE?Ak6hnP)8+q;`gj*aSL|fZ9A=(!EFc8AyPmeG{H1X`m z2q{Cqk?P$>iOxScQo{XTK+!t?H0c|fmrn^KGJz9$K@w3J5t^CDIM6WWsMtMfSf97ZHH^$uiV^)@$U=8Q)Yo{i_$#=8^d-7VI0z@g?d04i^ z4}sJUacZXvX^RF9#MlX=fMZb52UE9YwN!5~T2`wh8jBrfPg%#HA~qXMQhKu`(=@+Q zMcN57d{bewgHT|LH2?2R1|Ea5H4~n5-~ifa#{m>iX?ZNWt}Ppx?|5i5JTg=cMitzx zBJTYu`vWzdRe_F;bloh+TvwK0c^!{$mR`pbER||Lh}C?IQ_blZlvQ(Ms~u3I(>0tL z)rkYBPUBBP_?bf~AkzuS8t1#rdeKp+R~ds;uf;~a7PABrb-F%a?Pj?`_AyJPdclb% ze~*6cR4+OSW!1~r&P4rat}q6vUKfpeU1SMXy-IG8 z^$OV%AgPKtb=s8FGFzM^6;}S(*fmag0X3=@r$+VS0IC4F*LjC}(UGV$#vs+J z)fRc)rWH#d#B?NzLkV#UvHv`*Ihr!i?PB&js+$!hoWr(A*&fCcq`Jc+QIoeAN1~>( zWZE!2ku}zgEi{L)sp0%f*>zc4MaUx%K#hzFr$(`o*WhZ9>LZiYHy9lfw&je@`?6DP zbTC%pNQWXMoDQ^9O_c+vlQ@9dQsl#+;!tYKA-1+$zvhqZK`!+)W0o58gwa7KSOOwl z`QEi`m&&1p^q3#1b#+C|H*!J|1b=ZtQ35nmwmZ${LC}PPc`c?x?;fzxSc2IKqD>Qu zn)pQ%ike#sn^1gpJ$pnt+b?0F%bQ%hD8a&ivP+6P(?^8hag04$8nPm%Bu3z;iv^K^ zpR}zq@YBjl__vu!QwLbcWz5Hcn)|V>@*qYw%Zwf{Y{^N!14?3bc_j*#$l&{dxI)U) zLi7Bsa%pHTW=$1sM~BA+yd_2J&EMXI^`RFj&%D($;#G#ySRUGHc(n`O%&DoY-zuHj zJMWE+TyQm~ZsKFeCiiJuFuuvBrE?e?7?k1+%>&DQ$#Q_BYTO`skU=TPx*q}Ls5XZ# zn>VhpJcx0g=RhWFEvw2wmW!gA(&n z|A3nLK^VqD`)|U}RcFKMjnjn@Z}4qw1p0EjjOKj0oxQ_wmgS=Ir=dK(!|*3dq4KA#@^r~_ zA-s|OjNKu_L1lNyaFG4wT(X^+$vG92(vT0sK@68PoE~7(zfpV@va%GnW;fdbU-+-N zQG6BT!&Mw;N4q8UG4{!l?x>QpQf-Chjrc0K%fppUJLFSHU04E*<@gTUm6o_tLGGDdBG+$5lX8a@?O;d_NoYa8)4KA`8L9sKpx$kN3Ro)v~_zZmg8Oq zkdeF7IX&8)J_k~0clt|qTE_157a75zC6E_)r)#!W$>@+>E82mg+@8(}(sYF$Ecj@L ze6V1ho#;^ILq<>8;8a0+u)v8N?V>J_(1KB*b(}SIb1te!7!+fME&eTa5TO1@J4l;yp1_TkJ{6 z*{3F1h}qLa6?V#}hw8FadU^;F=;@&=pH*rS)N-dWC2hsBk=M|CCmU&<0NF8jL%U4D zH669_ZO)(yJ45GX9Iv3lU;i+M;ARuCdR$^fW#CTfSPf>WG?pLZ6h`iJ7|Y;TRWFo6 z?t3}iT|1>e`b;41T#kFT6YdpFbLuJBNMpt%*f_@lu&~DCDay*7(xG~rA*ZH!lOtd2 z)HL8wRikH1fdKhXylG&<*$Vdr$2v%ayS!-7BIi-{J4O?GEod)xRQK+U)Ke_QdWUtd z(c70oIh~vj+R2je&d3Ske5qw6q;w~sneoH0%BEO~5F7jL0bIC0rx|B0QTyCAy zH=PYW6I(IgXsW&Pi#9nftvNDa^HS0*2ze<%kVOo7?a|5(d3y)sRhsXT9!+B_;oss{ z0KakKuFu^`9bsXY6K@A{?%}&+M>g2y@5t62pa&<4f%s>V?8xDWig)C_3^(0H(zblb zGGgzwC%o!(o&*nnC#41!&b4w#r+MD$&%@&wO0zMLJKC+W7)y{SEWs}lg(XrH*gJ64 z{p7-??vn4oRqvG3zkmi7TRY_})IPQ`ft&Ncv>?*){MhKGHCBSjSutRyf?Xd%uF}vjska0Xe-Y7mwwlD=*p4u%9WnIixL#A3wQ05ZbD zV{8Cn5Vis2B|wQAK;~Qd<;J%;jPA1C(tO(J(*BSCPM547r)#amtlKSDVm=9^3m5sI zL{WV=Inkx$#glDxamU?IDTn?jK_6&x2-~`PNs6@Nj`tshZkfE9;}^#gO^$CM z@1$A&!7tJ*|LiWr$Xx56^8i;T>w7(tv&^MM?}3sw>yThUq$-KtBQ<_$E5T$XPcQx) zHdwd^0Bb20cG4oT4&>Yo*0&v)Gs>lQWSL2KwA(|v!_`{kJ`Ofy?BJZC>VUvZ{duNQ zsvej=evjN+F`XsQjs-}dy%jI91lp{CC1A6HNj9Zz*3;^{EEDmz(m?wuOCYq6U~Poh z#!?A47PD|KSU%!O^(4zfsE-+_FR=td4GD;vHpbjyiG&$TS(wGGCvz64vETaTK%Q-g z68Y|&CTdj%N6c{5Z00a%VS3^!l_e79sBcZoYewZvRJ*ct zQFItfB%~evNU3k9ZXY^Hox(B^<_Qw>ECwgc6C~!8Hd!^pSsEZ7<+9`bDl=!G`Vq@R zcvnljn;4w%!u_k*43!6k)lm1bMB;e09Wy;_b)IEH3_)kUHG&?0vlQypGqSkS8u|&g zz{EL@1Q1Dl*{a-LX$WIPt|tf1lf=Si76(H(!UKjd3iEVR89HeM!}nPJlQ*ZLtA%*X zo0FE<0Of|;K8*>$)Sntzoiq*7p~ee0%QyEg)7lBD+ix>BQw|wb8s`r zi&#q&!x$p6g+mZPwy*&-0bV0ak6Y#Pe7H0*X|G(Gn8XrjX=1@%xileI0#2gDR8J0n z+-k*MX*gS8KGSgGUYfEN>qb;|l30-oF4CYKu27ZJqy03W0zKSM^Eso3vrV{6gu354 zNw;OMG?_MvxTmHNiV0XrYfH^fdudC}i9k9>1L>T1qC*c|6|C7_V_yxg7F{g-{`1tA zxOoKGpo@ihCb`J$-%}I4&)7f`yU!9mnsi6)W7GOd`y848caS(WL5*i~D%#qcXj(5_ zH3gdV(pB?7nvFTl_D(eEr7MT#5acJ=DvImQ96$>Y96;;N^wJfF(kjGL*f(-Bhsz_D zzmT(C^)hB@)j4~gl;mudKxbADeTqcYm6jj?e9=+K(s7KV`8&9z^)ThRUhQM}73MeKJF#ejCRD3ROBDVd9g z^_A-TJ2Iv`*+$FIr}U`qAKD-L+&brOST#+*LO_5#u5a*fV5O z3VLwA@!AzvGsbIIPP9nidCh3WjRQzTIDkZiUc2H@5|K@I5s|N5&0tKEh&;Priu|)I zfx2#)(RIsN0x8oaRt=SRoZ2#==Zve4fe=YNCq&iZ0ICkXcEzDIey1VXc7B1Uhpvt? z-l#T*joKV$3D&IU@_sq1$!DolrQcbVZaP(o_Lo^*W;}ES)Tm0F8dZq{s7mzE6^Bxl z4*IJ^Z(P+oU=0$gO|1j6Z)&jw7{86hm0upOq_jOC=cMgeDvjdS2P`!Y?=9_rJ*Sbz zB~Z{aS5|F|N1=ck4Ps6WCBgNC*!Xe|c%F<7>AuG~opEBtD>;qrbOHpyqC-Qt0G;P0 zof(02p5=7r|NqdT0mbRifZ_n^E)K9Bx#Cb7P}L9EbuK+{wS#dhbuM%Z>RbjV=j5jY z#;IJEK+SlRR}WqeE6|Lz*VpPU9nH(lTFjHQc* zSTYHJpYJT;S04Y)!GzHb<5qJTZ(IRAlKukp=#8tVfF8YZHIdPyR`oJ^u4k!LBluto z6}>h*)qt5yiyk$rjUM_p96-&=0i;amnJW&ZW^MVMT{`KVtIrv`)U4}`W?jz`s99;F z>fZ0v`4ke_)2mKA@-z*3h4xo2vo%bBFS8neZ1XB~-qtc$?rpZxT z1elW}eDBKDUua+FR97EmIjQX)0`~l;$cF*(``iKgnBKdx8qav|s*i<;Z$RmFP;NkJ z3x9E2BXCIXUCpwx3*vAF=MX}fx#}{O1!jiEdsmAMgflFJxT8hovqTEEu?emj;c~;w zkb-U75H$tcw&NEC+qNHc47P1|T+EsDZ-mO0ZG)gg%FyxkMVqZTW7MBneQ6o?xCJn4 zkoRv9o*3tV-F@Yt3`DpN$=w%spiRQPV{Dh?)KhLAlzT211{r%ea?l@p=(aPbx~rPV z+?mre@e0<1#~zMa6%*E?jk+sGSMNCld5!2hh69p*3@lv7%E1TSnGn;#F#MVlUbawa?We(}yC8%qN{zRkI-4YXAT7k`FZ5E-!@ct}QU zAF&e58W!_Vw8cmjQ8{z`lj=l^gk1b_py{4)NG|@=89zQ#eTkKzaMz05#PdSgNPXuNf^u3JPk7o%eFA5~k!NsX8 zfr7JG0uLB=fWH`Bb*PoQ{r6I-tpFDAy!kTtzmOA#n@;7#D~ll?iVMRf#iic&esOu_ zXUMqud$I24oMwsbkt;4P^% z%t^AfIyr%VeJ|#o8r9APy@KJhkAKg}QeR=rl4H5>u3!SoNGgNUk zOQZ&Uk5%zArz(=KY*o>SYy&a!l{qo05eL9KWaY(|S8^(;9Evq^%|o)rVYRCu1s6s( zrFVgpD^OKDSbqZkqQiI$>Wt@LxPX&?#|D|Hz;LLO0u4R_f<_871iwguh8%J9??#AA zS93BP&3y5;ycz0n!?m2(8f9D9bH_J-~y5|vT;JY1>8#^4!9+4V13-Y4I9S8pxrg8rPMLHVtp~hvn zq{fXqVrkr)ka6J=vF;{l-20F#u5l|cHc8{sv6ojFl-8EY2bNpHa#(9iYZ;W(=4u3x z+AI&<-x6VOzaqr?n%w^M@7URab z7obF%lT#wiS>gw&Ih7y$A}7zi+~Jh8AEfHEQ6kmpM2S=af0jZ#K zFiv%&J)FF+$nbCgsc8(xda}kOJtiMuGAM8>ikNT@CHywqGHI?=5@N~f7hI*VB z)U}5uDktj?t2F{MRn9e4ZE`hni@g^ZRhIG5@>3OC2(VuL4S2M z-K%D?O#6FfKj<>B<}x^89eY&n=4w|=YIG&_21_N}Sd8J;>gm~P z*<%4c2D{}O=uOnh3{I#ckI6Q!&k_hLByg;)>*=Zx_4WR0Czcc0cD0wNA7pSs-QGYw zge4GaNZ_b%r+`#UWSI!7S7M#P;DptCOr({8d*8C|)$6E>SSq20R15WHbqz}=tg9r} zuNj=Mt~w?=ZVyW!gphy;l@MrTj6xJLSSV<9>6lcZ7og&(Lfck%@r}*{^cbM{LPlC0Xu5T1Sv=d)>nCY4 zplA*H=OE5Fp(53iA zHgxGv~{ z9To|BvTV+!F7;sNP}Eza8>@#|A{{K-0zEy$6C=j`C$z3|_9qz{InQ#DsGkWG^{Y;z z4)KwSbbtzxg80Na)YiS(=*m@ASH99&uLrw0^V@>Iv}K`QRw;X2_TpybgZJVGj4|p( z1~A(bDbQi1D#y)UtcqXMi&c+1_u>dKud6{tx%4L_iVh~?LZM2mzTdRftRWk{4r?4d^qwTIqX?QPMP@#LPzjWEP< z8HR9R&fWDmd9Cm!;{J5Kvoa3;EkxtK-V-$LXh4Y?m!Xmxw;^;4E)&4`o0y^3buE;g zwkbnTOYDk_@y=?@I3@MkvzIx;}c6m1?)p3#fk)9UE zntz!gq$me8NpPJ22q`!Pzi4PECmeKH=|PG&re&-J zGzq!yKOr*8d6I+}sCQBOSQ(`8a$pTh(8DdcgY*@uo0T9JYnbTOPnVA^D370z4?sR0 zm}#;-6S`Khj-!O0UetW=^-!>X^iGF)$8gxBSu%X=9Y`RzPGK2_o$fvj(1yr42!pYo($%cb66 zVA5ZA63Z4*fAum}tT-iW#VYco)pQhkRS`hZC6Fjuv05-n-=fy$`7rca{iF=NR%Z#& z%E@AC$6E0sZVXI@TeBp5*<4Khsd~7pr8t$1qS(3ieW`6R$C7NN#Pe?0Q)G0xY;?hteWQ6(rqGsRXR!vd-V*^xdk?n51Q$ z@kYhQvjnSRQ^xC^)tM~Gs@U_gV>)9^vXO24(5>Q)m7E)elHh{Wxi=9|utVQnU5G zDu+`2#`^2$U*B;hBCMIbT1P!e5j$6ygr)RR!Zjuq%cQ6Inyyb#8CW{?BRqOdfUenzvnjFs+gP@l{;Q|-8fqLX zMj{`L02297V4&{k1Q9z1rVz6y=w)0r#PSLHLuy@C270^|if>CXVWQrk4pS6PGFyw4 zL?)yBOd419RTIfsI@?L+Pk3Dm9uJDt1lRlhn^yX-iHA>NauUm$jrEHAIla2F!w`-gh=qjXGJcV8 zTrNa728qfydqtLKio?PR(kEQ64`?L5cwTSn3KG|z*ITK~3-y7@;-44vq(nL^AZMDVZx-q?%2r56|I>?naQ|}% zV~hd@3}7}RQo(>h?Dv?NEr0iN8E#7@u zKd$9l%!A-#pzekRkyE04*?8%{TM1^h{vAf@Ez$d_k*A?Km_CSeAm@%aZCr)%?%;UQ zdMT_iRAa?(uA@{wEkhNFr)8+35Hu7W?f`jl$3)s`8LM!Zzm!=Hwx>1Z!&n8wCFd?@ z{W5cYIT)?sz>Fy~tybs{B}O23TvmRw+EA=np|IxXZo+UhS-d+=%qdOXwW4r7t}hDFl2 zor6J)7w?u1ZlP2Kl$A!-P^$+JhPU81egHEdx+SB56Wuil6tCeW?e}BdT$x1&2n9W48a`k;!p&H5Zfh@`+0Im_pZ#$*mFaD;-_5Ny1EKP0T z_A{LhPf9oYIaF-yJ|$K>G7H@9nG83|RBg-h{Z~xgRIzb$o#^#hYaphmzRa)$j22B= zLWYd(Az;JK&n)N?(EC+Oy1zLM=Y`&Sphg^g7`k~i(jncv`WJGB+0J##sKY>`-30JV zRG66kvF63QZ!n)tD2X;LzT^ zLph|EupJn3AO1z|LMU-Y26}GG{B*angQ9%pGYItjLwV@FAcj)v$_>AeeN`#Mvjk@K zd9b*(POm7IXXv3JRnJ(e^Q+JGj){kncdiFFvC2@WH{%P?|Mj4pIj$*G(%_ylMGTd6 z5oQ}|YHfzrQo3mjN&~4i0%#yXYtcYD`V}nH^yT?b={|5qD%}TIf~9mrHo!9QNS0(N z-4SP)(jARin9{{I`!7lth?3IfL`ms#0BsswxlymAaww^jo@b=eZ4G}>>9#y0mF}C2 zQ)-3R5MZ_f9CvCWy3ch#pnL)O@qVJOSbkEypHZa@)w}(SRK2`1f-Wd(f#pa74Ar~N zLL{AZ*z^({uB_(0C$YR#_jm-@aCX?Czpggs`9K0(_lmTgdTV7W)OM$SPij+4|G#%-{a@uN zw)zY$nafJM^kyoDQY5IZShEXMcKomYjzg7g6KdMj%Z8Mxhj7?SwK(;Rp%&r8P>VW} zC$*^m>JTHKKt7Ac`f)-m5pf2)d*f7aO%qqOIQ)`+@H9WtX%Z>BOPs4Fakvn}BnZG+%redfl>9bEV&Tu1x{cHxbW zAv>qQZv(vcjqV_P55MRhxp2G=hc44O0`Xoq9c_CMPx8>Ap?Y|5fzE@(;nv(l{OOGQ zC}?}zX8fXk8oh9(mX`8Y;TNq0H#`nsw5C}3L}-a7?&|RCK7qnULCUeG;EMuMgVE2X z`QTanBG-PyFYpD1OGGv5GNmNWEw&7REK_d7W2|xMxg*bpiZx|?iDLQHk`=^; z2Xd=vNxWcMLiUh2=YrBBNj)p4ZS~IvoR@U1^2Cbwj_Ku;x{w8CY#K)+qIzc~E9ZX| zxmli$;>s#dSW+dVOUq4t@C*Mnmzye`rRjbWaBKHNF0j@Uxx=#?h_K^&n)Wc}GbJOr ziMOXRXC;f-bAlQwFF})^((7yUc{0^$j;&71 zoa&VSv8T?zSf?Q1QLI>6s)C)_%k>D~{_;?GztQdGs zf5d_8*>iebD3$wj{Qx4*G@3CxwnTBaZaol z?y0GjKF6e&XsPG8j8-^DG8(}u2lY+s7+y8Tp?XHQ*qYU;Ta5N7D1x5f_03vi&J*=Y zi?-ext~O%!CB3?qW=r*VN-M^;;_fCgFT<8n# zMEn)KshtO>Dj4N$RhZijHpf-X*GFqMFe&T9`T9IvfYBA#;4Ln8UeU(;){YnNOAUXs+{I%0JKQq20lZ%=cl17i z`wv9r2EMeKsPyu}#`#(d88tX7Yd$$Q1p>2(2o^?S9XVSND4fi!u7E}^rT@mHPzMF|ru{_ymc=tLWS4V6((Y;1o z+;0FRVJL@RBn;(#D?}LPmh$Kh!jK;BnX9E>anmUyVQ9u7)Rrl~NnxnRQVgDov*U|| zVRbogAFT&NEakv~l)F1LZ1VM<38LRr&qLZkUWSC>5ol`IU8{}eDO3SS0b!^rzFJVF zyf%R+TN1H)m#6>#O(GB*N`xbiA{RxX=5MA*%q-)n8?@LIiMD$@G0GA{B%nTak*Li% z1Ce+*mP3pdcXvk;8FBAnW|Dwa_(c-1%0U8pRr7S9Yvj3CZsLkOEB6n6=12CqAKB*; znP%yhFCoT)n;deYJ!2eZS#@GOUug%iyiJ~taR_zCK|`MQu@r-&;+z`;c>>!L=NYNx zGsFUCS#b`e+*f|XJ%q!wyF549`a*J}tzTd3hNqTGi@m_ANya|vf;9FK7o@Q-1P2-W z#*i0{{k<2QjQtM@p7Kfq$b!b6qmjmb7s-|}J#!%+G(CF=zwlpkdgi(yHP02S9yk4a zcztPlR_c!DVeK(qC9<9;KP%l)84f(+eCA1>O#biC3*7(BxYz~%F*rtU?h_gPW5Sig(ERC{(aIj98!R%$F<2WJI`(q5 zhR0`bF7oVG*7OY3?s6(P+R|?_2-KMT_vyt7wxo(VBWuNoD_3E=e&unV@mkzPKx}Fy z9ImdiBEPn$JG{pNe_Dz%)m-J`9QbfYT$BNoCKu%r4{Ttm?Qwh(0wOCh;zC_dc~=VM z!6hDzqm-lfFX(P?7E~Izw8oPtlJD^(ic49ZQ03u^V!-|I&+6-XX;JwePij&Ga?XYR zI%_R>>Hr+~%6%U2s=R`^=(i6=2>I<$2lCsez+brES!lI9;R*!j$OWDxE5uy(nHQzY z{xBkt0~vTmm%VL@r-&}Q(IFdBJTaP&vr2xu4PyE2ZvZ3cx4*>;5Yw*}V0yI^)8w}= z#nRM(hTm?ZMt-{uLVmk0yU_od!qAJfPT+c662{jQw1J#0^4@vZu*N6v{Ve7tbA1lK z$XuVhD3=H<3)>%516tUp8hgAB1E_fu&r6!?cPMYlGI?yJID{;$>v!p~-DW%*92IA~ z5?NRpS{Y3|q0)!1Xd@2eIo5%wJ4qxr_dKGd@XX}2)%#sKZLN6<)d5n-gYV8$EPstW zcvPC)gU3--z=KCbxV6cVuixd?rt2U-=)=22z56`%lu^ISad_;ICsG*=EW);?q$Fg7 z55<32>k9PO;yA=;Z+Ft~bet`A5*8;3n2cW}0h7h4MxGkX#WDq;N^8&44gzqYwMS@z zHwX#9s~kd&Ckz3Y$5IT2@}B=UbZf>Tp^8ycJYBVq7zuLTV;zXP*P;L(!!&xF3;1Hw9-D{-`#6@2M2+2SUevu5sTyoF?xKJ3&9W@iv74-h=h%)7Z zs>UVzu~qS7t5N`)^x8*=DxJYIwk?^EQ9jt&vs7z|i3%a8;a; zK-BY|4svbeA%>W|_HquS-2E;=6#28TMDb@gPbX~{FN5AhtYaCmp}S|kHj!s0r`>yr zoOV~XaHV_3YV!+Zm~%;-st0=yc*2^V5P5(EJm#;h<|(PovfY?Mhp)5YFCM;jWC%** z0~`B+K28L_h5zv=p#8=`aw(!8@KjKCK|Y)fa9q-#xc3rDtDFrajzDH;HgFBU@LzK_ zFha^Nw4Pml8zI2#d22FogM+QfK+t7583?}2OW}fz>oT7Vl)fx|2x5bLh!K}WY9&vL z7R9+Q)Q}Woz2?RxIW0&=Uigswi}Oy?f|Y$e{k2-0XPg$a{5Ql_GNTow33G#bqTxfJ zAe(Z+)&wEVXv_9InI;HrY;D=YsV#AWP_~J`=Eek}sp!(*)5uQHnjaL%Zex1mJK3GZ z>fu8gsy2SWl~hL|gj~sfV*ewazqJ`W3+Uk<%Cnbg`;PW3PocUlce(CWmR+XnrnKd@ zlWHMPK!G77aOfVoH~-OY;qz-o~f;JsS9&z*vao7 zl2zB%T>yv^sY4*NYAcC8tuhVBY5=@C zyyX>8zZEJ}*IL=qu`8Qju~dNK?j(8*0$F4Y3z}+iW*yeD#-=5pNIhAQVwuNX?Og-K z^5LFZ+F(wPTK6$VFUUO-EF)YE9l;5P!jn5SnmAIV=Cx6z=CwhfHS1`BkT~)2lb#ei zIR8n{13|N)W%hUU)z#(};B=Oa)5Vfgo6L8X=siGgt{(ncG1s@cg>w^jyhMz{J8 zwJDP>%Z+KH;4f}WdlLE_E-kdHDVk|q7!5NGn<5~uAmdwau=rq%XQ1{QuMN%De`OFu zF%)M~0S>_ZqRcq(cU}2R7+s&jODk7oOzp-M8B=qh?7n_Qn$qNaX-X^ROH=ylfqLwu zE$w^weLR@bgnW^@%F|6{m5`S76f`9IeIvw@ zXoHYo56+h|oB@APhI`~o8Scv2pm{g%0@lVf?>>OJ$>aVGzsTeMEh351 zD6G2&2KgdHyvq|V%JlWbER6MPqQ}dRhKjwV0Mz!|#qd&^%TvKYAeui5OJ`5><{^QY z!6DS1Ps{d5pUhGWo{O_|1_CiddzImot7Z;V+{-`~X!Udr&rV{n$`FIEc?z)&DHMCz z!&58?z}QP+5`aZf0-Sk~65tc3W|9Qd$@A2OSQSV>qM%sIB|{8=Yr7as;GEDrn?sBy zh001XxP!S#4DR9=iNRebF`x~(jo5_2#MBSwE9G*!$7xqhOcD4+m?EwQ3Y57r7Bky3 z-f^pAF>V)1e#z5AY#-3KzUVo}GgGUHY?vB=q^<#nQ1{imD%DU`mSR*auXvm+(>gGm za+dBu#ohjDsK|Wbp+r&rm9Pq;!I_XSQD#laU{P^NWKHb>jslffoHGh(*oR$}hJDD@ zLJhlb0T}i{kPqj`9GA50Nmtn%xepSjIr0nmh5wp!Um!5Lr?8U2chP*DYLNhrtG()cT3K+gGIe7Iep2xH;90KFNy*Sx1 zJv<09%58k%elJ+u8oA zRB7qRDJjRE_(dwM=QUDkan@10*FK2@NCdV@Y<7B8pk1| zl}22XTImUvV(^wXq3AK`)U}?jVjKv)_6$QTRg(iL_jKs76(5EsifLcMik+pJ>YVme z(dKa!q?(*j$bEk={KvCMdz%-bsN$Q~vY`IsXr%rd2%=}k2$L2dAEf_E{s~|Buc`kQ0Ke#iK?~Ux;9$L@Gg$a5Y?fqws=P#`p2h)CmK@VmXWuX%!F+(dzcyS)O3!+@E5~m!7^!OZ**STnhIbuYeU7_?v?%E^rMYq-cS6 ziVH;kCF26Gd}74~T$+g5;2%8kf62jf4$GQ@M}`GzyNV*Z)bJD*2>T0AnuD6c0yc;h z7H9}OU|66rFF>-J%2{pW#41Gv>R~}16|fPasDKTEQ2}_Ad+rw=<2Im@kE$*h>ku4p zLFnOa*q1>I^OtxNQ-FZ?1#4^y5a`GSSwjzgku~)E73koH{3!zj^%8ugM9Hn5EQcZT z)mB(zn!{Uz4B;XUAwxLlFKGz#Sc<_`-ZRA5q*zgcqdeJ~BhsQQDt8_wz=2d?eIBvljM14#xjz3KND+)g1#HBP-JW|~ zH^t;H!N>cyj3-*T1$?5}g8JC?{R^Bknlo~U(c;hya?Ysz4Gg;Wy}t_+gg?H8 zZACWiNow-ly`I@x4J>aCA(Dam970W4<8LVgRalC_QE{edFpi(s+B2N8`yHsb+x=|> z1|HU2Z|ogVARnV7p9Hqj>i?eFuK4|!@S zbN@zFTR{d2UIG@e)1emjPOro{!%mOo5Tl9R?TCc9vbt-8+)(`*7Ng#O9lxmeUzfel zcGri9%7;Daaois=F-`~X1p@}F{fO515v?g8MrOcZ@)6HC2cNp}51y~Jomk!`Mh7^A z`eUadMq62m!BKH8?9WuZDPr}$#c^_F{w%{T9cu@A?q5Nm*7S}`6i*%VbkqLiWyq6u zE<>KQv8z_S&T34qbm(>IN(Wt+D*%PyARoEzb$D5PY-iW?LR{n+aqgriUa1Z!(NE^6 zq`BWn0%z>3{TulwKRF$_!hcOa`ENt^pu%?9`-az<{NzqQ!-mw}yjo;H_xxJudQ!Ee zJegYYWm_w*bZW)^=RNhK=U_?hLeIS}7N7T|+bLQ;bbXP$P1b4wQDB!}S8b{)Zf>7IU&B>U@B0ixqpD8tbl)jh|oW9=1lqrd!c*LKY*c; zneV9w&pRxGKS~GS4y^=Kz%JMOdA-Rs;1Hvoq2AIp=z~=t(VbO4CdXxCZAG3hv!f|MYyOO~mqMpO7p~=Md_P ziLwdPy)4CGE$^wKdz>IlU1aFxWrkQ<2nSN`MK?ml+^;()ijLReMCVFghAf108EzrI zvd=hb&nRv-KCCgL#ULleRIktQPR z2FjUXBHl()WFkuZ17G;BX(HY>1P^L#7rY$Co;({*hcAK=f!T?q-RST|X}B&34_`#_ zWSV0|h~!%y;y1@0hI-2_#YWdxd$2GhC$&Rkzu&c z<$X)9BJ639gsrH{E{az?6H@KXOoQ{6|JwzQX*S zM1g%5F`|p=jdy)6`+y=X9Gx6jxzHaNX`vxSk(Tlz>XwLRk(OV8p62Z!e!Q-iNm}IZ zB_rH2jn~Brw_N353b$NA2!&gq0u*iuzbV5lV?w>wxri{aqO6x4WmepAVnvjq@5VlGjt-N?{1I0 zlYkqWF>J&r>|%pZ*u{nT+bLH-9bmZScSBC_9K>(Di7DK|`+_w#gt>)SRsNCTmb`i1QsP*QH`8JK%#ZcX)AD#rknx+(A!PjWZi-$5#&++)5)7{LiswkB z32PVp+YGyOq@HIGvlaexlZRYBXE_9UQ|oU^Z)yimp-Mmsg^k%WN6+BGT?F@xJ0iCYGXGF&oG2? zuLg%O67;@L*e!sND3ro45`|K?3KNA56TA^ZDBc9xrg1&Vd!K_$OsMF6QLBR3%;7{b zQHMjQIjh`~;g^am#o(`)^JWkV|Jj%}47(Hx2YT+-w+!#P7tc=e(Bqbrhk-nWDgY_u zU61A|mMl;p=KmxMhzPxFXU?QBRJawWoy&=h`xjRb8F>%_pLGirb9ot;c@a29*?>yf zWg~$zN**_d7;O)2AwBM8n44tdRs15^c-2WZXafg#s!UAa^HDtJJwK*ZeoU(hU;;-Q z?mntqvX=YkuOhUjH=`V_gc?$0;{5hk<0>`yFs@QV5M8CV4zaI=AOBTq2w_*LVVawK z_@jshuTp~#ewEtjIz@8S;8a$9aipIoatfazz_5SZeID@^)Qfn=g^tYJi#uiL5W*?k_DK6NPvZtH+V3^R zhnsC^<4+Q<#M4fUfe`X_)0*Tn7?-C-mgg`qOX1!mjF?aia3g+EOlB|6&1kZhh0ZcL z;kjsJ$ZeR0I)-#>1#D0h+Z^{yy1Y)rH|nB?VaGw$qeXtZ^iJZfdfs;0ZnMyjeBhtNn*ye(B# zd6r^w>nl39nG3v4#nif0!bO8--cT_q)!R>N&Pd2voC8sJv)iGf*Q6GSLciDBKvCIaBVgICjbagCN(4pf=!&vw986b~&AKhGD4WewD84lF zwv5uv326|eynLG`Un+4x-eDIpx2d;YQDStwVc{_8 z!I<^eTY9g#v@^UO;2c*K39Y@gl*_lp{qR@IwrkP)!ze*A_f`*w$NJi@n3-$>k>+b;pvCph|ZnQH>G3E!JGtD>+jA zIL$lEPSvTc3@&ZL0Jm%H&})7ty7wx2m%Bju_L`+c{|z z^2S3YT{yGW)btPs)710;LTG9Vb*0;Pzn!1mSGjnH=BL^vTLCLG!OqR(e}4e};%R}scjRe--JD~Zo$~Hr?M<`O zK1f;ydhtsJdZ9jJMpjpUL2rTX*qSQxM|nqx4UD zVs0OA_jET)F!(9XEjXlgq1(d6-3Q$@ihUkZ1N9xBlcI$#FeiPPS|iSxF*ywxde<6tX=L@6;3esiea4O) zI_AlzhK{d4X7K2t^QABF12B|V%AYhpuOuZtH{bm#x(Yu+jc}dRH>N#(>^hlOsa8ykBgA4B_!({!wC%s|P zuWZ0bkY5?+K-68ogjn&$ghX*@ptptAiWecbvXCNkM@@qJQU*a=^yWp#DD*5LPR;Oj zQ@WK9`OPQwDvavJ7rf(@tP*1ItcjhJad7?i=m{N#gJ+sO1U%ExB}CLe5D(_;NTX1y zgh>5s0{2YYAV*74+!o>&{%d-sZGc?3FFL6{CU9$^BEYXU@$%e}dEUO-Vh*N=ARdkk zdb32Bn0wS!LtDwy$+>$S*jeI*JLJ(nT?6EHdK*O$A7mYX89W`?xTqH~f}XMZIZ|0% zLTtR~O-uSFus(}8W8|jZ8txsT?c`uuC@A73O?Eys8#y}DT)BP8d$kjs92whV2q9w& za+j=6YAoDt?_}*7&j@;~hjImyt4^w@UEwKo(01BLZ<-xUrs($)qSr2OnsTg!$aMMA zlpo;lYRGA0jgFf=JlgBEgJ}qt9|O|d)Wzf=t!vH`Js7|or^R^g*lf2*5z*UMTFe>i z)wOg+f))gnt}Z!(I=bWtYRGb!>g#@&pb<32B}dRmSD_>5iSaOkM!4h%;<)4ps_*iT zpm>!A4=MO^;?4uU3ZiXKU$8RQB}Qj?A4s|%8R6q5g>feDMWPE$mvb<6{8EHa#{=Wk z@#tj*t%p}1liS`~MNApvEu}!5fCkaWz>$9teFGK5K{OXJ_y*3R_ydvOge-GxqD@!LGG0eLNfin zi)0#h-wqxH>j1B~q(}?S1bJ7y8<>D3ukrSXtE2$s6=9$bE8`a#%gTyKZauL&vu}%F z_&ns92`?}m!LyTN^@Jkw`-0c5^As}AkTUn>Nma$ZD&Df%be?SYuF9fH z=iU`qmef+dXx9_|`o}plC7@Fhl@!Hs%t839pD!j%TCX=0k@vK>it?r+jTThMKKSnC z{E^edA*LKW2z|ZATU&0p`xuLmFs#F`*HA3hISIqu?7f-$HtqnIwzVWj6!K6+8mNPaa ztm3R%QJ@y23S$09qmu9n_1@HEt%UCQo19L@Vq!E;b6bTVvW=#DJG++=~4;@4|v zftHpGbVt&Hq&sqRh4%#q;otR|cY(H!(bFqzJit$sux3Rt%AYa$J=Rb~6&KxgPw)8?PjU z$U(_*$wB!8NSHmcRT?=Ucdr9};lHN4R~pEnyLSic#fR%rUQx^4>%uEzxqH3g$_R>V zJ;>8Z;CqFz!8s7f;ou}bXmA2E#gA;6{SziK=6XYvE+NwK%S2{)r8;u%$nhKSrFV?x z<=|q6x9rSlHk!1>w8GaANV0*+GduD%41gt^6%>~AMGRufb8#a{SIR9aCkA%&P1M#h z?9xa3AVeCFcSB?l$$`H69cW+-!+vK7>%PK;wc2J7);)%>a$Hha=Ye$iowU*-cnhoz z{}mz{Y=NlJJIEXFz6G3F%Y+1nLOxSFke8+)giHukZP;CIO9yJ0Z-d zk*k&%wA0%-;xDA+m(OAcjm-8Ak*-=CXP7LA4T2WLl_sX{@K({<^Q^>f8_sSIVpnDC zisd`Km6BRuF>XF=1ju~YAZR||Du9e#5H3>SG8l}6-VKp{+AZGdWIlL5m`WcT8qLRa zq)g`H8T=yi@eJ&vw1?c zX0iOVW&%1bQVjYQu9+(R1MIm8aMnI&6s5D~z=QiUI6{F-9^|a;=S9d_+Y>6s+78%j zfJ+{QprEmqA1Vz4+^9=S9u9_~!9f^n7ht;@#sN4kIo1|{kbVp;k2v^4W%3WrWaBgSuKntwosOt=(rUfm4lUBJ}`l*53C;N`lfcOxlAO z%w->MZQh+!L}x9a>ms#AoCg|jHVAoa1H+`pHkjwd0S71lEPh8yepSY=9B>a|F+SjI z6llQNAT;1oMgCD-m$?^S;F`17D<7P4B_Xt(7S9=>VaNN#9Cp~~IP6}-+%)W7$1fUo zuS1Nyz_25)jT?6p6ZkCTwXODJTI0vGrT`}CwT%$-k9$Wt1n4@R@V=_;#PX)F&;UNb zArzq7Ddz5lW%aEr!5qKExS3+`C2xjY%sk5wOMlIQl>1i*`Ql<`_Rrq7+Mm1#`D=v~ zp^^RIX_#rMrC3dAWQUfLBOC6TN}l116)S#$^CMLQvjtTu6(;g)1UJ%Bc@o`OU8&T9 z{gYxvp7VG$lce9w3`R1YXyj`KXS=i-lc5~pwgq_7C(PRAdnXY%k@#vJ!1Y9@9Wx8 zUX-@hju{;m9%Gd^uChH0?H<)EC`q&}UlO)`^{WS0FZ}_V1pdhPmM?h;kciBF^^y@5 zuU!eiX+$nDSAodoMd+t8Pv1w+nMPYwjjM&vmqLf5so2ms2p+PbwueoxSH0mZtHIzw zBWtBLLE-7P+Dc=TH>2pr9~!^2X#J-*96jU^G5wnNh`le!TYvpe?~_`+a1abr!;!aM zi$P39_HXerQEShz%QIkY#F{_An9>=rmhzj@ROeM7 z$Kqs{NUzGF=)$WnA%y&j79#VOH!tWtz>6VPq5Wk!@2+=b9mtvZ1nLEoOARwRPEiMTwKoVOf&Y4r}t3;)`YK_29vd2q8#i~k+5=u$K z{4&&t24hCJue9=tDy=fq(>^F`a`tFNm_tkf=?V<_SA^feA|xg6;ulHDyG~Mq4reSk z`zE?y#foEI<8hQv{MbJAWBarKHZxRsOY^xMoX!)?M}>&B5x$w)0YqXGydOD)1n+=s z-t=!-iYa)-Il>DE0v6U>R7UJB?Hj0FX2_-c=|IkXNj1WSWqhr*+q?+5pM?}5_w&*g z5R>Cka5Hk(l_6z>`ENfhT4PN>E@^2^x}>TmC!2+!rO9SPO-?pbv_jp*c`?3tIVki+ViR?DZw(eUZu|n#gQ4v0Wl^!E5snXN%m%N)>!x zX)`z&-Nu&1xl{@Q)=~hG70pI+f4uLo9YU_mA_=*yx ztD8I6wlE4Z__)!K(Ju`db>PAMg(lsYGlq=*T)2$3sSGlDf@HLt%89}8!DQu4kO?y$ zqJRh{C;Ms#g++vkwpA9zh<01N(IPw9S3l_sEXn(EB}ZiiN6JM&K2z&Z95MzWhiPaat`-o4gqt zguI#F5z?D^kmn_D2Cl;Nb2?CRs&P)`Dpq$a$GsUF3G!xa5b|cK6Y6>X=lo(K(4%Q5 z3DTW`k(?dyXVPO?hnVICTO1=J3o$bpDuG{Qs03WdVULVFq)B(?&Dy?fhaobkjxSGJ z&B>BG^9hHLRap&~(VcmZrI>@K7`Fu)gC|Z*tp_Ir_Aunqn{goL-VIVl8`)0q?BvZH zjga2V?>vS0hZJig+fAMv;I*LcOqMGi<**5McaYdR9SBrVZN<1m4XOAiE?4Q)9RpL4L~ zNNfQSq`1>Io=%R$H^7d$TBPg;a_C49ALK{?GsTKKL9b-UMa<75W$@{AU{yZhJdqbM zzm@L`?KciCPVmXkf)+?AX5nK^gVzse<7?#7ZrI2*_x6BC7gJmMYH7ixc}wH=3|DEZ z$>2M;gRgNwi@~|os?pc|6*Zz*HzGyXcD~>3r1147S52|EqwgNAb^%h=IjM$Dq%uc( zYB`eHzjac)ofKH3&J?OjD!^J`%fyP;@AvJ|dUA${(}yLekMIPNqkf#zq5lU?jmTHe z(tVick%VG_c6JHXS?{G)E07v$sK%&K}_{ijK~&9 zS!X!WzKEi16SY+gyL1KLE-j}kZ5Z=t^mrgl{Mp3yx@JS)9Mp%qHfi?o<1ll0v1cJ}^ps$^BtF&B;z5#!6 z&){FYaVe6;d%?8R*v#nqO-9P(`c1(vviMWV1X}!0BK?u9cp4Yq_Vaaf7#D*cf{@lC z-Uei_mvaaiY?%C$!Jf}j%n?(JkQVjcxB+HJ>tlvpI)M)K+#i9EkrTL$XD27{n=;Y~ zJj7F|0+3=kfv0(LfD?#zk2`@NniRSM1Qfb*=16*hv&&fHE|g3?kIA_A*Mil1pN5@z?djgDq``Aq#`!TK`PRMCa1?TGiPE0 zcZl4;Dt<&&{fMd-Km=|eURD!S%N;DP4)Q%*jt++!u84{9I@~H06`s*H2tJIvY7j(s z)zm}ewc*EqR}DhgT{W2Irb80Ja8m-^RRbUFu9_BOi#2U;GG)F^@$vH*^7a;>=BCR( zI^h9sI)OhF55>~?;8J)Lj}Bngcfl7OBui1?iw?RR#4kFt@GkDbrfuA-aH}ZoHvIv2 zp&cKKzw>Y#3T+@-fO`{Yd&5RtO{AsDsu<#?6^iN@GNPF24*a6X)SEazq*%gAoF&lY zq#O1uxtp_4sgPlqjnXt91oMX}Q^T;IAh3H!Y_Cp=MD35a?oiQpG}W7O|hiMioV^-=c1lO=e7co)=j zhHs#HAuz*PmchShUI=G2dr`~Em9jA58Uyy2R?4OfY|S=gLgnK{WTr0x-a5cMxKgGv zlp=qcuZr?Ql+<;Do|q6TuG~8zEa_|Hjpi`*%fc7_YtCW5mbxzSeaylgj+wkZ8+<9^ zqIJ-OII(QJuYuYSF&WaCKj*0`V#Bd6(f;(Z;>B5$qDr=cOrqD;N!8UhEIV}6 zP*+P?%Ry_E@aQ{1AjGA{4;}Wz*wKTZ95dhD1)2gE*N9!3>Hwc(vVC2Ou()PQOr+AV zEKPC}A35E(ke z*i*c|x6~OH331Bn>!UndmJF%7$ev(~I!Fa$8Y8ZJR;fwQf677#4<6)I-(h*7@f(TC zlY>%RZ&^JMQ=kVvg0lO!yY7wPT>$gc4wY)n8@Hfz(6eR3=4BkOpu%6f7@T-S~Lsx`VpsIFEh#4uyAUFrUcbiu9T&~q54N4wM+kv+ASw);6o;v z^%HA0rNrASIL-G^IfqVnKLf3me7$G<`j4jgo^Yv&(N?2Cr^&tvDjyBq(Y<>kwT?Zx zk5V3vRKihDwV6FZmJ5S&Xd2qAUo*uA$Dn_h=8I4f<{y2)Rh%8-B z84*pcj@loK(0Q^Hk@2kWV8IdQeh##3F0U4jut^rcB$_v?=++KKSa6Qq-gh zqT~y{vFaj=1YArBntgt>)a-MBchu~w12eqGGWa#S1E=oU(Q@%%A2c$?rS?S2DdWk= z^gykCG7lCHc1F{@QDwNKN{4A7O&dX_QxASM%U4~w8ZFMu@}(!vM*g@udx|r>0Zhr% z7k$0eTMSC>#PXZ46ELM+$)ZH}Z4DVBmNy6wQExB;u3=AA6e+ViKc+^-0C(Jr8T5cF zT#G~~%~GL_V3t~4%=xfXdyz2Lw_2@dFOja)f*I=drxMg!EP+hU$$ev62DOcWVWsI+ z)OIYHluc{VE6*n{!Y-(6y2r?9+EwJ*FfkAcJ}~y4705?o;tL4%RI4 z)eQuc6S?!jP;f@07Cn{js*aqbiVbJyMk!UGHg7&vUwpE_w?Li5dA|Nsy5ckH3J0wH z%|>+{bbNTTpt(@jHD{8miu5_Ya2L3RXh~=Pw`wkRtmcO5_tfFl43=XPh*LE=ajIqj z0B&7amM??_uNzN{oHfTEi+pUtb|+NHbpkTa~2bP_SSG`I~a_8b023E zEw;bK?jc|E9X^q-`L0$_Uo%;Z+FY_C(BY)D+mI{@wv`|<*(d+zWbiPk=>DF?2 zos*6rJe?6y(my0bN&iqUDx`mSZaesgx>3?UFkaF>+<<|@Z6%+7SiPep-PTjQv!i5o zYy?`z-NPS-bs_;hJ1g*+i>gsa55?Bh(ZleGI(it?!GV_5sZSRBc9pyk*wL>(1f{cB zAJeK~0WZK9dA_Voa~p8RMZ+|s(x*}B)8!g~EHUWQP01qV(USX=ex z<2)(KJkIKqCB5xmM~NX%maK{`Mb-E~Phq;!K(hj0x1yai(7z!u4fG9sqJh2f-)R8>)+(XG&HnH5|Z4_xv>EF}%Q+7TIe!TyUY zTwk2~tiadn*bM}UXOWm7@f$8gyzB@Ze8W_r`o z>xfZsD=-~X!Azk`y(Q;gE(Q;h356ZNr zd~t7<#M=MT$CdGt<9g6CuBoX25$Fr0A}!<_i-!A3a$`S39r*ws=1T7?xl2in1`3{k zoqy6+HSUnLT?>OOQgjQ4cLBEVht^$;Vz~!pX|3l+rq&qt*X((Q;hj?zwDb(#XtCqpC5x1;R)Pl&g8lcv21=FpN@|Lu8w(=wDNT9N zO8=}uPp+oriIPN7|3t|cGe7w?2Y9|&AC=Sa;Kki^=TN*sS&Q*l{c(JulR{byAzSF z`eI+CYq;`}mGXTvA&U2C~UC>85iMgv}jKPN|nx_49*bXq+tQH-C6 z6nnz~dv{MeTw|1UGiAP+F8*Rk6A^K-#HnPP>4w<)nEebsw}2Aa?MnRT1oQ)N#`pwtW-`5RsCN|;D^epCqxK%>ZvTX z(l0USVff*~zYz%8OR2XAP=rV_n6{yNrOGo>3301^GH!R1kmf)Wpfx zOK!LS7$alx_c0-3ai8BI7JnNfb1cS6#^Q<5MvkS>W;%U*u!gws*```D9!HA)f0Xo# z)zFvncs!XoSIWUzfiEsOHSpeWgdEkNF0`hg*btv6C^i&}|67t2xYmmK6ZXqkzJ(_= zoyy+(vt&@1(ivO(_U3Ux+rcRC2`zVC_IIoMs*0LP_Bv(#?XJ;b$`C__42wB+CCIbt z%Gl(r=$frevrQ{A5 zQl7U`?O{|Hogn5!h>?nGv~t`^`i?MJwrf3+eH2*I4DhR;u4DR6ka8y{y!V zHHMJ_b40AaM~%qS+)CBNpd#gr(9@HVjw^)3z(Pr(XA~nMslzQ)6no}csb(2eM(`=M zQr&A%k#0uxdB{q--9mbPT5<)U)P`sUemp|>{v52lW^MVBrKJ&&KD3gaFi0sPUA7W@ zYY-SA>9#oYz}WsJPS$f}*#YT9L?J2GN>tlVM5Y@dsg0E~)l7MQ>2yVOt?#-=$zqfj zdP4@}6H6S8s5F7mrS)-J=qM(67|FPPR#rwpTFdAtnObEQYQ&=_t(1?MDUERSmX&f} z0Ofq;jFspUGm#}2{bD7*Y9`+o-nD`_G1@g!QR`Vo58hfzfn*O~Yt)Buw$ji_6mKS? z4yW+d$x7MYOi3YZh?OYEOyrMajv%huIiRjwRL-qOfy_1=8}|`G)|5FdU9s@>c&KhA z@b~l-#!kkvHg%0yhKE70u1vCvdSZC0D<^gU`XwH|(wU>8@Wl#zkp$JFHQjDBlET;H z_(b9B@p>Wl3tF~<1Ti3fU25e@3sVlV-lE0an?`|8YU%27?km7zu7cQidQ%ng+>Ef= zW&PW^(!-R~h9C-JwvX62y5OGdZEe5}m5nH^a|fvA*=`z}~VdO0<&J zvyjrVsH2rC-Jl``jOdhSCC#>w($dIjrJ87=GS)^*tfXFp)Cf@zTB+6>RHUI1qMo&q zK5dXf?2Z=Gd%LD6N3B$c4Ju+tk?adA)j10lMY7+mRM!nEBa+pKH;;jcHM)-o&6QZo@nt({h)t$rf1 z(}-HHSSepLQ_@1}eJjzsW+EeGU9wVsZKkB4Wlyk-!e3@0BW%T3DD92}|12XzjJVax zN}6IJH3C-1%&};F zk*g_OZQ57l8WwvJT`LbouW?_C7m|u5xE@rhB^rn@PPN}uXW#Uxwh`=3o2^w?ULst*dAxd} zGK5w8ukF}#66pnpz$-grupM66setYLN7~n(sGd|K7K^Ai^&Q)eBF*WFRRT2Fms!1a z*d4$rVWOI#EHGSk*rY+GC{#m1Sg70PE^eLUI!SReF{Sp^OHzAR^Q*cIsV9mfYHD%V&w9`DVW#pZvA8*gwx4B7fvVpmV#)}_0c;jinr#tk`-P>W`1Zk^VQp3A1cionC4$L zeA906EC5y$R(|1#Ygkxj1N|~ucUEJdx=Vu)sLq0RK~N1B(VEsWkfndr1*D4AJyf`; z!Gsu{JOQeylP9uj>g4fKd?2o8H3)`lODFrK3j!AxZh*^D3U^1C5=7Rn#FcLSGR{&EEp{z-wN-d28F$5O+(S!T ze<^*qp6C~PG?c-h2dkhNQ_xVKF{4?Hf5zBGkbQw+U=lR@-xDTWS_nergyGWteY;Ta z+r?%DifvkmzPUSCM%YLXwmat*J4vC_P8w*6_XdOeBOBVeXi$~ zecS@<_1E-Xe~nf6?fy`=`y*C~GsgCQ2)oaRvYQ3o2-)MWiPXh#myOFMNLdP^#Yd&E z$Ina2z?TCJyln-{naD;A{%Bx$BMGZ;R)GeJt7qbBiKG)+J-C%NYo)7!(wI?@Uue*X zd~uC{OTlR(ca^KH*)2>usUf&G$3UuO;#)g5Zu?eGEAj3iK{j;`QMVYt|ygcTzl;8rFw5KWfil(fc4>4 zxcc{?D^c0bDyWk;hqCwaAoh0q*2RN*E!oK+lzcB2N?5WKM2nY&YoNkQ$+A1mmc75h zwMY4k>xq_qtXuXmt02p+=$2h$6=c~Dp)7-+mJfiB#WIJq41~&bh4CiKxE3_Dj?J!Y zg_n|LANnjSgM_T6O=+HFnH^1%^ed&Tf@VkjZ#7$mWhQ|OZR3C|rK}oklNaahU6MlO zD%dVC1J6C<yp8XH4KhB+EbBs*9Ip@^0hDUJ1vHq#5QLM3TsT>1DTo#yJmtEq@KTzmH9;23ZSQ}^byS(kHN~Nu zq+2+NRZxPo5R9YuTNbk#FixMQnzS%5L%JW@1(~LnB}Ke65v0m#%EcQUyvx_Y51Vx; zw(khl!O#3(I@m8=hBPjmCQN4ad689_Nb2rUU1=M*ZT@DAhXVz z%n}PFO8$qILJ=tVixVkT#wE0sBYziB4dYzAi^fMok=u0GD-$MsHsoK=w7+ZzvQ6?Op3#t&2} zZ?S3u)V@$=zbnnQ>~!ro*{l&uMH|ab2cfdl1Ef=&{TenbaJ%VStMH4Vg#Q$*&nPcD@Fr==iT zOnu+gUg4!=-Nr!cW_|#7QLb@a(YhaW>waJrWL<@3(z;5`7$VWSFfs09=(yl-{6;nl zGOQL8TSyZ@GMUIFlZlpsXc3W6P(F~425g0=t73GS{lzG|77v_U=~~4NK0vPmuAvpE}ks56hw>LKXdIg zX-RfwpdS7N`NA33L&_SiD_XcxTDX#xqlL7C_-He^$F`eQl7SEZlY!3#Gtjcp)=C<< zQa6xGCj%`7(ZX@wHBRBBWMHYuz#bP|Pbn9Kbe9TqF(fdHR?*mprqxZc&dOxrVGVZ&7GVa%4#-T4|#$`z3K9I(7 z!DO7JAX@bP3HHW#DH(UdWZb}?p#z#UH$&6bP|W%bTxUa8PPTPwE|J-VRgi5RMecuG z8G-v7eZ{zI*8L5ORh^|(4Mo}yfJrWrtg;kDi#xBoI-AJIssvQPyop@;t81B3!Zk&g zGEbT|kCl^Y%XQOMvI;Wo{t%{Z{NJW^m8Q*;rg4#Enx!CG%zCwJ)%Af@q4 zJ!(0PGgH3;GE3(2p{MmDaZ72kVkwBWrLRkOw-cu;xWi3#Gzzs)NuPHY&sB8ar>y0M zpz~YRLL@ZM>M5&O1{FLqzE*=+4GFSjz5fv=xJP=EaFwk5vj6k5zToyX^}g5Hoh> z#VZ#%159Sm|5Nw>7_9rhQ{46AjNb1nhyRSh7{0_4v80>rQ{=4wzQQ|zPQMwcVqe45 z=1NqG3BtN9HL#T1Qg%7qeZNgfV$_7|hpM{=+ET?&)!qG+R;&_HZBI!Fu_@RoB}lr{ zG1A?OS=3Kj#3V+FYj-d0W^a%}g90y$CDd?tx5w!NR`~c}r7FAaKrj8XTRy&x4 zTz4{k;c9Vx`SU-o#JbljfAA`tuK3nz>=G-7-xyiuY(oeYw&GW_CYK^bNHwjeVi}e&pg4;JV7#74d$aG<;T@( z#JimVA6F|o5bt)_l#bY*zck;S7x-S9w?U4S>dp|`<8O=1PB$ogij_Wo^B}L^!2OOg z%;3qss}@9(b7)KXUA21~x_c|dtQpP-M~D{mYZ5aXxqnjJtOcQVzSy7S&a&SQy@wy) zS!1nV$?KzpaTWOqE9IkR%B$C6DvA?L-8JPKY`#C!m4nuXZ<-q#cT_*KQhscv{5{zn zDJ~_uJ1IX~DX;h`>6&J>7NEzU&Ee~LN~$s7^tw%@RC!SqdVp?F4@rT~xMj6;*A}TM z(8Ud`^z{vTx}Dy!C7>(AO4UwM*=|SR7p9zUN`DuFouTCyS_7 z?ihQ1s`LYFjHMq)Yw7m``UmJHVRz7b>t0k0|MY!;Zc;Q-i3JIv*nNW zuF9RvFp6jATf3XvmxIcEwT8+{R!afx{?rfwZ6maRFU%>V58aiVBvRYDlW*b!b1-2_ z^zR?vnJT|9_XO&}jakGLgD=dD7H_A!=PA4tUf;_oThh+m+NQkCh$*fdGz$DPe9z6# z@R^g`bHtCIZK_oEeFyhQn{v)zPcJ=)xoPfJ@^zSxQswpb9}3~MxfPR!MF@C;w_YtR z>_6!s^wFnwb{8qt(x4Y~Uxv^QtC|K|&+r3;N-V3vP-d^1CKm69ckUMD6eTFlSnb{( z?y0t_;=)kyc6(~uBkev3o4NwbdoW6p&=n-?sNif1lKi4cK-V<-fx~Hghc;BkvP$CL z)y$u6{YP|nPY}~Px$!eg#Conz`K7Em@t%vk9inw#cOzvjt0dlY&AjRE`J$fgA<9#X zk_7Db33!#&kbvEK?_B8RPEd}pT9U9kh=en}-Tjp>7$r$K=aX=i)sTd9%!I#KB?&ke zL_n*4?omo~E2Ec5K+RUr{pmg1R%I2$zh*1yqD802H&R-&O5|^^*-HMrq;F{Vot-yY z$zoLas+%2HukKeXkab^V9VK$2nlw=+vqr?auZ4AmZ1*B%F{2{2HQ;@%V{#yGP4X^$ ze^k7(g|#BynuYiMInX69GAiQzEb>Oozr|{(Po9;`kIlQcj>zm?R7rWCQILdZEfRe1 z0Yr-TqFdAuIe$#4Ag=uCYOH+ET9VXnP->kXffjwkdaF`vWB5qkH-G()VJvBZ%{Io&rCKKk1#_T85edtwV;IhlfL` z>DyX{8pcb8nm53|`%+GYq71#69U~Uw$4}A6$=9=Ii>F7pN5q~&zs3FXKIX{i{Wew* z3AD7L0&OXUyc6xE^~YWKL@DH5tto|MS>B>lndPl0aC-tgyvP{^`Rx|gapd4P8U;S7 zrO%bq!50qPP({=m<9=0n-rz3Z%-+*lrWj9x^7tvE&12og%5f{zI~FQS47g~eKhNm> zqaVaF=M$}I^li6^z2n_|Z8kBk5Y{R5z1x6XqnG_Jee4-0IreK?8)I*qB<4?Wr`Q{} z5zmZ(to`7y*)_z_*T+{A-mDEZ#qtI7B4eLGh56vGXBN=lvjX2Rpt3ah9oqN?zau`; z;CE~jYVb=Zy4Pj1@a|(*`r1v8Y8iy>!8Td z(W{}@o3o)|m9=ukw7aczXEWHI9jZV8XU#9C1Pm5@$z0d~Fj-Q%97bhg%a zkoESsborf%tM|I|lzaM+p4UB64u;wO5!8NWhC)BN*#04W$Fj4Y1d-V z{jfY+#yC(~x)fMbGQ5G+5bvcr@4m@_yq6lhDP1|V+&x1yzt>orz3OB8Z!6nZiS4>f z`0d)ySRJYSs)cRWRj?%gg;9~pSAD$g?Tk?+m9HZ2D6wy~yNMFPDv9}3#@z2pLX0T6 zlC*X*6;5dvG8LY+7JNx^JLyXpFB!s4xAi*{eb*%tZJ}M4A*dey>DzUQOqaVZ|3VV( zPtF>X0{w};D@$81BbbfG)=LrSjax6ptd_Q3#F-OjrAOFwr(!Sf9G>y7SMn_Hx8 zbmz+LVawE=0l)6>8=P&-h%8&&b8#VtaFku zH?+ZDP_e_dVM3LK9Xigsd58GkW_PcJ#MQ4Ud^G+(>?g{4N)!RH7;?5oJyTkw0-cS*CL#D)Js+C!h7`M|s*#58fGN<}) z5XHCMwBl>JIUB6m=By}wc*fmXtb7^_=-SjXR*mEG_qTU9rJqTO3L@MYE4Dx69;hZ; zS`>vKp8c?UjoOV9+kPq;Z0jucKB8~f!G%(I&T|A62A|5oZGds@Wg0aGN%fWB8$FAS zU1z^xw?F2tV=EvsOypJ0Rm{H4lVJZ9+|G4(wpd=vQ#q~$YDOOLE_}j2eIBp{$b=t0 zh>OJv?s9IhArXsLdLB^kLlPh8_8)U42s)Zy)1Hpz)pfl3!W~*`5mCpMW?L0DdU-*&xV=`RmU12G^R8J> zx%;ax@#2L2@Z$)dhfS~g|GozvsETTmxMN;Pfw=7%_nd5A482M-^^scw_;c!6ZVkY^ zDEm`Za%-ja7k`d};J{r{%MCmg8>)T^f zV>lUcaCDHHY-$r;MI0O*{2Yw$bOf=~`Mo~9`gV}1MK73&)7>*FPncQMV%E4x#r{!i zQ3i=c_YRa;sGO6WQXjO(DK)48%_iDki|96eR?f6}lcvl_nNU1;T+w8Gtuj@#c?s?W ze2*Q%=hR209=h&H5yi#YOm!}|?R>E|SoQFd-21eF_PHIziiuitGi_RervF&xDXXa2 zoI|(S?rsh)Tn7Pm4K1s;AT?zMTk(l9gRLDXGl+f%9RdAj34xX}0}v;d)nC2pzQc@h ziU2!bbB|NYxC(^B=U9oZLg{0-1od4+<2T%QtM4)af>3g_gIpIM2DEh0avecba2|ro z{^);y)B*B+D1g-64*>aA2MFgx0I@wS_LsSHY%SIwa5u0;iiQW={o)RxMjQisOe#KA zGQz=2^j<-gXkZ$2gc2H?I;TCdD^K(yoR6v zHP>pp2iOO~zX*jOx;nEuN+{gfQTmES9YgpE?@@q))=~Nj&Pn=;Ht=B?@D+;TE26}n zW9}&5ZpI@W#r?PE@C5J~luJ$!_5e<*KJE_m`Vu(-!<>j|SB5GPwAc{vnJf_xm=yp8*%IY;R#Znf}^lif)Z;jZL8%$E21JXWeye z`-ze=V9r=h!LMiv>KSld)Q&RXOZbF;`ZD0UAQm&=s#w9N;x}w;Wd?i&N&NoKp8?;< zkQwkFyqYrL_~^Q=q%}tVTcMN8e@PL_e?bGve+OM~-(>!aeR8|~N`_2(qdQqFxy%)# zw0G?nF!1$|&Sws#y^9Vf-DKKJ8mJ~gl;2^6MR541o%?F1Lt4RNjiVdQ6jHH zCvyJqdFH4~?lxg}b%JE+1Gwlk_L6&OT#j{cGMLT6h6w>L(R%@PB)`2LsmX5(d?LRs zpbj^$4ZnRkL%P;Zm*Ms&9~57w{`(em>WK*(!Z8_mL*2_wpn-gfmE3ZfkORD^zQZKQ zRPU`$GS%A$-GRrssn^_t)$;*lXAH8mpWH*$-#7&>I_$r6k|{*R&Y-$)eozVlHIzc2 z2)|DYVyp8_9a2f1C8Qd_R={+3@6eFi{2zc+d}j$M&QU_@Q3)x9{1~l0;9Iy8HpEtu zPOV>O9byNsyL-pIi578B_PEJJNGi&P{OXRdsd?N$$|`nSn-1b6lvQwM`p}}egw82Q zP3Uyu6QR@D*}9G(K+-w_#EEO`v&V_F-`%T&0`>h{0Mx4!H`EXVj(A#&vwygEt9Nme z2(61)iEdKqEfak9Pxonc6O$m(DmqKFuIVhlrtAJ266)sy$exj8wlyO4C-*S*7$+dG zzTH`Z^;2F$V1*h2D@ZWF8pKrR1D&P+yP<>ix(?Qm!S}B)PhI=ZI#@YJ0;|m>Qm?yn z7*^xOg^3#yMD+@uiea%`bf_j*@Z`ijfLe2?YTOLUe-Bsij8_|V0XpAQB&2$*EfYBj zA(ivehZSuFq-NJbVghPsd?KKB7P*x@Ni6#{aOweDec7*w*waG^k@w*?d%gaC-UHxi zU6+5^{)PWZAp=MVbJe~q_)=xhoFG~7t}33_!Y3d{-FiI>p2mtO3${%V7i^yHV%D(R zs%96mTHW%}7jJqdi3@c-nrPS5Gf7>{7|SfU@WllgQLI!K=Umi9X2EU3Jzdn5i~ySz zIf7`2O(+YlS-oc;3-P&X_GghCeu?e(j1A&EKCFA(XFOz17zP8oX>Ypn!nC zT&JE2AUi3^Y+JAc^}7}!)T2E0KV76x|EY`g>66T90`^v#c%r7Kj{ORJ$@upL{Z-CQ z`tt&KliI&MyBbxZxD{iGh(<_lrUbX?b)2oi=hSOfyc^)-woo*v#^+69phP}j^{!t0E}TJ<(F3m2#B$% zC5)-``SV~b@Mo%KL$71%v6@qmH(%aWdh>0(hSq?~u^Tf);XJs}1y6a7AUZo|b(Nm{ zO&CecWMAtlAv!r2M5`ruV(c$>l@R6JBt(aUlDLII=%kdRkyz~9&`4~3#ZxKli>{SL zZn&qG$V~K%h?|A#@^LNT`jZ>KnCKa)e$R`^jgPdp{FalD8|S?A!9hbQ;jm{y3Hk9b zd?G&{mPrW*bL0dkN;pP>xqe4}b$q(tkG-kxe{V*-5NIx3=`q%|pLiKTo=tmFpQQ{dXV6UHb2wXDfAd1QF`& zohkND^~8zHW}ZH3zNKAJs3zpVnrBKhkN@d^L*`RidI5dC#;tl$%(0T%eYGx_UJd5Ph# zzl3jhqQCx%R~yG^7o;V|cES~qh{tK93OQ}ifwmK7-0r!F?F8%*9WhhW!F_*O&t$bS()o>2`EK{3vRmj&j zVI`m@#ga!wr?$OU zH|du-D+$F0-Q@1VFtMnUr=xvFH?gX}r>^+8lcylAqji89F=OTC0x!|cN8QMqE<)-Z z_&(`kd?IhU80yTM3m;|5&4rh{c-Cg~(eU-=$y?Ez+eUjTit}G=sw5u!0bawIl8^eeKzq)hrEKAMPC?ni^=>j-sN5ZF_suuTm7#{#eyEs# zqasLWId@A~+M9Hj8AGG)A#j;vPwXxs$=OIquJ%K6RDVw^fcVP(o=I`LQD5!@*P0A4 zwjqXa^(iY@V{MwtNhmAe%=D2*V-UwtQ;~WH;&>W9?W89W-^G)}PBRI)loWt8d72rQ z?RhLHqCYD?qUT@&nkv2@1UD&`a%%|3OIV3+P3bKV`n9@+F_s5p8@o%;Ji%)SG*CmJ zSqJ~(0a*~GoNK$w4D*B4jRr&f(8OP=9ji%V$e`eC)8vquQm z)Lz^@9-y|UhxAXJmxNk=gH7Liy1|O%3G6i*%K_Oxuo_*Za%6sR zF(+Ltbb4M_tMxRLFqSP*LBu)3#lESYVl~#%qR0`HxToB4D*V109M8;Y6d`Djs1LgNo>97ZX(sFoW%ZOuG#?>qg6qvbmm#>TX_K-sOc^7u6(^Ru|yf zQ`b+1)c*P%o^jc{9{QD54>#{=eZq%|RSQ6ZR^VwPTnjv}s_$|W$;BUKCAVDg8kgsJ z^(!Vpy7>z_>d*G1^mhGQWLLgJQ-o$UX{h{1sm#!ua=>w0}Q4HCN)D%Ou;SZN049UxZo8bPt2$@x_oe_%#>q zE_}?x!70KyhT};;^QZjGpOVZ2V#s8%dZ}k>ko~V7_jv9LKaB0oG2~rVBxA^7V2!tU z4zLMuxZe+x6FXdFW5;7S9luP6MD9))7DbfgHJ(D% z%Zo9hh##_JZsI14@T;JjBvBx-t%IeXshGB@POtOasqW+okiXx`O27yTH05~B)Tdas zIJ0m=EwNd6O4OH`2)Q*yih}qcQ5>lYr`PwIrl)XgU_{nBhh;CAJJM( zBy93T+b`&l<@_XMHv&}f{DII)=MVAXy@ha$oU++d5x#}ecC)8AZVxKT2Y8c7bG%K% zOZ1LJP04@8_JI=epK!Tec;u_4D}?h=+@2cwD0XB(T)m0nz24Lsdg48D$4#Y2z7f!pOi(ns@dk$}(W!+i8?6h}TfsxLg@pFSTw8^ocH zE<_TJ{mx89nfu3J+rZqvVPBd1C-G{-NhkJYPC6C7H;cJHsXehkB`uYLZEw+qKv8 zU^XuXEy*G8D`#E;lJms*=VALEHU|%=Gq_n41)QwpRtw#t-p#nnyks#T15c>oy%NgJ zw{QxYGaLKr+lRb{W-ZiEh=8_6ZXUz{rw2wGbMs>WEj*=ur|&<{oBLmed2^_*oHv}I zoHr9dS4_=ki&?LD+S-5YE3Te^gXvda@eGgipq3m^lepTHnU8tZbBFpXFQ&|VqP68O zoP;uS&PyL0v`y|L_Jb0+lZa1pC$XP(Cy_8knK_7)JBiz0_pAttwekjk!rG5-c=oAH zQ6s-sz}Ge!u@c>q@_f_6H^uV=$cqw3QnZC?CKEwevvm?D_j|Hz?eQP|+D#BWobCF_ ztfEltc*)Zjeh>r5^@Ut0NBiYLSk8?kLR!vowh}Y-`}r{Q&Rd?A_B;DY%!D8EWW}{Z zO*v)~x$1e)m(){?u|&#ALW=$0Flcyf<_AuI zPRaJ2xbPw@(*EET-Lu}sdj(qlK$E~A!sQ7 z zi`JGsISB!a^I}#Ju*M)Y0c$Ki5wOPgw{8;{&gjK{mTdx_S@@Vk+DDo1G(Yp{e&*99 z^MGxFN#e~9A$*(OB*#TinfDZ2H3(md49xlO3RWcZ-=)AC^WP<`M%StI<#OSDk-Q_b zi!qj|@2r=iGNM?iuM2kemzi(Dr=FhbUPeGO#1TY8Cp5v#w=DCt=N_B-HgAJ~4LjIh z&sI~wgD36a8ygz(yjNy z68;01rKg^ULzTaDjB{Hg##vRVS^U% z4TSC6O^qrOPL2+!EXFO{5G@v6_TwkfP4z-)t@ZB z=`ASeoI?G3KtB8 z-17|XwmRaf12!M-=S0N(9?5(ouOR04=**3|`Y5L%3HO*JfGv5BAl>h*oh_s2JK1uk z9?Jg5nJSvp)ne=ivgPFD4CUmsWz(L89l&2LR%>SeK3jB*)rQB_M*TQy!??mQ30sPD zvD$di+@V#q!}r1nwJo~EmIt*4EGmobEvr@xzs6)%76~1zl&Dn(F^qyxxDl3TtEyJS zVv4TNKM8kejl`;FtMm{r)YnSYhP+AII@dt>nbG(LT75O%RH3;X;!M2O&r+PA4FqUi zYpS&uS6{YOwZ{w+vmbWBPrf8*r__Na4#>KnWZlnHfvm?h(DGGNakqlS3F5tmTB=&a zsk?o*r0<%{BNfcVX__lqtZb;&G#48@=KY^|IE1T_*1^mJKKL`x1}AVn6KyeNIZ0ZM zO?{BFq>fuJty^!ZKQ-(U)pbgA%T1u7qO zc|^vc$A=kiHP;r2zZ*&<%N(0o zsEaJeS3l$lE;+u47FvY3yw7vDS}g|{`@Ai>4|~-dxldj(M^B;ym2g(bk<&jVM^69b zoPVDFucg8CZ<3=Y(~O~<{yz?)>90^&rsY(ESlnDo6or@JJTzB)*h-reR{=HUzThh7 zLthu*C3=6Ms+1oWVRIUy3HU@qGy&?&F97(4=s+87LpBdkI=j+?LliLwlU#OpdFI711ExjFubu%(mM+WvKpc)ye8j4MUuI11)-ZE2(Np3Yi#^$IVh z_0=8LmX|pRt*01*NbqYRv;&FFKKap}#gneTx@UhLv+?g`%ph@7)l- zjuS#9`yTxJguGDCXWG{+~x%I}c4Gw>bc* z$!%ug6S>W-JaU`tg(Vtka+@Gd9{e2|qPc=1V0}3e@c7mZRmJ!D+7@*pw}fCYo|Wj9 zl-?3~6TZof5$A_#HN}ZxT9K+TIkeKWm*mN;YhIqrx`JrpoSP@%vPFl>gQ4NFVI;ss z=y2h@BwR-2QFH~kEG*C(+4tp%M+&s8xVfkn$IDo*Ck5BeqqG9`2rs6udYw|$^K(P7=sR>p;;}gN^=YN0|h?B5tKUSL?6jp1> z39IZv?Ey7>Feu}T2ZX39tVB1W^cILx@#C};9YMG|>kgJEX+Bswm8OG3I+Y_ufRd!a z(y4G>5+z}SeJI&8K})m^5+6*^`oz^mi#SLsG83g!p-;aK=fwn)LSBL(u?-i?Cu%KJ z6RClb3RX$^oB?5k%htOWJAg2<7^w*(OYn&>vIOcN;}7b3K%B(L(#hH?bBLndsj=N{ z6~v*XT5aK)qTL_9i7BJMJ+zAz$xLe#$iqxauo_*@(yiq}+;s7v2JYneR4r3|iE)?b zvq9uJ%Le25?7ix{oSO3cql2aMISkt3yS`_pLk9gdC&T@turHv4;Ag?2MCYHirs^-e zp4fabSS}NgjsFdX5Smcjt2Klm3U5tZSfJ?_UxH+D4Q6YxwrWH}cV0M4iPQ)DNUb_Y zYhi0A+RxEO$CaUm9I0!$%9O5Mn4^`bnL~iiH){#0eR&DFv&03(^u$Uqw3?pnUmD;^S#E#`!lDddDfNZkJ=8@g$ z|Byo1vLWz$AMe;&DeaI}W|QLNd@VVy5DTb_Zj&EEUckB0uT{@OZu+lPPZ%P1O2%PX zca^IzH%WL8bA@q}-LeqMwzc9u$>!N~)a{eqG?9CIN@y~_~4%iGE>Ljh3l<+8BjPcIZfXk;tMGK?$+Y% ztMbLvyS46dKVwJod3u8PEX~s!cWcwbH!>SwwmdjLUaVQF4Oe%ta)Gn8DN@4EOmxLx ziLf_KS$p@|#cQ>-O(euQ8$nYz;)HsWQ<$Kj>gOEmxgNBBa^I_s4u6Fe>uOiH54`pP zR!(Z$U&$BS?}IZs-a=}ad4Ht}aW7*7>ZdSiNua>2WtuDeG-Ip_{COE1xO~CNrNGnq zv=ppoaIO%@S$9nT<*ogWNx6Z=w!&QJJlP+c)}oi62_1L&deB3)-r?c{TmC z3Dm6Ks5KB{4r{g5GF}a>JBeA(cL*2p+j8T@ma+F#63hQyRz;-VtA&fLb4sd+`-K)) z19vq_E6*zFSTt?i?YFOm%@&bXrKF}`<}uC`Wrhh*`C3+1lsNy**!t?HygpFnZ+JCR zIbHn^uQ6#`-F`7nw0KZU`zPga1RcS96m!m4dl6t9FKpAo3Vzi40ZoxVPZ}j$n_yw? z5VqY~tvDC}v&SpudeL4sFVS%V#zEkC6 z2U~Bn``E_MsjZ(=+W=0!-N#m2wP3%Db9SqCUwAgQ*8`kB6Na)PITNyhHO_?otVUO< z^!{=M=6(`le{Y8^$f=Aw+ky-t)ae|CTaa<0@=mR#T4HHeCyiMUPT;s4a0-rcIrW1L*XB4XfqyoLpOGm zKcE>xN6NA<4wG^F!Y~=P3r7yK?vvhlRI6)0H%!KD&P&GaUc(U8@)gTiH)=%tq?Lxl z6aMMjCv{77JCTCN^FG`NW1CdP_P%t;*d}!hm)oSZd9|@kT5GrwM(l||i`%563Plk& z=!)Bx3at+;VjxSAC8v!B$KsTsT&JWZBJeM-B@ zT~nr!o@$tc(gtd)r{OYyshAe6zda3eVJz2$wj~N!3D`qhtL594=qU>KXs@et7-L+% z=)q*ha2ZS%@oMtSPy@lFmbm&#{q(R^!(l?ysnbY(fYVX-u!0SH*k+)^1x+{~clh=2 zp7ooonYFHZ*o@(o*W{e5qr$%ygnhnZVw(N=;o_>hBtdP80{N#}Ivp0tkhMyj`sVD?iS{nrSJqixh0yvjFF%|+VFaNi}K*I~1Y&J)AqO_gF+ zqRTE_dn>}!iMO@L^>4x|cM+2yk77L|Wc*k#g2j&woQ&efS{zKgN%#n_qWH0Pgp420 z^BRgDP($$pcvJk?J};$q6r=L>?|hJrhZCn@nDB7o{Sh*JUqfbUCE;jhl}`xhEaZw7^^QEk(6AW+>w9A+4io8wtd|SV4O< zRd@;QCfdY_!&+T4DXs7JrQPfnjqZ72sG`IFV(RJlfSPa}U=qpA8l@2y6G-QSo6^2l zJ99d`!(#6+Qq2C%Rafo6YbXY;%AHL|etp?K12iia9vVI6CGz1y2)h7;V@Y8Fu95Zyl1+MA1M zK2Ak;pD}WOkWX>{905m! z`-9z40rKHJ@QHkQkAk2+e6qOmu{Jk|BY*r8?cVTF%o2SSGJzGzRmdpdjH{60tVY+U zbVa$`J7q#u#mXNxRS_pn!$x5V6Ct>*Ei0eV6790iAI4e1DZAba0*TjlcF$O zQM^R&I8f`t4_bEAOGr$k^)f!uXuTX_w9ft*bUrWgFl(PC^(shSP}IWsx3NBkoTQ?d!%vH$cs%)|3&A|Kde z+-Ax$7yPPqQ46>Yv|e9zM}_jO*P)9YB4wUdF?={!#VWfpl4uaP?`#bGstwj2V;w$bvOa0jQsgbsccggVP7wN0VJm_cEzYB$&_$dOB|x(pITQ7AzsVAON!t3&FV<|VlV{n zv-kQ7CdV1BDcSjnZs#YwhU}!Z_SMm}))t*_Sn@ge^sd=N`+oswxM9RBgx$ZR3+gcw z^)nC)&$~y_?kqjJxzebH_*zGz-+n%LuE!tz5s-y4&cdhD79_6&t9lc$?K{yhH3` z^dDp1%4^6Gm5!0CUEpT?81svqjQrWNzyYo{bWz{pRm9<0gM;6dIf8VGbLJSCTwEL@ zW7Gxsv2#o=0{2@hH^}PHwnbK2n&|e}Z8h!Z#>imBnM#*7e2gzxMOE`QuvHQrs(Jgx z%|so!OB>0RCYSbZHSYp7Vk{d=a%o+)x#e?dFlLc8^J$AULpoyPUbZ$I6-e@K~9F2a)f5Xsnzh{~jwR$KPB-ohodPvqO0d;Uf<8W zzGNQog1}@^Ki(VcgQX|qy^F%zV|(4f>x<(|RwNh4?SVBej@z&rU8T~M<-~641$Q-Z zCDA)k&1c-%5nT|W&LQxLB>dsw>kYi^)gnu~B1ecOw0}9jP^Ol1MYlRI?K7uWbp*S* z5|-qRh3{-34ds`dr375dLIj-tq0wU0flk35#3%gIcM4Vv0`U#vAy~nYn1%(u*h+3X z{*_8GqDvV3;#<8zaO=H!6K@q!|8aMmx{Z@!qC-1oy9)*Fm_5O3$yr9!v8CA_l@|K* zIr|Hs2_!oTsYw2^Sj=eZ9dL8k)%pqF&{dKjx84RH3B0_ZTin}LLpO8%=ya+|ve%=U zidQFl-wywh5$a(4o)t+jeyM};b5;W#iIb@GfpUSdr?}eMTTPs}0y{OoxA68-|22+{ z5c*I@5TVY$K_T3!IZc2VREe;#xss^=`i2;N6QGtD(bC(<9yLxv;crx(L*WdwMgDjV zFVU^j1?ihMjZio8FG=`B{v~M~`4{E_HW$k4bFpcV0GK-*K1L)yOY<%Z@5-#yd%X`U zlD*y)SfdNbU^Tj4rK`%{>qFI1j4|zsMFkP%gzb=YZ=5Y%TuAZe*osAmw%&$Gv!H2d z_>ei{rpzdwlQV7Jq$xAjmR6WPb3*a7wfC%bZo~KJXX{;GfMR&px94(kzbuNE=q5_J zIgZ6hyaRtLV+lS{r!NWF>Gj)rT|qkid^;~(7iMDhPT$3fWT$V^J6*6EU88be5}MV{ z8zq#E-k$19jJxdlAo84LvgaS5p7&$?Y&&mECGva6$B8K!-Ujx6>m6N&TzN;Ye?V`F*A8w-s;S?jOtmm6a)fA4VYtV5neb(f54m%gS?m$+rQ9s-WR5pxG6#TC+{I>KuIc$K7_iaBB#H% zanxSqyaVUxv-q@=p2X@-UjExtG?%C?h?VbCG#%ib7<7(pzxg+}|h%q;KA;m4W1 zx?}y270GFJT%T6&uo~UQ(p#WKRq<4|cbxhi>u-##fe(41_|S}OQ6v-NW=N_h#&7g2 zW{3MbPI{9?{$Ou3e5D_0C^6=$QDSU6Ag*=vP0br<3dM&UR1W|2P0brHQ!p?77D+f9 z4{`Hpg+_1D=5y=hreZfk#VYj2w6>Sc&tK)S>wadcX~__*%}l ztcv6p$*C4lk;jG6N|5Ue<`CdvOeq4DA~nsE<@mG{=gIOS%GB74N5(_}adM)J8t!!l zd9gcug!k$2N02a4p9 z?egkp2;bH03kz z2sL^F^ar0Z_L>vqu7!`|xk7Kac(>5oMr|2Dn{1&yKhCR&6XU$8Y9CHZH*k7bXtzA= z9jcDyWN1`a!36yd&vafz9114T8z638L05PRCdf@qRM~gB5~@RKs&AekgYU)(GWgDV zxPf(=e=yNo$G(1o48DADKz zn&fYBd(BGHe0Vg=e(KCR+O%qgwP6lRYDW}1^L2@UWdq<4#|s& zimrQ}n(kexMi+z1K8({&U`vUS;9nX2mp>Y)K+=9_UDO zvv&YhcQX}D%P|2|Bh6ICth^(DbdH(Sn3O9xDNU(moOGJ{2q&QFxU*QFj?eQdYP++T zrsDx#LDO+(v7C-c#cVnT>2hbIV!8SGWwD%&=ZkSV&M;0oDd4s%@z%DVEtWHpvyn5g zS~2Z=+5zNsUEW5vilUp#J1DLZs>N{{!S$pGcgE$-Qmap7;2@mlgTCF7xxESe8G%HLu(AtCi4X$qXwg4JDM~=J4J6`?QBnEZD)PHqM{g<0Wm@4~d zMorv_jTAWr-s&R%UT;HNE#bP?+f;RMHbxApG08v~e9LXzecrZFyw^eYDcFcAO%*41 zxuYf9llOUJS&!%k&7c(>G@G;{`>iDoF=v^#o@y?}8+bP?_K&*X3m+Zfij(~VC&@WA zkk_F7>yyT(h80h$EcOqa7Ozg?)ikAwn6Y8AfiB3D%56NpAu~>YcLGF`aVC*uoVCOu zR;=*mspeuduKy&{;FdkP(p%N0?&M06bz61ow(=UZZq3!ln%ZB)Z#KIU)R%azF`Umc z3t>fr!)cyGwjW&en0flki6E2AGsz_LtR)W7XN~s-)m)6`Z8DoD-dXFtTm6}9N!DG_ zt-Hc&2)pNt!`g;bnhZ`2U!ABjnW3Hrufk*lsbMvNF38})s}oI`i%{elFUXSqFi_~e zEN609GBDe5d{Cm=!XmV_SoKn)RyHQs-fnU*Pq;UAKz-J$e!0>|n8cEgFqKe0TT2|` zKO4O*RC6)*^JSx-{TDIpttQH=s|ny4@ak$k_!qCP@|Y&CuJU*aJ?xKTcp$tK&8HRL zJ@`Z`zI!HH_vZIckbCoOws@BW$=&|k;$0cOopq$X%zKO#$z|SlV2#VX&8$XOsdU>- zr*#4{&unqxqYdF=)$t9g=(ydRt-j7g&|YzL5TVZ35C?yc7@@w$$sxPYU;jBaS-$>r zmRHm3KTt#OlAcIhP(%HmS3_&xyQD2ky4Aq!p1(4RIX=EJ3JkC>9KqF+2Q>n42uH=3 zGQ~gSZDLbIKlsP4PLXRB(B7OnZRC2;m0Dh+_cRzS_r~aL%-AVVObCd>Cqh8nlu!t$ z{)pEb1OXpD;(aYV9oy^KyN-Y^tVkjt9atj*TCo~kuhQK&j{wN&oMQXC8!CyuyWyZ< zFyl^x9~DHNGfzZ3?tMg^!ih1LwiiSHj`wESKv(}#eQ^MlW~QR$z{UWob!I9f$KT6I zDNldOOiJtSBbgVA0PgC*2bKU`Qd8igo^jmU0>70d^=%|2E zihS7HOk~E|8agtZP)cC!gii$4PH^|k{4GqMySnEE@4Z35I`l>F{_uQkZwBjVRwTii z53CWaxvWN4tMut|f_2Xc@KhhZ1fFUR<4$081d->Q4c+~?_hI#3PEBaN%PIGP7J;^Y zxNZ+1+iW2tyuK7b_PmA60PG1)OL#kOp(VtA%gG3_7o9p{uk$M6aM4MKy=|&78v1wR zof5HV6zmkOE38yIinZ290egk^i5g9ncukxt_leBE#tN&`7NXYy0B!xL612RB@k14f zHm4u6;AtJA>p^b~TVIiP(3>AO8wGRVW;0FXAviB#y3zfbk!T!&wg8_9v;|W`fi~q( zP!Id_A@HzsSvTn(*29V|!`FA!$^a~-j=QN4fZqq^_wwJxjGznJDMtaz(Q~hWK4;w9x zyzf=vr(HgJAKdIJG@GM!I`0Qc3V4YQ4ID2*YYCc0Xm#Neq181l6j~qq(0f-97km3D z@0;OkSSJx$yD6+hf^`jWMzF4AHM&NnPnOfezWMVeMf~`&x1YL)ahHehAy4n`QS2Ccq|f zDgtccbRDp5cohLQaXJCEJFg(XCQg@tMb-$|Ri2pI9Pj!lV6PBfi>4D^ZE$t!Q{SOm z5HCCOg10tY3P&0`bmJW@vAb-Vf!(X%X{(*`RuyBu@K&@hoh~MR;mwJA2D^+SxYX2# z_y!U$VVV+xH=wPA;Eni12;Mk76oNZngsU%s`_X@0^cJem@?N9;=%-nUF1I{C@Jngy z*^f3<7R$eey~HDoJ8ewc4$=7A_TxYL?=c2Z!MSg`9Hj5`LHhci2C2E2|DCsv?Mq{j zI7>N5yQljHY1AdyQBuX?OWuKT`%pnXGEbN^#yd&8MDHQzKGE$b}3@D(1sgF-I zF!g7I8kqdcK?C8c8*q8}>UD1g@kO%tj_~%#$(+Y!vLfka+Jg}EGHqCmu3PDroA)xl zWoLxAa@|`|^x5sLD^4`D-zH{X@itfUnJ~Eq2_oJJ-+H_1jkC9$;qUL&SG`HF@__!X zDUMzB*0eik$kpBuWXL-|jZ2{XnV0AW>Jr4&J^jPw_jg>_jD`Vr@bzJEha3jaPeGID z0Y7^m2w%$-(DRYatVnkLTD|jEu^L^savtr{nx8s9T&(<$cd)vbiI80$M5uF*?DG3% zmsg@QLAV52{q%--{SxFM+51tyLdJMl@BKZ^5E{uAgm*^Ji!dUNrgw3e;KgK7T z1Rsa&{bRp{ngq+kuQCPn-v5mi$=<)J_x@#8qw98SpdbIIx3W0;2SnNMnZVc=z32{V z5TQ#$SVghL?Y(q%A+#GnQYZmJ3nBELP^3qYDm^se z0z&A5u)FtOAR%;t5d_2rg3>H6prT*_QBlB#4;4Wa8wl2C!*AxyCUa(X1JBL-{`o%s z7;es<`JFRo&N(}?J2Oi^C;t~+7+-T5_j{e;V#|Mx+QNt5m}0li7G$qMO<@>d^``6> zSiLFL#C_uU!*$nD4ZSCnCvX3~$SBhrHPtr#07T-Z?@jSp*6EI}*vb`h>5lFAR27Z< z3{x3w!J4ZFl_Ix7##+Xm|{1{Mz`&~ zl2rkFuVTNz-mBc~4XYyYEA~7%x(WlSA^E75TU&-I#NB(3BGEZ{gdtGA0b2m$aP;dW04; zg9~cha?8SXK}N}*8SF_{ZnM)E*|i`ngZY{Ql>c~8eLodjqmv%_OzzO)2wLLh8AsD@dYcsVMXh9wCKQ!9jw^Riuvtn zVX|Ua2U?6~#gLA)7|DtnskErW3ZqsUEfZO>h82Vr_jaO1h!ydjX;GUMU$NpcD_-qF zi#J$ts4FdAX2r(aXt9+QZM)GTl@;T<(*iyc9^Zrhf=@p`!+yb6dKdPjzd}6?THe)* z7Vy!^%j_3?y>M%9`U^gb=1Zr);2TU=Zf93nF^hc*1HQsho1OO#pGr8#e!)@m!`T_z zaEf>lc7iUP6up-Hf|GdPW~X(+VV`5^DRxGXpO43m{DPCj2C>t8;B=tT>~In|9;QFr z3lE1N>}9`Tdwuia^cU>cKF)r@{@x*MV;gLXTh8|4z$T!^Z0S7g&iFU`1q<|BWYAx2 zS+Uk&C9G%ull_8aq%V)5zhK?kma+5~tZpgGUXR1ub;6$Z!sFvc>`59ti0jQBO~BKQ z$!yvOQ^#d&_zVN_oou)UqrJu~hr)m)hy9}W$%?lGFR`DHv^z5o?@sf?M}}FFeXWza z;~(V6lQX)LzGaL?`oGzAh_3gh(KE)3?!^3{da=PDA~I!wKc4m#NK}S^Sm}>k`wKm!kZQCrrthG-KV8 zb?L!h=|%Q`nWFsvAML-tvj4xurvGgJUD5vgy8ZWW@c;N=h~o!;VJ&2!fEc8328{^z zH$w_Cm>|OlGJqhfJw6zrb$j`Pi|K#q!6mfJ3NEE(b}$RdY+ClZCAbX!$f4zkb+dy5 zXsQWLrhoAFHD58Ykdy6Qf?rd@>@gX^?!`#!&GRZ1Sv|8j>DQ%5T=fa8P8U|&r89zG zO(W$eTh&N~azM7y^b1Ek2Wrr9ZyN@gkYLSotJlt-gQepY0Z{HzFAc5| zMH@Y$n=oM8j`SD2%A*X>V_m1)Jw~PT9-GLx$I~Le#~4NQ7`qgtGNH$cGHj9>ozshC z-)f}lYuH5)l{1}Wu2?)Eb+qT6;emW#wWzr0q^aZ9aray)2`ITVK(+;Fi=@xBMn+@O zCEiHXk6=w`rt3rE{Q3wBBdcLj~5`-+gg_OsQoo_5Vow^Rn5F{FZ3ch=ulptCrzrkekyy z6d;iVqZ4Yc(@t7#YNxW9$X}S9Vk>a}6c*Mb7HTQ-Vr}DoJqDAZ9ee9Y?U(97JI>cJ zTKel}y0#;lw?nD~s~vaNHHPbL6k*r{q$(h1b)wP0-`!nKOhIyb*E2@zLlilEVyoZK z93ZY`eWQNF zWSwB)(D(J!#;%iCSd?5!GP?Wp$1wfW&t?rWJehjaZcK(3>V1b+Dn;H;Hd-N9lq%P1 zVsvzYTh+vrbuQ{yf?+d z(I{Eq{KCc2xm%hVDL(xI)(yl+6!=7CQgfrXeg!kq&s_G2O;W8a)x6r=Xey(#?sis^ z6oU@m)4~{p%q&GbFf?vy3`Gn%I1?Rt&uHU+(7qY5A2nN32ldyPLDGgqdg=)?P*UF3 z#;EG6P4*9oB>7v+Am@ifddm!-RkN!5Yt10nx>=R|&1aC*ijiB5iVUJ0D@rnx6l292 zR;*-&1{Y{C+n&8823dt{V9o}{Y+%Zsoj;)iFlZ)#K@Q|#46!6bWLBCT%%Sr^()uG~ zo}bnmjHOc(RL+fhu1)1w$o-#_4(dUW3{n{4^KA%Ze|6o-nqemBy zBInYK;w1f|QHDfyHgtrK;7D?3qoIZgRF`z}{QwKM@j)c$RA)MP63yQ%F3sS}E=P7T zUf13dWTqN!-Enk@f^{M<4x_iI8zAN;-ey$rX`iEdU{{4unXK$at&OSBme1lsxGkR{ z7$!cpB#-<86rhitlF7mDM$@{RSVg$K7guYb4x{nK#yg#QP#-QcQ}N;IgQ@>)%aEE| zS}@rz8R%*JtyL3b0({slAD{F^z0;QX62Q_a7W0rKzsnLPh4n+f^1^JHd~iL4mQ ziqW(Xxt3kbh6^aa0yDIaF$YV}ga-?yph3fEtH^`x=nb>MK%=Lg%NQVs?w<+sjyB`H z=g+7?^cMIGMg&J+ILH{FAID@Ev=rrT@*2AUY4Rv$S(9i+lM#cBH2p(Nh5;)}J<$c! zOM8+&9T`5vI1v9Wsz*i0UcB=y5_^_hwLWEokGce@5OjrPR+Pm}VJZ_|MN^g&A0yNCBM7=hc0ia8%=9bltwwjZ;(MAkX zPjZ+eHN(+l!f0a(VsQFmPtBxXFqdSrNhTy*q1k#;f~`v{^$fx)RnfiZB>c%!?_ z2nqC&@kX+~4(kA8*0QQmCBPmNj8-xh6B>Nxyy`SA`CdD9|Cbry2p75jy0qsm3_{8m`Yeq++xx`ur@?@@_f@lYptH z_!|s{HH3IySQsId-@4q^`|Ixu!sY=cXA+vOs3e3J%>q zA!`hy71=l4C?AbYgq(ujIq9O3D6>7;*2pYI8fQwW$r*qPGHFI^CTYo@UQ|=f(gd?S z)YFR2Z9T)N@6$VBI{4q}nMMb_Cno3lU)5R0MC5-`RWi${A%j8pN<7fL`fTGKnGsy? z)7er(C3PWVl$&Fm_r*;{df8UPL#e2FMrZQoRHL+?-hScMAcj%)6Aaj>pP@;hT z5(V_nU1XFe-R_~cVCfp;j>Z(!r=Qea}<;LxMHEyr*b_u zt{AY$cwPUuS})dq{306jA!dP_n}g*&%mRDS;!OIK@fs$B)ju?i3HommnLUiCueMUE z2~SjH3bVSS(iI7p-QXQ8Skc^vLPnfVzjY2yGHm$%U6{Uhs40=DlBD`l$)Hlb`y=!| zCQ+cdWfoI^Y4(qhjxRQ9%196j5;lZF$0hV#nnVVX8<)^*nC>d_R?(-p9(%n&GUxlF zUC^Kbqg~OEH)AxCnniD{5(V_ynng`9;~ydA&4>8YFrj>935E4@1J!?UKl537mt_Y1 zXq8lx^>wivqc-`^GWz(BNY_}0ug;M=T&lb~hmMjY3MA60HJ9Qc=W+>?Y1-)Kntr;R z-fIs?HJPT7;d#)5?9sPwFa%M^96$R>@pTKMQkrv_$K zawZHp)v(#>iB-k~(j;X3*N;}=pR z*6L2;HyB;D_H!v4On+OFCdcVhEpu3;M4PeRr@+@Y&`@q8P^od*)Azo_=;w0 zi2^z5r~8e$PR0Ocq$>3LvRZ8a>EeTZ~z81mW9_#Dk^Z zwis#JR>8wm?}DB?>9$!I2ecmHk-b}Kia-SV#T|M_gm-vIuXPALbvJ$T=fGSeIOg&+ z8Q5kljC%=@T~yz<%^0g46+EiyWmMG>9?5#h7^))zSG{Cj9a7^xqayv5HRzj1WTLot+th5bhD?1Cp)=LV z?T^uWhd`7SN6FLCC6c#-lb76Tq-cS8v|%{5S8kUCR1nu`PqIn=;q69}U$2Gf;N=np zyu8y+dTW%(Fcmqq(`chL74@0f+Lxe@-06dWcI-hw63N{F zysirNB4eH~CdtgqpJVK|z`~5El`PV7w4t(kUC8PYM(LP<>VSh08||JRsAmRwrL=VCU1s{l+qFr=kVaCL#mGrDJOJ-&s6&s`4!_k=BM*lK0efs+j zg(M0n^h2&OU1kIs_7qY$i6rCHAo?iy$^qjw?OP#2xL9nhn`%fpJZIF4`%To&>o@Ee zi=U&f+-|u?N*eg~V$Umuk_eAG1|sAMkR8JTA+-}m3ZFi2Wcc*TLJhlfB?{Q`zC*^{ zG9%p4zGstIp`;`M+-LcV#@jx^j+0n8}eXYmnZq|6LmYtJVOPzXk{ zcfU+0`hvlk&i{Vd7@!Rj3bVdX&l_%wiv0zLJ?#4Q6(iXfKMv7teMP_17Xgi4qeG%8 zf{AAY@g5*q^)CcSK6uSYyr~5CszF=iQNpW7jXpXOX*+~Of$kcA%or#$LJv69m+izR z8(m*F?!I9UeEkPM3^`if7_U%y)Vc-SJ0P<<&nx#HTV>uL;;}WcZ|*2B{v{+3rE#R+DZC$ z6A|cLfvufebke9GlL7wFNn@7w*FS*Ye#*#@abSdi1&V-7KW!|LnIS(kdRNL1l2sub zN4;xwM|P6J5g1OtYosFvX^sI5z1}lMBLlT$$+dz!o|!`Iy3I`EKcq9$ zPV?27DZR_uGt(DlXC?XXn6J)EDFe(*)8_M;X}|e=W|}ges?eAf^;uDu6@8iE`>^5> zR%~NMO?Dxk7Gh?~s%AsAY^ahA?AgGIW~KlRrT}oT8i2C|T!EuQ;4$>z_Ivou6ikyp zGyR$`Zn*}4eMn`Rn&>>$t9Ufi7q+{cJGU;O)2^$65d>#qgKc+8B zBr@GdQp11$eDcl5Mz@&dtO6_|u#bg8`j9@K7&S}eGL9AV$(&D&>ZR}Jf6x~s&KRz} zC&&zPFkRM0>VIY=7iIh;O*bo&%+CzVe{nwf=`*9I|Hb*F%6TJJcfyT1Z``H*D#LXp zRWBHo7-r)OMoWab@Pe_tU5N$EDPf)ZBDUP%2U@w8kI(UNTZ+EC?cTiBY%4akJQ?$q(MX#vtCvU`e@mC>y!DmQu%f6L;Gk0% zup_jpk+>g>J8RwUBEkMHI}8)T#NL2ou&w-6V^jrT zgKi#xEiGJTB=emrY+Fk-{aOUIaaCgcW|SabUo!M|!O64|-G>I=Q^VDJirss2?-_TE zdQWA>DDrq-k5&+_Q-}9xB~tz;BbLPfU<`5X&{~|02^OA{TBT??^70SHr&`KQ<=F3& z8#6hX|4_t#Eu25g{nSJa2LjSNchnwfwHT|GPsl?##tnMGs>K3s+)>AxV zdvwQ2ZLuT9yE@{7tWy-@s1DL`zoirZ@ATQ!ez^->ys;(kfIaz!bN9w(oQ+ABy)k#{ zAI3bN_SQ`Wwc!ZInILy}EKmly?Yfabj*nSfj{SN@`%xBVJLdP$EB~cqUZW55#l#@x+d9jy#4+1 z?-0evq9W$}Ms8tY^P(Fz9js6{DPT)s@vqtDy*XrgQFC(sX0cHVsb7y_#duoS`^1Vk z_K9T`ysIxUIFeP*V8u9wVF#nw<|lG+H@kHU*N4m)x4mL=Tk-;q?-jdJ%xoJyPYmYR zFFPXnUa{r#?Y&}DAloapy43pZumPH`ZeMeDP%ndxV@Ir`!`hO!WXufSL&tY)-}5Y{ zc_u4h&{-B?B^KfX_=5R~v_7E2 zz#P!OU?Kp$WFC63KD}RmWK1OKUCfr`+frsX|E7hc{H0!!}>u;#$+@TrApYvQwrOc|KB?BpS_boP@Nbo^4wn;#!svOp^QoR zCcBso7mz0cGqeMgI=wL8)q0ZarOe{wlL}^if9xXRZ~j{sv9Wd&?rc=UQC-cHl1zKr zu^PG7DLsb#RM8y7{GfLwv-!|DlgCeMI;#1s#u;N57_wi?$grDf}s@hw{LeU!6i&zd%4QpS|VlkT21W184d*?du+otl#)jc5>P z0kfIb4N)^&n_Woi14j8kXGVqLXcu(-d^`GF`;CA(I&Pq#vR};R;t6FX(mmQ7uZ<8q zgdx`zE5+=UvqB2S<158v3VZVjZ)8OktQa)sLS=J^Hct^s*!F}NjeCWtJR7k=t6r;O zF4C4DD%gU(X^OSqP`XxLL||jy+f~gp|2pXFVKKl6j|8H)2_3?=-f9le9&r;EV=we{ z6-H__qV``{&74s{|9}~4Ya46OFNT_JwHH(gU<>=jnUHW0v4JhB#hP2<-VjvwOYPwg zV$BiSX~6?Mj9zV5RxOV3$m4Nl&v-;|3ZM_U%g38zw2O)av=IG95*86FV8!TI1b=%z zvbtFU8PC!5)z!_d+MkM0{$8-E+9F5ggEh6Ym(%98xa#&^<9)i*1X?ybx%@x@IMw~l<5myXH`CT@B0 z&TX)&8v-O}TboVe5W%f$8@4gqYt>Z&;+}a!0iU)pYwK75_hLsKWH5d=S=rW{TCgi8 zlhk%*L#?x-6~CztRa=~j*r-RJ)cPR;yPt08VB(<#=7(EbyAI}U1t>$W2gs8h%yPa? zCFBntJF%-kxvxo965kxxd6E5M2jJXZ>^zx9X9R|+ zzS!x!DDTA%Y))QfsxNjZ1H9N-WWtLbVIG2NeL#Re7`_pzcqyU>Oe<5-bF3o&M8AXz~MkPVdwWkbzusFe*h(7Paz25AhW z!7q>oLl=++`46Ol4>4)MR5O3jJKvvcqM`0H^h(}P*Vmbh>}ocRf_}<>b@T&&b#$q# zSzrHvfx$iVq{;X6P4GUIIx;L$g^Z4~N|3iFS{gb~lzT7%` ze#b>dh5@i#jV-G0-Q66h|Ay=3-RJcZ7HSD>HYmoUMBo+0Ec6~DMNlOdjh?Ux$_MVU{6pmEU+PIXv*L68cgM1E;&Z6feOi$!Ek);rX5lM$ZW~?qzKsVSDC#p!g(S=kG>z5^o_J~^l z15?44<kuPp%*MF6Er*(w{r=h^7*EGS+h9Ie zk!KXC0^K$|SZ^LeX#>3V(@}KCZ~<0Bh5{Ee^pLw zf@(BLIoMeE#wat+A3q*dEzmipA|`N-7%@Pqt4bPAUL9k0&@nKdq_G8InrJ)y@Ns{$ z2`nc_t(sn%>>W$<5mwVyCwP(GYS}pje~dM!=qs@*5V?oPNqHzna4=#LZQZ&La1@$_c0ORbl;=1a6j5(_=~&Kh&7|A50;>=}{756<$sDuj&uhEBR} zB;t#S=1cw$9L~~;JBuU&*7UUsnnQi@Um`(nUA})ZojP4XOlm$zRl6J`k_LC1HEt?n z;}o-neoGjIhq532e;{M=RJz5w!v9?vlkcYONboG9@-*{7U9ukJ&Zy}(@JhB$E^WHG z1bGII8XhZpCe7*HuwHP~K_|86x=1W6TE5OSU(g3)G6c%?8Inp;J#hErndV3Sv0*hg z-o|}V;)lewd6qd+pQ*};?Q=s7LDKcO5yeT)Y_qN33afeY_JYI>onyYIuW^X$e?xJw zmH)Z9=HwgNIyjH|z%C38wjQWL?~quStsC59ex)D4Bn9q+weB@X$--glz}|c5$o(4(EzS_APOe6etV+@rn$?j-BH#qj}ho$CJpS}RgW#)*Tph}afLaz8G+gz(>J8Dk6VNI4Ra!cfxKl}V7qNb%F z&l8d;xC`%aNSS?8DP;IcbE*GX>X`K5CmOWPbrAyh;km0!dV;`fSQM;DmM9RUKd+`! zI*AO%u6|IOElSN0gO9V0W-oHl2%7yZ)&;sHeDh{+zRx`8|IN|t#V$gi8>7~n2lP^l z)c~))pM0yU}bWOMosIw~>x!CBdu@+aE9|=;Ne@ zu>)etZkCLdAu+J5le*cY-@2ZG>B3MZCc|B2y=th1m<5|`enBRaWP!=%J!saIRbVEI zb;xpPPwH{R46ckJ%yOm1V+?GVMNmJ5}mM06wuC5Nzx9o$=rv{x<3CKi`8th zk$b#U0mACvSV;)0hgH?2N_>3tsG05mYB784HVkExM_q*YwwrJ2zdD3GenTN}V;sE0 zG;ZL3$t31+dfzLz1O+R*36Xt|Oa4~|Gh{ZVH`LD`H=owyFd1%o-|sBA9^}LtyUgl7 z^4&vb>A*?$WXt_AMKcVnOd0m5t!{{!6Q4Bi0eC-s7zrKj;FlT$Z_pa&banPNB=3SE9k)k~@gU4Cqzxt}b3%p8HlyyPMVcA%Af%6yHywVj>; zM_U3CUb&$J=rk1ZKer=kX42PA)!v<8#ke!zUke`bjq%E!6Y zC4TVF{RhoXKK(1KEZF`XwLMZ*@S;V}n+yH^UmUVd6(EbOe9@ev7hj5E4`OJCbQ12_>HP>lcjtC$Jp1+ z5B*b@LMK;*IRreg`;Hrga>0j{VJh+cacW%LcXke9kDt=MTM|ubzF`i&VFbPS2Ay-S zl$y>m=Jh!FDUQUz;^%=k&C~j3Oon4!Q+v~!=%bhn@$<9VR;gyI6DE(qP*E*9X$HUmBo6M!oMtDWgg=M_{OQ z#_WO|2JUKkZ^PhVl#8bQmJ%A{_LlOkf77>=^|REsl+-2d?Pt@^(sd+lvedVflmXsS z*307C&st~k?Ps@UQLnDdibOWxug!`yHrMaKibq-T5G$&)3$d)Iz?h?0F_H~4hOweF zOM)d>v78mztjJ31?H z9Hp?zVyP%-55@-VVMY(y!{biS9v(J<_V8!`w1@s{4C=$M9Mp%g7pM=nWKbVc08>Ah zvy|_RgO1C8!C928=<7!MergWVCNMVW($Qr9r{>6i{uv-5UTcn?LeEE=e$FhRj}@@A z>)D|G{&QwaU)*d&r-J1XQYCWvGc!Y5D0rAkc;9#t9%8c?2fPABc;uDyW_=A4PX27x zB)48LTWPBhWWQg`4))Hl>LltjdeGj>7tE>wcg(97=t4w{nejPYmeF^!QBI}i=!h+g z4bKK3Ok@v|ananTJ&iP?jZBZVUoHwY_6ZJdLbCY_b65NkM0Qw^z6u-vr8!4CE||Cp z#mf%+{AD2r0g}F#=u0|8fOgQ6UDyjsQA5%U^5<`t%y<3%^OT(~(~1R7xJ#Ahy(Cp& z`BS@w6uef-O3ynQp#UK)dFD3!&g|^-|DDC3Q3xTiE<#|GS@eo|T#L#U4i1v+BMu6X z1ZUpnd~a^nYN3kYNdvA@Pilau%#--Zqz%ZlAIv!N+f}m;>U4}?2CP^e5x8aZUUCU# zstbJD>+C2j`#qRoiN!4N*1Z1@=4!2vAQRBH+>d6WHV{#TzO|UXwaBg?CCA4IXMQxB z>xf|MTU!mlo&uli8{=R>`jXFnGQZH~iaJcwIhuh8dEvR{7jqD@C9VUuLALcgg5Q1enf%N&44(J5zbK<(45sW|0@3c1s8MKK>QacG%%>C>yvzV{m zN1_gkL^%)dq{lYbv(~YF6Uk)s-)0Xo_-}KRc3#v`lZt&Vf>0IV6X-5PuwBVf2WiQh z_w2it=F@)@VzXe`D%m>Rx=kywOvE+2OYn88DQeS;3brii@tJQKo0|0`QFofUuil1{ zRv!&XB9P}{Vuq-;qwQNl-++s@N_s;&+*j1PvuMTjK6_&d-7o+*t0v3T{Alkjk`N$2 zrU|uKpAIZY93;lf($)%}|Mq2SV(i7mO6bgs$y(i-rHztBq{sGEZ6{Y`>x)j5vG!>* zQAJ2JyUNnjdOr18rRgV@MUF}0IdNc=RS$VSt_+TW2)1L~q3SVR2;`9*>tLCRSs*7q zRn9u2Z4qRi6LZU3EwslFRp?uv>l;&^Zt$B>!NMZ~3ZA)@{D>U{klL#WS~BDgN>~ z>eOOZR^HSC7C_d>fvJTiKHoBnoU3Nl@RcLJ7^{lEdJar1M)-1QLb=YYkjpa8GpzWH z{rL+m#6*Cx(d}ULYBpR(<9etJ4TZ{Z7hsix&t=0fyg0OR7&$w@=u0NX(j?Z0$%N5& zH&;u8J6^u&S0Y0iS_`!+f(JYjZJeK1>+ET(R(81(5$wAqc_T9+S`%zJ(rvxua(LqE`;J(rmsF!q z=GbF6Rk3uLKzqn3K{6sdym=$pTIy>>_BXZYu^ROk*NPRsQe}Yk0GYRW!OB36&TL^# zK-xOpGNz?heK59Ykxh7R>aBc2jWvfJ%d-Hxp> z){rOy{j&R^#U;p}ZLKKz5_P~BM@x{wa%qzM+3!2&>U*uZ?;&=o8k=K(FO-EW9NSqn zmQ)9ZlJBQd@ALhox?dL;8Ssd)b!TfbvXA5-;6d+nwnig{ZX&(p@Vor5T(b+i%Y%{K z?(&b^M(^_VSEzUSVL8%WzRe2t0U~8!4-jbzxY~{0=3B3@pC7KEZdREUr_QYR#0~#e`d2nEX9FXB*vBa7aUQD!EeEh5Lj*90Rt6SihDM)Yivly`KacyJ zZ#c;8VfED~Fn0btZUx_PFr|uyeQdv^M$l*@CiyAABiM;DyD? z-t_I1L}qVE*xo@s2UmxeBICEj{>SQM!Kr4l6;wjIV*}huLlhf%Xk%z^Y$zQGI~bPnHI%&m3UY(vT8N zYdV!=z|cKN;T3$pWsQMWpQ8TCEA5FY zG;-PNv-TtCH|~UJT%+P}tD%kvE5tNk@8$}G+Rz0vU^AtybhsGwup|h~G;O5SQ*{^$^Mlq)g(A; zMP3qIJ=RL{Z(XS-LCOGcQC6(vZ&9|aWLdCEz2G8dwgt4v|H3k(h%YR&OF`Nc_`-5= zP
`adv56GHErEz6gGO2tnM?iW`4 zhZVoG;!jpwXT>e6XyK>D|Kz*dLiG}Ms9gg0bv-~uZWh0(pIONcP+1uLD$~vG82XF# zK#*R8?`)r0X&*U3rSb1{5`511~7au&EI*@r&{Y>E4l+vovtJVZ+*B*UW9#rD&!&2c>hmHkp@Grvx^`f2?H52%M` zGxn>b?u-MHA;KevGOhMHBCLYm*P5&Nwu5ixS?St2xoQ{btPWB8W5mWBGxwEytYtp^ zvLLVGqbi94_ne0oSYan)05jT79qdjf-)kkw%xpXrNI3Tv>>zsX@``y~OYz~n^d?pMa|Oc9a%;d-l%%nXt2P{q;YtPNIepYB_eAIf%Sktm># z?|y5j%*aF#wg&~dFcOe^@_y^F;{M8O)IcA>Z;XhQyI@_Rg-EO&`_c9Mu6<@Z;QQOG z=01P(HENifu2Q1O)`zVKiC=4#uGGxgy_HDnBlP)nA6XN;RAi~zyIm3Q)kmx$fbDMv zxAs2d@7D`f9|rLq2S!Sfj~})Ap+-vS1KfK3V{~|u^%#9$GaZS8kr5nml&xwt6|q4o z>Ac-KtSv&+{8W-ucNy+MTyx$I>xrcGtP%`m){5$RrVB#XK>lW9xD9JazsIeC|F6}F zzljaVsa@8i+Ie9f=D+EIPX$5Pi(K1p^+@=)+a<=7Z^}>BkRwN|x@7sFP#x_*f}KPE zEC}AAAKYyvX;EwQW1mCog5Vwcojq0ut&TwA(6t1?J9N}Os&#vT#G%^=f_G?o3Tqc_ zfI#BV{RBaQ4!CwB>Gy)wG5!qeAqboI3+k(m@$cp{xyBart4bvPX)D(M(HfHW4Sn92 z=N87()?m#LnvwHQTRpXeK`SxtiW3f>D_AZkREeBFNT0X;EEt(0_;5i-Z(>lg|D$l6 zE>WO6zZH0%+L1XYJULMDzWn5&fCOB90zxB6gvJ~{4dU^{z~z)~8P(7^4Iq;p=3g0l}3 z?A(Ed2!bbQaP}DjgriOq1W%~o?AZc@qb?Byuc)@OSAT^%`!**WcJ>LcSS__3f=Bgp zd+VYY4Prd*=Mn|{e2c*I-h?ZmPz&vKfyAxznjk390aqs}y!U^8lxF>}gjkmKYmte^ zth(A&M0HL5#mOJXtU4$RBpen7h+v1o7XnmiVZsHsON=Q$bZHpu-x*3IgO1Z7b%k~L znSvWHN)S9jvoIiAUZJbQ;1OYZpiUtHVYD^neY%h%<${$Fp=Fc|EF z!(q_*1Pz0cf=3O5HR{b90$ev=T(()|GK zVMM^0zBlr2sS@*UM6kV^2pH8S>)b9eCU@_CRj_l9IU)$2pdrbh6(Ah-j39VI6)ygR zK;qEf3xaoOaPh}Kpe|l&eSWy-!C@D_@&R@6a)L*7@wKXpV?6HS5(QkmxWLPkNgr~; zbnCzBPOuJS`X&O2TPH~n6zG5}bm1L;^1tcx;(kIb*CSmJ6g?7pxm{vR*khrI&!43; zg^7ZlLys2(Ptf48h5+HH_X>h1R8YA2r*zV=K_GGH`vk!g^r>gUiDbe#tA5;WClYqn zJ?E_E+B1TOiO0k5`&4Jec-&bf3OMU7f#*qk$j7G(1PQphL!sO<l zc~@K(1hp~WxLsmQ4!3M}(ORyR*pQz$ICN1#@B|HR87DwEYBfRdgbHqX^-KDUqq#uh z&?$o82^u=K$NvIkSb-n`*Ip@vZk#G*%{TsdEek^#Hc$~xR14zWw3ght{CQ%@VofdfBwQm#^TB-Sn6!v`T zPCt6r6%FYA64J=%a-mLv-vvPtA8>W4Liu;bSUQtQ|H@iXI84+%7RDhjY`seTQ~Muyg2d1;INsICru8rSy>=@C$+`XyM#30*Px~RS-Nu z3+Ha?L~=NH8^OcG}PT4Wevx~)a75gkhLkKU-RMee>TZ!I!>P<;AEbuBVwfVIe@HuAN|(>C%Q z8GV`M`>yt9zgM&#GVMWS-n9vmc1zfL2mB@f-QRN`M2C{m^ zhT8e`H!vM!!7(5OR0LTK<3nxqv$!4{xCb955cSST3~bZrwfN8m{cB9-@~YEgM{ZQF zLJcbKS4TZKx4(dTus{F98lirEf3Zz`mjiIZ-NOFZrlcU-N~H%jQ3FGm&<=+~rE2g@ zSAZ1Q$(L0-bj@FD6W?blgw*6cB?*D8d}Zo}j>R`clBi6_qP8FFhMMVZ5tDjwWF1v8 zj7YX5hSF{-ylJhfCk5N6ksnnJ$YLF&@rDr3Co4!oX0i{rRtfO z%#L$rNBCT67@DXF$VnulQ7BnKV27*KQ*APy_DcQ<%pH=bo8j)T?H=4ka~w;m)00Ad zksnF{1Abquaj2F40M-!v9**x2>fMhSzz^xR=ShD5PKO^RaTk#)fFB;j5D+7yno2Pu zRe{yDYnq0d`25ElZkXyKgSK|;4IBD(^H2x<0#*VVYPOJ+IENXap-;64#TM~jbu`re zR;*M3Og^SfsK6WrCjX-iHM#Zx3QML*?44>)m&7cf%ZqJ8t&8}ol9R1Nqhm!_4&(Na z_^B#Y$;ytQo&^~NbS;t^iXaAO3O@9oP$`n$bz=hgEj83lZ--R^t*5A3x0YDg@mX)C zh3fhAo|q2nQ6&nj|Lop5lqfT@@Qc0srZUJMokLH>jYc9I38)fzvrFi9eInxF`A6)? zouSIXfMj*oP(59ufO3vXk^xw^5qiW_@7&e5g_in#rrLM2c;88tAf@i=5n86N#@a&A ztmrBEt5gqy=B1vYs(%002h`lXqyRy=Q~HF8`}94kq}Y|JH6&T!K7XZ$vI}w_x+J|7 zdGGd6YyB982B)zXS&01dDrTVv*^Vanw+&Cy-^XOu`~>@@oqJ8#;;zNEk4Mw;ll#Pt8aI`7$bM2n-+28Md*Nt;pPvYxQ|L^nVbVNX(HaHxAi zqU$wm>%4_bYz?a36|oZl?}RAc!PzQQeK>;R;CCX5cW|~2RiBBVIQVo#@ea;bqUy^K z6bE05DBi)@T2%cZ1jWI(B8mbY?cSl}S~%39x>$2pyFi2vjl_D?n+Mfw^3YMMs$*g5 zvJs*F`Wr|Ffzej!k)Z_rG$ymrR)%y479CW7Kh$0Ld-aQeFA&bZc26#UfY%-B#%Jr(h&_iRUJVn9;kZt4*d1v;|@ z0`#Ohdx07~vS5^Gcb9-LK}%DQxb{2MDBp2V_T>-I?+T63??r;S=Wn_zl%z*6Id7iv z;vL}{WbcTOMmkOm#i5(E1OiSkQNT|3AVk$pb6l@s-6f~rj@Y^XJc1~mz`^McAry}L z9HMx_6;A&ig5uz(5XBQX^kUtqp(b(PI-#)VXUq*%B-v9#HT545qw4 z+ZBqFldD3-NVyrI>L@%UGzbrg0(MMB&`MJi8o6GhT=}6*!vmg+$1M!?(nlb6?rB32 z#S=IS5Awv+P-#DX@B_Dl%)&y7$jCuZ96SqAJn0LOQDH8PjE9|2N@O(GcOo7&DC{TZ zA}BB*4+@DwJ2O3i@I0vxw}fK_qeQ!VMB$yE%nyyyzd(Yy^VeEHpC?_$;QJtt`K<@4m1$wj}0`#Omge%+w?nO}C zIQJlm0v_$|E`<++t&z|WeKQhlhrwbR29IKLei$qcbwObuRfRB+C}6aW2uEpG!UorC zlnaLe7!4)?M-e+W+AE0S9lUoIy(@o$pg8!y5ydC~ll&L{Y$_ z-F>F;vGBmk&=|cx63k~!cp3l(8u)}<#LaO zg@~OSZ9bxS2ZvZ#hoCt48bt994zchAg5uzhBZ_zM)9Yv~yzGR+u~26{jfLZgM~#IC z)L6iPJQgGhbn8n9(7XN+3*R6pZk$VqqJT%c`%K|uVgLQ1xq9h`sJOgA2RtkKY&qQ> zd*?X?h~fzxHf>gXEYw#27C~|FuMou( zI1H@^ZKp$P|HBlZ;Nir!?KFj!LOf~;-J+&Y49JJp5(VP_@51U2-d-1}rC1@_-8l;7 zr?f-v(z_y=ye~Q-ilRkAN7rkV%RQG3N9-K@PDJqz4lX(qL2>Zuh~fzx_HHfQO+928 zg5uyy5ycZYbHRgd{Y=J1A6o9NZq_8N^yMJs6FVHg)RDLs#Yz;SyeNYXV zshAa76GRlHHPP;lPAz zLXGvK2#SNhf+(KAVLRxF!*tosCkP6_N!jN@rS%PL0VNz1OBcMsf`k9wB5^N=65@VB zxHc5dzN23bHPQb-JZkpcmM5K7hE=Q>keK_7D$$sNv}JG1$;rLNN=IKq_=w>jHfP0& z&`dr4Q3{Zkbi`aHhCH-*NhPx9M5rX0{C229tV8W;xFSSA6+}_Aigq`0p(23#Q9VMA z(g?T>3Fdy(8Br8f5>j2SQ7-og7=hS1_)tXg1TG?A7J}m7nTX;ETtq+)g5uy=h~fzx za^>PTX&5~0gu-EP>`fX5I}wi>1`nxWfB|_JU<%R}!XS0hcrAe7(RGM||GtwU3Qiy> z$o%|Ehe{MwMYpr#xCS4TAc~?+w7WWma)0QGKi>&;(SJgMc|Tu66h)PUE3Vflm%ICG zkI_qc`GF5g5XBRCztf>R^_mEUD; zzJ1qOy0H2nCg(lhHvb4GlUqLy#h}JX_2E&TM1jWbL10Sb5}t6qM!DQW?<`{HA#w&$ zJb{CUw!KbQXZ?VnIQaL7;t3q$@ASFQX1&aI3XqpH@+^Arv(TN$n58fe#9whl@vZ=z z_7i;}lo;2*iHC!5_yrn-DTqf6!bj8~#DIK%pG1NFPeg#;8&U6KXn{T$LFH#LIvuG@ zrWcLGlExoP>$>}6Zm?%xL{U_Uc6UXHGqfnveYF|q68rqz7iE(DUxvC>7aRRPcU?ox zhTye|blg~y^y^Y2mJGWTib6gjE%JulT7MUh_n2`?m8hryT#=$p1J`zi;S6X-NodHlSZfH~bgCm1?^ zzh`lBty6k8vg>C$!`yv2RNB{#oNpfHU+8QzxscmE**9(O+gG+6`p8L7W@G5)Zsf=x zq3GO?f1$fDwc&_N<>!64lTl%+jH>P6AF!aijb>?6PxzYX zu^s$Wdm+dED7`8tcTACRs!#h+5fo!@Cv_D>`c(@@lSakDInm;JPk~_f`(MSvQ?#ps z%-t1Eowq-EFKS;#Y|#Bb6%TjtY1a{%b$_h=EqB+7wxJJ|40rVT*B2$%w9JaRB}<2U z`~3Rjs@d%iWMa9ewD8rqn8)+Ip2?Q|rxH1*hdXKsf(P1!KH}3#bsvOBHkS!EznOsV z%Y>V1EffKD#csA63D`ltZ4`;sk;onVYcCQ7Zj+^=!mTw#7LMHLU4wpLlC>Se85xLn z>&sbz+!ImZVm@uCtYSJjlwy|9MZH0fqYbS_`EZE^$6gk&> zqec!6h?FCj%7^4ETC5?3Z{XYTaauBtdxWe5LA%8Kal-#-5{4)?Y9 zsiF!fYrKjiL%RmuR1o>DYWR}>H0`v@=I9t`1Z1bd+zYTA8vG{e7-U-8MA0$fJG9HP z4tB>3Qx*9Ju|eGb7!xk%Bj+jzD~-589otGP!*zW65J9%Hfkc69u)a>XjfTki*&ufI4W!ulc4*!3*M9%q4&%?`Mp4z` z#$P0~;>NeXLn4fi>ene=*Oufe8 zdC1Ato=GN`8i(6z&&t4d&)EB51^QEn4Kl&*vg>O4nZ)8I4=vLUwh8a?x=ztN*OJ}5BmJyI}E(N014|_g^y}~%M#LKcByWI1aSj@ z(KDwkeL#wh&icZ_KPpY^9#0IAA(>DB!RtHg;X%qI`pdK{_-5h-L4aO}6 zXx_*m2$qCI+17P~@&A8y3fN$*8Nzy`$+&QO;9fxx<|O^5hkGR4<93NLNt zW`kho(Dw;~cWC&;&2E9jp?3*_cWC&;&8q^5Lmv?Y@6hmxo3jFmL!S`@@6hmxn;!%c zhyGp=6zG6!HS}jDi zwuU>f1w1=T35lzZQ4l?JfX6k zGum(g!cp%O1W%~&=s2oRI7yo+kT~>oLGTU@4~09YhZEzLIpOe=w(Rt9OKpwdQRiS! zsmUJUk@8=J<26ixeq1WhJT-u=atZ7$5G3I03=j%v-*5%D`b?dCk5TsxKi@ArLOUU< z5peIWchEk1A5rt%o9-I!iQHSN$lMzfz$|YF5Y;Tl+%8GV(i{!${j1>Q-tv| zuuk3?9*#rqFF`Q(#{@8&CE%2{B`k8g#F+A9HP8L`2u^OXCj`M0Dmdz}QQ@B2YXXTw zzbpvep&`Y8ERZ<#M}puT8e-sV291Fqop3k?YK);V@VnqqW8fJz1`r;P0Zf3-yeiN< zH2@Y4e?OM$Rc*JDda4M50v&MmlfuWqw()er-d2d^ebh=26g?7}yIo>T4u8EvaB|e! z1;G<4r0YongriOn1W%|UU7G@lLoXBr@6h0?^Mce>i4zXH>We|@5?ck2>Z;GGu8Q!u zt6~DU>NJq-{i0 z;qfhz$4?7~OOsL5w~^aRSj_D)0W7sr;Hs9&al6Er+}-|p!Op$tfFO8+2Dd*gKsf3< zg5U{Nxc%1xi9>%W2%eyY+xJ~W-Ts!n`FS7@4!iw^Mbzy}2p-k#b5*xTc--wV0Xp-q z|3w2}w4R9cf=NVQr0~H|F%+Jubr)h;Fig<;B7%s6R&pF9q7aY} zSO{POSgosoRGOC1$?Xzjau0zSf}MNRG(qqV%|`6x#3FdF1%0ukkf1a;W}}-PB z2vXXY@SEEu#)QKF9@*4GdV#Oj5d=@DkW>HqK2l#x6-c~8+6#hr=+0~CE9b!ii9-(% z1nb$pXz&17HAjUx6S2SC1&X z$5-4C9;odXV!6k!-#|V7AfhslXHVU?E~Zat8jx@;l<%e5%+WCcY_mroskV8-?Gj^h zIQm(^$zA4*Ab3IrM`xQkwI2i$hyGp=yg_dYzoeDfFJ}y9zt6s2T$x;WAlwkyuN2}d z|6sUNptvA-k`AtvSV$1C4%^15r3oa+e5@TuwualHCbUN^(1bREpfn-i+T(?HX(YDUdkyc0uqC4Nn;l3nUJGND#b3!&ePIbRywo4PQ0~G|lWp7R$guGf z;dm6Sxb_<6=a>NYsVv}B`&4qf#F!j@-bHY7k4X~*PpIJMFYFF?*MC|ZlujbRA(CQa!5+U7y{BTCP3s)6mY76 z#=Bi&OxW4MEy;`F4%&Lb&fRjYAb5v{F~^evi9_!c1ngg+|QRPB@)d^L;(r7x>eyr=F_8eaNbae<%9Fl$LQd^8KUNe49qfr zIVKIxrP^%Jf(c-odICvlRze-OON{3JX;dtQj;cbwgy&^yj6h|2Cbd?`a6`-Rq5;V9DkQz=22!n?OCwJHf1;G<4guy`p!cqSv2%b>kJ^@dRP6{Lr zeL@htLxYb$cbWS5B_|y6@eNm~i(e5es*As@x;TR4E{+M%jTZ%)C;h?2_1ygApnwEi zeWCC!o^p*Y1*=fYVH#Ais}y25GQ2lDT3fl2|GhKj9cSGLXJz?{7OCde!-)9u0vIX$2}Jlz;jm$ zG*7yN=l-iekbtYl6y9^E{2m^sy(h%-!3te>S&aDqpl1wxj4tJ6XnLSlZ*-%TYO^s4 zCV*{D2@usbZ@XP$OpZXfE;zZ%{vimSQ1egF(gFwa69$K_APAnIAwy63JG@j&7D)Ng z(D;H;dHujhU1Y4d}aKo=!cBp>-A3EDuxs0PKWYWyNl z9u$}W9p6i!d2a)t64$2856|$S+5n3M4@)6JD79%@mYIN>%{R{+6#gV zy-3VcM(LPiY6l)fY}8mWB)L?igs&dS7`(K;|6d2-G%a884R@N=D3P6{6=3q#-*SuZ z7WU6R_Gbr?kJQqTQu#*&kk|tzKK8=V9ynA>`x0pcyVT%Jtt*0>*N519*_m3}&w>Y< zj1EINuC^QF!I4@4Orf~|P8A*o9hi5b)__@Wdlw&V4%~sKszueXcuHEf_8Aq3}^?ZZGd)gdI@L;CwhQ(aJ&R)2S*by?SicP zW(RXfi;s*28uSG}e2etmx}X<1x5g?(zU`7znzRc<8j*&2q_i(c)^v?@A?12nw>FtG zdHl4dqngiZoH4d_N=ovWs~_aK3j_TZGR zf@P3~)gr^SXOIZipbhnnVzH%ph`QE22q$Tg*BghXlYLFiC~_<|vXfj*4lT_8^I8AP zRE5@|Q89o3V-20#M{OuSh~%`366Dj_^bDi|RDd(KK8}w(;{WU*KLR9hBDY_zX0Xq6EmuM0@~ z`t;CB(Rx(rAlZNC;sg>^E0n=3UW!z!8`;A;pbYta=;A2(!gK!GHej~fUqUsa^K)uvv~`!2JGy?Pi%;v1gbDvvsP*CyfpwpH99Uw* zNDpl+f?~!;$AQ@gQ3+!rJo073NXpFwv}hFRsLl2$;G0H~I2}o}gL72Vg8LWp#_ps@ zy0%&oN|;OWGpin;HEQU5 zQ|6tv0!N}0eO^j6>CrwxCypz?B{Xieuj< z2r728yS+)13swhotnWqFUSU1f0UeBT^DrpjV3fUWBCWI;LQAgpG(o^>KlHiPqn7I> z#Ydg=1@gsvVh4u!_Zx$T{Z{pt}c~iivjS0A4VxEYO zC7I;Pg?nB-mSlOSNGI*OsK%}Ohag}@GT&VM51cFTf|7kI2!bb6aIWiJB3W8Pfy5QA zCkURP!MQpM5RRHE2%b>Exz2W@&NbADgq5+zH$nBA;XiWc(U_MCT zAo{lu1$Fg*Z$WzKKz%Z+Z=`YDH76AI%OicMU;an%fM239b1&5|5gwV^FH&1a1e)n; zEbJ3~MZl?cjCSvT^?vJ~ieRd|E20mHfJscgU|62b@ z6zUl?qCQCa)ms|9VL;?AbRA8d=<}ZDp#WJsAQD0h(hLz8Iu48sMGQe^A^vpXAc5oC z7ag=8Fu@4g?EzDnA(0f{0FpW+(o0X6f&2rV-tHSmJ{uD0BVUKdOZ^YQ<0b#tL;Upi zE{7;W8Y_x03*EwscI?mAtZ2rHCbSSwi&%whV5X0T;5TDJkAnaVS`J_^)dw&z7Xu42 z!_tR4HEy|uwEoDL7X@a>KU}>EJ6ydx`FJR8;A+MW23mHAWUg2|pv{~@ovz+RUx5&F z%MXvt_v!zKx9f9Gm%UnNHRwR6+sjMKT#2Zzq@+xrmAP|)V=@zzvuZ@?(OQgs;fFrPtPUC6BwN^Ds>2j4^2z0Oc4+~Gb(ii zg<3$fq}Sg7R7%q5-1q;~MIT>DW_!6m158Z}rk z3`>{97E;}h?c~B(1Usd`ey3BWUkX*=t(uEni5|O+@>DC7de?aI5e#AsxQ8Gh*lt4V zP%0?h<1|lqP)u6Qq|_@OZ@c}vhl;v*X!<3y41al2>Q&Yc7qdv!^J2h5%~?&Dw1ObwKCNyEcf>?{$Vt=P2khvu|FllRCC`nCfxA-_6H^fUy? z%Am!wQHhbpKJxFSYd?_Mi%LU9bC^%!FFPB~9!x#LKE^J9@Dl{WUv*CEeN+&d z`tq_yrWMRHH+2pB33Ef8e6emy9@Xd_9bjhLN1kVb{m{YGwc5fT+StVk9lr`BS95tSnE zg%FM0?{2w1F^kQV0dIu-b5xxhA!0pIjc-Xw?ak&R9m?*x2+`~gJm8w9d0cLVu+>OX z@vcNjRJ^cWt(cnHf<2F@6#26V(a8PoMuW4_T7Q-+11=g`>%&(pzY2<3z%i6fnQ{an znkj*IT+^@;QDeb>-y%uH`wc>(;syT&&D0qF_3~gr9x_wQvm1z1sreltni{{m`PuR$ z)WnKmQ4>oY6zbCFp3wIF2+>Rl6mv}zQW5R$04DPwBNfBqL~u7YIW8NDORR*M~G%hpo?po=07N>+}dN~k+>osgOKRS zJsU;Oos6gy`8Sm%Cp66FOpQedk_*8 zFErx76QU6xM^uXZC_*%Hzq`@d_uu6wh5s%i#mbaR2+>RlTyRa({0Eg#zOl)2zA2JO z58**b^yKZH7L~9JqEeQZM2JT2cegzIPAu}QaN<2ku`;DGLNrqX4P4WN6t0BuhF*(p zsduy9NL-QkKuA>N5TS|BrS@eL5S1byix7?6?{0bao!Df%aH542D^o%U(M$;}c1?40 zqI}JfZARjX{BeXtMGj6}^@4C>8lqCE zLNrqXlU>s^Cqj4l%d4V03?p$xZXhHoa)?lw*F{U-f~XYvMuceOes{~W@5CS95KcUV z6f0BqBSbSL@VaZ7n-i1ghwf&dA#p|iF+!pu2Pd{UAe?vwQ7Q7D5u%a%-7U|)6N?-Y zPAv4cP)B+eh7e@Rxm)67hHH`#aNS8SoqLQIN#Izpo12D?`sP94aW zAST6aB1Gf#L`4oh zJa9}j1($Au4XAjPVfzavC5CGbDjG|h)l%vVnc^1|S$iluT@ ze&&PJDr^`MSLA~c5*0bDm-Buk*2}XIl_H;k5RKgLZh7{dc=}`E#5G8Rl-0hksq;PYFai#Y+VqEEn#1(lvghWLSPE0;4#+BiSN|6sih(_*rw>LL>^t%FFT#lvkYZ)ZScGV%1nzT9)0_z9l%I283z4`YpO28}$*Wxx zqccZTihMOfG;+VY<=J=Q^=YNYgNP}ffGnvksm`y^yJ;H z3n!jOREqptglOb`cgwTy#8Q6eyeXX62Psyj^hAheN}!u-nwt}+{4JcAgv1s3 zID|w+4o+NuOE@tFQ7Q5T2+_#>?v`iYi4*P!CvHKCl_?t$qL~s{@0zAL5y~0cR!nhT zLE?)1WrRde{*EWupPfWhiu`?qXykr(%d_pooH?sZoXSscN-f5>=Li;KSC9$HsGkv{ z85Q`^HOEH8}^joj~UdA8ljU(F-R*&HcW zrZh!}W=f!uYnqU9^o~E|70>$mB5_6D3n5XFiwa+vH!sZd@uK;I{n$jrr! zFG4hOzq{qxcVhm+!ik?F#cHDy0h%R&4_(tVABqZ7mG5sHs>7}#aaGLA2#J=w3QsB; z9K`Y*6$GTe$cYe*-0yCA_I=o*xbR^Wq*#?RfDp};KzY|RA%&YX3^SX3V%FFKi7WDZ z5E4E4TEFNQ`ynbt-Wwqrx!>J#a3Xr8-Ti5clCod1b3e%~U$N^DZ@*f1!}S!uJQ0sx ztt(S1SSZsMSZaxTb^4bI?qQ2i!MJ?MAhvJ%iy)$$j@Jy-og=GD2Pb=19Mxa3>F*+c zZI9{aYsv(#vCXbM1T~ zwE!3Ys=!KM0cnuB>N$ZYR|+QZ`vbwEu@iJ%gtT6jU`?t9%1>nAt(ljq1S?ZPD2aoe zyqF_vP1=~M!O0$P<70aDoahpiEuB;RX=AGg_jp)GTr_w=YhJ&;tyzBz!#i>_^aA$5 zBKQ@pp2wW;$lY#iROMG6>syo;P6(E#TA|=OwgmkYhJrh^l7hpluD>M&$D)c6#_u!2 ztF9aOMP7A<*RtGRbv;ohSl7Gen0}XShX3|6A?bG?I0kLK#brx?6i@#)2k|+v4y=Y`|ZZLT;Kd~mcC;#T@ zfyMc$8ohG!ebqaaWT!KneC!y!m&(7cAIulsy<-(uoh_K3-yEEppPeAI^1Z&P4T6>@ z{w%_Uh1%6epXTPho*3PdT|`n`djl?qswUq^5$H!TB|qLM*qjjr+5thJIt*(Zoaq$w zW5I}hN#7jfrJ4joR9aM?zJA*XQeL?4sBP2WgRI#5f&?1A@NVMM;{C^Re}?m*e1(aC zeE+S(J;85Tc?`olYEy=b+rw;q&U`O53tncma6Z}C*0u=tWX&-OFGF5#CAw~#ttl2j zEzQ%27a18W%TIO57w7RtZgytHo%ifrmUE@gf7>k+RB)eTnUo6Ds(j|CUOOsRmXY$OwO z@JHGOca__M>~~gc&f5ovvu#L5uheDqN{tEmqz=J8j37{{2?7N#)-hO>3PK;}V8^9M z6P>%)<9W}u)RDXAuspBRIk=vEjtc|xn@V~SNG9;_fG)v3IXo9KG?iZ4U{L`1xU!3n zr^_kTrXIn*-fi#m>pg<|*-fk(I)`W9&mEc1*3*sn0}G2gDVo83fDSQYE6gZ1^a|$m zutLXC`-NgQ&^6Gk^6rGY`vg~_#^vl9Jbi-;SyfCeyN1|CI&~!?0x!q*3w{;f5W&vM zCi>9fadS)Xxc;K$w?LwLook}2!@T@_e=%Vv2-G=(K%HAMAXtwILY;H4I}6ikVDMKq z3|k02-M+fw`T)Cc!uis~O@Z^g-bu&R9K>#&EmY0HvT$_)KR6`#6r1PNF_iRwBp*zX zuM7=7?hQNibk9UjTHNs9d=GmHD}sJ*>M{!#W(yWT{hW8>admxedMCT-dt(B73`>Kv z+l&%HC9vpZoAA#@i9Lj4So+-k^J{vO)ZM)PBPbA`XU0Ri!b(btuZtMv`M} zuq*o;Sq|f8Y=7OJ8$?7jlC&?z23vbr{u6rB9hhZSxP0K5@xc@iD~YqhC^qDQU@N|1 zL@>Wsj^px@i};D8235paP+?uG@B zW^d;cv`WDx2Bc`9ywp^&AR;g*|8i5X8Jml_-IPCo1+em2nsPB_52RXl1s9ay!}Iqo zL}3`IVFhb<0ge#!LNkJou&1zc=$waS8DSWMYRnAI_j-4q(0hHM>7}h`otb zWz-0E3d7Pr>8mu`_TyLtd+4a6G9IuebF{J*aas32NHgsiM4m!vm^8%aJYP53r(rDA*_ifhxJIv$)?h6L&+0 zme&xgL|cG#Xdtl82zEsR$M6~lmXY5ai!397#cdgRZ&)lNgD3T6r0B~d%SgDAd(BCG z87Tx{8JT)gEhAT-RCgxLmSLMAe=5jcG*15fE`RB=KY4nItn(6fBxvKPi`_L!(`dPW2U5 ztI_?K5vF%T9}c$guu~X^eVHT6gKgPo7*5|F8n7ZbwZuu80;^7(Rjjht#gw9KP>o8i z6q6_{370bYF(UZjf|!#h`Rvzj|6jj zSdLT3c`%=XyN_&=yRbmwj^xDH-02pim+clV|MabM6ZpHUgRhq>jdDiJ#&_3jS|fU@ z3P?tuaOTnVU_w4@ZLobDMjR@{0^qH+!8cfahYouIkhKnZ>psIe?2EN2D(>9A~kZn#X7Qo{`$|<#F_h8SIvf`RA zm<|vn&|YAVj=-?!AP5MScp^AD4#RGh<*_G%32YCxNLwwI)GH)rc~+|*gH`xY4TLC;y)JTp{K-L?9-@q)Z7{@M5}u_qyIN~GQ0Pv>}g?F`d|WgpOiv~ZL?erb*ku^B!n`GL#{olhs4$Mtl9{PhTFdN zs54?x+#L|2amTnPX}3QYbC(hY$Cn=cb9kJW9tpFn@&4O`b=gd$Lzz7dA=K=Sfyu6E zZvGDM5RWawNL-N{2#KD2_Y1+>Y%8MT>4W~w7lTbv_qGMgblE8uP6UAlKky7d(- zXg|-X&bJIKUY-xz6|9gM>)KtxHk1|aBHf4xwSxNHy{JEJPI6_yzDBn&!2{twd&Fey zJCsfN{47E=QvzSRreP)N4QSO%!FlX2B(BK+KuGlDMfL_CV?{m?1f=B`M2JT2cegzI zPOS8bXccvkVpYxrglMJ&?siQRQn(iqZxHlh9g(EsZHJJkcp>t}Yr#=$IHFSILlB~o z``wMsmjA?O&a3j#Zv^jQ$w;v>WgbE_Qv!2b)7<>G7D+1JRS1cS7yNf}e{ccYfv6Pu za|qGM{q9C*%YX2a$&rKNX#a7fSebGZA(|(y={`($DD&BJliHaBe$G#7m>?Wd8 z!6U`DxE(iueAQ;ae z9?eLL=vK13p9>shmCW4!gV&%3C2+>RltaDAvG$wnIxFX+!kf_KZCZVFC5Ic^jR7^g` zNP0|UJK<-47f*2Qh>)y>iies~GKk1gM5bBlcXva!A_C>wc}}#FyFM1`(%V1m58TS! zl)zuEX<9^p9PS1zfyvM97xy|KKr7~d;D+f@0-{pUz8fJLx!>LJ?EA3b55e}VJ5sDn z>4Ff=lt4$9uRH{~|Vg%LdHmE|AT<5L^n^wa} z#3Xxbe499)QY~fm{MA*HYV&=Uf+hJ&mqg9uSd+FhSyi8kVFmnJFqG(@gR*O0@VmSC z|4OtA@*_Ws0e>ITuA=f9LNt2n=B&!U097ZB0;gIvD*Mc2c?oUKgdhepexSAeg%&1~~5t*kI+wbnv z|4T6*|34Aq8rXQ~8ml2hvnNp5HBCsl$G8m=S21pdkm$&-2M@48h=s$3+>YPH?)fMT zrw3YoS)FgXnNpD7`$w=8iZ&rJ{}3B`1c4E20Ake4^}G8b`?2YML-ZTVkYeSzFhVp_ z0)}gv78ckkfa@EdLgI>i3qqnIhjzXFrdZLxj;K^@N_a!H*;^Qvu~CQL>+-}(o??8& z@n9@3d@EQ6#fK0j-U`;C)DWLn5UXal-`y$MkI&DyMYH(@DON802_c#(fs3wbnZ_sA zry?o6LxDEwMMzZSqHC5D-0g{XC%{n~$he zlzzw)s?UNLwxd*2wxSCBo5bYYd}ZEHIn;^>5ws$LKzQaNR?Tj|yH6lIjXql`q~V~1 z%X5b{xjmk{<=I?dD=_ayB?PnRC-pE|BGA|M|ka^j65cZ|gx5(VD+Gif5RluMTk3arL-w0U zYbL97bLDC(h(uilh3Ibn!!dPDmCVp42ZY2lQ5hf zmgFxNC&bp(TMA+LED&l;IUz8^5uIkR-`yM84@|hS2+SI!So!V|glMJ&mb<381qLoc z+K$8(`8I?^PY%7;TZl^aUdJ$!9+SB0A^a?dk{Mz` z5Qs^6M5o#6cXvegV{)dBh{*t?SjD6-LNrqXyPBzp30?Lr6G zvxrK~xSF&V1=@*W6qfq@hxVbeXmf?+FWDh9o-#sMwjwgkT)(?7vLBYeI*L+!i4-f( zeTERtl)%TXXtG=RbJdPAAr#*%c z&6EIlP1Aw_=gQzi94{epMZOCmQIXpX+j!PBKFSAqd3e2%^($ z^}9PF`!Tt8uZYQQq*%G_CPI)Y(~pU-%eW?KApx(!M=4^y7D?&d3am(qA|z_=ZbL#F zSq;P_BT|u<9x5Jq)yJ?5OODs4=jFS8YU1bHhlXmQQG^g&8yf0CDIqG=5SwOhjH@fM zAC%XIi~WP)NUsXY5QHF0V1Mgg*EAu8do4RE_akvdJ`*9)lfw*n8KRP5>FdJ)X(!F~ zc0%$(J0S=}B#h`ZQ~mCK$bLwsjuGwTAX2Qnwhtl5lscb@cH)|(MFhS{_bHN8v>zcP z8d?bShvPyIvR@FBnrA&YUNn*4F)SmZo(bQro(cawE>x2Don{t|ZK219@b#Jys!BCL ze11aYn)SFhz)9bxv_M}p|L;4(|4S0#DSt*#lCGv4LXbLWF=brSgcNQuFtmIrzsAuR ziK`$rKuA>N_R!J;QK_M207giYX{m>VWQHa~5C}+cusU_vcoYLi7WDf2#Jau!m)ip=mj}7bEH6fHg|1g=CFFvJPDs8b!$< z7*i3MW~txZ4cQ6?l&i@i(LlB$#mZ?y7>Y#`Vv--u!Jb0-HRJs5CC_dUs`9=@r~&hy z73$L4IxHOSWNu2}Z`U*}2%=f^VWk|reuQX6{CB+If3dB__&Zi;537y%WDqLyXToC6 z)fmGv5^By>C*vHRpZ8c2DvzQ;h(b%mCKo}Vk<>)2n(=;jr(`QWiOWI{u=|isS%tgD zAV4!BFw`|oiwt-W4kyn=;;MN(fRL!k_pS)F@vxPMO3j9+tqgT!>oA<&Muu+*wTx}2 z4eS|sO>*+LZf>aW!8%9clT#@gIbNpt_gK#A0oxd z`==11nG!henx=(z`wKXk46)6J zVG`T+dTa>;#Fij-Y|FZFir98RZI@()px(~Buzq(>WNDczldI2$@Y@4~B5s?om>|&f zAJ`UZ#s1bw)qqN}#-JnvlZl1lZoV=l0@StOXKRHR>LOL`4qOb=(V~Evz4+Qq8!*i{fqf zp%_kY#)md8F2SeeOpT50r1#H+CeKc>_e2l~{E(f(Q`6jtKi(N?hWZDRwaTtgc}fPM z?u~df7x>-%3!z4z&v4(#Qd0KkGu-b4(m$VZ#q}~M?eiHA?Fkh^rNnnmsT+G=-V^$n zJ&OvaKA+J=cQ(lhH=osbIh5?(`>nbJ5+40QRqEz))fwE}-C}R(H})`{`W}nGb!>0H8v4M)u45doV}rY4b9^U)p5EZ# zI<{Z-lM&%AEP$_LyY(%(jt#DcB}(9ywYT?)hm!=huRg7bsoiu}#{yV)mG6jdxc8JO z0o^qZit~*GhHE%?9wY@M4ue}yzdaZ_p2IVMC%zKG_uWOlZGz>~)TO86u$}g$r?W8( z-L?e zm0fz6C;{C+T@rgB1ct`ARPR!V%b@pr=cmkjzr>$IlTn3!9p9J>mpPw28M(|EYQ5WK z&K0hN>UsyB*DrGx7Xe2ubDs9)!UXU5^ZI4ZLI5sv9&lb=<~;5^T;@EqBlt=FyeWIf z1M;Vp{Ij|Ev9EBJVit&4kc=*GZYQN-UIm$9Ad#7q-Vwd(=gA8TK`{r<$Sb}uG<#Ii z9e!y0j1K&hYoX3;wG@M?$it#UPbYWe3qOg^)qN#`g@C;2cQ6rN&^2Qq;jLETLruY(4+Z^TM z$I2}59wjYJIt?!}F{KQj`e$f}|6yriBn0ALaI5qaqW1h5O7uQ)Ue(4NLNWJz+5g+B zA4};E#81Wtq$Fa0KuRVh37zl(shpCVpDCW&g}41X)RWzoiJYkrZ z&ST{9V;>8@L&ai0@Lo+9*XFO~5xkF(^2txx_|m1)uxvr2vQsby3ud^9TLq0p|5~_rAyIzJ!xIOml;@Mb z?c0L=fDMMKtGR{bn_k!$N||I~GO;nHh>=8vq3)h3V)SRZFNm_FH+46)Ij{hVhWD-u zFg$zG8&1z+#u%#QP%)#OhGcGJx8lZ3Dh%Uzfvjqp+EM5dBLdqPn+ZM1iGih1pypU03B!wDbv+~l%(0#;Wjx_w{jnyfLIi=jwz-V4mI^|1Twaz` zbfQ75w`%jR${P2usaOH5x2DCCe3OWP{3Om3vBne+n~!m@j38jy=s2Ss6@)7IVw@pv z9>MvcF05EWd`Rf}#2e!%6I4MgV>c5|d7~;7w$(o4s>q8aV668ZaD=;#3O9AC{La_$ibns;DiExW#|Mn=>Yih#(UK#@`;+0OQ~mfVSD96Qd(FMe^xTWx$R~_# z-4+&s7&T~M?C`RuFfMCk`e(cBtXr@M9yT^!q{D{zu0ntk;BRhgY+_9uwi5(w zU)9d=Q$YyPC+$S_?}YQ)Au7wiZY!1qMth?a3K5~++uo?CvC8egNm&(AZPbqLU^Mrz zNmw(~%BgzR30MTTp0Pi=w4PB|8VcUDvzQ(d7@|uM5d5jLaW@r&v2QWF%IVPKC~exuy^Jaz?+=dRM!r8rGC&u-ybtN3ojq{IYr1M$a*9sez3jM*+m!tTE3C)B_+BX4JB;*qXt*IT+b-yithi z&BDlyc+5=Cb4604RoGE#Et^BEls3B0|`BRBTQUI7nzc|(K zdA$!gO1vhM5~p>WVQlcQCD?SBNN>)vD+OoGnq`F9Iz4CLiL7$|%MWKghgdV}s@&m$ z9fn+Dv)cLLtp7K8Tt1uy2V+L(Fca8E$V@nO6LT6N8HV$fbB#`c6K+YQOyc7|aExnB zPV;W|6B1Y47ZDN-H`sk;j!~a^e-`=Ecdg`6q?kLIa>uyZ&9BTgTE^Me7#_=tsOVXnO%0HiPbY(q} zxY~8qly}7fpu7`8qE;SEHoEi64;uNs;!%Q}5UgEjRA;jhwW~FgvB0_ZW*Nf4FD^7{ zGXu-G`IC_Jvcz{2u_65P6frYd_n%1Q2PQK}dQDl>y*SEFeH7ywAgFfeO~VRq`AHPf zrI~PAE`O?+IUYvYz<;sN=$+PESOnsE5Fymoz&^JmVuoniD}%-~b`eQtqWOC)0-Dbu zBpS_7jYk?{H#yg3kw3lR+w;o;1eO~T4u6oGvPQXZJ+?yZoyGk}E?Kc$xHedVtImJq zf)AJyOXWGh7%!rs{)=&qoZh*))-okz9|Cmk+@w%r{;(C!%XgLx=8apC(HB0GS%(?O z(Q;j0`E)b3()deiyn9NooMhaGEvcog%~ot8Dkppno=;mwddTraK(rO}Nt!CHaX4RfxK zR~q%GAT$nGD;#iDiT2kqop=rm`|B7}E2^m-$%=}E0`>$RTV?F?etKD-tL{)UHzE&< zk13KoGya`&~yaSyxe7t~pR;|KzdoBF7+&?y*$ z1??8saGiKYg_G3o@SZFU0^i);XcXeb*BdYMKOZx`_Lloa_fnej5-AGo)Q#U@^z*O; zM^Oj@MJck;7)1qPf8)SET9+oQ+v4%Ibr|)gn^E%7NZl=DNlZc~o)Gx??k&bR6kF#8 z$gn5Gq+}c}6>NYU)r}pEMbsAblg4fjn~iZ;<7_|Bu{B$aVL2y=eP3r>h(*vU$2F z8CcIW-DZ5r_Tl0Q$E;_^Faka~rTgRv7QsGwNAt;ncZ`u#1r%`bcCiUVG(**M=pi=4 zdauO}V~)pr-BI;EP*sm)fcDV&MX?vha$P}9+g{=p!!Q)}3%#g?u?Q||fh#op+B%nL zghJcvT#^PQcc>)=fs)tXW0dfEn_tm;g0C_w`I(oEo*w?jb80RvYf#1?V9%m7V?YK1 zR$R~vPpp7(cfl*-!S7h?6KIE*^qlt*5&0Ce(W^#I51U1BIrKKq*+qQ4kHB*1z496v zdPzR^x_InO5NJpQfg-Md-RM9Cp`1TwX)Snr@*Bohk9UK^+gFsgY4Kziw{^eK5%pkB z&(%F3j!&eKa>~)^58alRun6>E#SR*?JnS8eLluV6`a=vu6~3V}p28xy3Ln?1Fx}uI z3c;PH-ZE-9>{!okVSaZL{=y>Igg-PBpu=!#ZvC!!(nes2I6=U~eea4Pm%tElhfj!? zp`&>Huu;~-YF(ur#d_8pBT%}(bq6=aBB*qpMtu4ys;9^tmCqa*_qvE~UQ*~3z>wW2^>aD`aw*aS zSQv`b^|W}(N?=iA+wh%jbLZxs55!ZpXK|Ku_s_5CO^O_{+xo8*4E#_$eIN>i&sR_=7>fkRYy<@Ad~75kfj{wSML6!ueuy0Rg~w5D$9)TZX4Lgw zy{aGg6$j}e$9)@jw-UT}UDJ>I3IRCod*!M+?tAAd9QRE=D;@f^{0Yg2$&2OBNAe`d zY57xL{#j1`ERa7B$)B6@S<#>JXQUj?hsmFx<<$5``E#%Qv%mcLOp<;qe|E`M{DS;B zCI37we$o#TCs$397FeL&0?ig^wLqf<+APpyfffriSio)pvjwc^{4taUoDZde<4;f; zIC}%7fwLyEG@X**$OIGzp07c1V4?}df#n1g2d2zW9O$E=IMAKT;v~H!`Xh0)*#{w2 zN1J)V#6ey7jxUYQz8cqr2y7=*<|%(0ZTX1y3yU_&l)9o&kf0ib+i#xEeD*nErLCLqp9ZZe8f2;PmHZ_Buc+l%q+`m=S$6#et>ou z7f>BOVvjdJKeKmGVZP#n5EF@F;2EVGP=Z%KZ!o^+TcecI6n^>ZfsFSY5$x)F7%3F4 za2T`%r8^8VGcjn>_r?TQgDMg9T2He(haDf=Kp8lwT6D>nmx4g!mGvRmJ1`|40L+Vc1T z$@$AhKF??SA_0jBFP2El^{Y|O!&=(#H4f7>yQ+4x(_{g=^LQf}+u9kW>s8g;;a6C1 zkah#r6lp}w8Kb+d8woxPfTLclD^3NvmM2n;l71H}4$nh8<+3>DXV;8L_dBFFk z>h5qJ6)fogksC$(7S9ovuH?NgB$x26T*(tJrIhqKpDPylpWQmezuc z&mw(|Y%{s&8oS5Tw*lFeDZBZ#7_(ELj$4uxf^Jb32|tSTb+^S8br&0miaO&-q;HJP zq^L*PfJW_iw;Eo?M^7RXG9$oGBL6w2E>9x!nA3cZ*zC|{m2HhG1k|vHk%Xwstz(wh zfL5Y_>6WC&0i3lmpE=pL#}>~-`HM&blyA2IO?l0Kqdf0jYsSE9D7;Sn-c|T8pSjz2 z%BEByJ8lD-4!^q&{X&hP8v$_xdWr|`2p2HBu%zGYe99kf^k7^?65x-^HlW!Wxa5{Z ztPqU??tyDn$ZYM4`7NVc$V7P&Bmv3`+CWswq3GWhHuw7K+Ds}2wQNA6_PduW`!Oh5 z%uMq2xAlS-_<|S{58=I0I{2W64QPf2y1FIl0gz8oeGk}@u3BfJbkI7@2BOjmo)7xX zZfrGTQVWnfezT`=lO{}=xY|tObNSX1W&q6vD2sS1?n4L{16L=$ z^S9i&VpiI;n%#bPZ)HEMGfSBReec_PRppLcq-M`Yjvxte@jEu4nHqT0ElCe7xcKfe zW_#adTRaoxKOzZG{(}uful#gbvlGjIJ)>Di=HeY(X>nD)p}IN9m+SY8cFsL_n|O)jK}k^j+nL%JxapRpd)}`4l@Yb3 zwE{{4t#LM>dFJ0~mGMryQ`4;L@wKt3l-FC?fX3~2FA;bhU5w>EWm8i2nHcwJHe8H_ zj>6=3n|R5EihUF&kbV@Vl|I8m3p##qve-;}wT@ZMH`6Yktl^P8i^wHeb|*ItiHSvZ zOxmQnW@GV0z=p+AUOto?{y?YdKFfwxztv4Q24zf}R^LqU_z)ud{_bTRc{CgRyjnvs z!P|m#rEhe__R#gAyw}uAxk-)8w{m%3{9WJb>ZLX*PzJTtb+EY@+zz-Yo0z3Cxv$2T zwJ?`?kN?i6UtTx@ZL3Xk*Om4{OS84d_qC>s7kt|zngqTjM@P80QH zu*X*rWwiH<9q84zW(-4Uq&n4YXV&(WLli=H_p*^UY3%BWGV)K`nTak;?b@4_eYO7+ z)7kcBS;{o>FS7!#-odQmYppTGW@Xbg4rlj}m675V?I?`u``@VK(LLf-Xe|!)C=#jy z_vvK*;+uqYWwe&LSwvA7x?Nnta;LNTkS`TwhB(aAGcH6DSGt&8d>8;b9a-k1ETT7W z%nxo#&L8U#n`?_*}7_1|3i7DC465WQqC(V{X%cEoDTzq`u63u}{Ng~fNkiyT&3^GUghND7@*ha?e zCAtkmkQj{Fw+5NJJ-*2ZwmW18nq#Qg#B-qXfnN+l(VXbDp{7AHK=X=UOP&KEnAb>s_KEg2u*`Dk3O@bYuxnJij>79Pp1W+#*ZaLHuO6PzFvQ(uKA8v!lfFc^mSC z?Z=I}AD>2I@IYbCeP&k=OS9ofZ{BjAk)OBtwsQeKY+%(qyzm&atnYv=rKUoW*M;mV zfOzOu4Xy)>G3*AuX zSL{~2-JwxLMjqVgGT9t~x)Ids1HQ1aFC~L;H6eG z%+bh8m1X0OL`QVmb@+mo3-f!MUW*)10rTAssFa*-*7Yv90S8okff<4%@k z3n(q1L+4kd^<$GDKwv&RiU#xH*(sP0br{TtDLt4EqYju4{{riw0|o2hUtm2nNojpj z6@Kmk^LuaF4PK=5!rFYrwmwC?FWr#Oi^XA!xn`WFDIYw?T<$%M1x`?bg>%h%KBz2% zXUO4;rxZ)>!t*_3j$l`%4yZzxZpi!H`ex_Ii@3C}BtKYsNr6?#1&Z@#^UVD0GUkV) z$>Zjk&#^lgwr_j8En#@{%r37zT#%f6Q!SS~j7McSo3@7@Ar-+%7t&Nxur)!^2F{iPP*a&&L zmY4feyh>r`Ylj5VRxUCNh)bpr1Q%rUDZ|B8OzwHqT3|@3nZ%MD`Qn1a#&K96aYu3@ zpHBrwV*!}a9|@X^SPF(Ac4ybn+3ZjhCG)b{YK6rI{k!jA%E6ndb>{VS|Y<;~f z&iuC?G2dW^^_+azB@4TWUbz1zgc|WVA=Zn2xFB35j zhT+t`riJRev$6M1GrO~nm>Q1KNA8kFMiCMD65HLcm>XDs3`1eyR^_bn^?ucSiH&yT zgWH8O$)~!d*UXM=HqHl@ChJa^K}4jb3tl&$Ws5Nkmdd3a@{Kd!t~bn6Y$eVI{rK5^ zW_7j+!?GXeE#4$_8?XTC#l7ops#i85Jve`Eg4Kp-w=lJv zZesJp2hCVY1e>b~SB3}J$F5AR?J!^_IJwhO-jylTY9IU?aEzH8!Xm zj%#eBPfWTk=0@V~qO{<9<|Gg6hSkG0Qss`BgIGTd+t)}n=ljkss=@zv%&d;WLpbWa zZ@#aw%4?(|dlt62*fcl}%EQOaTiz*u>m%DzXHnD;dh>U)En9#Mm5nxbbygKYY5MV` znc`jgx85VKby#<36#{Klqh7vT%-^vQLp0;?9{i zX0><)qt4f&hqWuy4pD2wh62?n8%fc}^$=~7g=oza&WOGk*Fn@gU|bw=#vF<2cstxj z!DzGTZ!xWC5Q4v2}Ozo#m49u+!KM zSTvouOeO^8R_x@r&?qT0x7&?%@uZV8?GKRrbFJ2{dm#_euV|XrPG_|;lZsgBm z;d`kj=teGIGe?)h24q(0irf|{>FaN8cKwp>ZcNB4{Lkz~HAAIyWFp>y<<0H?nfqBa ztQeZnUR@o@32z^CxNepgoAbBz`ud6rJ;?y7V7%$zP__S`RUQ4qEaUO^yR8p62QyPO z>xOxbjmE0PY^4*Mgb^9;*td1%BvbrNv1lO(xYdz~mQ`+HetpxNpJnA1z288#oY*6` z0D9gc)o&>gkgwM+x@B(ku*WeD0Xw1>#F3Rhf5)81-}ueU?-koSGSixcWDQDk$PlmD zZ9UG%|89;%%g^J=uJH~6>&*R&5&&x-6Et9wW!`2h~LDt4eht14kW!)Q8%W3sz z-{Nw^Nb!+Q{S6j@PYU>QS?{o`7zU4hl4VXP)8O3J4t5*ogs$UaVXG-)cTi)6y7ZY& zm=BAf&cmDg4q2eU7Sn>A;f7QfbRISGS@kFkRnVb}6dT&-rF_;tPq8(7BiHSVZCO}D zG`yoX*e_H9VSwVdX4Xd59v1=}_pM$|k`soeqypAR4?h!Q<>5&`m__;Kr0O}-t`)Q% z^{|1M&vxfn3`=(wJFly`?+(XK9Fdt5i3aiEr&9dsqQZ#;2E|=QOl`_m{IlX^RB_l{ zaUQ;6$kal-^sR6_)n#7_K}?WwbQZGj9W^=c`DZv6w_>dK*lXB88GvGu_xJ4yh{%*N z^zu7?(W-Gs^ntfd32SPWebf08)*$vdRtrrn^76l}_7fr^CuK)ViUxB5!{F%4a$oj3 zhGDFQcmHj=U$Fp=^c5F}!;UP`1kHt)vBpsYpt(eD0ny3w zYqJ!_3s(xg0S=7e~wJ?oEQ=zgy2?WGSELH_jgMN_fS(uFwwAkSUQqP@ z+`P%{aB;q*j#Zys{5Lk7CpPRVV%<$G5FdOj!I#|$x1##Mj4t)84ipyQ?i%A#((QNg zYg?Bz;wvik&d*!bxAOY2KlR>bW__zy7OkT;&)>khhgI~T*3qkh)emKf$7vAi(+#ZR z9##kA5UsY2M3rrcVHqucqLGyk@ioH&s9kuQc=+kkR@3x`A%^8{R0%lB+r$z#xM2?I zD88TxQ9_J{4gI&9TDd%FX-%zi9`6K?*3XoK$|?8JyZJn-aS#R=k0&&<-ehyIX3;i8 z1uyBSj5M#DU!^s-`Xe8Z>|w;ip%)1ViBTlE1oDi&NuXYaox%}6u*jv#ABvbZbEyp5In=`+1hH$ zKEyB>_H%1u*eNU^$$6JHM8HY>XdA01yM*%rajUi@-vulH#G9yqllbShRx9T5qSm77 zKzWBtZtLW6-JC*B1-08-Em%pXf(i}=F<40X+$rQ#u&RSqoQFDC39J?-0ROO##6LB# z0QhGj6>zd&Jz!R4?QuTkpMb;sHdsiR?-Zg6{3)H+b|x0mIx8Dmvla_m#C3Bv4bq@i zcD9zI#&!um0f&o4Zr_NU+kk$-?cB!dZdP6Ie6Q?BD)61}SXG&QctdPa!CQX-i6}8%o>UVGeIa0jDJuZ=y+vul0?nmMe27-E(F0RnHeL#)tN{^0U2I$+@vs4Bz;k^#(hF z;Ubr;Zg9UviNg|xbt2A}kDq=sIf4J!$Lh>J#~H!sDJ4_$`0b3JV1e?v!!c?5`&xy) z>;lG%jJNvm&BMj1it89Y9VeVH?X;K|+kC$gfznnPeAS5eitwBmv-##XTNdVp?p-La z8A%>!4X5fxPO|)K@3l%$^x6}aczA~Cr5vAlua!z+Dd@+7!bxyS>adqL8f4u^r4Q{A z-W)MloXfBaL7X!3V=E@D(qJo}$6G5$#zdfYEQrIibYEnxfo%g)k27(QWU$LBF3pcj~D zQeb$nOtgXPYkwo|#VwH}W&k8j`hRVwg$e91Q6{UrX3g6~K)2>lCe{?5WVNFj!TrPr zs4N5li@%&?^`=>&62rICY$uT@$x6&$nQSF`Z)6dq+Rh+x*$JgBonn>tuzWf7icAo& z?XRg;Cn^YasD74p2&_9X&HCIMmouYsiD>?L1IP&%I`aHQ(uq;0^$Et%| zhiUoBT;bAGwTy7N$h*6?zj5&*L(+-4qLr=1n!z)jbA4_RAsu%|E%o*@W$ zW@ECoz$sV`3pzc+cd=@*{OZL}HQw_Xt1H`&70DhbwySRA>qJCr_1;%yWz&glC2l?Sc-UOC-xHQ{__Cdj=6kBbE`)M8KY(_O&J-g zGX6-=dhFjz&k9)`3lJuLFwqy!e+-F6QZ|?1O`lT9O6V0Arfo2+{-}Y`yrj?7qN4pyl*qosVFw|Me_UiD2*k*diMRs>@h=~@p7$2ajY4#zYI1orSDvgwL~?>7 zOKh?Rd04sJs7HXwU=56b4`=9Ar5X{@eONiS(}yq>B)Xt0e&`7+iJAb-*D2WKNoz3` z1P3`RBgF&)hj)w?Ytr#B%FYRmA94J-wcg-#N+TzDbP5{E5Y{Jfs4SUTx?Dh7|!n{?PnfJ;*>s}8V?J$oZVBVMmRy-9HRsB9T3ulE%fjr5G zCd`B>>7aOGM-V7u1pG||-S z@`WuI=Jg)-rkyUbq@AY-sBzo69Q2OZy4(eRR$G?^?5#_YiEn9|TvEJwcKaQ1GxDK` zSWmHcsfnE{lMXP$g~`qhx%doYjMzT6@`xl#V~mXp~Y@@Jj=bFKW@DaWlH@@J*| z^I`FmzVTQ!NoKVmn*~`c5Vt@S?Ir>_I0ndJRSe|Po5d76Oc*44l8AxY2LyLz>;sli z`+%*Fh)3<0r5sFJFXXZJ0r}rYtbBFupEzb}z2OaJ)f#zUle%?lkE%UtOr0@JMmHEW zQv7FB!`k&5*KJs@VZFwq>(_16r0$r84SB{MARqRg6~``Na(n;pZwzPb|M_o9820~2 zzEel7sjNU=-Avf|v$N#K0x$$0J!UoWure5jA-Ebwpt{4RpG{Sn2xxt*ry}>9NZ)|E za(~T?jXxNKi8g3+1x{K+sSz-|z@vh0M3Lz4)%K%p388CnN<8}`2=qb(0hK#WS*55T zsDxJn#{DOi%T9~4D?|Y>!P)mY|B1=^KzD;Q-jBIOfMH+rW*(mKp;*)7G%ouXwXbP= zhlCtz*Yyvr-`P5B7}PF!-z<}SVjAYJ!&;gM zXuk565Sun~uO2s9m>Lmn5Uz9QtWnemh$|6H`BprRAP9J;ydFU8owUU7tg{|(k9?U| zwm>G1dFG|_Vm&k*mk?|s2pFIDf>nzOLep7sL9G02UtzO21ntcWRy~h*wryMOSi23> z&BQEj{bC##IOoEhWL zjCNy0_2-vKVP7Nydd1l8QZb+}Cz`;wkNzUMB?3bb2m*ptuZTzc1eVp9ACvI+#2V=I zsk!HffNt&?7jxk~4x$dMSbt48n!wQBF@oBA`Cr9?0H;Bp8{1T`(Iha?d;0TdUZEo! z&m4l1h`?Jq6>}JI$ zL_oLVLl-OHwF{yS+89Pq8%xa@ZcL4X`P7|K73wmN4^>V#<1nXsY(Ws{=3B&x-C^6S zIFe~1k_SAj6jlR4BnbGhe%^43Q_znEQK4?-4G*ExP^elLYUSa}@`anMnHYvf4rPkV zPr{BVd9(cC040Jl9WcnifXk$YuAlOU9}ah#2QzF31KC_&IJt+%b>dYs6X73YKCc>!zaYcut77kMEH0v z@3$ztXnqvgeRoE29^)^p)dr6m;{1%%7+_KL1=x;D`Z~%z%d_H4CnTw9j+LT^LXm=#Mp3ib$H#b z{E-{eoZgvJDLll(T4Ohyt4vxO$pgdOh$`WEXqdw-I3F*+eqk-%uWGoGY)l1sixO+{ z^I=uP)!1OH1De&@s-#>4u>kZ0MXQD1WD_uKx2gv)46Q1%#bl3E%5wA7C6jf2v-%K0Axy)6Gd``I@BZ zF8{*C<>y+2J5o*3<#1Sw=!Ygl5D3ln2H`lG-8Qsn0o=H$p@m2qGSpLCoSNU&BzzB9 zrn+0nYc>`QmKY_p&u7gDIaS<*q#?y42N=~o4V|iCl0|et!KXA0*P*JR)5U_Q)4k9% zT%AgTp;L%4)X<3}O*eG>zc#c?^Kc1=>OLH*(xXHN)xUG~gW>dz!bU0RB1Cw2?Z z%27YI3{Rxe&;{>kMY<}|VxSBDrd4>3*L$=;=JTD+s=1S_(98YQCj18b0+&|ACgPxr z7>3y!e5>5<55JgFoS`;WhOn>APT@gFfNWQ9 z?j$D94T;^dmoGwz8}|9(e&O!yGE$-}zl0Fo^1uc6 zL>IsGm=S)N`3eb!^ygkH=Y$g?-;ea>E##b?aA-| z(Q5rOP5lRj+p=azv+_+7gy^;e8oDRC_-4c4@L@IxiF53m0WQ8NKQug$^}#v7H$4%e z+v9h)CtJSRwQW&V{@bwdJ!}cmtbAi4M7JdnbWhC8H`|an@y*kj`Q{0n1AMayA-X+& zcYCtso00d0m#{C8QstIU5u%$B_{crc#Vx;#4sT|EB5~rD>n?8TI#!Hf*KiJS%P$Dg z?eV+YlP$MECs|~CxGAevSm;ad48WGk2+?f`RCG^t@lCf0;q9yg5+}ZCTiDsvq$P!W zuvRz+*wY*#x;=h(d$RAFg_A^A^B~f!>dkC~=(YrAxF@>!=H1ER*V$SmPJFY<#WyXd zhWoPRI0yJAr!p&@Qfl z5$X)i0IvBGA-Xw!cXP7unulkLCgm?8^pPf23?aHLfx_;IF0MIxfA}|6ABm^CMy_GK zb&5EfRN~@rc|L7hVm|)#gW`USnm8}4K(;OGSe(LQ5!8mC{ds9_UTcWhb?A$;-~q9h zi#iw(i4rlx?FiqVD^VR0=|1qg`yl)Ah?ysvO%Q2TRdo?UbXx++?ujn(m^eTDIC~O_ zlXz@)agc~dXSM<7fV#R4A-X+&cYCt$oAAQ$AodZ`tbB7CA-XMr6Yhzb`Q}$7PJDAE zGvEA#bAWFyB1E^x?`}`_eUmFF+Hu9ALLX_z@d(jv3B1&PReS zxAT#&EeqH6ZYV0Zk{stFMJ94Sa(hHfJ0B^<;C$rzqLK5F&lgqaBbUlhS@Ng0bWlzC z6O_+f7s;Rfa{u;q`O{DS^p-z+<lpHl>+GJi^z(J4mlX0ROdcJ%W9wtA1~yJwJQBXa zE?^k8l?Vdk;F4A08dMPW%L=a+`;R}!{IE~rRPfU3@EAV%k3|Kz_}2_}3#*cQH2g~6 zlsqNe86wXNj;#@kh=Rp555?wHJ5qL59}-DBw>I3%!^$EEww@>gB?~a2U-7@Bb$R(|51YJ)($wLLtT!muIPWrvt$tszR}X0K)iG5-3F za0SW)wVKF)%84(8J5WK`;)aX#Uj8SQyNQ5a@E4s0x9`()TJp(GalnDV@H7A;q5;4m z*dL1W*1N(h{=IbR-Qi|b8rtrQyGh$6)dD()bGyUW*cDt#a3ev$jg?;t7cGF{eCpN5 zF)xYAd@$ApG;?@GDt&CD-?cpJf$`>s?9Yjb58O z9*am{q*Z+-yi{E6gmG{NLBJV#UkfjG3i`1iisXl{iESyIrjFKiOb@jXg`SmI1nqs@ z>*1Ju-X8ylweJqBqUhfCF6jyBA&?$IZwW?1iLi*3xe>fSb^`EGqZPRcklcD^ZWj}+3el>oHNgyIdkSr+4TS3-qrdu z+fTW@_k3%q-&1>{Rv1-bAAX83YMOSR%)P4PKU>e6lMW#(&US|xvfW{Z%HIV; zw%cs$`W=m-?7bLG>)%O+)GH7yU2MfXxOeHt|JxK!?OQq_;Q_slkLZLhwbOPudsf=cALF6&)jC}zvtx_YIe=4nRMGDPQRU!;qI__2G=H#^}u-= zqwRVyk1m0>vT}W<9mjlCPhAi0<+uGWmR^7nmBksuGX8sme^%O$P2ToXOZO&Bbc&+! zyRdT3;>7k7uIk9snCP?~utj$Kz{=B0uhSm*NRRBSQN{PEYE;2c;YJlR&tg=uluP9r zRp3YFsDj`3wN^dm7*&YJcvP_@LyaodWXMs)ZKB|}h>u)ha9QGGmH1dLK2D2|lj38J zcw`nntZ{?*DNb*~w@dgZOZf36{HQiaU~p!K!MPV@aN&>ABsw=}fnEWg<*qBHE41q> zQtZ0wPrLHHk#zMhOZz6gEgt3p!EV^&|E~c-Lv1YZhAx4-xJQ3o+S!xvv3{Q$pzRJD zew*`4udzSK0fiV0WF8j3=PpZ^phEdBzb{>ya7LGavRzrn`pqf*J8mjCaQ4H5fArhz zZTbCD|K)e=PM-X8Y0#4pS4ZQKy#ybwTUWo$LG9^Mtd6ztGHeexeMD*<=_8JNZ!?2h zGq%%D+qDU2Ds6X|%D@Gz6SCcAEgh$9_O+=a!e58Jy=)IS^(}SlOV*j2HtD<@=cE4qKA9_8E?-RPbHm;@lML+=XltWD9yq4I2+tuvEKTggeqP2?Qz~k z2?6~M`|x7v7%kae+au2M;+=}Tp+~D9!URDkJ^9uHxv{IF)M{YrIi{+>E}!d!Ptvrh z#l`1+GL{Oq@^A+~ySDdoBi3B*`=XPF)?s*HPdYH!`>1Andb^QZyxcd48jw=avp}JizYt+d9g<{#u9K zYwwRmHGCvKJ`f-K@L@Sn@#PZ!LUWh=Fqcp~TmcfLKjbon{9%^dh3c*2y)vON6VI_L z%+3_9us>COQV=;bPrHo=#K_1u_5XfCT`X=RWE--I5G9My9msSjYe`nE>bX%O`IuLDop_pkxV?NK1UfOM zMLjy2?VXmHEwoeBgDW1PLI$P8m6saDnbIU{i94PzM}6Jo8u9pKe9W!5UA~l4+*vZW zVjwCIO-FoH0jYHG&dG~n1UN|jgZ4Z!``9p4(kwA= z@&9Fea_owqx}<9TGB5NVVTwg;gNeJd}#Zjh%R>JkHP`=iR>^a?T^aH}La#{&^Go@1He)?@OLbu`RrH7X2p-%n?IA76F)uFj|~3 zQRY_sD&vr1tq?!Ee?O$L`d)Ap<<@S%rM`N(Y_y*9Oi-UngWsT?*~n?YVZ%Y{)6%=I@0V`-VD5UXmT4&3U#}G zel%@s<;^mtbJOfjD+YRt=)+{AkcJj}qm23TwkL%OJL36rEUt@@Uhp3EgYo_GgP|qf z=Eib$=i&C=qE#DKN7Kc1Ez;?d^l_lGZLuAzlekd%&^;ygg`TDQ^3xkF8A;J9wk0pbZ`!+zgFx-d@FC% z;F@}L2Z7@|0byk^{{7<5)%EEU@ozQ^LStoQXWUB{zbK7dlS!Y6f8zyWmr`#%x~dEQ ztt)u^r%zQPebxmvuu4>FtDY#vRbBCIPIvsfpvjv0bXfd*XFJGUJ794Em3PC#p9sFs zl&on?UvpYvh<^tTSd&K+df;E`f`2D= zToX&DdV}=O#J#Q{n6^w@(~zz##lMdT4Swo_I(<+4n=8zB!Sw(b-4p*#YJ-3OK6h^( z9q+IrnvV8_W$Y5wKC7R%F- z>!awRxc8E%mGuMANhM{AUbH(sCNNqJL@7Ld@IYOmHvWyJT?4&2v_#xnFG|*ZkhdvC z^u@nFi?)hKqVQ@zZ$91A7mBqS>`h(t1AIlrbaZbO--)aF;wlC1rQ#lObw=D9YzCA9k62-mK;_4r9?=NvxPuz>Hw+NT# z#Le`2xJnQ=3&mBoxN0S?qQzAgarL`+uD`gdE$)pJSHFmRQ^eJe;%b(-x=eh#KwSMM z?ky2lY2sduxVk9rJtD6D#MPpTZQ}B8aq~5C6(b(pC$3J4d!LFc5ffB=E3QQMUvW-c ziJrdVqPY6ExQfrhRh;;?uDBBYd__ZXCA#v8HsVTj+7&&-mFS-<28*k|L|0QWMqFMH zSJ#QFZ^hMIaV2`%iYjp>`qT=)xDvf*#aeMySKQkqu0)Sm@h@>D`o4-i;_8xk?n7}U z`n!rR#noAH??-VZy0D7hvSRyRRv~(;3L_ggMZZ*$B(6jURFNaDL|0SMR9x}6sJ*xn z{YynJT;1f0m^W+cT=9BY8oqT+CwgtDccw9st+a$H>jmmi<%?@lsNiBS&A2+75By3P zD^W0}sSg!ANh4 z@sSI5zY})P$Q8q>bQE$bku>}YZq}jJD2WQL^5zYiY>5^c1hUwzNGK6R8I@>Wg9A=?aht1YNDyQ+nRR&uq?$`A1eK_>w@Jpa;&$| zGf^U6Z6QKM$3M@c)l<9)o-|rK!CPh|=W2~$LoGin zBbk;=@g~uTB43K9HdRjc4%6B}T&`)s!+$~>LbFJjj=wj-Xp(*TqIq=p52vph!^A}g z;~6Z)4A8_Vn~7Xec|L=Rn|fksce7xe2My6Ks#mUPy`ss@er;tr{dt|YrRQb|H&=tB z16TV}S8O<6M2m{6Q;>6Xz|6=MZlR}9k!vqMsbfM-g6AtK=5tL<&394?4b8(-FEtCMcs_B8 zIh0GopYeAPZbH;w`LnBHXu}LB6h$Y5yjpoy-PPRbOQqcfsMg&rJaJ5gaao?zi(OEP z|CLL7#s+(O4!IPc<*o4aknmkKcq;!u>04O=qlljkC)vpb-#*W*F;8=N+e5=V_2|MV ze}d-*iFlokDBKWDn&(NSs>HRiQsb#E$Vquzd!F&MVJ=EOj<}U1&qFJzk)SJdP+`FW zG@tS+;3}(Kcz%gzjL#!BV5sac;FP1w%4y5ZXuSKSfcJF)yQ^0v(5zd$O^m%R?6*V3 zZ~Zh~L3hlD|NT>9oYydf{Zr|D416Zu>diKOap9a*Wj<||dHC(s<#hjT-X@+#v~fOa zz9`?Sc{ zXq}MRTK49B-Z6Xg2Np}J2u zcrRdi{Xj{LtK&n3Y7^SzMOU~@zysM7SOrq zV=TbyF%X<`6tb{xVh@ArB$jHe2yXI{_+D_jtPsZ@H@=S}rI z>V(}$2dlgt4a9mJS3KbN78-{YCkLH6!cpWy~>P8chnFExlo(be187x3`8bo3g@4Pt?cf;}rgA3m-m2(Xn&6kw80F!oEkk z@UM{g#=8Zwk#8(;+Q#-|UpY;!L14L330YiTV?S1YAPAN{D4}i;I?* z)3nvzM#i2(>N(t3Wfx=a4iTtQ%EV#Ez{6MkR=F? z7m(59djSnH?o)q?@uLg(I~Q)x2fecp^(?MIxLubHt~RR<{agj)qwB zvB-G+Vr0^yjWF0*45_)^8|#}L`?Mcb^tG8ZD6v)|t=|N<@{1GvtR0-4BKRV ziZLcPVlm>Nl5uJI>=%s|McjThH{X<&J>~6$Zt_Id%Hfo=85V!F0ve+OA>zerJnMqz z4P~`z3%fE#xxhxy*~egt<&?5r22LU*Yr6$@zeHi)t7Ee5pWTeS)2=bK;;8EknEhQY z&?*Ng_rrak@pdwHDA4D0&|wdvK{06Z>RJ&rbV{wdRN2axYHV{MZ*d?mdk4MD;_coB z#y1N2xQ@(y3?py2v6hM+kGMd;aDcKWS@E2=5n}Gb7ZFI+ZlKi0T}&r47sm$9>MF7cfSiE5RytusdN0$)BUXe#%4){nLx^fiqlS6-wi24b0ZYO(Xtg zG>r`s^dSwDthQn5+00n$LM0a}v)lMpu={~T-KV3nt7cu3UqhVwjtlTj3y>QbIB+yF z=3?Uafq2@#(_6=gYA8Elyxi$k)7#2^eNav!osEo$VtPGz%kQfyC87DW3n7Ymc)9xt zY~y=oH@e>v1=~`CJy77Qj|dgL)}`2pSlY4&o}!rrtF__A;;stS8Zw zvx4OcM7F!~BBE*7+vo(UEx8(N{)VA3sR(U*zk|?rw?ci*LbamWXUZay>8s|;QamqP zfEr&fh`W+6&%fmLq}6j%3oc}o^??^X3yVlo}5M4fNhC*63MIzQXc zY*x(7Bky_J8$}pXZCX)Ali$|Eaw?gGh%5OAU%GI#kpejvlP*z_^wRqvCs#bKN9bAN zhN|{VAjx$Lo^w|gAc1C$4X{$q=at^!-Ir)ELG*FtoHlBLi5s^i&#UN4`=oHZ} ztO)j#aR=Zh7dDd7xT7HKDVd$pKtu{%H~{r;abnN2W3xGdEJqFSXy(Y}iScx4RRkQ^ zTmC3xhbq`}0zn(sP)S~(K2;s^=6bfVG|h;%G%~A!yZzkf(W3o_;S`Q5up>?|L;#Jc z@?#9BzhE%UfIbyB6!V8e%ya#&|HRuJ*@~3U(GSK^;ismPsD2-uCtM8VQ^B@~26VJP zf{JMIy(@1SL9IVSH(}uxz7ZHjCqILa>nw3QXt=w_AWk{{P&^W~+t7@Dej_4*n{d0Z z*sVj@OgBhz(2ZDY6eS&q$YiGB|G6NQnm`$_=B_QIMPI?_XIOGHwksN&Y@1#PgPtQ8 z>^~#{*J^<5dX9gECcFO_#^;NU!dS>c)o5QSwO`iQv~>o5=$N+`=Jr_8cQo9E$Gww1 zZ-xch6Ba1x5;{lUNM9UPodlIte?gnXuf0j0-zE638hF)XB5coH3v>HRF@7$rs52o^ zi$6t{y|I&Uj*-`Yix|0tP8@^Lw4}*jn?_^C$O%+%Wn>)P{+;Xsj@r_rjhmQUbD%uu zdj!g3CDv6M7WY!e>qf@Yu>xSV*jSA{l0ee<9WHJtvmV;SM)Kkxv3Bo1iF&t&ipqoe z3DhHbYwM8r->AIBPTV`f;&Rvh)Jd52za;K<4VQav#(ny#NW`3{Q1Y!#+|3rQXDF5b zgjNGG92U)qrfv72ryX({ZTYm6byAashF+ga?}^Ni1pmNdG-LiYL@@i-&OdwGd9dW` zB*djR)nYl*t!7cxJ&|>2*k_=5>mGzhDNUULU1C!i(8V{kv3w>z5KT+JjE<-3`+y*N zYfo<}si!U}`4TjSkop{lcXz>evEaF#qXZ6CnEcZeS)gY87fLC&=~5!@B2DiXO=te`HZ?jl zqZ7fP9Zk5umA(|sTw1#TTQ!sB(!80?T;Qk%mghwwNLgWEkVP(0D??;( zqGo9=U#{_v()mpt&PvrxitrT}dt696mC~=+S@1{tN{n9>;yE3WofCA!0)ci>*&Ia~ zXI!wST(F*@NMY@W_O&t!o68Uisq`qH%8Q-t50_`6)}fbTd>JAK6XDZcX9r5SF2U2@Yq6_=JM`nZid_^mSG;CUm_^puDIB$ zDvnB%d_|tkPR*ZS%{`BaKOL#^lUi{G@ZH+aFit8FKj^f+`)R2pr04){GW0WD_tyXyite1ytTbS4AXU0m25 zUD)g`ZXXp$puy{+F!p=Kn`F#vL5nv#bT94@uqcV5VGl;-azJTZ?-Futcp>W__eImB zdcKCn14{SRmhS0Peae>=;v539&}LV;u$NodY?7!1N2M-KMNaALlXq@`M6kV-L!cheq6_rDiu6l@B%=wsaaw{g%>DEG(|fruBWL zp3xF!qz+ShEk-KGb9}Ywz&BBOvi7cUp$>DQvTLd?Ml>_Ofv<_@9tnM?4t;i=zZsPt z1xv$zjpD(8vB-tIz(VG_1Igj)uAng{*mp`Huh@i$S}W-koksCZP-`!`1U%nTtF=*- z^RN#?+orxe&yN!AI~|Sd3ux)ID?XYNfvJdt9m`>kDV4u!X|_eKuJXTpi8QoMbTU2l z9Afnh+SmZiC6#73^H~#osl?fo)Gx-A$s4q6LE zhoIb1hn&3X*2Y)pc|yv1%qfdU1(!yF`Q~jQ=V42Z)*GyEW!5E=QrOPd$@7r}-0uYB z^efM205yY-4ZugY%h92|Z$WFc?-h5;jJI2vb;=UPwfA-NT#^$0aY|tC2k=(3r~`2S z42yd{Ebc=ceO-+f#j;OF=DUMW&mNq;0dAGG-qj4VJG(joy^(lG@7RmP4K+s6v=+VO z(az{4$0+nsPW0WPtF(yeHY2(=EtrBVzzC;^a=QqwTU3FgZkeb+H{^?#E0IB`$e;6T z66n?0{uCP1-6s|#iLz+*x}@0bSj+UJ>78|i14iUY=iZGo-6gBVfYhv80QS|5_RL9d{#XgDU-@ZI5 z9_-5!YcE8?cI{w{LB3M(pF7~KtSyj}=|Y=;Sd|p6K!?O#Ss9)K;=0Uuvcy>)Gk+CF z+X`Z$srxWrf|1c$hG(g*wSJrjan;+Sv*m+Xi*pgbktQa@Wvk%{F3 z$f$EJ3)AAm5zY5d;9YfanbK+*lTD{r0JoFG)hxGtYZ)%IZEZ6uq_R@zK$n9%}(6N!$YC)x4Vq^}{xXy(=H9WSN-D+;EQLr^SERPtOkE&6=2F3~(Y_$c;wv^D? z$vx9EbX-i5YS$krIs0`vyrQBsKP~}_En!Ku#~^xm-^Kf0C-3DHF&1q9qagp(Au)XF zZk%^1{EJffY=~oC?vQY`ud&gzjr0w0@1xCe9cDQD;vJf};Y!IC(CqOrHw%d~;0-2# zs8I?DUOa@v>2I@)(X@Y4Od=KE2`>ZB9tM3#2%U-D>n2vLe#ze*A4TK$AdKqqN{l(V z5>(RR+U?R09E&NSEtAnqmsm121H8A5={hY}^VAf$nwJzJ{JVuHBFgn2#-!5t3X}q# zK1?aL$x>`-6S8R0C+@ojed6~D^BWD5yF+N%5-BVsBEtY42>~)K(Ae#}%IVlcwWDbB z4>4)V=-U&=$yhJ>q{H=N^UHOxs%~vf#;oB7CIus@WlU@xPIDPI zt3u7SOH@&9b?ddY>3DRkO#D}dl{F(Ii^)V89b_&ZT|JzRrNx?-^^6kvv`ge1OeS+M zkenPFLl^PIj=)S9BQ|Wjz!mi82LwaO)Aq316L3;;9 z-0069^(WKr%Gl^6^_l^>?7xQ+-PI-fCSM;D3ryMI; zYYO9^Ndv2P3iO8rGI1!IgE($Se+Od|R2$u|AJIQ3c#%O9bD%N@XQOr@S7PPBn`G$s}lIEfWh z6f_D%(U*7m>KHyHVu@3PSp9qawTL=Y{$p$ey>vIag?m||M(|yineivxoM470&VqgvDmeO2{z*!CFi(Pj!dEn5wG5l z+`$p2h%YP=o~NkrE|p*O+$FBd3~Qw)+*>)#TI$O%a_}y2BO;-;RfxSDi0sp56vd^=sJ7Gs)ZAG&aktFq+}`Ae zTWjBduZ=NR;Z{0u$!eZZH=TYS8ka5Oiy2`>RD?vZ8KDRcGvc6m-^{oan!glb=hN+} zbs1JCIQZd+89jCu9k?nknochRNsn6sHB)*dM3NaXN7KpWzNW?}szisJ*a(=1BB&2B zt`YQsxLaoI3lYSa9L>ISRa`P{=zt+yKT1V%V$nV8v$ga>I z7I>*0m>Gfk4n}x{_s{2Xb(L>_Uy0kRiNmstX4pQBd6Ks+Ng63{gh*lM@W*;zGvmC% z`9;IwiQ44vpS2J*QcjDzij|L%+r)h^(8Di|yt1EqPfT<+u%)%m*}g@Bs_KO7%xER=K((o1-yC6T(sGq{=$U zwCOR7xktGKjOb|E2b&s#&lbkL3g|8iNX43rRGu4On}(dlQpXEL0g!)>I(?JMe@rkvZ7n!h9-($rM0iHwD9JNSkxd277gqj-yn=Vd(w`7>ZoHSbc3RrlAMQBZJLno(w z@jOr@U3xA)hN>QkkEQjm!j~RW&<8@$%H+;I6Q3rYi=+KJAm9UM8TQFCyc43?v^ZYr zi1Xz(LQe8ltXDeyI(q)gI!o#=gyg6}&4vx}2{kYJ5@_2l^fP}s#rz%;!&ISIPO8+H zIY;@WPD)UFIz(neP(x>rRlAZAk zruikT%h_T2rK>udmdJCgkMG1txmp4HoxmLVm%JZeKviF$xzBnV+%I*aV||W}&dfml z|H2Gs6LO5bO61#4kuu;Fi#1AL_to>f!O}ES+HEI>C#7EaGrpcQpkEa1Sr;r%PrdGo zUNtizjy~Lh+Qph2aIVpGQruAP`v*HsNGK%Iq}mB;WL(gNHqKgxZuo6mrAoS#?l_ww zIze%kC7#qpWzzOH;T9l;=|Z6#bnzuqM8R%k=7TI zG``Ban1;lojgxyZ+PDkqmm-niP@ky>R9!mS9c!$Q>_crYbZUN^)ch7e$f;@WG5&rJ zJ;pYr;}$!xnW1>!*9y_HgNRLG;j%x3RUT1rU)bTWgI%ots_cQafV^hmQzzzOCnkDe zEZ{xh6Z=JHAHY0aG@ba^UUOnSBOtNrd0|2loxK%9^$78hUTGd$wjV#nlG1k&@gIK% zuY$&v9`AEEjNDKn{rwTh>m{X?I;63;#Jpo7?f%#oL7yIiF?M5NTD^7dYStSQT>OVG ziM~4Q%f-@1E<%MJRFQ0=7I>yPwZDe7Hzs#AE6$q7?DkkfGR^!8%f8l1aI%A&^O)bq zVF&ZazDVl6F+q;XS30FE3rS(aMkySI&8HJwol+Z1kK(Xv`j8Ze%(}foHnhPipMsoK z5j6ObTFF$kCjl!|o@LiBYDFVzpGA~#z7=2k>Lbo(j{b6@^3)En;%L}czHF?pbky*# zQu}iuj(A zWZ(+L-7>?H!tv+IW0)nrN=muXDFrboR{sdapZF^Qs~3cQ4i5`HGz88S0CpS|fDu4B zb^02`ua?5#_3cHnmP9RT0aMQY2KEWBFCKD?OYiGu8Yvr7>bJg@Sp3dJz2HQ}RCo?8 zDqD-C$buTIzBBmB!U%w>m=Oa!0vSJK`dUg zaJZ57H+s8%-V=|Coi^PeT6)#V8Z9}C!awDbxG7Y49_lPw z=#QmxU+qY$>WyyXp>qiAzEHrQ>cBiB3Sg|{>x}@KH)0)jp&wM``7p$dHFxmDFIbHd zO$UEL%Zwn;Su-@p1Z5Fb|B43X5qDkV;fod~bA%E&IATve>^$P-QVHM9f|t?m3$;_J z)9+{+ox_Ug(8FdC@ZT*Edb6g}LQrPcD6sOLuN}`Ec&@PkwWcvy+*Q%ZgdV1ym`=PU z7Oyk-$`H8ewO_7XkJsie3kw^t!!jMv-A%_Z>bkFXqFT6nKnnXn6K0>VJ@73iNItj# zdiGgjHLv|nh#nrwzj+aPw!b9k?-nRe(^g*sb-!9D8Ykz(UB$_n5GP`l@v43PMxMs2 z&S4bVfcE@l8U`=$F8HA~4s7%I>x;e3e<|zGQ1fWd-*7?}Adjz(8~!5Cm5exCL&WH+ z49md7;S37lFsmrCgH>~vNnHv?`lCF424AXy^UjiO=VBshTUlZhO^ouVVmW+Bmd5AZ zrKY)Ana+zN6QgNiKeWLv=dniV1&05Z2G4oUsy>M+JYnqFZXs)IY?YctS(uCVh5zVjf%E(XfDDh5(rsXzrkeU1&}M%9=}yqd{*L?TPU>iB>C1Y1tg? zoaWA#Gxw9WBu3CF@pz_q&ech!_cWm1lJ!?PtZO=e^t2n)M91k1#O7dP>0pualZUk@9QnEg+~$->gfL@Id~L@mrf zZ+_Sks2Sx!i+Qnzf#)=Dt>bS9UtO3A^03Cu>|#w%C}2y!0Bp!gMCkHDXf(xj6EY(D}Is4Th)!`WzPP*Ntx`B0nc2aByO&T zQMYVZU4_J-rsK0=mUKvppoAQ(0=>p1U~-wwC~M`yC|61#j4Mr6aAJ&@Q(~ZJE`ShW zkVe3ThIQQ>KirQ+gED^Lz%?@8-_)~5qVCjDt!2o(G>q}9n^DgewqyJ1a0Wi}hJUe;wmW%%kkV^g~Fh=zD4g=Vwy# z7!>A(MzHdsmN?DI2lXQskul9ldDdT`M(QIg52*Kz;)Cn4Od;yZreU zvS#BqSq1UTq3s2JaV(JK->Ys*N|Q77o1wgzU3$V&pV+yV+?*s&V|XmAfQKys#++V~ zDHO-alxV!uTfmOLRdP;fa@f?{xAfQX9JOR<^n4kj2k!SqBN0AVs2WduTA20AMxNB# zA4wNBCB@3w(-`r+t7;>~T~)P4Z`0WM5V&?F{`y82g^t{B2z`T?b^v-K59a&AU}Bj_ z7)+jM>($0zU|g>-ueC5S$JWC$B`n%RI~p4wC~#65GQKa`!T2^R5pe6K+8p}u>}l1v zN!W{fIqVN^-PB(rcy({L{pJ2*+TVK$`dtfJT3~ete{;`U7NTZ%uZz2i1a7Q7nh1Cu4{3k5x&vw+-GZ3`*b`c|NZAKRq7VD_mp^s?QNArd} z+4WBke;Re}3Uh4U$K|*Cm|XBMw{of=4|`S5 zFxu0dn;y;sn&Y`&!ri08A+ONWxYGr&$ORy#X?pYo*z*$QSsjHZ6t?w9j-XbRB}8cf+~mL!N*);9`0+JF7H^IHq@VM ze5~L;(&5Ys#6sfVlA~zcPH;bX82H)m!hBz;zBj}@ceB&W(ajqDWW8R}u{i}i>C5Co zPSP0vxDfwzBZ}B`;T8TuqgWz}4Ns%sx~+r1#3DH8n#LyW!LG?sem$?+NZe5F2AVR- zV8cN&r)iQ$`s*3jD>>IXb4g#!pJse>>qUgEsYzr=3@IBO zOoThG-(T|r)>h2wTT&v)Hvxv7-{0u~a{8Nuvti#g(Vq*K%4maiG|R4mmL#3>02f-{ z{?eWF>TeRw$6Vbv8N-SN67^OcmDi6ycr<8SaKZj%!E(i;iX0V>sv1W#Do~+a2k?>;obY3f zO1P&wdlsbjpN>b`4{+9b+W}^sTMqfFGbw6kf+p5g>mAJi@I6ii{jq$ci$QvP|I63jo9Dj~+Uj6 zzr}?*&qC$O0h$c5h%?}C@Ar5g%yVu{)cnDvKLjZJ4_UddD zyU*jrbYf|>K`zjhPEdB9jqisA?Nge*V?!0yzacs;UHZ*8U4VO>fV|c5@}&qNepi6M zYJeguheG2Fkj%8&@_fZ}F3d9$lZG!wrn8&)gWc+bD&ldn?=pGNGz;l5DG)_TMQIso zs-|SHtgn`XHLKvEE?Zqe%d|*(!4F!R4R)GE&0Y50cf zGMr~^S)16#iUnE;w7w)QK^pUwF4*CN+1ijLnOrT0OJXdCjY}oQeM;H8bx^Tgi9yHr zNK4`)MHag-?~s_rP$(r%;fCrC3+9gM`0zAymG^EX>NQ;y_g4olcoXRO^=T2b!w-Xh z*(L0S5HD7zHSXH9Od9qF)~B9Sz(44~mOCvUyEdDK)xdp!>jFNZm^o@=#_Flo&x6VF z$s(ELSq3vmrxPn=azyo0rtXn6b2Y-J6!E<)Ig%*usyOthA`E465N7R;Z?zV2UAdGv zBqUKy_~8VWbgKP;UmVXB5~hXG{f3xE1W!1D){Vp331L5;+a%yE8X!Bv>TzrHWU_0X z1*jz*W{bN@`6Ns)1wU`4FVVLpo}Z>+FzhLD1Vl2oEgsi_+6* z=&!*joHox@a6}WqUc}o!W4E;$eT05jT{EXQ4q2 z)fyCcYK&NUAT5oOngmmfh@sAgil1;=_hN_+4sl+56oZNmnCKUWx>%@YNV5e^blvGR zxdg#z?LuwkLS;Ab`Q!eU#xnF&<>oWCy4o)0H%EFF9br^#E}QOjw_zx?@zUjZ)F0NK+f zzmXn8$JXPuzdV69AWAGxHU}Q!j_4qSAnSOW;9a(P| zTF-LnH@cUbwDOXP=w1F+SiQ!m^K?`MlR21z&M2V7-LT==F2I=AMwUF%F>bhY&BL{7;t@1ZYg1{D44lk&2s3UG!<`j|)mQAA zEmh(0=NTQaC`)){9gvL{fH8D@Ohz*OxDUFvb^*3>0rIMYC+B43(xrEB{Ny!Qb-=D! z$L2Vg^F3#KWJJ;N`ypl4Y^cprCb*=Gb4lUgGH+={wsLaIl$d}nhT}?Eg!@6vXNRyA z1;=(fwkh220_W6B#)k;vcMhk6goMA2D#we082`WUk+cpU@%v%XFS?+gcR`za$IyW1 zMO__$Gd-nr|52A>>0bMwKhOBih5faKtpaY|mD=SabU<~lkfdi^p;-uT*+P;unQ9+` zUroKjNkq~WW@~19i$085q%wunLqp=NTE`C~M(FCo=yZjQrm+F(V~(aV_`b!Mh38J= zxJC^`ycGuB^S5}ZaAhL4cMJA%&MT~6bSyJrolMm&>R@5& z5sX65x=>F`RHOYBau|UMGX0l1#uA5cW0!3M4^Aif46eJy2(8AUaf_N`SSz>bdoa*+ z1Xs8gXf~qZ$NhYqx!PA-g10v@%qShk+DKbjSqJW58eT2E{zn-62#Kf#lI0_$e;G2u zbm8WH+BVok$U7wAF@l-+ov5l$L-a8TJh5Jyi|!7>t$VOi2H zDehHWoJ=!{0oAspC<)W@l8crdCM}#SX&R`LMVF4_B{~0=h~MjoJVxMQ4iK?C>j!_F zw zMPR?qNplnee5PrKizc|{Q53hOP9`&C47-xO1cuD`vAJeJykUV4oh*JC3{5zVF$1!9 zkfzmg-z!Z=!GS#=n?3Ff8pf>(@n#JXQ%$>&Z=KCx4B>E=K*yjW>KhnKWX`XG=++Y)nRy^MInHkUH3>?knDA#qg z_-}SWd|+w(KmK;&g%kp>#))ShRf?hr(1Hd4WwKT{L94|LMV5c0&7}Cy*!%J_>(iOn zy@}#Y6++e%<>t=8NNp86}zdYT4-}Ddiuh6z&46 z2j!r}6=!1B10yk<(B%+%-ekyZ5(zY{Yi5>Mrc>K9O7`=OMrmH3n*=5!umGzp6T{%R zK#EZ`%Guc$jFO%@ca+Hwuid_TSY~6Hz8$5oN9fq*3T`wAp>}dqprKLj!X9E_3ls93 z4@Z(^MF*k-^^Kqs=hMYW6N(FDaH}(xxFp>>%Jf9$fw%39mlV(K# zo|_i5cQh>)x8UAPGcA~Zm2}ZLstiK>NP-NV! z6rHOn${{SH_t>AQhP{IuVLw>WQi4y|1v%58kNCbAu)mE4_Qb2MXOa{oFXk~g{htv z%>wDhU1Q`%O?wg4qTo(A%8~bcE)0u(n-iON-u>}(-4t`Pk5Ye&{CS8Wvi9CR*vX$& z(-P`G6;{M1rwCL1EaQj*N1EJ5KkHuea@|ClI=DIo??UIV9rPa#;i}OY+R{wy-R#*6 z>EdWw+(LN);ks(#vg%Qne*$q>RE{rP{u?hP(9USCX%lGbX(xeNTR`>~0p(EQ&voPE z@hPn=P|b-q7k8BhXfifrd?MAF-7e6{Gg(TQph@5pN|C9-Hoh+P>d~yB=pn|11t0z2 z!AG_abn^rxxK{(m;iTiRFfmkqP1SqCqH!m`x?`Z7=M{tPA{lzQp( z&&^o*^n6$e&xV!2LD0U=fwnk$m+S32U4q)b#uCyfZ_e6O`mzfc`8uqGV|EGba8a)g zhii>p18eHxoaTk~qEy(34VOJ(IeFBxi`jp$k1yX;FO6n&hkfI1)Lq=RQ+J$cI~-16 z$zlQ>SXmEmneQ7&z&c8){Q93oUmeM*~Ku2DBpkKFdv(NxO7`JiLzhp z01}c9)QhHZeIRVJB~0tLo(MzS_`ZQ+&zBPQGY!?jS$V%e8_&lUs>aku;;w3S`&~@+ zFk>A4heKLrYpqjorqj2WP7p% zEc*LII6`(S*E&lzMch!tO}yG>V*X))UdC!AVwF?GjPk%_&vGYR&<@8WL45~F=H|9| znt4Sa%{X{9E&B<(IviEQJKRb~1adv^u^5e!ckPVyyfVT|C~;s` zj^yDtM$`=GKjMbs;b%J!IRCzzrwJV#20wvUXI*8pA3po}>`ib|fr(k!vX$XIkyqJF z2k+OtN&{zBPy`1n9Cz}enlo?AszXDk1)|Vfu-FMsv7Fm1_^wWF&62DLYCo2H3?Wq` zY4muT*)$)AVt6Iq{Z2eljG9~4wvz1J<1E0PS^*Y~H?5@g2E40%=J-IV=S2zoyc2d; zJ-lP3e=yLf=7FpN*{+^-Vn1VHdluo`O*0-u>^)irT4o+rtR}`Et>$h1M(o_~p33oUp$VrZ`@fe%Q?JP^kZPqk>9A$lYcJY8xroZzFtuA}y;7_3a|{T6rQbkLt|AKr>!^<%$bqCfXQDstj~D zx+t)Y8kqS8H6+Xa#v3JkU7Y`tZ{YHYnOi?YkkR@++xosB{p+pY4%w>~FRMjIVmHxRCqk-X4 zB9{L+B#Kv@V#*+!j^2fy3d=vm_l|Q^`cJl55=zwHbGrnb?*e>O^i+vCSybQ;G{ZZt zLx37nbHv>;W7cGwAzgYZfN7D09OTRH3pB@WQ6}jzr-agAphCQp!&FqmT_3__YM{4+ z8gueTS<=r_Q1e$W13xFEu%mWi%BYY7&!z6m!OxeLSk0(Dv-877HEV$|s%vsGseB3= zaXhwTijE+L4z9FSxoKHgkbVtFtLz8Ujg${L>fI1`%Zy77(n971iA6Qpne8> zt{sxtxF+6V8dsaJLW)B|m_d~6e=(R&3s<9XvsK|{+C?h%O3$EN6W72`O}9j9>|H;_ zW?f(}n`Si(%V zgMz!l8-t$?L{g6|?A#GnB{~N|+>0)J;k_!`0UyuSmBc-73DGR;S#h__c*a58Q-Q$< zl^OgyCpa8eN1;d?2IO41YQIkzZym6-fxhC>#xHNdppp9AFSCPXlC?r;g($^CmDNO zV>6=;&jtn=^A+GtI$-{Dfg6lDE}U5w4pRVq9Tb?myqg)@74B9Ymy`eOaI$s;GK|eG z2~XG==(ZEirs^dO)HbZiRsH{$3ivY}IDZ%Xf%#x2yJ_QN7y3s^|NV9zg1e=ZRz?hV z>5Elzk=Ps>s;ogT2c{Xuwa&`AWPvdmQ2oDvbd$G1a)%_4_H;N(-2Ht<3^Z@&U$bg|kY>L804I>5sW` zEMY8nAqFi(E>g3wy@_@b3m>lxH-#PWJf?>BJl6;17n+salDefw*7hPwwfLA^YbTwX7n9pmNoYE*5fb|eP zCSxqjx#4HSqT}UDIyzeeG$IjF?+#>e0@9fhc3K5_g9#PA1K- zLb__iam?u5?vgZrn$1Ko$$+zwzX-H5HY>O%bT}(pUiB*$rj)*oB8ce2c+3U-@HAQ$ zg+AEM4kwn^eFb(t1Jh0Tdy8q#DKqkhBY_g*BNym?2`X6;FIC0V1Q@a%f*N{n(DY-N zh)ua(Hqt~oc*LG^6Q}wh<55VXjw95F7vJlt&6w+L#0)wS=w@_LU>%)coT4o~E*7|4 z%2Rpp%NbE?MTp3cn60Szdedk)!x{J{P-^oYvAxyBH}@DM}0LJV=P^RAO%=nvczSs6T~Pq0in zg#_n+oM1oO!8jM=;(~KA{5qv(zWmy>VSK(BqGEpbdzdG(GC%8C89sHSdR~4sbvpxQ z5TXAZCN*<|&34-UjNAxjTLm8CY!gprW_YUZzsZV33~)gS#k%%Ldcr2A9F8)yYXz9mGPHnQKBM z?U8bKYI1p|iJvR^4ebh%xG7SzpBL=}nbS?NLO={1cosx(9DhpUBjOH~%bIsGpH=M* zNgGp=M%vf1aL4SVVcrQ#wuP*uck|JwBYkevt&pA~gU+2ZyK~GyH4idYzYixGxWm1jh z(_=5Y32$4!%v?Nq;%h`t!Rbzmil%7`3W_UK;HHWVqCbkxd4T?jAFtvnf#Ov9GI>WWja+x2gklt1iDA&kQr;Y(n5 zyEYUkZv=iq4>py*wES#+mzpuD!(pO z22LvR_LAy3joQ)BXMJ(lw;`0*&|baKws&?~cCZEBZp$VANrS<3#b|8NaFqOetK^<< zED_<^bL_fEwPB0cJ4HxJF;7-OHx4OV? zmS9HT8QdOd$NFF|!y)Q~^Jy2`Lvo2}R zK#JV*%qsuUC|F{AtuT-2n23Q>1Y9v4I9V7cH5W%aLTPn&6kOXbsW>( zVROe#^*hs|Vl0g5!H8P?&{f<}ZMV}*v+ZI5+i?1!C0y{k3(A%5gUv}|Md{`w{I(6Rjts}Ry; zoUO3UtdJ>-128K)1#^&B5{epAG@Q_K%tG?6#R+DUIs* z*X6Ulxtgabq;ms<9l?vKdwmbKRtgksb`PPL3K!9~UJc^pUJM*j5(W?BtN!>g7EASq z-#yUP7w?%J#)2xu&M+YbuO10WF|DQ)$KZ#NlVQdD;MBdL zk%d#AyW`}@jU#ORrlor2+6E1&)p|6bubN|lcDi^{@8}SDjxgJ7qP*rd`-4k=-Xk>O zK!YsRW=G7Cop!lXIJ>!RUp8owdQ-)fk(XUoF)JD$y~P!dseyRS?g!2>+b{PUkBtwu zFc!|?Gv1uAaslU;4Vu%XpI|?HaL6r;rTVlL)Jm`=R00k~hfF~zdR!qMaUz=W=y044B$&`N|5V&i znje|0Cc;aHZZ`xNvp(fi zHmp-~H>|S43689?3GTrwEw3@duVitphhJ5K5;{_@{XOAt+Rqn@pkX+GvKlC z`l&Fa0Jnb4I>pIfPUzn)XwN$uCmWocaCfwNOT$zZ)8N&LkZH7^XT@Ozm)?|myxcH> zhRj72(srIR5G$EyHcTWr%IW!i4Kq0?#Re@#o1~+$YlrrDCEv>p8 zW9P|`?5cS(B!irA=KbBx!3@uXQq&qtR1uZ_(=eajxh0rt)VQ!$gmi{kl+$bTgZbEY z%<8^jVPF_M22m)0n#v<&ce{XIQ%b(9lmu`%B}d=+*_a#A!8>3=yd;fdukr}-0_cAl=2Gy{wei%YMNO)F#Ie|; zK-}#}XJ7Kf;k_uhE;Asek$nW5N9DDR5@|;j4E<_L zqSkcA++-RF_okZ{BYN~H*dosBpDX0u+n5Cz^~2{Kg-IZTISMs_Q-0@-8- zyU+&QESqfKn`M&)xpKKpGSKe zZfabg`mKPXKe_~b7gCf%h;AzpLe#xQj=(Z*(JGAl3Lv%MSl39s#aT^Bw@6|W@N1E1 z0kT6?uD+u+=-!4a2}5-W+|5Hm9_^uEhA~J=(9EtswO-AUIp+pnUL7nnZdX9_Z9t-* zXQ2BxH?A$+;!Q4n=O}$=DSi9nsIci6cUp-p-rhO(0eF{x;U$<);v6DfiW%e<5?e#* zgTZ>nR+rA3O`X}NbbAOs<*3s6OC8PfC&}xArN(D2bw5_>ex%ghY^lp>S>#TI`go-! z=YA1w#Z$B8Yr4oZYa*TYg8^4$N8)awsz!Vi!jk`=3@ES+{A|w zZwwLuVlabWsMHp4Qft10Q$O%jlO#IwFf0+TYFKBB(8}hUO&BXp%IUL5g1ML_VkiWh zcBng1c?>nU4e&V5$FLrFnk68!3yo>_56e<;Gzedd@DeGv*6X2O4?6K)us{sqS}(hT zZg@PH=h-TyZFWc_ZXl&on`Tq_reHnlu@S{mN!eRB2AfdvU|$x1*mMU!fei9z66j+m z5VsE#D4LSzHo?2o@tOk9N8(9c`TbI1R{ni?EtID@r-HpK)p=|8A5R6bqTp89l_pZp zEf~ZKzKQ!}u#`u~H=|nO#aFHc`!Tngtn;z#pFACGY;;jz9W^lSk^$C44nr=tz%?ZxMU33Sghh?eFlNwYOcnC3_4FWBC8rb#4Svkg5L za;{-?pB~a3=Y3p3$Da?z(e8^)lBxSb98SAVVLzZ@PdXGVpaZR&;*6#`7pXt7)t2I9E&xC)bNe5zy})?``b*qz@rlK%ZKl;fZ!OY4C@bd{r#fiq({ zL3~j|G_}WzX?rw{qa!C0Q+W?BxfkDT^$u$gg<0-0$T1b;#K?gR$g*5Iq*(;33 zuSKr_ij}x&ZEVK)Vk}<_ucAAHCKksWs!6wGc1+;jx4;%CCy2B+6@?7s!7Q3y5ve*)`AKd|G z2Z3oC^n?L-<{oa&)z-9-}@Kg=H@fAvopK1z4`HwpX%fc#KfqL<>)P)RYEN;v=se=^hJ^j4z^o7i z3~#Lbh!DK4tA9;V|Ei)sglOv1OLiBKmbIKEE>ep9!SoSI%1WMYQj3LOguRezy(=SH~uaOLGq_A$5 zHBz7jdPA~s3z{){C@iI>T$-8-I^R!% zkP!U6dzRH^b1J7Kvlzo2hm*5Gs-ovpK|SfV*s(R-W!Z;SQYx|!9(6|>8zplCF^wPY zVy@RbNdkJca*Ax_U$e-HzUxTeHFM1HAvbPa+TGnaF^9I;2bp1E?q@On4XUR=j+hXt z7AQ;AWEp|3Q+cp+N)?t8?hZ3z=aLPK@^fhfqZ&E4e@Z=8Cc+(Ol%1=OW5VZ}l|=`2 zZ%4Qr86736oj~!jr|)+s0n>~+WuvtX(_*d|#59{5Qs&xG?ykmz0$1t&xwJv?;oevo zoat})@ZI<~@IMwE@aM%_{7HgNUFLAf6vEuU~8&UhzwYoQcW)2lwz(bcpAjTro}-;9^o)cY&D$0 z%&z2a!161?B)4sH{teb5xms?#y9qKUA~g;n?fKAKl_mVM1UE}mf*2fQkJ~(yylnImX_b(mF z##eH;W5=twn_(}dlPsKL4V6U&h^yxAj13wjVSyz9rbt}KuLY>&Zpa4iNU6rUR>uyp zd5+}SI@yf!6wEUd83#&DBM0M~(5W9_hsBhdKyP(KZ_?4E^wL`HZa8O3XdEmx(NMZs z4nJYUl`cM%lE^+u0Qr<78MhxxbC7GJUQK_Y|D$Q;|93UwO)iW1$6tocPF=~90Bj^} z!%}LyQ;eq1D-HBL&Cx(7v*w8*Ep&tDt$c*~#I3)iRHw&ojDgRKrWCIQRd>tzOF&{- zVf<30C*_*eXSeQe7A`iF_TgVr*O_}hZ^lm2$5=(2SI^zVcv=!MjUGxoGSwf!cK@;z z_ivSJmP)%5afdZ0Dy<;yuug=dPNpKzU)|D_E}t&J9V&r>2{xi&3fi8A&|5mB))4PL zeJP|K(WP>G8pl9TXd%dfa&DCtk5?J37l?Rn!OpdI_hJ;vrU%s* zQQVBVI)^w(VPHnXi8J<4iN99}u#Fh%iUEWH)HZZQ8x zj`^#Yn*&%PdnDbR}hJvsFFZ zm0XqBwjLp-t-$|EhNGn{&C%@c>8@w=c|qJtZLt$~!qo~N^5DrbUi?En!RGtpQ5PCJ z&6&-w1^Tu(a>OU3=8q|wr+$iX1h@+}sA{;$7S6SUSHE53OwiW^_NU^)b)64?XM+lDO^Y4=?V#lisvSaE&yY%v$mvk`tyWQ$5{RwgpU|1G5a zTM3U_j(o}|Udloe)^Z`up~3Ly8De! zCH7+#iwpka*!VUrtFbL3k@^+DB`w0+dDF(bN+P(tT6RZi)hwhEZV6${P$|VocN-t zEj^uEYn;2jF<8Pfby)E@_W)OaLMR?{H~&EP1ii%1)Dr+5sxD@lve z>2iKOfbJQVsm|8liv|p#5~}p`L8WP`Y28F9y+gv@(qV;9hzdhKS-xd7%fAn~ZUGUM zGHm7_$TGYsex@=&QfL`y?qhv}mX+m5|5qvYiY~U`EIJ63p*B0V9^KH-BvA>DpMqte zw4%|2?uJHHSc31Pue3-BF3KqYYQp+AK$=rwkv?LMStP=&9R8ZS3CN*3)7<`x_p~(I zutE3(eo#r3GA9yk*qV_o%d+mT_lh<8*`)MYWI75pVjCVsBleus_i2?xy$|%Q!rYV5 zqdZ|FJtpjqfG(tc{wze^oVBZ90IbY`|}IAkFHZ-5yjndNIoyhKao9*&%UA%?4$L zwGuGJDMi1|gDudec> zyMZxjv1lMB>IlSiT~=@aS$P)2g!AN;TMq%UmKFjs8IJMg#az<51rcwZ2s)c6B~x^Sn}2jw%Z7*N}C5 zrBxK$w*b+y)Fx$-kYZ)lJQoaf!=cpNtLwklJ>wvYdP zo2VT@`<(N*$FP?_hev0A)+&NM@+&4!f0pY1qzZ|74Lw6~xz=^LkTCvjF^OvYV51jH zbDfsvg0xWYr;aFR2|A+MONAFDu(eC=ehYDp+480E{~G-FYS>m?YSu6{fOGQP<(PXJ z(&m1W*heRpv|3IDXf1XD^(3Owt99ca$kKJk^-32gkKRq^5k;Tr@~^naay zAoYJm{7m{oNT~ia|NgVzUB|e%l(|;=Y+766jQm5Z8i@o9UB)QNN_9OmOi)(Y|{ z|1<+z_^g6JNN7Qj_zuB7kJgo>`dg&Ljk-k26%Z1&*ye9rm%%Y1#Ki_ntWuEILJN{` z5EEt%^U<-LSSA)QNLQRR193R5K;`DaprD9!ugF9hmC!q;>6H-le<0N(-*4t;h@?y^YzPS%zU}n z-U8SOyZJ&f=FC@LzL76f*T4A(QrADk&!p>NO;^+8Nv;kg#AutN^!28V6WFqC?y5$s z9DVrRoVm8U`TV(Q<8o~CCv9Tczr&W5ci~n-sBKJ8i6Mqg;9rhm8&6^5_*lVKVrX=Z z=<`S9h(5o0j_KhtIi@-5_V2i>xLy{LR;iL`rkb*#_#M!l+4z3Jw~}ou`$>BjN$=+Z zx?hD-@>5*suF2}X=dNPxvqAR;p>jf+8kfxX-8Ec)3Ep*;Ct4KFD{Ryj_sZ==GIh;n z<*VGv>U-e>8CsMm*5pHMP`fb6UWkdq8yJ4UrlWDP3>qKpAfmXfF-j6v#-zTvB zd0qQ+LG3AnqAHF2tZhYpaI73l`UtTT>rtW+6*|Z$@6l83vK|p9;U0<;>|XdUr5BxT z8!gvK`wRZvD&JDN=o*|c`Exj9FPpgT9@FNg)=h9~fwX;GrIGsq6i3;TG0g^=BK3Ym z=xqS3^)uwGAeXTaRGU`a41V zMkQKVmx;xb!pZF-Sh_{NtF-`2E1rI3wGp`eajeS_WBv0&8gb0`{^Bqt4KT z#j(?$<1O@6HjSCo*e^AntZPhXX?mT6vA-2Uj;lhrv2(-PS7rr=+l8}~Q?T_{Hie5! zg@d+kc-oz0+~pIED_*)i6_P&%4Q`U-SmGJD$}OArH>CD|N$rbl+Vi=S8-KJjbI?wB zI`%x@F&iq8hOpzyv@grLT}5`-hW}n|5L^1p;H0^f_2>9pid2814ij@J*V{$2;xg@J zzKJ&qKvZ(Kd-w-3kr*X@=1rpkNt(0sO(Xr!Bi~%(6B8<$?pC&$`XjoFl_W{=$=sms zlxVj435n)sQuj~!m(^JnB$^EwICwDi0$OxDlN+jbp-@%Ms!$O~Z3qcf+wAmf8HQg} zGoGvpmBl-K)G#j9dkhPfML*MY3YVuS|4&ePn(z4J66QOaNMIwD^<#+ge9prJmSKA? zqX0M|^<#+L>+lbx-La#R|4apdpwI%)MAp<_(0Sf3<=v~x<2|U5_i6hw?4GMAz&Mhp z6kv?s^c+lQ4PnE6MOT_5ff#6p7J&Ds1k60yK1Ph@G2a?m06eN5EC6-{1PcH`vH&uT zGi#tcEAyK>#yB8_exeHvRzpFB4&m(Q-%yH=bfJ3`p}}DV<%tp3k+1zB*}v&*N)}^I z;<)gY>*%U~C9YzfD}HlLjK=Oi{DHB1LV*0msDaZy!A6}j=AwxmklJ?YP=@tu;E6M; z2J|kwQb07n6#{0)MP75`FL+HqiS46eX_gGwrtCJ(a~eHu#BLUmmWZHmsGCq{J%45g zbM|ln{s8kOc!j`Ho>m6)pY9OJ=Kl*Rvu#qI3z$wq(R6f5_+Z0M%6G{eFczn1H+pCZu? zrrj~q<6z^>0Bb~jyeo?T-nM-*f`2MQF--hSp$I{to}7M{XS&f>%IdAiqArf6)9-|J ztjHFY@>IYKh?A@gMOJVXfI@sjX-`e#DG8sUz$rgA;gKvS%u@wV7COPFI>DjzeJt7K zE^oXh;p-H5h~|~p=5SA}3vZS6f-6*K1a||LlLwt&s(?yFA`+@| zPEcoxZBIo{lJSv*?a^Uod{<{Bn>t3Ylr0_QhTabes}$jV{(&sQ4)HS;0pdc7KxS`T z8AbS4O8r}xN@mZwiXuc+!6M}!BujCc--1OTr!lI+?DbZNI;_pE#X}Ek%8krkaJ6H7 zTByVYT=aWw`mhH7Gy^Z0;~zQE1|gw}lkH!w4#mexS)+AXuzgqDi5Zlj=sa|V=_+LQ zQe8U5i`(p8Bp9~5hpHX4d~RB&3Zm7TXMq*N&*qxkRYG7qeYi z$Tu}7%02g(RX>8mkKD|?{Q2R#m(zz7XQ5(q19KKW+&~3*N654R*Gp34Q1(0yp!8I zMGBX}^fsW1?wHh0GJQQm{7k+MVW9<}l&5lWrz&#Bd7&)EeEvsjLqqdTaME~Icy3iR z`(a&9EM`HtSfwUr1C?bvE}%T#{lh=wi*$dIEbW1)+PMBr0V%XO+QRbDP)y4d*{+7!Vj*6wK{p8~s+R+05|@R*C4?EQnUyXRQzyZ|q!#J<}HDdDBts z`e1p)q;@Gbw7n-8^78Q#CRo^UNrxwEcW1PaUIk9=o;yRjdIhamPmL3M{RB zmx^MAuPyPE0B^;PwnyXCoc|*mCy0=Kgk9DA9zbhzbzQMbnYNkduOzQHI@;Tr6;JO{ zo^|cqB}zvBi+Cb3coZ)4Gmkt9w}7N5F)}aD9E8wn_v`7N8pfMg%BYniOEYJ)r$O!t zPbHRfUzcb$KLd&2t9lXEQW1>RkSPuWQF6Jl8^IUQSh+r)D5Kv?iYZejn)i?NVH03~MeUxrE6col1d*D_ zzB$&Vs@VEIf|)nFU?1r>T_RcWdtEB9ge6_V#U5auD>l|ioyPX0I}nT40dXeCmBa+)(%CRR_|po9<`gP1}hrusczJMSszR% zyetOOHLwcA$CIFks*RRClg$~5BH$rHE@Z4F1n)aUVb2lZss+M10XA;_4K-1yEKjC*o=M5ir^U8*!dgeYR8`5<*p{)2`8@FtXVv z1npG?(JAKQdR?osDW%ipb=SLXLOuwpO)K_AeFCM~<x(wpk5c9DrOKd(s*JWNixnU48c(~?(I9$;!{l{WEA?s}&4==sGwqjFhTVwDjWd!~ z>y=vzHw=s0H)ujLX6MRMZ2Wjn9bA=4+yN>#ae}9Z(bvZ4y;?X(kJaXE3)SEBdp%8X zRkXjcBgRGS?)tPZiOY;xJ@Xi37+H9zPZFsK>t1I?69BPk}$6ybv zt(d)TC_>od3hc4xvY95MCl0Mg-1!q!{13$*!`RIko`yz>fE$hTl`u9962qD{NGJa= z8s_T(TrZ!34}*2G#^L|8#@eSao_iplt-XX`3K26M&OPI4PbFi5pexllmQ8rf(;i(D z`9;h((wxkx=bV=)+=P;_; zjrA+GR8x=lu|-!_CG!9=-m~%Ev3L|6WAnA>poZenr_#;!ZUSnLUt0hNSSU4}ugX9WB(kSp zfCtRAp=UuS(Ls<4JiQR1uuVd?s1U0C)W1>jkR z{}JOHS9#{i#Ya{P#xK?XHYLNnRR5WEEPWjsbxUDf4im?+1L#AZ_h876J7OKQp0>`c zK0aB`p7DC>8LvvMVXt86aYKxm$@a*oOx+xM+#pfW9m6~5Zmd{m`Y&Bjwao8nWgJ~6 zZuYUT*5z6v1MHDep8Yx@qY8C)2Oaqbgl$%Edq~?%Q*2{Cg_6m-Gvs`cuZVkowguF# z6@#?SxaJ2Rs(q=8e<1tPdu0xefeJZEH=am$WuF{k!PCkZ`qVf2yrK+vwtmCp*s&*} zv};tl;h`LJ&_kyU(2po1R-My(e=7?t{psvyh-HW1$ zES?Vfe_fE#Kn!~VlIT^4*6ovt^E2wPl7b9*;4z1=O8qV69|$Y3*BLaTnI{M%JB(x3 zPJ3$6`#m(-RXHDSepm`Ts0gGauISpT`ZRE5Ygh5IiMMc0u7ZEy!5VUmvg_a&e`C8Y ze}&JofaMrqq>39~e$!ROTR&XYIqAMQu2%3cNXJ*vC*jScd<0Bwmc9Ysp|Kz82WP+^ zUxDj_zgUjLZP!-8Vr9C~MK2Y^_q2(t8vN4?;|ffDWl1`FuBx{imTsjin(i4;p_};_ z$5!ZSIg_x(YX~yB#H$64+nl;(z9gU6fz^GtCk8-SIyKd#!*Bhbsc1QG9 z4NVGBp#B*ncZ0w9Q#7-@R7^9 z#mO0`N2Q2|{y!qNEb11);xD5RlN{w>OG$_vGQV$aw^+8Nx+lz7DaGXKVl4B|-qtOQ zefAFe2W)uZX4K5&)+O+@;h%SSsu`b3IJSO-njig62N(8#IM8-!G)lcLzJ~$W?~+!c z(~x-8V(-20sqFg25qU{NQc#XN0~1``2@@pZP{34li|Oy9ALsE;(YW;kPgPen{-JHL zxibG$4orfPPImqJLu3a1Ul$Y9L7s5s)Z5+5u?@SRWiLl+cPA>T`o(TgpLtz$-a#s9 zxn>WveB6?I8^no6*FiNR#~g)?BADl3h^=w{<)Cvgo;)7(#7-N;R=prl>0O3=g&wqx zj&13L#g5CtZ00cxavs_syl)c!8nqhLSi)K4(F4B5{Le(4Hr|Ow<$dT*P{~}$^aYus zCF*qB3>UY~UFO6kEgw4pEkBmT!XQyr6Qmps4sFhtha;FoL!ejDx==n+{@|Peo zE;P+(f|q`@D#A*my^5&x51vA8*L*|RvKq@eD`SmfqNHt)aM80>=D$(X@QVBcy#+?O zA2RNKgI#+GX<`t?Qolx{u<0L6t8_h!!04{C(w$i3*@y4z5zD3&qlU!eWTDDP}f2t&91n+nWr5+)%L!GcG z{{l;C(jZ6dKn+XHW2-A@9v8eRPA!J&O1&hT^6#oJ7WoU5#pQ>*ESj>oQ#V9e>ckpd zMQXHND!WzuUC;)s_$pGPO^&oTG#W+aFJV37*xBPahILjVPw7al?fRG(?TpIQeh6AXoI?AyyaNIP1M@uKLH(Y zgWjVg)|T z^G+M;T}RY{IX%tuB1nEY@RAL9>?VL0Y{2u5z<+MR=c{cJZ?K)aZ3aH&*lu6XFm~iN z+`S^huhbSfmSz2`h9y<-FLxlg7o3?dC0HzK;`0B&BbOz&R+SEX>W#&6g2wBj^Z1~m z=dPY+`uF%I(S}S@xRm}Czt^)Y`@{fqiq3pQW0GSpIoi`~j@L@&YKuutQub|l_U=+Z z=IKamunH+QAy1d~RyGbx*g*}Jf4*lpdp8WQ13C=bsY77Y6xX`Z(|l6$Uy1zNLWCD zOD)^yWxdsmp^`gD;Zn`4iSpK{GH`Rq4Vi(v%%{B5^Gem#_k;Fxl0*@7wM{Q`2s2O0 zo2|$rZyngOR~TDU9z}SL|4J>w(@tP2!tQ7kVXH(U3WBDgA}s6Gt1Md|10=3w3Prx| zh~%qkv&Qu@J?xYOf2)8g8j42us=!vq0eoBsy0@k` z!>F=VR4Ug8eN8yKJ=`0^5)b#P$cmo!#TxNj_1cZwO0{cPP?|>0Y2_`;Hhtu+i6fvy z?xB!baikyjyVkVY2Z)wee_Hu|l%94lZgT1^-ca4A+lis&yM`8`LUn&o*xb z<4+s)cN>-Fy_1wQRZ3>!wy`^GGZ*Tx&YH=hJ9?A& zt+HIxhb5!ntK4dAN(O3wPU*Y|7CjGU<(qPi2W+(aq^1+LnavX|TUYMvO~m_RL}jXG z*y#kvx{U}Z?&ytXe|Gj(HT*WJ$3{(hFObD*b@kSA?HAO2&bkf=%Zp^Acftks+NirN zDp?hluv;~Y9od7>EUM@WGyb<-1lui5Rx9I%4gOcqtaORX!fxIaBY8X9c4v78mOQA_ zrT!vyEMj%e$9*cZsmEbfYWeDJ*Bu~fyXbyvu?fA<*vVbUZ}#w}8pEYhLsTl(ttno+ z8(B8i0G&mrc#rn-)-~pDr`!KS6vWdM;cRRqYKXMVKGPd_Zw`h*XW7Wl+Q@ypPZ`^! zf?HGtsq-LU(cRwa#zq@!gJ2o8wu`+-u%})*{ABH%erQ%MNeLHJ2}QloJw4v{}p{dDUGXxEMo>Y5R^SYKdDN&VwrNbC3T*cZxaH-^aLb=0`v=L6sgo1V-nh>@ z)F`%LPdj5j1cznk^}#czSG-Y1g?B{V#=IkJb>|HPdC`_W4R8ZG(lUyla_{J-i+o4K zrdIx|+x$`NrPupZ5kZvp4qMyZpMgv8sT%O;IdZdyyuFPMHeg#D(5#bMEN#`u2$t3z z#h)ydeOMAx$9p@lIgem)^MH+bpG73kLv54i4TG179)9mo-w52rwJ@5!R2T5qCHxf$ z4<-`1SNbHd4;b>@e4CV)-!Yp!>XfQXMW<9GL08%xWBkr!uetjD4bN+H~9B#zXBy9L^ z3D+CkU6);51m`*~gn^wRZ2axm)qlUl1Gg zWBLy7pG?8xf7!ztImret0Y zW&Ys7cg?sX|NDJD^0qt)TcN-T7r@3i9O=}45julEBb z!A#(_9EeMJFW9@)U}=kBQXXPPjra7%y6StPv9|Q1G5OLhsPxf!_`8Bvyiu-!g4$0~ zu?x*CbNk*=IHiEDtB(!c(}u=%&`Xjg9Wc9iz>U3XWdo&?i-MEy!q;U=wE(O&pIWnM)# z>K7K3JRAO}dG^s$7(b2A?ps}WcJ%x5wqRyPW!e!$WnsC#<)|;g3VN(B#HGXDH(lCN zc;^aajqTqTA&%>SgD`VAf_LK%pa$J#`$kfF;c7`(Ws_hk^8`>0P2V?tolb`={SxLl zv&x%bOpVVHruF{hEFox3KNae5EpJ<423M# zArv}EYrI{ILJ7f5zd^;^hrIChd3`If)KPu$QvE43LOXRP4v~bGn7ZakYtc3TBAJ&g zCQU(+5z8gyVYUpD8?FmF^1O~T-5fpC)w^-C&O?36GWR9)P}O$Qk`1(?oQJ%g=yN8a z<|&LS?$jeRcBhC?tCFk;-TfLS#(M3f#T%1~*DIwNVrKP~Nm{y%+QmjS`|1dGbv4f}|NrBHz1YN0^W9yxDf;$^dx@TQbtjdjLv^foir+u*Ol zd}0VmC$JvhwL~wC~ zy~TY8J?H{Q&^$*F(yA8Nu1XeuM+Hsgy(q6SSXekMrbV0zj;EAD3r=SrN4@V&cKs;0 z-v_z%SV5IM>Yy>$xbS+bY$YSHe5US_^zu-z8e`ggwi{*}%`eqm4Sd^maROmuR=O zN_+R9x07p_zzmicIKmhs(?;lT5y(5?SDJU4c|{r4d2GM(Z0gv4VwS^&Q_ft^rBVRW zi*Cjun}8Q~nT~3<9vFibdF#2}7k|D({&}$N&pp>KG548%WyDDJEgP^vYP@-u>8NHx z(ZKbSVE!PPNF#b1#Wuoe8^LUu!`YT&=1 zm39<01zpvCr31@CaIM7zyfK8--hwnF~Q;U%CEiU*`4dq zhUfUkeyQv}iKXl$^V5C_{5xWNYwWcN*liO)3Dt_TNT{w$;x$2}WD4d?3>5dr0F^Hk zUA6HpTRif4xTxv#^nXn6(f`|GvWw3VHaxc?xXRqD^^&?q*FDNa;os+0)Wu746Ha-X zYlnE+@8PcBmQKLXH4sy(_Qz8UeBEKf9?{z4P~<5z?rH8N@eH6?mS5jnkrg)XAJ2*& z?k@+Qm>)b9lBtg%FrPT23hVL{CO?));)^;Fw`E{~=YlsKohauh?fyLefo%6@?=i!P zR?Ws<^fol!lgxK?ChoS35Np~{HBt2SSZD~PZ*`_`_G1qH5~A!!N&jA_<0hR5wq`Nb zCqPHcCFY6oANp5K#3@G+G*We6fl=ZLg_)yS)`bu=kAL4sX0F8YuV4|3&oW{|8@{BP zCxU-qGtY#p-f2cx3GSqW6B|fy?l=AAz@@#;ZR5zLS^5u4Fy4Ap!XMJ%U5^OosLa-k zfpbvKF-fOS45gDt!(qsyhr)5i+#}6{4Er4`M6XF{>vU63!{43YG`L^-4+i&**xrA5U%OYV4p9i=-t&qq`-ZoxQD?8- z#wYHjHr~>cI<;N@dYhuZCDdRQg}aX`vXaG6k%sk|HeP?hGd?a9Yhp00R#DWsZT9z1 zqJ{&VE=gIcN-3-jh36C?5QA-ovB)Osg}r8-@%RV~^)*2kOt2j)j3NWDq@V*EZ`oJ{ zQti!q%|?S7q8Wy-J^EmR{-8i}rwav>t(r25ZP3%s&@H8W?TiW^i9n9QZGa(xy!Cs5 z#+)&a;d1=|2^Ctk5WIpivLR5hrt$N?wXXLiAbH* zKUP%mU%H6vjv}ZFxEUjRgsz~ywf;s~lSz+qBheRrMJqqe7OW3bf@^v(pN#bIS zNMYr!?CXXn6E)4}^ADuvb3Zn#m4dXmiZ8?1DUt7LNVdDGZ#*jssKIkO{EQ= zexKf0m)$24a?Jqi6MP-`Mq>``qC)XXO$599Ys~8q*^GRnqmA6oB9l{~)=a0M|MSc* zfVB%suV|-Y%wvq_kXeUTwq@hG4X7pW_Fu}?kVhYiA7gcmMMPE?n_t++JwjxWbjQ%L zy1wezVMzLKl={10!Et5U9G5w9Ks=jV4~u*oY-+zoD4sXc7M}a+`x3GKL!hq}P;N`i zZ#8P*YioRILmUw$=U2g2@$qddBH2pz;r+vh2gI_N{#a}({fP(xgH32)h5%_uTVslv z`zo`apj4TN3MP!oQ>jHHOy>WN2um zC}@KAVw{AJ`EPhZGhY(h+|(EE8mYrE=(fYDfhbBrZ?jaw7in-BwgB4!FH&miKJP@N z6#eg1Uqj=4NyNHjsHtf?4ouwwTSzoyffJJAExIKv@RLOTpd)E5)vUc}5zWOq{InCC zvdz@izPfl_!PN|L7xSqIX7UQm98_TN+e)l!Ydi={sZzO5^=OX#R7CTkeXRLq>^R&< zA%|U}a71y-03FfztgWx6tDlh4N0mZ1Sz*f?R=sKutjuO^#Cm#9o0M*!n(Z&yxb(pR zHCSPLUliU}AjKb3kz`}gs<5%U2FUFd**4^4srbW~U=rOc?UMPhqp!B>6+z8csn+%^ zLh~g*<7FFlm5oXRh|fFw>bZ&p^$V41&3uDelNEf+w*lCw`|Z>LxRLEtS6_(u*Z_#gFUaJt#u7j_h25j#htUE&)CqEEne)0 zY_Z}2aRuz&J|WFM=FhOPgX^5yZ=lQ-%QJjQZI{dP4`j+>sZGriO`$zB2)Zv@f+eo> z1EPEB!v8{MSk#cvzCMzZ*(|S&*zwU(m($KsPH<9C(D3am_y58)$gpqKAD&XbP?WA5#*!rAO|0P%s3_` z9n~dS-syg9U@i6`!}#eiNm63#;DHdo{Chb3^0p-Ys}o80g7biF^$!&7A&!P>=J|tv zAnW-z_=~dJ=+W6x`l%(c~85X17XL^%R`!mrbSOTmH?lJ}y zJVFW>stTa$1v`cMHe-+tJJ5!;s&&d(RO_k=V0!<~Kpdf1;w^8Sl>$zw0w|CmppH0Z@vV)0++vgS z!A&RuUbj!oV<2gz|3AM^OrahwwNjlzjboW@mc$v!pDXjIYf7)Iiz_J4J?v9&f35qu zmHjq3P{GI613awgVw z9zx#wgk(Ravs2e$xZzIDY{W*N^2fTeEdk14cQXGJTkJnKeVWWYdmXkUu6YDq(JPXk z|6lY(Hr3~=hS55eOglon%8`!ElpT#C3I0L@V|*CT3LeT#U?=axah1;*N;r@t({otoTV}Pm68h7Q!4dGnj?d&f`z{8W}q!?p+m!X~1f^Z)M`$UOya~_WHhU zqivJc*>ceI(rw4F@x0_2Uv1-pq@Gu)=DZY?d;!LzZ1kKBd&Y*P6zukM@cW8bj^+2l zUwhWGF7Ym&$Q#*r;>+qe>oM7%8gp{Q$C62MPeNBz@LuL}7acRz#bd8zm zE6obt$;6Eh7tpui{=86nJEqYoU|Y_`KyAt)(f?~~auAE1IuB!w2X*ZII+k`16fN?_ zv2iCd!&%MKz8E7?g+i_1NqDOYHI)v;G}tZ9s7exP^(9t=ug zNiX_(G4cts@LlkRH9ocNNU6#{HFLzE2UEs;c?pIn0|m05f-HQ(6T#29N&h9ENPW*+ z!_~)8LQh8t;zHx)z6SgVF<1I&RRZFU6)eUk>l`0{gU?Cv$3n3pVLM32SfQhv3y-fkuHy+xP`bBGUzp7VMP6X~plIHmV3K8pHySHv1U#hx z&G_qpNBDw3r8_&$Kb5xr>Wg4&(Hz6U5wBpnhuUB|s}hB*k>BHid(u{gbjiif!%1)$ z5+lPsS@JLVK_fg?P2beIxV!kL8HOc{yn0P8CZgI)5x6ZaR0I}laEfQZpo(m3E}Eye zm@f`n5S{3$I-OFtuU25jW0Is#)ajTduEt{C9E4WfoT|b;L?=4l-V4>8Qn>4@kiz*S z9rvS!>W+u;V4jD(Wpg{^#j{`Xd=0Tb(Fwj-htp8M&da`fMxlh`y0lPuu-ztjxz%vZ zosRH#bvR9YEPDf0yk<|9-1q*A6oV_&LdBR_7gcdJu?PNwqnz`)99kLayVh67sCGnL zGck8{i2LxhRMH;3aTwdx1uF~{8GT1{oLK&;>NqsL2`^1FdL0qBPH5<0*Gv4)ulg!t zM%W46MMu+u=eXC<2|teW#N6$ti9e*PTST(L8wB!rcfUb$*Zveo`Xf4>8k(opV}WO_ zq_5WLd=Z$mPMkPMoQ1`86i%wI(BWpqHZ%@P_(2_RRcCf5cICH-%m9?asPe=RY3{=*Uen+~T5#G&2Lh)`yheWYJ0k;gSG5|vPoU3)XcdCcZb z$>sRQb^ayIdlLAk0OB(49bfi=3;@X4O zWu>I&Ds6lg92)Cb{#7BF&v?C(?~I3*=6uFQpvBY|zlO2`TZ*!SUjx0CGUn zxi_Hw&F z@g*6Jz9g40>VK&W3~9fOpnv15Y}ENu9}XsdNy9+}xF3g%^Y&x1W|#yHR)Kfs!i8~r zL0LxB*|!Flp{~csw4wX!Xd0co`58th&wnYdMNr8!Fd=B#romzs)R<|5KBGga)h;QQ zTblKGcW`BKnyWx+zFFl5+wRQFwAXXE3CU~}3h7{OA;?6;sw#CZ6p z8OHLj%pQP7SMQuaMedg>W3?<)qOTcBF`^W=fAgg3RU>0 zvQw~3L=AZDvuMBv921WST5M~uNQwtN9k=B;3BbFs4g#e1@jL|OhVf@*IiBKwAji7o z_*BcmP{kcOPGY7zilIHrkN$w}c!Q+BrqF|93&u;5n}HUA=H;+l>R>566YEeA>hM?m zh}ivFN7D{#pa~5~8qb^*s@V~%Xzg&!^QE)IFVTFB% zA{csOBPC5r-?C9}NR9tGZpIjOy<1%V+OAYVZ>rI)j<>kO(8_F&%P%|1WPDMbLT-Tn z%Ra!u(>UXUyZkBGfJe%Y((qOw#FX=6Uu|&qXSjwR;)EwJJ6qb{#I;!97ixG)YraOF`+t!uv!d(RfAp@vzx|*1?2bd_1jIHCzr_hp!;fl_{ziE9mF#j( zBU5TZitp||RL(w}(a0yA$P~{lqx?%AU|eJN$$QZL3ac+H+WWe|&H|BdlicReX2J+4YJCu*_has1F|T2?ov*@R3vVFuFNIDa;7 z*C&-%s~~ee0oTy<&%-4Yani+&JR5C=R5@_M3?SyWQRk+>i}wht9wPlx56tdJDjWLf6^E#iGx%k4H4$_!^~@Ho^)knppDqiPUKg2 z^r-1?V$74+*(z4)nK-*yf0=n1&)L{d+t`#^+@IjDYiyP5O)A?;EyxlD8-_|Je#6Fo z-C~my!{0)km z+zWDl99lj1gQ0SvHtIXQvLe2t%EDs6+Ejn=2DGyE{q2pelG#aRVwriU(cXq>^IsTj ze*X#`5A8^OR01DTfV3i(`PI%8+oE5`PpQD8)K#92kRP0gZSGHXC9-o((2UnSsnj~9r|zcy+ARB@q2hd!QSGE&@0CxA zAPxIYjJx4fp{_ZtrGF~6))If1%C`mq?pFR}W3UaKdD8SxYX8=>M*H`?0L@WBluhmF z#gyPje5*RrL6L<{=;xv1MaWFeU%f^kgAno zbGsrbvQ{iidvw9g1oSK0{0lzKFf2pRIHhbCXxmmGTiKBO1Py6ibkdiE85k#S3jb8) zQnS)34Vlw@f;&OyT3r{6T#*f&I4n}EI*oOdFj|*DiAeYCVc7f0Z=LZ7G0Sx^Rx_U3 z&EE$15;&>OhT)tj4xPCE65_7w;;dvOb1-rU+T(Z45~|EkT|H%n4ljhO7CX|%pFkUbTuE$h z1{A?0Okcm8ys*rZJp{ennLhp`+*OR$;v5+@};Sh347*{tkSK#ep_mr%^W9Da#+tqBjgH zTW*1Wu79Rq9GTi6@R)50n#0O2Np1cotY#*XdQ7)CNL%w?(&}S0PPWEGOAv1Ap2!N{ z940Ps;}b0oTuju5+M1H8frF7$8E2@McHL3Hl+2UD#Ydqq-7a?15&TaOOvwa%g}2yZ z|5I_BoU*k034X#i?=gD#{qv62!|$WMA68esX4e0Vvg2=DSM$;LyP0R8zqxjNy4M-g zBdIbfjqukurk-Kbe!;;Se7zUL-^cOy4=b?5k=THe|Ld?SEM_FE{t*AY%@Ze)5LS2r zFEmU%W4a?vB{v)8uV=g@O|(*>n_Et!SV`YL7>tbeH+1DX(tVC}(!A#wX#Sa?vthqL zGirG)^;3uC)n#e-K=Y3s*@cd5T0b8*)?df?Q)>P@|DLo9_PFEdDObA7IE;y~p5kDV zUmU^IX-psQZ)nuPJ5K9;xHM#FGo6s|CalZI?u#nV;S6fqA6W81{dhA zdB|Uxjq5i&k}VyMQ|0eI00B?x0v>l1K<0jX(D2IayGi~i<4wFlSPLZWCGQ8UDrQA>~LSc55~s-Cz96epNg3~$7;ANN-=w%V|p zY* zJz7yUqO<3Wl!@O>A@LtwA~n&O^HEEGT5^=2{{5U8)TV#8aMfpfXTeYEuyYH{UW6RG zWIV2?8St~WDj)PMuy?FA`KNN-z8agbhz9d!M3!ZzB1d356z-;T4Hg126#>D}%ncvW zoQBM<{*FTKb`nBC1aEKWnj_FN6*SziJv+15pXhqVk@)2QMXb);2_s_JO+=ClkF{{S zycx`2E>zJc}qyM*n9FM;| zd(({-o-#j(ZnhN5@`nUISq9%r@WDm5esmuPl#J)ZQr_ybMM=~QY=3ZEF!j3%&MxQfm}Yg|Pa%I6a|)Y}rj zXy%AWcKc=IG4ba`N)UHmNeRrbPi42Z<57(0^Llq4bzXGm)gT?OT^ndlw04T}YIi<* z_5tTVZF3(hr=cX<ENdrr&V)dRg}9F@$E~y|{#vZqj^B3R$NL!S%1nEc@O(`l8$h zv&JUmC0z)4HG(IamAvk6W_&5pM^v=9sg9dt=Dm59SxPP}f5?XZ%n`k62hdZGq1aPD z9uXVcu#sOKvEDh)vaT=52&n;d{-ce5Z1_JN@egdooM)3CMRU@Ko!e;k57gC@Ii`L& zLT)jr&wp#(%d-ZJ$ysk(=KU;!u)*2IPY(!PIl@}s$@vt)D zZt9;bVM+)818%BR!Uhh~!Km~TOR9;}i9ackNcR>#{Vt}~V}8=3yxdPB$|HX=lXlC_ zkKQ#hPB{b64cGo)zowC zy93Fr-06$3?_zu*pZG@^4KC>JQul&z7br?L&HqWa zDT019>)LN59vI_SX`$45{sq&?&3KPu{icqrpg8%i3v6!FKnAX7wt6z^b)aq|*6hhl`Hs%JHX(1@ zgjn4Ugox>RO4n@QQFhZXK`TlqVDc%TQf{`zk(1YcQ2O0 zPV2(VX`RZfuml6UvETXQFgoBRQyTPdLMwnW(D5gc!$-2YC(*N(VMo6;yJbETlY4Vy zS$5|f_Bqg*DyGvYtRnu5R-A_8V|59mbqQ3(blCcra~N!R z1bn#yN9r~d3ptvqFWNvdQ?A6$L~&L5z;(BveW1{a&m&6S(`oPMG&AHtrlf>~a zsi6|hKade)?^?pmkoqWVTP_Wdmo9DlgYF z&PpiW+75+YyoSicyV{{pJgNO((D>i|6^*FNRH5vfzfqkujwB5~{T(oznY<2LX+w3K znY@lDwloy4xL)^HHrfjqCgJE0E!>7bu&)k>Bpq-#BpHgM=UY$w>91x?k~kca?So5*xaTFlZ+ z_VP`CP2-v*Ue$^3`vozU&A5diyKE7aP6@pjH^YyYgKoqhy7S*gBUp=VyN#fz&d%L3 zjY^v4XA5o=n{>w?k4xa`_gdx0^G{VSZXL)9EDqFk^%dCOI`-;97M{B@P?{SdicKjV z6~^wGv?SKm!;z22xPYD4tbOFC6*qw``%CNC_1!7&(9pO`h zaB3xBbxOcLK>dp=6v&g8zcnLP-j%mah{VlznyK!Escx>E7{}Ix=SJdvq@bykO5Je9 zY!^I(@lMMAus~fGHj8lE;|9DCVD3h4`fQBl^2@-KUt2t-O26cvW?&t5Z>?OucZqIE zKNKEFGQximjdE$$JR;DGQEj?=2gYxENR~6%=aGSAqqRh~ zP>^_sI*PqqHjv_K=16P8Kb4cRK`p8IIuRA9TOoKCsJW_ruaq&)k`YKlU2Z7{5n~)h zjC2x#d$F?EgqSqedr| zSLZlBl+xZ;q|udc<4WP^6jdjrg|pMKff}wIj?&(8l1BSQ%2Wt6HGY;7ezGLsK|{Q@ zQ6bRW^@Ag^*ojCp<2B*~tz4B@QY?lO6v(xj+u`bgwx74``u$>*T9W*RmWHPp9pe!pl zXLK1hrD`Aw_ur6!$%+7Kub!KZ&5n3MHWqiIIH~-A#>SmwS!_u4Km*))L&Q}ou?1eZ zO{@_}bumYnUxS&7*22kMg6&sf)SU8|POT9r#fHVQI9wp;q$BzSVOCdCuDsl31H;c5 zhSf5q|DBVW8yFKMyPLay6%qeGmQ@4wlsJ231GXd)4a_Y|g3=V-xN0^D=Lh>ijCr}f(^M&EW+GTt@Lp!%gvY|!2dRNbV~S1GBPFKi zZEKEeJl<>$(_fiDd8gLof2W zPJ2bCA>kUuzUUgLj`0xL^0-B#T#NKeYcr-Cdm{}*9A*u*WsxIsRlhMfIg<`Q3uEUx zqKfWf%`;>bSy)t2DHii29AHZZ*#G0-v2~@l90hdDf`D(kLO@F)Ak|3#z9sc;>c~#! zpUP3T#(z9O1+N8-BbOs&AR#E)M0k zz!Lmq*wGPYeWdYRf^4{HR3IML zhv8Rh##EKX-V@RuBQeQhMWX}Nje!!^Pr>E$d=bUQ7;sFW67CAqa6N-K8oZ)o)dsIT zMP#R*9&6@^FOrZ9MFcX$a;(faxcEGxD;eVK>t;VqUb8z;JB)>oM<=;ms=8I-P}jeE zJi7A#$JccSMp1l!Zb|PA0t7;U&;tp*mxSI4NN=G;;3%Pkw1grMLWkVkfmAEff~cTK z6;Y9@AV@C)3QAEr2*1y~oxPpg-S6+8cei^tpEvv7n>TOXl-+EsCEPZD=#L(0y)+G} z|LUI`ty~dE7bT>11JH^5W(0w^_5`7L=j_1TvP#fnRT2JdeP8zghQ~Yh`@Pk8hi~rb zYj(K#`CZZC^xDz7)9dNE<&-)CxTXZWPK*b<*}fqdKgLa26~&If4WC}kl10-0W`XjB z*~|3YP~~mGXW;+hQxUG&>H+##qLa&bHWV&nxd2`w0h7glZHL7#w8WfmiJ9D-rLud& za^sZ!0u%2&b4#1N+K%C9?0Czhg`n|*VGBXSsyed2M&uS({uY=>aJn%mg|lT;t}pv$ zB)MoS;NPu*d0s24?J{rnR|br%$P@Klq)+t7nxSP?R-&F5qw4S{>fE7j4at@8;Fm^2 zm@S^DFCR6)VA=PSRbFiC7;s890XDP-JUteG7Oj7KHb3)nR>EIFpd6QI9UCPb%>NNxn}-rz>4{l_Nv4PqT8VKvlw!QrgT;dTtt zG;b#57F14~IGln8)Kvf!@xOQn_3(PCK0P*#&@`r&p$cYQd-sWA$A;tSUz?C#in>0- zOAXbzIvS2Wor2+56@ge;Mik>QAGUugx|WJ~af|1v?d6`T8rK2oVee0aB>M`$UNRs# zx=qvZ1l>(wT})sUwk)aP@M4!T!9PbJ&XW;!m$ESnW4(7xurp1t)U$a{?Gws+Y{(5# zb_v)oWLRqGxlgHJLs0(W7NpA`Z7gq-^Q2 z4;+4M^ZR`YvbAIT`LIzHbA7M{hZwAt80dMyeG76E@y1cBr*~O#p*8xi79zKELWMml z!BQ}MbO{EAe{X_;@P>qgz^$+kTVZcsoIA$$N`-wc!R}vzRN)g#oPVuw$h*HT{WfOa zmm#_+&q^#p5K!j1)Y{3#ALBLcyRQ%4PPq(bTI#v6g~mNsGab6tc)vl&-YbCIRYmSB zBO@+OR63fV+Nn@V{b%aZkOI#vjWnZBMkwnL>GHvQ&ZyQ4Wb8zSm?PVSJ?FWHkE`c| z;e4eQ|57e498x)DhY2E2RBsF3=&Cw5GN+m=ku}4bDK5VoGL&vW!JBYc#>Fh`fur=! zRTK0j6Ev-iZ1^e4b$k!G=t$OoCE8>d+rCC0y%uC?JF~o4V5PnRtkP=OQ8546)ItOJ zT@gp=b*CfK+O9$JqOpqIK*wgJ`q1~mJ#H;Kw4yvML+3p%45+Fe5uWHoR{zE4~q;j^V${ zzmDIb$ez#pMz9uNz_XXfrcTe;s|>mselU{mGjtVZdJD`Bw;HXPLmVOkfnu!qNM)!1H|r z+4QdwihU`tcgWbn=VP_@+FU=@Y!R*>WEhN($bfbL;s{;5>CfD!F z@0uGlPX?34O#8cU6q~mn92%$`>Pj4RD}jslVQU{^fYIXsT4OCsUe&F6Rm|{oYbC!^7tA)xuQ8^7d6DQ8STKZ{DAz|L9s%ZyT)&lwD?{8*J= zpm%S!{gl?aH81MJ?(r&KJ%ipw;lHa*TuKAJF#*FS-eTQ`^;1Wmwi+sWRSBKKJJdFS z-Lv=er};Z95OJeRD_9cvUEx6Vs#Dw>_#5Kh0V;Su30x0*ul$B_Q*TS$9+tS|QHx%{ zz-h6HyFkL#W)XZ?ST-^`&Ux71K%=K@OAd1^Ibc#@jO`m0{3{9k>Lm=HzO)3|VF^U$ zQ1S}Q;ZGIqmV`!;#$Q~%_pcy0ydZu2gz?M)!Pqasa^kSNy}d<%(^u_mNZMkE@9Hopzjk5r`hB_wqW z@(1GCbta_MMkM5{2V+iRn>uDfI$}hk;4I-Tg0p-!*8g#C zG8Sm)vPPd+M|ojFd8(o)jq~9|YL=`(?BOxaWN9@BIqHVz28Xcrj~4qVbyRGnrj53?STza|f9KI~Rz6o@$5tNpgbov)-L-q*J zuVql~DhV{^5dyiLCcMv$cofGqdW`Vtj=;Mu<7rDe)QUdAB9h-tnAeP$v^;E4emq){ z!fA!s@aG7DqFLHwG_5F>`a&C!Xub^Rh7?M}Zo6lQe!}_h@~A0<-%x#|E?LrdpO^66 zM@pv^QW-Q=86@irFn);Q(7r6`1ribsjnMV}Kj;L!RDxc8AF${K}T%g?a#MtgV~h%|bQfr!%xm1_m1J#jGGGCVDkHT=&JgvA|H!5?%~ zJaIkScSgX2R)7>QWZN92v3!GI9_uiC?w%B$H6bmGWhjnt+doE7tZy>wMN@o&QaZod zyi2kfibD)QHGNlygT-B0%SHJOqn0)C`LIvC9dSx00og%^)THRg7Vk)lU^zahX9~6NXRPqA?8B+y3G_i<9#ndn5grRgx!KRtahI*zE zg&h&>MGzv?6cdL=*hi!Gx>Vsl5vcGOfs`R5=@m|lbW~J^n~;Wzy1wnjO4M+~Y9at) zBx_f|;qS4!b**6Wo(BuQ1bBF1_!<1ah~hG_z~l#sLuWy|JH{7uBq>L|*!s^{3P148 zEo6*Qf?0=XM-An$3F})k7EhlnE##=GJQuZl;sI9J(M0*zg!4efvAxZbi#SrSg9IP7 z*~#&B12H-hwoCq|W{e}sR+TM{a-=AU-cl_w-&IOU@HXncJpRLVk7b%NOms0vlC7T# zgSBAphs8_IvBtKTqngsg1ch_^j8L(T(Y6IDO16Z;)2UUIIVOZzIs!$1*sZ{$KR(rf zZ4BxWSr=OBM`XQDbo#QO_VfKcP8!1kx+pj%+G>&4$`!BtK(O-L;lJ~yR)l@k$YY6;r!mLv8+QW z$J^x=;J5Mix4iS^vk${pdvpFRoqubAZ*9EPW6!RE6K_-CNNwt%H%m=)He{bv(;p+O zGz>YCtuL?Dx^*pW14kGu5$7--@fD2IW#9wMwf{H2N9`|J)c$w1_GNEc)&8Wh_Lv0$ zd%n|%=hBysf#nCdZw0b|A^J9yq;ifTXpQ?*4|3P}ctM{#f=~8SIZ6aq$*A3tYX@CzoOe+SEjJaoD0rQTJ;j3#vL; z6k;8cQ1zEa7SAkM(AK(d_89L_bl15t?Fk~;@am3&wk}3ao&H}=Wt4dW6EAww zo`7M8hac-z(@_-*gbWqWw1lJF&Z=6DlFAnX?lTE4uO{qck^g`&)-im57n@calHO(n z-s}O4W+IlrW6d#dGNZZO#KF>Oj9jWNdYyZM)m@2IQXQ~5(GbfLp44?jU|%e+zSQ;K z^wn&eBB8X_&S18#6KWPv-w~t~@>AtofZ1vbZL+Mf3;kGDHiCM(GcKqY;-%17G8|a zXa*N-GK3Ize?2NavNbA=1AqydECma8 z32mB$MsHe=4b{ZGf75^{)~_AvJJ|?1(Ev$fn(6Hw3Cb3M`>BMxzbBkrhYpUK=oAcf z``~{7g|JKe(9qs%?+8)O3&^t;keJWjHz1VFOGW!VZ3I7M0H+D(&GA!$*~L@n(Drmf zEB3`%!%&&xh3)A)z@(lJDI{_Xp=@?%M*#(0Fi&bpoz!asGNmIwe#=oosgAksO4MuX za5SbHF+h{+@m~gnFjp5xxKddKmRwFnRD5;TU5IES)_BT<=Wf_hhlQiA-{ zVI3SLkF|8aOIe))egm~l&EE?Khja!}d<^EpiuXp8e89wEZ-C}{ski7c+7ZZ(rVR{a zBd0@Y4+Y#k9WH`V$1(EmzyKEJTpJ9aPdnpXxI-7VgpsH zhzXQrt$9prRKGjW-;w4hrW6V^O1S_^@bF&3=i`qG{o&x+2-KD`s_x^|x(|SJZDxW^ zF~QnKI0oY6fq`DE&p>#GNdkMkj7{A=!B!gS@aO;bW=Vr!9b-%kGE598>D3_}Nrevu z_68X{Z!~;!m>omVGH*KyDQiuL@0k$Q1s{VQC6u29;t3g%TAfx~KUQ%FMz%*yus@n$ zwTcF^Dba)cS-+uB;2Xigg*o^2njxp-a7 zi(IRG*-1`lB}p0nCsWs7ir-bce#uP0Zi3Q7pm()IhZ2k9peZZNj+U63zyn!&hNGY| zN1)G=&~>3#tPbH-{1)y$%aX-3OBPz|DXHub=y?*l-X{BH3<_Yu^B6yL%IX0=^+cx} zHk^Q`TcNB-?D|24Y2c##B{=>mam4e4u{TxHec8GL;J9}jItEOPXljsL?TsMK#lU-G ztMx>f^2rl}5O9olgksODZ5(>!NOo$R$Dl~}<*%z?(vFy%H~~&HnhE27mveT({D#nV zK(OX=G=}A|2bS1iX2X+>)@AxKoz1ofgMwJ4dJtg)Bb&OGY^d)z_YUH*Q7W4eMmAda zQ4cfXhMEudgd~MPWS$D4#m`w&k(%46a`?!|L2GmLAmOa%H0a}f;w7nKU9hGK1lsRl z7KMaz(uk!+*M(VF)pSf6!o%B+5th_7AK^EI#J_h-9Jm8m#)x#`-}8m2t@u9!3v6-m zW0hw(YS>;Fai3b^Qle_~OgQ&S0(NyMQ)L&PWM!2^FT(6>wIngXj~C#|8fI1WLU0+}1k!qeQS z{bOOLX#al;7I!2Tu5|zjWA&`0=T9EJXr$Q8lW!&cod6W zf?;bzOK`ON{{h}+siVF!T7Zv~!CNBkPFUt>hN&2<`VO&zq$7~h)<7cr8x0O)>=5>! ztO-?TW&on5Eg1Iy`>{7c2x+O_OBxIgWmzj=EKW;KxmKL2taA)vC|S&S4&+bbS$^Q9 z1VfzB=f`fZ!C3?A9F9cH-&j4+K`S<-fQ!u0Sa~LJA4|A6Bv0U?COC=SiKN;;mf-iT z!0C{LLMt8B`3Brvq<~9?$q^$z%RSErQi4SmVPkg* zYbfuS@Fp1Xpu#15^DT$kC`0M$YVcriEL*!C5B-q|?|ma4ZC~%vwd;K@9zT*@{QzSQ>TdJ#f6D&j zKO;Kj_^y709A7noo@7MV2iJst>|?a_N(3x*UKLpXPZ4#vjet@MFF!$QAx+@+G2-gu z2f_{6h)l=hjfmoU8o|36z%|c=x6{0jl`LCYvQTBAU^Cyu#y!v^HYkBf&sktI*T`nJ zfeqy;t8H(}vSY=VM0Z!B@5becVZV zeTK&kEhLV-_&1zwUy3PZgQoSMWXz$iibbdf zRD^|puDK`OGzoFv&qLG^D5mtc=XrGZQS9MoXf5FpS}^E=j`cckhKL}gwcyi2=cC0Z zzKq!1dox5tgiVcXl1*&*GRQB!aFkXi3fyrLE+6b?ehJ4q+6Xk#4Mcr1q~h5p(`0Lt zU5>&^p1|Fr? zd+QDr@gLre>?z+e{m&;z{@pQvJe&`k9VO1_q1pG%%X2O58TT06YG`;e&k(q{N3Z zC(KkOD)&@q$(!C~GrmH~97oQSTGo-R`2j8{HcD-~*m&^0)^^GJjQSBG#_ogf&0$>u zepdwO5m8#R)i6WZ{der5#kLXX*pHy2^XZYD6YM3_z63iHELfyivY^4mXGbx(m?VI) z3qc2V4=xrRb5z6WWmdo$*1$X^b^N%aj`E=Z##RJ3a7QoHc=HMLL)edCQQ7w_F)7#Z z>LgF@2u$on&@p*Nb?*dwC_8t`QNV^>2^PRVS^`tg{qkqzR^JF(M!(U;PC$ zF4(1Df&Ro2otF3noq=0SD4?1~dDj1wFbypS>Z?{gZ6gAXgdynk%HXg|53gQ|7c$uh zxt?l~!wRsUp4$ts`e%{N#$lusestB@Fn-K@ZXCiyXfllDUBgV^(dYI^7JCjpv$K&` zM@wE5f;9XMA;=uTVV2H;rWxlRb3}7+FBTdzEQq`uQay$TnPv^nI}b=Hl!a9o=F3K0 zK*n*0V3Q}Y5jkUD)_xP>gS-U%x6wt&Ym1T1rqFJ0H100q<}p@mnlQYGsuB#-{$qKB5f_zjbm zDM(v)%~6T(QscO_BwXrWG__(@!;X4ypqBKmt6nO8}Limk;ZWcNw|8z0a3@W zkAH_8&_j6Q_O-;Nl-=Q*j*@&^8pmBK;gZuvQ^Emhm01DaM|eW!ctVoPz8h(9+4_d_ z;hlzutE&u-sl1Lzy!g6F7W${795%UeHd04;sGt@X(EMG|JDB-@svVe}8DK z<2|X4cX4=~n&;Pm!r1*P!vh`FS&$MRt+vGyY{uWvD=lE52_Q|ne(b>=7(Fkby6;%^ zpN0c2WBA<^MdwAGZ1sDX+DH{F@Df2!7Ftj1%kJMnqkm8bORuKZhSjyPWYN;ifrMgw zxhFWLU&MTXFFXDZ*V#x4-Wshbn3~VDM+iBt3GB-zY(9qy*a)`x5l?rm zMkBhQ!%AKLIes@qITNjEo!sJzCvb})g;Zq+vTKh$l&y`-kX3q$1f8GyyFo18{H_d4 z{r|RSh$-p`;Myi&zSL#pQv|;&o@2E|4NKsvMqqM+J6|~3DMJKsx)Hc>`XWEJ@uj0H zc0bU=7%JP(5;N#OM?)o7U@kLa?tg}i&i(%!EwJ;!3Uh%aX8iu)2`u9c@_h#d@IE83 z=-iUA>A?#3D@)vwHr7D7FChOiLgp<;_M@Z1nq%vO6((La;i)W=>HGOveWhq&)d~u; zrLR4#-~msTwa8mlo$c~MUb&$9yFsv#{H|;Tl>a&F&8jP{1aNaBFrAu?Bv3;n`-!Ik zv#}AAD*F-(vXuz}bF2|l8}!#fX5R{Pgb|balAJpuvCMY+D%JVDFTmFs!1dt@wK)EN z)%UHoWVO=BigHZlf>>4Mq~LJOz`>n8Oi*$a_8@dgG|s}bdW`Rl*c1`B3V~?;6WA|| z*jj6@i~hn2^N|sgBEXC=R@zp9B?qt+rEC#>e5gl&jl)?vCBBF;Z&w0;<|8(E9CFO? zYr13ROOR;zQhE9avDgmBQga?@5)Z!6E|gu~I3k3tduOETHI+UlPCbiA9y664iDC&j zp@-1s%V?Ty_;SclR{XsY5o~HrjJ@WXAZLrp&nTj~OX?)A7i48|P!B=xl%e%*@yf;# zSR3;G2p@J553GD{g5GX|rb({{g;;r-p;& z%9UUx6a<2_n8hi9@^ukH1e0oG5;)g{xJ*YR6NaIAnlObH+e)!$<+NaMN@pO475x%e z0Gk@mB9!AME7S8&ApBRn~hlS_OtKZNby zmmxyKn>t4+G`wC^vlMFFm#d(;6ey-zb_7<+$&I_V5?ajInuG8kK9%CnX4GK(#9<94 zgjHUbp>}>L0z~R;<^kRXo4v>rM?Niju9S4H%7@2fWu`#*jjaEs0rb1 z6+!XG+iUnl`O0sf&3j@7G`l?^8FwZ$~)k+YfKl!dScyU>Tz z!ls`E(g_&}qo^>}xDLZUpItcgf}Z=R3HV2~)>wNf#7Y_4w8p^i*ATgjat)S+DsKe- zD;Zx;-X?syKX*@oF}TLK$hAC0p-#$s+$ z&>A0BZ#H0j#EEfGnOLJ`ltK}18Ky^wxAjm#yUL&*^)9P)HsN(N;!!x5p2Diz=BRkH zJn-DpfsN|0VAlAnRfXBGCNQ!r6Y?}8vZl<^wjC;Ro`kG-90a`hDdakb3`U?-bfQF=d5 zRbAZ@Oh(Sa?4@sUqqe+Ij`zxkMKghA8=480-tU{T#c#kJmu5-r{x zSV?8IKwK#!QmO@23u7mrkMd%-aj3GwOt33Vur%`YNkv7E2-xpsSW0IT?B4;Sk-$g= z>>(5E0TV3cEJ8c8Qp!^S`$&e>^A*4@qdYVr-us`3c);D*FW-6;CK%)6RHG;nCmDqY zHvQY16&{Ux$Hp0rA_nESQAkqe$?T|Z7!#xl?DjIY9u7a~hA~MS6JkpfqGk!9tZ@$n zJ<|p36d9JxfutOl3Mt3*ggcvL!XB?a`N~j@KAS=#gbXHTz6_CqxNR~DT z3%r)R%^D$TVt`v<38yJ3l)WiC#-FYJl!Yh<1@Jxz7}~0hgoyzY$HiF)krHUPhO$b^ zeS!3sgoL3=Bcw?TNH{Id0*M~>)i739DOyr(riHOLS@+#N@U*+^h>x;HjEP~vBhW$% z;y4J;!BixQ@D{3TS%2synOJ$e?IWaKTL}iuWd^kR?2{p^AfrE0AkxIdps|SoIoevI z;AkfZ*s(G!IofSQV4#cltrDJPlnHi(4y%sjxN_ToYKl5{x-1zRo3pRT+=wNdSvOt!4A#ch&Zaw{KUOOo23wf>ut#D5$OguO)$#7boz>r=jMAb<4vs)nNr* z#R?qT5ymQm1@0gjHv!WGL#MEcnBcHN>#L(F*m^_CgFv{aRn9^%V`&{8Z8R@GjTKVX z2_CB@9yqkM9FFjF!%M>vR!WmCnc3axFtZ~9;(G}K;YJ{<5IHuG?a#!(@{kTDMH>hB zT_M)Jnpnwg{gH)X&QpQ=NWw)N=EurLj>W)f1}lcy4tFIb+7ky(^mM zBx_Wh`6!bbe0kIbOI*C= z#iGKrda2-_GYhfAF4&hF!cub(GX%1w*_zI9tdAe_`(q|jB7CX{y==BwXWsm-E)8lA zZ^avRM$EP@X0dqFA@RXW4&8ik8jl}4`z=GpThnEUmQ;nqHl{6d8)q zD&R;7kfJaEmSa0;;W&{ww92stRU$%Sxt|Oi(!2aVnQfW;7*lrX+&LVEvt;< zLaeGf!4j9h3D3R`UD{>=xlw{7_sHeocri}QpnhbD{l1Q^q?cB^30SYemCk`Ke@3WG&D>@IUHC!yCwFWw4f6YhChi&@+elfJHs=*+(^h0PUtMT%( z>e{%pkC{KqK8*ZK=7-RrKmT2hn|=5Vp*)-tvYFb123}05FL3Kv;FiWKH4SLhtkB3$ zF8>7G#883uwuA=n7|42WWbt@0ssSy{3XSTv=u=iqaR{{K5*kk7#?0L&R?4=-h_=uQ zt;%LLPWe^_1F%5MXNs<@~Tn%E`J-4&?!OA`3#V)1!N0L z$fi30+0+s;*#Jp##purwS44@|RWH3+&s_UTE`O<=6>D zM5;1RaN1(zMB&j_g(pO@q5EOz*dNU0#f2iZpO4FF?T6g{(OuBjd4Y)SzaA3C$tZs8 z%fb^1va7q0L;3zIpq|!IrGDiUznh{QFQ-KY)Pdjn8XdSVR(tUv*^Bkxqj}b(Ge`py zaQh#TNbB`A`T-mN-Q-zc8-Zy&d%ELz?5xV`yH~44+Zc&378THqYfh-d)E^44@*okz3tz#T8N349)RJ*R8R-O z)UK)DMP=(Ng)m?2IrJ@nKk}ik{@~Qjp8b(k!m=L1YAIt;H@oo&tEMzFVWp^8wj8!( zFX{j#X{skvzzCAAcVQ&i&owT8IethAe;+j+(bKqYP63;Pa}+MANE(jiSx%7hICMz` zZ5&E&`+kadG#m94vF9$ewqJdBBz7ncKukL0~15o znrkf7c3nlgBBSj;%c9uT<$jo%J%vHpMHA$271*g%R|;n3<&D}nme`Mt{22qRP?ma( zRdHM>9IgaaR24+kTw4{@9C;OUhaGJb3$V4fkfrdiXjGL?MFTpGZE++v7Ws!wjAT9h zoI$qwI*U3oi#KekKbvw(Wf8{G0wxBqCBK7DO%tDLZa$NaJ#0e$)`Uzg!TSkbJ{GtnBhJWIGO1ZV5W zmfptUIZGZdz%cVRDhtCDm8FJU{JoIkszC1xCVxpx)&=KcO~s!WCj4p1l!<%OY0eeA8?QMFsYRTu)3^j*u>&Uu2WyO{Hf?FM#+x{1D!ZFV< zf~{HE=-sPT)~tkDNu}p#C0OG?RURmV=z?CSOhTfScSUI?xIQSt{bbL|nthNY>b`^| zmJ8S=GOR8Mg6(()bCe5Bu=7o@q^x%TVW_)b!0wS@*Ktkxy<$Zr-}|)*cBc+YHUVL1 zlBH{O`gFYzZ*k@)2Jb{IY@q%J zFaE=VUq7dhtrCi=U2+8!;u8meiC|k5XOdDj(Ws^PL`_Sy_T^B1Fz@C@cuPj0m^|Cd zSw%@T!L+CPB`a+b-P&oipdn0wMBsFBy*^n!&Kk;e6VMbLhy;cDk)TST zo@!@J^L4HL0KCUt&#w*01=xe1v7K^Fd1tt?)5PO*_cPP1NYMai8QX0)*6%VF4N514 zIzw32^hqHsxbr*yEVwjKubEIUi<)0>i-5*u6@#2{N>q|+_u)yB1Zbw^L6Ea*!H}eY zeB%f7x3|O@iqlqK*~kugZFvMIBLIr(NSYOyQAoMn}XqWCzeIF0(!!kx90(JF-GtwxIa4NKAt zK?{$3*`^3*Y2^a}xLyKOx0OK5MOpjPc-za`NJw~%2^$GP{_H$+8RZnG%^_nNiqM%XG7u%xGo{Dw$Ky_AG;+9(W4Fy~&MR7iCVID3RYgI!`ugW=5b{8YWa;C%0_ zSwSyf@_dj%RWv6-KKH$1PX4kD!djtXjXJxe2(!n+c<@3c6qYKxNUyAtQ$@3i{>7bR zF+W2X2lV>T%ENc!oHZ~4HQ?;_#NpPD-8f+}9@?iN)L&umM2my+akvP7;ujJJK3zV~ z$61i&6?w;xHLZ-pywL}GKJX*=15+?wI3DUn%Bm!I#aGpvFm375uzVdw;T(cW!=Or3 zHM-eYl;Wm~^^?V&d_5c%tfjI_Wt=5&W(eV?O1OO19T`b(rKlthUN7s6R@$3D+o+&Q z4356#(s*Q)2B|-IU$jvFLY32enUkjfBxSA%e|A+5wXdiEweM6hJ{K68-h&+t-ocWu ziq05iy9sBjT2I?1?cp)rN@brWI7?y&IX(O}sY;p&sF0)jzT?AI$H5<5HsM}Sag|N# z^DC&Y<_pO;qKo9$cx6V%L}w#b=%{}BEJo->mBec5EODjd+M%rp%vRZ1TXJXRt7*L~ z~_44CAFwAyp}0SMm4Q5Aw%1ReSQwx{f14)uE0+O?uQaC={e*Zm=(Z7 z*q(FPM)?=kk>Ukd?&?Y`)*4xm7q40i-NqS#{{SbA%QXqix#E8p{#5O^Y3Z` z>}&$0Z2!Wz>=<_98MaertEh8iRCH1PY{6l?_?jC7%WLZNX3pnWJvYmQpJl?=Djdu* zt7HeUOUcNie5o?oAv4jcUPZ|>p>8puk}Evc1g`Lgigi`SavLtMYpim~1bE&ANV`-n zHgi^0!fL3EDVT*Pqhq5CKD8)yfr6mJq zU_k9-ZhJK2V>Q_NSVC)ojk)Jp$_r8Br$$^_ zrInrPY=mCQ3hg1GDT8aUhZ~S^tl`$4$b``HhTfgg4_2$G+Da0;)>d=8c#Uo)oaBNV zruhM!1=beUvi~+Vv%nZ&94R){Hn4-de;4!%uItORu@?*N>cmmKHPwD0F-WW)!pmhj z$nvCVzLFsfuc`G7B-Ih!P`MSNa(LSquN)8}SXR+xeyn_V_$0h-Osk=UlT%YODByHt zb$dYbdj$?&A*SQ-gNE-VO4GM-WXNgv;@Cy4bI;-*|Lu_9>+HH?}g@9pqA=x`GZq*1S<_^p*@|*1Rt6L zS2PGcc|W11r7!IT*PFKW;Xo<2k z5EIT?RyzzM@K1&~izy+s)!}DgZCyL+xg{_sgd5ioIphpQ;ObY~I3&bEmXUb#Mq=9q z{GfZxAZhPfP(zB0N%At+HD9ssx`t{QW-74 zM@rzDA=Orfnd*o2DkEvgO0q1H;jE*q5)cpwr5mUbKFDysrR18bwoFuQG1k1Q(_}cA zIhA!D?MzgD5IEn-I49%adjHIY)UGz1T7a$TGu4+}y^gi{WZ4Hz4EC8AP(>$=b=FfJ z3kLtl3_6Z;c2(}1aQ?E!*)iT(S1DOX^@zn;l?j^D33~(Md6wZU%hvWmJ$61vB zZgP-?nQc5;E+jxrZ-}*W#!Z59dI?6|bw-+Q!W~1V7Gx78;0Sue*7_~#OA>160DwytE|S|I1o!g@|ch<^*O4CT+D#MCu5=t5ZOhXx%s zv1AMyG&=26Hewd)hPhD=+fs(5{pc{F2#y%fCeMcRZl)qi5=lW3-n<*t)!GovGr8VH zpFBxL9WSG5g9W{^A?)5>oPyVJA@IkT@H0&KbfCc3bDfoKAFB8pWPCb1XW=|N%vuxH zdpZ_bd!f2UK~vIh`fpQj`A>T1VQZsx!Xc}Hv)x#O2Y!kSfbzGh#tB*5}t)BZM zBOEoA-_|=5l#2rCHwlRbC!cP>-~tASTR%4cz<)UC2-qv$q>)5j82k`=?O6OTal~I9ja~w+S)XaudiB zs&NX=(H4OhJ$&Am7%AAlgAxAMbzzWlSfG9@p}NN`jy=<2$V`>}CiFctd6ZzRM~CFK@W=sd@!v>{b=`)J=x-C~9U~~E@>YM2Dre>)pBUFrwS{60C1_;z zOR-+tF{Ufh&}aeC_~T|A^y8KR&AZI|4D&AS1XgPqi%#Df@&%3-Sh97RH+%3GDm;A$ z>e|8t-P8!J)wPT=SwK&ep;65gWt<6Sv=K(rQVHc_0rPC<7ivj~nKOWlVa z6K|mSN^`4P448zu9^5r`z+R0sv!~>J{2nClYpF2Rbr^R*%pO#mj@J*}hdt3G1ExMS zP^rtsZ1z`LCswhM))vV7CGEpp>>!mvf1QCk?S$|noO6g`MfRh|>1zqz%MzR>dg~ql z_)-;okq)l;m~a+$5R+axmay|YVM*2yjwWl-o+(WD>05*eM^rZ7>uk91#_{IWrepEa z1H`I%hwu!CESVjUn4y=H(?KV`b4FwCh7|co0@wP-1Z>o?lKDMPNHJWd1pngR(<8;y z5zd7F9u`u9*^USc(K3U0i^pFO{J&?g{UetDY%-OY#+s=hHJ{2>{)jAEdle7U18zLG zQJ?%36L48aV3#d*JjqI$v84ymK2sWN&rccNPkus5dWs5*IRp(>olT|Ck8qb9g$^*2 zpw&~t9b?3$6RT2dYtR*|HISuOK@=hbj!b02Q<_N3|OFiqMIqEVKE;_^5)nA=nEbvzV z_r|JmzQD~5t2aYvund;ASwVOHU(j$2PtdZ8oO1>%**NK*FLHB3Gp)w4Eb}p*?4#ot z>dvxckY!{*GXRn2o#m7-g(!Bofs3%K=ba6)(#@)>TZ~AW6iO*K1kzPEQiN2+eJ`g6 zu%egX9WGe{pEm+iH&^d6gcioOUlR*qf>WdpnHCRg))vN&zX6AHr_o6Tq!{~WUzFn! z8rmH>IW%j{$#wZy?9+(u=@vGVm(iHLarq> z#V#!EI#P?qmvhFy^nAVL;|xF3%Q^(_^Se3!!2dno%{dxN;gN(xmgc|> z7-pvwbpcYHb&K6e@UQFV6u}EZsLEL%EEZK>XR7k*|50T>&-aOTLcNUd6Ya%Z(g^KRN7w@2O1!Li|mW3Nu z&eWDCbd(@k{e?7oJ0nDEHw3phBnW=$}4z7mZ-I?_;X}17ls*Q(dqJkjsdT`Za%m0yJs?81M0WVb53ivakMj zx=pE3!<=~R)1pe9xsQ;AZ^pJ=q<>45`mKqFZbJVBd%XISKMG1kux0-u*YlD}NxFH) zZ=@)XJ$2LA+ZByoyTlW%aL8lyC$TL2frnx-_l+BLcD)h7?+N;erV_&BCzy+eBlSeU zJ3=fFQjfZ7vG=BC#)>dvu!QsIsk0(KLDmzezb8)WEX;oiv0^yt7OOLwTIjWEz`yVu zvFBP9c}YXjLh;66jx34Q)l}8>{tsO|dr!J9`qEh#i)%9wGraw|Ay%M z2BYbC8RGaG48BS<CiogdXH>(NBVNN z?JgYFGnn6I`U$&_7?P=`cb!Q2-F25^)O)llASMCq1+8@SE)t3wFIV@`bDb=38IYRlknc4+) zEvY-RdW~}mE6?x@C0%yqv8m?&H1n{|kV09d#jJjGb6%z!D;VIaszfy>n~<~=PIr=( zkmep{Svt^FNvSJ}ZVGf&Q)-!tR<|y?JIGaD=_86Z2zC`$atqRVno3U-L^o@Qqwl*4 zC|Lrc?gy@-$~05a$$C-h2>v1YC6!&mwNFck@A#7V`iHq%E4u*3&%a0r)&h<%Oo*Q~ z*QT$@FB}bb#VKd?auKX~gsY5l+EnfomintZG^ku$q^pMVR4%tI(p67+WGeSiJi$Fr z(SIN1DyI}_;jV8KYg53LphUMYsxFG|BrAsU?@r3n&h2QRqeQSD3gUU{swm_X!opp` zDFA_-0-l6B0OdHINS$S-Cu&>BRZJN!V|`o5RZ1CZs?pmmJS4HQu&b7`KrT0R1sX?< zBCy14Q{g%4;~?}N9p&OH0*QCi82ovgjBzpssGCj2H(D02^GQ}TyVoJtNBLRC=v55$ zKViZ+YKhS+))lKfmW%%qi-77MQ}O$j#cvb454)aAz^lP81Y%1GX$f{pTH4l}>^!%M9$i#U&cW^=!R3LU=IMHvxO8plp{dY# zS0iPLDAzI88O1*3cP5$2jaO@@jA`lNE)JJ=bx_vmd?Q#!8CNG|m8rZ_FHg^cdeF0U zZmG7}-Vf#UC-=-{r;)!pVYJ9bohyC`bfrs>Nt+ptrdsh@|>pG4`+9k@GuQ}O|A{tgr?ak$9*4js`m?)DaqwKFcBa%p z;A3k)XzLfjWq*Ecf8$9Lmt%s<5rH!7xi0U&n&lKyUJH=MuQgG>G=V(x6!oS7a7o45 zt13b{Y&IR}YHTaQw)gSq_@eoZ6dR6*N!LSj1daZz^;_>Iv8w~nrW(sIPX@V~Viwl` zQ`Z1P0;urzyRqzK)N&tXpp4*n+f~t)W<=;i2uf6YRkC;-lI&w4lU`rVfFp zTO~kq6VVSk2~X+=bK7gCM|Igf6w3HoFA>ga+Yv|XG*$!ef#mYouE~Q6rwl{kOLF0T z!%+CVvG7?ctZWz0fGY53z?vQ|E!AKD+GwfUU%z}fN64o@2USrGn=ciCQA7u0TMF&) zKSH@To}t{Ho90mNhns3B_alBYrCm1QrW(rmt7(^t;KZ#R97zX3IID{XpLe_I!RM$J zIc2eChKAmWeYBx>PgAYCb?^vB&imrE5M&Zl^}-Qs(HKN|@0bct=%DG4TK@B*bE8@2 zSXktHa^WjuG30ZZ3OnddvTZpVJssAf9awT@99Zqs%i|?)<6RY$Z%pOCGL@&OZs-KW zAJ_Hr5p2&~S0KAT0nYl03FM**qAc&Anl+w?Oaj~dMWqOI)Ff948(si9#f63ReOwXj z?j-a`Asvl25J-2D`6&U@b&uHVt+{a|RBW}>AfnjV$#|?PDumQ=R%X{Gs~sm#Qf^L} zS6HO0-g1|XU`M97N-L=*_U%>nN*g5erA+71sji~7iBj>DX|9sWI8*V_dU5J!DtDBG z!TmcmwjZaXIe#Rfwa9c;RNhz7qz75&@gQZgTm^B^y7u@H%#nrY<6Bc5_KP~~@qC2E zGh7vLs)SxVa;7Uuxn(MTLocp|Wa=X*V}*WU?$l)75>3YO_X>A&f8HV|Ua6F-wwbhh zE8>+3sYV5tP4%$&AKr!Kw$+P-vqp2EnO3H9&FN0E(j-;W4B1t;hjX<(Kp8U1H*=B6 z8*V}ws-wuE*|+nMWnCthua=E^EjE>3;I2JVbG6vaSW(D<<*}+WcIzCnP%uRmRBZjP&If=?l!6fP?X4>!y57bWT8>e>iu(G?$ zk#}3Kmk4K5R=65q^2_j0tEgIv6Q!lV{hgijw21v~0uG(Z-Ny}kbX}^yR#A{LH zk^w6biC2(Iu2|`+g^ka=q~v7c`Hd9C!1t$D^Gd6|SUVXa;XN?NINB2enNtghx~t)x zN6Dr4tac?~@0_8u-LmwNH3(Oi%cVQ4bydY7hlbJ%Elc-ZhxYfST>9sA=zn$?OXpdZ zKDiz}-EVT~<{Mn4u$ZCRS z*f7V#RtRpTYH&5Xr5;@MNzIOD4TBsAUj_P-!CG+Dz=U2Gy`Pln4|yv)mbHJh*hlH7 z7e?yoV<@e+sc;WbwXOh>8piJN*_G59%#=Y!Zp3IM(*!bAuK^#?_Wl$eZi8Iz;-{Fn zS!*iyo?z~J%R{c8II^RK&-+eB>9ZLP?x2c7Eo9wCn(qYyX$mzVP2q9q8nU75T5qY& z=J8#9{lwZ%9%<9FKG2?r$I0KtBMc15gXb-$7mHwX^N?68Z7f!@i-%g$ zwxio=DHl7p9l-*hGxKP*d_jboS`Sbf0YXyB-dEYBgj|NnKz(+&68RE-&uXW;`S<^C zaV_>Fbbfhud#kHG!=oZf`rK8M_1NaBBRPzBRo0Eygal&UiEQZ&qjLjT-*WS{DTA#t z`=MVVwBBTVj!!(mNExURDFcrsgAYlXuO+%K$+$CjA+9-Z#67Fx(v&2C2pFO!;NqUZ zpwcAdg<4$$~ZUH_JxPUedvZd5e)=Fgw8plEuYE_lg^FQ7_UCd`UZnd zOuKW`bwhH+T8U%=k@~5IT|LylZ;z`3j)m1qMX(`zU7azKG}NV!RF|GzJ;c;%=lphR zq&!E0X|~_h4YM)^n5_Q|vwzPDFBbdL{CE*MZz8b*Z|KDKs&(FsmCEw*f zI0KI!?P>tt2)yiD$o)qn%wZkI){`Y4!blY>gAc*hladw(sz1`?{^CRm2oO-$XWz8W zDXw^RQ`_jtYFY{b$D}sl%(hEnhZr@|pHO^GH7~M%$igZ)w>|d+( z+F!P`T(9-qt<5;*` zPGkT}IhvL09_?=)<0j&!I>z-;$GD@_YARqrX5R^i#q%-lh7YxDdoSgEROe$%u+v)= z)|u+Ix|@e}9zEtNtQ@2w-C3jKaB%xfMZTds$;wyVJj}A*30FborYO4U1O_hGO+~Nh zMXz1KVqH=1l~nHrEaH?aI`cL%0d1n~H}TPKt<4^ewGD0R+wbwaCGDa7%Flj-UxnFk z@sBLKjo|_DB3?V|xg{DsF$puNv43^Q&U^hy1FzJ&0e8vd8d`rgmTc;bVWw ze_LkH4Ca?M`@j6sX8(hKtg+|gH!Ip7^Q%JkNPbn&{+eG!*q`%{WIJE@hXQ;t9X{^x zD=+)s{6n!v@SEQDC;ZCW&R3Y=FMQPoJ_6O>{^2(R?OvJuGQa&Ve(7a@q5hRmbm6bR z^AB(Peg5HR_u>Eax8LPgUiLyNn!-Q4>`^KT&#ItY0e%%^f55N&?fKQKg8akV9?d`e z>|yGaw^uMO6?+kWX|q3LJAQUGA(8aKIagdYq!`i)>4Y>w`XFtPE=UukhjbDnFUr+H z${^9&&fef4smiAB%LJ6|Ivmw;&z;L;3Sok&YW~%Jx{xelKC&j z|M>GSAz|xRye;Tgyh-R+yk+QDyn*Ofyq)M*yt(LCyw&JekGQP$ORhD3#T&yCQlEas zo0NXVTb6#s8<>8@+nIjFRm`t=ds#xd)~|xSGS$DTKXSJEkGv`BSKJ=-E8Z~mE8af! zE8a}?E8bf5D{eFVinrP&+;}pjOKwK`kKCU0D{fExinrw@WLWwYw=n&RTNuCM&3y@( zntsJ?PQT*Dm#JTJ>*H748kfKf!H zF)tx2=0B=e+?@3*ZrA!1H*o!m8#uq>E@TN=x_-q?UcchDuV3*-uy{p1tzZ}V$MFk- z2M^B}&~IGEz;R>J)5osRim4ugTMHV@&P``s^=-=S{Or$juGvAE-2?KKv%8w%x0~#p z-&}LWoeu`mouKpXJM$UcS&KV`)l#`@`5nNv@wLBLgYT(WMSIybSwMXAF%|gkf*T?( zkM4B8=)Ti)H{H3b-)VP*?o7Yr{*V88x)XlceW&3iy7Pg4=i^&+r`8qsf9{mB@kctM z-)T^n?)16p{!dmXy7NH4v!)B(nRU(mpA+5bPQmN$JKrv)I~%XNmISMU_^y_BK6q=^ z{D!Nmxb?h+dTZki*DP^sbOZHPo!?#aVyNJPfI;b_#-tDIKQ4XH3bk+bYu}!oI+4~a zcHD{?E9@%##vwkczem5celWgo7|a^obfw1qQ^gk!Rs8EAF4UgbW*^PJFHT~4H(e{^ z2Sdg7I2f9J2)->}QGUjXX)wK}IFGTteK>Blw~t^WZ@H?s$e@c+L{WeIFdE;p?PEZ} zXB>TuA7F2f-=?h?Ql?G5@k6Epi+{6E80$mlJaWsr<(h1}xpUBMS1CUw+-qm{eOEP` zaxXvI`@ppw=WCC8h?MJ%{A|NRS2yKW{+%x$y5=ge+~soTKOT+3K8us#aEkVRMZM57 z__KA7TnCg#`F9R{>}p|CLcG}KC$0^)S35gAMUq=7?8W9kb2$}gA^y2*gA(Mm^M~h1 zcG+SauUri?1CK!V<2kv($-6&+{L9JvM?qR11G&tJ>o`d96CjL}eJ4RGodPNKGssd- z-f&_&4RW26_s)Qv`xV4-79`&}5IZN=Ir;lHkY49AK~pb)l)4CV=@Q7Q%OKuYKr%SF z&B?8+ARk-<3Aqk3hm&`2fHe6XWD6&yZ-T_%0=dpf+uI@TU2C|Wp$Z(JgoV1Dnxy{MtNRa=cKz0=X z=~WOUvqm&%*+L+;!XOto*;)i-Mhu8=QIIQ~%q#}dDi&lXC;f_p_{M>Z=j0S8^-6#| zFA1`^6iDfKklmd0C=Jr949Jh1^eYSUn3L3UnV|9IL7sB*Nd=JE6+wz5faGz~yb{Po zPHI;M`ID35i69k{K<02#v)oV2V8@&PAZs)3xW4pOZS$YM^m)&)6M59CCBkctg_ zp#NK-_Uwir`x}8gZ47cR8KiXzNKg}y$((pM1^J#6dovKf<{)c0sonzQ2`4jJf&{e! z+099AYml5aAeGyK9ONXrJ;=|TjPC$)DwESn9YMb3q(>_M#>w?gAPqZ%oaV&-7D&D> zARlltzZ=M+?jXy0fH-=Boa+VByf?^EPM-D!$w>ogJOCv0ZIEf4G#U(YntRShc5Z)- zhv93&aFA6aKpKn$xyy+w14J1GlE+Dp(LOMA9$3QT@z@Fud$ApX-p#&PmFS9-yjAhT!kuK}|_hRp_f$jQZbK?ckLdCG}vF36~PAQ9Oh z&p4SrA0%x7NZo}X$2nQL6r|uvkQtn`SPgQFlUZv(O0EO>gp~Kz`+<;8Tzr zoOr(g>CegFS0I=E1Nr+k$eK4GkzVN9@`r+q#`PzXr>I{}ovAeFj<^y&k$laqr3K$LWl32%c`8w#?9lgqwB(8)W~xAmMXCw$1~oH6LXCLVmdj>Avv!O2H!L1wQ5$qZc&`aUODHh}DTAEf06AQw5= z`VmOlR*=a%K-PT@a`j7)pT7qAVK+$aJs=DAf_%CU#AiQ9%L5>_4}(nl0Yo_hlJpbE z7ES_>f&6wFr0W^}{FQzMi9QF?>O9DIoOHSbvXztSmqAKg0l9h=WYjf~0oOtP;N-yX z{0aH^i9g}RTex+HlW~85Ec+9r+#QgkoIJe?^87E5#eaiTy9bha{Q>Cj4?!mX0}}f$ zNZKQiIgdf+J>mDBf*j=JOE25GRA9L2AT+?2ZMQky#nEY9h$K zB#_){AZ@CHyyWCU4bFp)IXRCzwQ%bhC#P$JY^wuOqb|rTPU_YN`Gk`x4M2J~1nJQT zq-0}|_+*e}oJ>mriE9G#CrGCKyQcWMw;9OF<{ zZ9$awAon|fjPD3iCKco=Cw)4Bcy$I@&dG_lKn8UMY2FQ_TX&HDJwV>-1(KJ^Y0cgs zM>y%x7i3{Skfbz_3!K#I53-z-|2X+}0LYqwAff3X&LJR`hk~@TgA5-Ak~19S(-9y^ zBS98$@&_kPGq^nYcn^ISAGG($TtT@uT=HBSK6tJTA3WEF4?aG}2OoUngXh}t!E)rJo>_d}^RT=7&JK6t7PA3W8D51wkn2T!&2SwU-1~C&Hek)64PQbuq+KL6iL;8>H zmp*!Y|8YYzMykK_WL!3lQL`x>mreP&Y)Z&wQ${YEQgYdplgp;0TsCFpvMC#vP5GQ` z%Ex6>LN1#!a@mxU%ci(FJCow#Yzi8(DQ3u~kRh9VVmA4WY-+pN)RMBv*0V`N*`%Os zQcpH%C!3U$O}fb@)nt=qvPm)7q?c?`OEx7yv+bE&E7_!!Y|=?KsU({;l1&Q9CVga+ zICHDr?(vPlWql&i=l6=aX6v7fz(jgIzL>=W2J|CP;o zQsEE(mDM5}_25YbN`#KZP|-d$I3KI>*~;kUC-;W2kj^=Nk#^}XaGLq-tNqx4u$6_E z{Svx-)v7>$_wQ_Tz{*Au(!bOE@$X;##lH&&tkC~jCvas0Kkct`>`qcqk$@Q8P z2$;G-`B?wXD+?|ArKJAP)S#73^sD!RRyLH&EkNqmo)-Rpb$xeS7RU3ysPwKBDbg$` zN)r`DM6efBh!sVOCE_CjmS`e~n5eOf3XI-H#h7U9_(@_fn8Xre!4!LeB=&~JSW$no zd(Z7Nm)G~_ACK(JduC^6XJ_~J?)GZI&WoZw<|}fZyMm9sVr!BKw^w?57uTzW-oby; zKK!%P34cCthMDe)2bBAnxzd*9I3x2>J=ob=W!8uCmS#k)y@S%$R7oEPr4u#mX?>LL z;Z_S0%2dN3$6)3~9C^(_X=4)ibW~zYr8GySv#GRMS9<2CgjlLxy$Q{oP>HccHzC_e ziIuEfPD&?PsKJ77w+JoZhZV zZ&_fjO0+CocU5}ILa-aLV!E4>BsrJely0)n)LrQz3sc;c_S9I{Xf!rHj)znuaJp2- z1|GO8HWL2UomkSZ0a5ft17iK{21-9E6YZfS$ifN_rL8Pfc#r^a^CZ3)>ZuHtuiQnJ*6YGZtC~c&Iq5vgE7A^%4nXpDmf61BK zh>YCRSfE2Gc^tO*f&mBG7#=p08<<1R7z-PSbzFo`*J;t7*;p@i+kjG)S;pa6x!Tqi z66RVsQ&+wikC3C8Q0AqCaHa)3a$RI=QaQMZGD4cTuZa>b3-(QwF0wGBDG7irO-;dB z5~!p})Yw4M-h+We-m)2yAKuI)4`t1W0{7-b!Gz{yK&H2s~M!-w6wR@=Czyft_3mogOQ9TxAFkJmQcx4E)=o{<3=3R`9mHwXJOF!d7HRUTHlyPfI@?uI`V!@uaBtw`- zl5R|nBt7?iB#FJpk^0yR;WuSEeXA}UROh9Bu?Sy3*9Q8GcBJ~F?TD4`?MY;gZ?ANw z9s0*E)XVllT&&W(q`(@_N^fZEAlqaaMTT8+6p1V)ibPgb6p5^`4rC1GcFMrYX_CzFR~#~?jB8Q%#0=-v?rRxr9(&3-5+*Ty3saWIf|96I{`UiN;t&+ zu*kAF%Z}Dz6+?v6Vw7kqyz>MKpE|3qfhtcevWM$2WHNpnqr_8q-f4u7JfqG#Ih~XM z>AO{(h}$1_BGJ`0mJE{lv82J*W0feWz&DO$!*OwB5wI_gbgx}!GM6NFCfYW1RtD4Y z_k`b~yKqHa<(CYwcPD=D-i6q-s*5s^3O2otf_68IiLZRIJxzQuU6sDnBTw?UVazLa9!4a3*c;*n_xnX%Es}fAt_a!>6axkv4E#HL9Hcj~XF`J;^F# zdr#897qk%DOW)eq=cvQsh1S|<79J3L*}>G>JH3?Fv`&kch+q32{CVCDi*&3DJKj3j zm`4BD-XuKs^d`g6vX6dntayi-mc8d!W{setmoFyaBu8`U=2d-2vb)=dIH*HB@yXP9 zl1KN&lM!#;m*kroX7|%4$u{<=Ai>d0y}GFEr?^VFntu8VguzY-9q0`H*;rTE6DxDO z?gIvyX7hRdi3>0ESB6VP?GuQn7bK8H-LV8R5N#7l>Kc+r;-WNBpK!kQLQ7%-VA)iq zQHig!>6$C_1O31n=!d{4|B}JzyVBmyUOM0P_D5z|08|d)o}K1wPU75Yfc~25CBNxz z9SBF#mBtXZ!`U2Wu6M3S!_6ZQ5$^-leySLtcu}TfGi3hT3=+8^eghRx>6^HLBx5Zc zsQ0*g3lzH+EX=R2cJ`(!16y*HElXx7p-}L~nOv<+9YmsT=O7Yw{|+J@(S5MelPa7Y zfeH<+g;SyYqk1NmbfuQ{ zO+oi?DCzgMNo17FN+Nmsd=gm_1P{}@Z6|Ku7`Ap7ZmW2^5GTxx`cBg0M~9KL-C(%V zg*xFtcNE>-3u3b{#{IrFw}!RD6_f0);iSEG$>a*Re=-SPmQ1R6l&tilRaExJDvl+< zx>O9Mf)E!w5_X@DAkMuqf^?m4iqe<5a4UbFqxKLpSa%n5e_4sU9VC3a*wU2VcBYWk z#>*6v@4Kgxd{vT4D!H6WTpXIF^rv=zlZG`K($xU3j&!wx$|P4?aCCOHqOf`C2>W{^ zJjumSN0^IryiYm_ql|Q7(XMo*JJr!{Eb1u2LnV?_9az;oSJM)!-$;^aR*xhxa%Uu2 zT?URKX*GKkkvT*Q_M?dkS)t|w#k8R*C-*p#Ky;mB|d zsERx{TpNAiW@-xikgRj>d`N=2(^#_3T{)Hn)cvt!)1haEGE{naV+NUgUS*Ig?m^>} zA=JZlK0~ukf2Jm+!am;45QfheOGUK}r1IegWuWBjGLR~)#w&xU)^9&Yt+VDq+BiN# z*er2_g6Zz|6tQd`B8Jb0S%Y}aEpoSzirzSInkL@EJx z30*%h%|Q+m$dF8&K>CGEP~xZ|&x=vXftBjS>2%A+3c`jqs0(X)HLxb*u}u~kkMpzi z`vRv{qKYf4%wVF8(f}&1*7YEgZrLRN4bLWRTboT5td+>2ZL?g1I^V4^1G64VK#7ef z-ImB9$@^dqxlnI7kzAi;*S77jb~0{SI2CzVK|+y-hi-~I zvK1k_w}IId4f1}Ahc{_v@5#i+MU%;-|9rBNDmyoM3K?UYrx1?QN93w}`bYYnX1lQZ z>HExJ*=e5SzG~yHUg(lS4L9(2|uI$W+&B^S7Azh3)_TVrl4<@OY*^-TxFPS!L3{}nTF;O zPGKIY?%zC;U3$(?M$@|8f5*D*|A53N?_ z$&i-Z$yYLEVfai^-}afxXvy&?ATsj`2<%D$fpwonVBgOoFso1X*8lbw+V}I{-1?4C zW@zX~n|A4MWbVW-sBz;%<=Uc zWsKxF&sE0B!mPOj_QzZTi~F3wc79GOwVX#P{b(Mk^!7Y5=ZDNEGsEKfBnqqNlfdq< zfN<64mClr6~R2$61 za>>=!6AG7-J&JWpNsBBCNluzrNJidL^>tAh>U~FMM|{s?v^vY%~h-wngm{!C{CX=Q9af7!_J_e!itvE=voak;y> znWN{hZt-1ZGzrX8j`@DINYfaw2!i-l&76#Wzz5|!Y{tiw)D3tn&EG6L97~m(W!GRS zXp7Rvgq*QOKD>au6I+yc6VH1q<&E7+dHc7@#-p6oHraSArEH_TEjpgrcG+KuOx~^x zG1a$!yBrwE^V*?wHSxyokb8&1A(rLnkXb*#;r}Tu;C*h8r3w1-KhU8^5$bswCay>S zrcG^8A41!jL^t0_T|I3lb?3>Q%0QDP zP5&pKC_%Y#|Dz51{(o|gLEfwXQI~c9mUdX-x3q@8zEuK^v!f$8e<$yQI70vL@5d7~R zIkK^ov{$+WOI!C!r(?-#pEAy5z$g1;wm{ykebm%$`<3w~2b=%|3&J6Plw~ z)`E2vc=eGoI@Cpm%&j`ms()u*4+_Hz&B3vGp{3Rg6uW;w zPQzI0cu?s~s~qEpN*Xt-1LuYjB@U2!J=Bs`e)*tWgP@iUhm`(Q%jiJV;%3xRGBzyG zRhyWErLCJGyELK>9Pw1#k=@GZ0@M_DSjHWe79N&P#?tk}G8tg0dATycn8Sq9ryWu0 zuo$R5tpq`7Sse=~=u+sQUD61MAqFA8#z56|0Vr>?$e9Z5Id??qWNJr)AE@Qye^3UQcqe{PGEAj*KT=Pw`cX-wp8P!lO*xTRhwnsS z9%vikNiAsilbl}Ag3o`F2}(3~&LEWCJQQ~FW@Mjg

U!T4_r;#0MRf*#JvZk1Bml zR{e5RW*Fpo9Fxf$OF75n@(fFRj>++bCF|qzc{VKd!xC-HiqUA%x-rJqh!Ay{QfN)0 z^U`sB8|scli7DfG8$zJ$QiPky#Jm&K#FHneiT*!R6UY5b-L&Ut+HFoJW!gi7N1T*9 zy26EHr(yNhxls5kR$pz_#sOmYwYGqSpIh6w7;iQU+}4i~_hxz>aE`=oseRj`uwffdqf_zXq{O1VH&jk;ZwZI*>sr_M5*>i-lDw%PoD+T)b+r5q z$}TGH?E7_-Te;}+xXVhMsqYtDrlE87vRoqzHMcIHn)jFLK$r`TED<`L7DbuU;gx%Z zw(OTH)IV-lsecStsV5I!rS{uiqr8-BG=XfmMq}iKj@Rirbup2C#RKQsNB-gqU3MImd4WO_}sq191&t!l3*WNA7UM1Y-k52|4k!c z``=24aboAM*BYkq*J|bD={A0_+D+LEEFHb61RIx}*6`}4 zykleyakrG-#v1r335Hx>tRW--%pUU%s68>-CbKo%zD2}BZ_90ZYbdxaH(;&d=i71< z&l-I1$VpFV4+}!=ZQ9o5k8R`J@M)(;(yFpM@>YU1{Ch_ZLLt|AJ7_#?<$c-PYZ#?u_(~HTU{|!N~XnXo8Q*pc~9;|T0_=7c_+;pw%wCA zPlS%$Jy6HPUfdOdP9y?&;gHG;w@^(p1J-^wVn?QA0XVdl(iX=agVUMNlPvm7OmaL!3WdW8lp2{mB zEPeA-X>Y3d?o;_xJn};SQ6f#etbgPR4|)6kp>l6@rRZl=F87(dYDBq1&*Ve=SgLtO zZHfL@C-*Pq?f;j`z0&d8Kc_Y1J*So(d``8zeNJnLenE9ke?fVBUr@PMI$pb%N|ebj z(_d2LJ{_;-CAFpFD~g=)ifTFhiq`&4SL*m$C-+(>r{lfXl{&ql?VIt2da3*kwal!B z)(}@iZ7I-|4%f&hUPNdHY{Jl-vY8J#56J1()edgFUS^?PDGA8z%?LTaMTI2H>|WpG zyIF6kg@@nLdf&aJ_Qt)V7S7U@j=WQ%j44=D*y=m1aQ62Q{y?+I$)<;;wv-c)qVExM zYgb+IS`PT7b#eCW{z12XU3zLML!h4TLR8N^q;dTtdRQ9Mq(BVagNV(0jd}`t^zfjD z?Awc6yZx#m6~lYDP^R~OWM&;um4`j*X7BMquL1h{^A8}T;$U4UaK~|9_*oBET_Y+F zBD>XLW97(psNZW~&p~nhdd2lKwF4~7Sdh`>cxpsDGp6keh~t)Cm!p!*Q*|LRnqd$6 zEcesaCR>G`Kd?UQZE<_Wg*8KKQ9F9O;CLVmr=pl^c+PKk_H! zZ#W8O_6!fk_U`EfZ~lt+G#S>R4%1%f5%{sk5I^F0UC0`R`cNQ<7AKPe z3#RQdBJ#BbwXDA-(_Sn>-YQG#z}uEgOC!i@ZpF0Q3s{mz)*_W}y^ya-P$nJ=8SX3i$)Eo&BHTtn1=mkrZi zEvbQQ8>YRrQUj-Gp}8&7ZraztQd_3Iv`_>8*fQ<4k{XD&BMLUzG3}+I8hCEUw0AKO zX3u&%7ytT%zbuB6ojSqRz#4m|y)jY)HTFz<8KMUIJ236Nf*RQ9V5+gik!kPd)W8r& zHrP1c`1x*zM|aT&U)z$F*r+fY|h>F2IYdk#mmv+O;#Go=`QN$ z6^FfnqHd7m$F#?+1j4EzA|5q_3W+Fvu-r*Yv#9c-AJcB0V#&{6rcx|r`ZMi4Q7rBD zXWGUPmMjCbg`8Y=;<7eN~RYW*xT~1@B-QPt+jyIO68cWVi zn07lBOKDA*c7qv9`L1Md zI;+!$sJLzi)HNNRv|tfX+O)roF&+eO0q6aV=g_y|@sQEKAvMY|M8={3pN&TFjE-u? z<6w`Ftn>+Ew6&GMEbfSy+a1-M$1xBV-(OqeqN$Fda$d($TBr;pEbR}aUE>%=n>Z|t z^0tS`;e~SV!l;&{aEja(E`tV<)~#sm!&}B@(!!twKM0$apv?;ck(Y>w^Y|WWBJ+bXK2}SQCz?aS zKYh(j=G<#7msnUyXdAgy!qSX3a%^JhcpIiYjV;u#ABgJljO)r+=2!AL>cVS!B*i_?zwsMT4R@+G0NJFG_9P;)@Qlw2gxx_Sr!__wC8Y;H!q55ZyxmGM^iAn`J_8N; z6bd@BHn6StKy49>T6T4kNfAr0I??*N#Zo^lj+NIBh&&%F#}k%<;^-)u7Dof&SRA#} zqcg2xOlPWdduQtVn$A>9pDuDb5iLqxiYsRKPA<(q-pa~){GrS7yZgL+Ww@_NwtIMst` z??VX9Ll|l{r?!^=F;L#^L)8;|GVOIkA+Y!h6lnJ~A0>WJ-e-_ARQJ?3&T0)Jc9ueR zXAN=KtjJuO(NJZdUewQ}y{LWFx>9U!+P_PB%XvhYQtvCQsQfEpN^nUMiPX?OG-*ui zLr2Y?KGb8@@wBg#<7us%i-5?h=| zkyjI`&WI0KFXJjf7!4cfX(bzNAOq9)pgmf#-X+#wc&z$B?VK9+SM~|F$nfk z&Rz~#!-VXQ`nFU5>q3=)!xqm0BF68V- zMs{wXUiKYlR{zEoYa?3-)#69Qp8Fj-jYLnS^%&a3OI@c6W)){H#Peh4^TU1@#Y0tb zQD2?Cj2|w0{5}c&-9B~3af1HQ`SqVcu zV8>|YMB96dBR+zP(ek=LRDP46=DVUwt-R1RsUE#95Qz2ssNc6$>i8C_v+E?0l_agi zo*xE07OKavUX(nClU<^#8!^5xXJyA1N?YVeO>f4=4TLpdm9P^agkFwFsV7@q$ky*)i>g26Q8@K#)v?K zPD`+)c2{vk2Pn*t>nBlhAAXea*SERPbj|#c(?5Vdne`CMK#3B@DtA@|w~HGMlR>g5mbtMo2v ziN`7%wmpVf<5@r2u!EeAU%o;zt!^YgfB9K8RE^iq6LtA%%nP2VK~ilwtO3p43TL)_ zY7XyhF?ahVB?Lh1?IIgpBcq=pMtN%ND$8MZ5H^8nmnxzyn>oV&Ur|L#O_CjyMGvzH z)-K`&BpeTcHk^H7%tVG%e(bZFsQAIqhBk0$0@J)FC|&pw(a&GPlL^fILxQy6l7Hfl zn$qk(%uF9QDI_y{?AS4rv>JtiryMv7PnK4J4k~c+m?^1~$MD0@iOyyG{OQs+kd?)} zTN8TO8>EkZtEsS2Rg6xblCFvKUn=>n58GJYYm4qGMZ8Z&U15Q3=0);$TAGHgLR*x3jC^)yVm)F8&w;* zWwpWgV_X!C$YCzj#&XVdsH?WJXi-y0%wcYj>OI`qn_A$52ty{G&aE~DU(GkdoLndC z9GQn0gQq1F&PP*HdklB=qH2OHkz3bFQ-iOt40nSvpWzl@n8>vE1BB5o2r?|Nf`t>A zb`pi4E1dq)3eHVr9jF(rtdYLY8hj?Pc9edS)AMYgauVLu3H2;C*A_NH+aep})`m5c zm^Qfyay?rle`U*sn$VE=j?=r_8AD=O-vSq%qemmhP#ZsKKZ&<}<8UV(m)Ub+2dJKf z+@+J{5>3=N*a4YWO-u`jZCY%hv-JUoOv2~FSYz72PaTn5=?HNPQEku^R^OOsgxYG( zjD~(wSSXc=cS7G z=^OFPb~O;2K>FR`u5d6QS({pf^lpBrdv7-$@;-PpR;ddz-V zvK6gy76J_I;Pl6=jVDQhJ$;b80e@6?!?K>m?(kqhv3$&1*tLtJ`uP%f9Ufe)_h^bQ zLZ17AUp|KE)lZl$yx)~5b|hQviFa%Cc{jY5_If*^f5^QEKvWdPFi@wk58R`9uq4e6atxargGDY2rS9Ly={=ih9&8NDa?$dZW+U|3VJIRDy_>53 z`68ET7ahXlVNH>_r>WY%doqh%bv2*h+UNpm_B{J8x+hwA5YOm z#tsf?1J`Hhb6U4xB>xi39ov|;>G zF%H0UyGH2j-O2fpt<=tceBeJm?ZH3)u%Z?C6tJcqWLU4~^tKU3t>C|Ch?_2?1|rL_ zGhXeBL}IX z!dc87a$-}oWxwd`ZBd9g0CBTe0F?Dh(XEzFbwJ*sXeo`Kd>N2pqqFQxG(tS#F^W?+ z2X#d9A06Qaw=DKkrkgNsa^}Y|U^fSur!!OZ$!lH=a(8s%jcQ3%9`1znTd`cFZhn0p zi}Y)8YE)#dO>v}Y=3yK%+jmxd58J;?X`yp{FXR~BbcR)*u@D-7w*12zPEWPZ*8%aetsI)4KXjesZr@Wmsvyf z!D2_9sg~UlvbZ~US_^9GYEEwiJ?H36jp%{on?2OfNcgeXLDy^la&8Ws_>WLQPb9zT zDb3Ix9TS0K+Y6bSdqMBHti3Mha{BDv+Mo%B#DEkRs0mH=qGlE$0PlcapQ~ThEa-#e zhVk4?AIObPwe!@anc#S2ug4!TOO$m@)i1V>a5jG4T&(iG_*}orbL)r9BmH14pS&tQ z*JsCboH@F`8re?s^vm=q{gGLYKQfb~r@Fv_oK*c(P{Co|3EW#A;547rg_ZO4Q%TDN zMEoxS_RV80XdL~(={*zW?5oe{LlcqvRU)*U&$P3+Ly--ZD%E3CeS|ljWd(Le1W`@6!nZ7h~&ouq1^%&M#s{7PM?Ecff1b% z_h`P}9qak`VSdbjZx*lsTFd+)NS^^${!`0h{t=m3NowC6Sir2@$4u7GG0T#8efX)> zg)ESIuXq^Jj}M3G3t0rM=)!QMgCkQ+LZ2e1p=Sj2Rz(oQ3h`ECri)C0E{HUGR2hSHisIRyzymnkT^ zekNQkWKpiFN=mn=H4nBg!+A8VMTsfF3&ddlb)tgl(7zZj_-8I-p2kfj!7QAPOrKl} zDBO;zs^7!(1}?_6uwaMqPZ=FR_L)s6-2Y*EJ%|k{F^BT!=~g=6DGnT#XVOz2QkFCA zxd)-kkcW_$d2o0&s#;<_(o?6vY6fyg&9H#f@6eD~=aDYjqFe}1=Imnpa*{{@kHSX! zxKTU5MULU%Vq}B!_qa`ya%7};LoJ;P1rjk&Y_H=gx(M%AMVDC0*-*e-KSf28KjqG9 z3=YFb+EHhH#+k1^wSWq4qhk?sH|7Q*YW*2o*RMz>P{B0JMrP$~$SsoF7J^>Q z>A%cT>$6#*ukXqnWG2qFfG3-=zD~s>eYNZ$WYgy&`_^18tL8N**^L)hIo)3l+7G%uOLiPox zPgr2=pt9daw$u`iV9!8~p+DR!VcLfm1UYpPlAABK0AKFWvoR$O#UZ0?jKfjKX293&B&IKMBHD$yJnS;iqem z>;5PkNX;HC-@6r}>o*`~`z8z6wilNeWm8Jzl2EWuZQ|@Qs8pDCAf}EU#pDDj z=;m7y?+E#fwWU$xy93G7@kb2ngcqYDbP>LQvrEgkN8R9E_!#HIRbZ_P#DHkAn*Mx#Fl=Y@#ZxsI`+{uePKHT8Z8eE_h zb{y*h)hkQn)um8-nSV46AIL40&*BJj&}AfVxC&0|CqvF1YXk3& zjkVCHgUiLGB zPj_8dYJ6O*RPDhGTG(own{I6V$rU_%WgJ`fM@k%_AZ?rlRDaEE=~%A&8gU8uW1R0b zq`f>2L)e+dVS{Uo_8>?eW-Qnr)*$=TTYwGnIdeh3`WER|-x>2GirK@#b>pn)wDjN| zLT0|##-JDMoNDmWSH2p#2D|2#;Jgm!wzQ3`DeWVb3$T%eQ4iLuiyv=$>R<`wt5N9j zMy6fK3d3sij~tEwuWwisHD&@QzjCrP&XH|l*69-5u~}o#wx5KsHUBu`duQ194GW^u zj`fi4@2W{R<4wWW(tj(Fdm}}|GK3==H6s8VG0J>@2X4a9qd_n+{1K{yyeXXtd7a-R*!V_}PY^+r~FmEQcDlD*)`78dn?kfXQC>nx$_Y!IT? z1anK=!Qt_E2Y3{oX;0_N?ZJq!4pG|=N7`jJ(d7dV-fYu5xEB9(W~L46Ygrl0d7BawVK3YL^H?PPwT z=4=$wcXxnmWvm_b;qeYgkH;^58XfKDHld*|y(ROnf$omR(Y+Q&H@dhUMA?C}esmn? zpj(}|yL8L<=beyl7pIO6A)7LCf(7-BcN`*Ocn^uSvKO4&G~qu7f?a3} z)!*UvQFZYIodZ=Ip1`HIVLAVD>FaJhLUGdGGQk;A*H6&i0TsTn>5hm=-7TSjUuE3b zG@+qxMfWLZ-|NnM+YPR7n&1erKTpu^wFw2UIbuaTRBzT0kLqUWE>qU?Po+MN=Z?^J zPKD%qP7i?*-|4TMWBB(}(*}XrHdL6MpJl5vD1Q)gpNxjH-?3nti!{2!_j2D`RPx;r z#Cs3r3BeQJ>&&)O12gMp6udryp8x?OKG+vEd4rLd*VT;U(FGR@r$!+qoIq-8|lN`$cK(wv68SoOxy4k`U5AR@TU`aued?QjcmE`CAiBucWIWICsTWX zJ(NAmcA&ktHVYBwvZcHO#KeL81dvct#lMZaaUvhwZcy!$(^S_TyZJ|RPfy}8<_@v# z!48)0)i0l~O+rL3*s@oDZIv_~$+>wV{yiY!O12HG=?VY2h+de7pmj5NXX7Xs@L%@f z8OUBePo0tS_vvROjk$Fn3!`E8Z9WR+z{7p|=r1Th^4(d+0XG1g;GxY#-Fo-cEJQs1 z6f*bgCEtIF^tjoa-V`eK>o;=}XCrgR9JsTewWC%X=3frRFTWgM;WRTj@oxz)#cv5~ znQ2+oL@#|jY~x=VKC@aK_rb>|`sf4N$TkLa?5v5+bp6$K0ZJDxR+D4JL43Ba-|mUl z)P&N-h*-TuGocxv3Eq(Z(?nh1Y(s!yccIjy?Wu~8InFj`t9$QlVT&h*$4`!8ku$|9Xu{)zQ&;}=wEXBFJFP*5xt!nJqhX5p6g#Ce(QS89$)aUKiLJ!XMvrzR1#_r zAi@v{r;q4c*@J(9`rub!^#k)UZgmUz6;409%cvDfou_zf@kjZP^#cnuW_>~5wgKh( zZ&&4DUAy_dIxA9&!fk2wWeH{fWg< zrI81boC|w@lEXnLU3dt|s}6(pQPzQ4zv(d2|HU6Q2?TQMy}<9wDW<&>A#YxexJX!a zR8H@L+~Ww61L5LP)}o^t=7Jn~49Q9O$!}Gw@!7$wtdPEZTV3ayX^1j>cNt=j=|fDT zPdp|c9T2L`P9okHHXLJ3Xheqc4~l>B3tT(Kv^x<3zLnEopVBPBSuJUjX{%B|Y)&KO z#P87SxPA~_{2l4t{?J5&AaMt@&~?EeWa4Gn$>VZALMUu`9?2H)`afhh{$=xa5OhM` zk`w5jmyx{TGK@XJ0%=G7#OY43_Jo{L1l&ljJR#Tff}D5_(W|dP^PlzbZJgc+4F4fV zTt{+k*z&X97QY)v{_Gaq`B^>?CbVnxmM2*|I+AWwB0jZBbrBqyIkmO+#Gw$&MvmdJ zkzKS1FJhK_6ZvB_v%eit34*w#@w;0{0Rj zhWv-1oMur}e#t|myF4O-_-DzsKrBm1`}kadQ&r&|Adg7k4u zO>Ga>iG6|`!~3V;RDsP(SU%0un0$oJhFF`S|1(v#Xi)$pemku(Ri27G!_F6)^4-%~ zYV((npYt!Wr#;u?Tf(|?(;5k{8wZj=eU1QwJvdg#wZB?9sx_?FbeCP67Nj%$2xpIa z#rp%d+ACN?s`BhhWDbJs74rH-sGR%?$=hnw#+KIpxE@shGgW)iPatN!M#N-DJI5la zzR%tu*&4n%Cx@Ltd(~M{LGLXg=XcEVIltoLm+wFL*j!uQ2+SDNVz{qjd?9=6$J$=J;9A$h z&)5G{8@Bz91JHNc$F9a^2xf>GGW}raZ?YMJ99A32yK2K1ze#rq`tO|nvpHP(jkTqX z*-{7TtLs{cNGw_u3OnbS1wg;wASRj3l zrKU9msxE%4-J%nM#mFAt_G)C4to)>fB_X~27 zA}I5n5$F%j7v)Y6B`02Ft&L6=ZPU$Y7PN z=KI2eeV^D;`+nq*!S0%U{@gxqDC@e?Twd7-RUab6(AdkQNlWpMaU6hTz#@tI% z{(q1oSL9ZR5Iq!zqO&8w@~X@*f?gDX^eE_mmBkqotRVMpjpTdyBV2ZEQf{Qqqpvyp zKpP|bazU=#I1OaM&MF@ct>Lny}V+IHa!26re+dUzZ6-(0^-(l55(7??aSC#WvuV zyi(rd5|Hif5z-j;U6-R#kXuI~`FIrkavvqj(pEZY^Nrx%GvnB-I?pQ0sD=v2je8bd&khju~@b&MKdr)xgGF&2|&IvP!Y{E=_C z*ahDIg$FT}CgwGj4{}hpvBMX|g8!tI!B85V=W5K10@WxEmCTBR>37j5ybf410ykwU z|72Qf60l_)mI*Kal&@_Ga$aX7JHn8^SYK+sZxOU3iiQn$ZpX?O=6YnbFHB4?>s9Q zKR>U5asQdZuo6h9#OGVj&RprQr2+w1)gARTgl}%j`woKKp$C#D^oG8bJb<|7N89r} zjfs*VAm$e9LA^Y>Cki_DQtfgYmS+uVxA2wCM~CvX4O=1Y+Y4b|^@6*%NbwrE+K6&!Myp}ig>RH#sBaaZ0B5M;A{sNs5l9&6fdSV4c(AL*mv%w5)< z_R^FDBwO+d!R`t6QpK_vHu~;vf=ol3A!=rb?J~oeiW`}{lRMp3#cknm{0x20xxrP$ z!^3;>(oL9@`~i~x`G7mYk5_E#IeN^L^idhwWwHR(8GxWq2SDz9d0j8)%Q^kfKyFqz z4URJdkv;(IAFxQ8dPfaLa^Minv1;l~E1U73)Y}aa2H!N;bd#H8k?$byI*Ce+Y~I}R zXV_d+(12Dxcqob|fX_p@G7@5GNl5N8Tx}@I*uc_DgpUaf-?>sg zlPI`5IJZf%Iw7FEBUC?_p`mtK+HD#^|C!T!rtk?N2wFPjYxf2Ob7%@O z^WfYgxx5qPMX5-32G7UxK`ucKO+)g7baigQI53B>s$2(c)}#<)UWsdwAEwJIm$`FRt-C_S^%QkPYO#~}nK*QfGLMWHv|faKxhiDcS|eC-NNAjXeJ#B^Bp zk3NDHWFmRh1hrq#WPQJEnt)v2Ebet2FX!>?zQ@n=E#xMkP#l_tm|U3fOh14Za`FW# z>i0I^iu&v}M?_?+U4-AD%Wpl?xLYjrc0rC|sgYguks%_ zWySLFbW_FsO#qoRmj6{>_yC$wUpKVbv<#rz}WyMi04t*%MWDMud6#XRL3tw}Hvc+rRYA>p< zh2u-$riv$jC{>FGs1M*v)+TQA49OMuG1}n6%_eSpgXGq#I}>}cDc+JWvCo>=V&~!t zZl;;I?&GDfxcD^3-3k*o$;1^`54p}(guBwj72(b=9-zZZ=3zD!2EAmB@xSRWS;N{# zGhx+BHpcM;`ldMsbRZA4lbK-uiut+yj>L>8!+&{QUa`itFJ;2GSFEA!gaRB#wp^++ zEPKUV?1sEVLNy;MTb{wrSIon9ouv4|A1FKXDC#xvpNy!vMTRrHbXF_zIt^;Y$h*W# z{6`>nPe;{vx$2ep7qTDDK!Odg{2cy;1Y%9TAW&-r0gch@^MiudtcNuoVOeV_4)42A z@tV0=`^)0v*XXXhVEu;qH2jwv@{<3&!JopBi!4WHemE|3%;X|Nb>{A_Z&+~M{|D`2 Bc*y_& diff --git a/doc-page/.doctrees/index.doctree b/master/.doctrees/index.doctree similarity index 98% rename from doc-page/.doctrees/index.doctree rename to master/.doctrees/index.doctree index d72ecbe679d005aa4b6a6fa655230ef10cd57aee..acc31a623f8d1e2d183dfc434cc7854853d8e4c9 100644 GIT binary patch delta 62 zcmZ1+u{dIbC!?WRer8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k RK}wprp|PpK<|@XOS^#qH6AAzT delta 62 zcmZ1+u{dIbC!=9mc51$HylIJkVzQ-?kwKC{QmSF9Wr}H1B9KZlGcd6*GBY+awn#BC QGPg8JH8a~>#kf)n0CztU(*OVf diff --git a/doc-page/.doctrees/tutorial/index.doctree b/master/.doctrees/tutorial/index.doctree similarity index 96% rename from doc-page/.doctrees/tutorial/index.doctree rename to master/.doctrees/tutorial/index.doctree index 401df228180304088c8081e7501551cc45aa35a2..ade64aa6a97bde8079851ef38d3626323935f4a3 100644 GIT binary patch delta 62 zcmca4bxCSNAfusKer8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k RK}wprp|PpK<|f7q+yHJ{69fPN delta 62 zcmca4bxCSNAfsVfc51$HylIJkVzQ-?kwKC{QmSF9Wr}H1B9KZlGcd6*GBY+awn#BC QGPg8JH8b1X#CU-l0CKDn%>V!Z diff --git a/doc-page/.doctrees/tutorial/intro.doctree b/master/.doctrees/tutorial/intro.doctree similarity index 98% rename from doc-page/.doctrees/tutorial/intro.doctree rename to master/.doctrees/tutorial/intro.doctree index 50644c0915f7f2669c2be0b71a8147198c6ccc60..88330e5e483c7106fb6508d5a2387bf03e4d11f6 100644 GIT binary patch delta 62 zcmbOeIVW<15Tl`4er8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k RK}wprp|PpKW@pAoZ2)3c5c`N_rllkHhlHZNjitpNa_Fc&od delta 74 zcmZ4fn{oMX#trU_=4IKb`Nr|4CHjfUmPSSfNd`%&hN+e*rb&rFD#^^i#KOqT*v!}> c#l* RkdkI@Xl!b*c?n~-832Ab6Epw- delta 62 zcmeA#=r7n%%xGAaotkePZ(5?Cm~3feWRPT#lxmo2nPQrh2&9tC3`{JH%#6*9EmBO3 Q%q@*l&CE70VazrI0D_4U{Qv*} diff --git a/doc-page/.doctrees/tutorial/tutorial-basics/how-predictions-work.doctree b/master/.doctrees/tutorial/tutorial-basics/how-predictions-work.doctree similarity index 98% rename from doc-page/.doctrees/tutorial/tutorial-basics/how-predictions-work.doctree rename to master/.doctrees/tutorial/tutorial-basics/how-predictions-work.doctree index 183390eef4d40f2ed54a83723735d0e363fa107b..5ccce27323689129f929ad3e0125d69f5a876444 100644 GIT binary patch delta 72 zcmeAQ>I&MB%xG?wpIMYsWSOj=W|U}PZklLdVs4q3W?^EQYG`4YnrNP8Y-VDXWR#L> bkdkI@Xl!brpOT+ktUuY7Uw89yMrU;ZHoFz$ delta 72 zcmeAQ>I&MB%xGSgotkePZ(5?Cm~3feWRPT#lxmo2nPQrh2&9tC3`{JH%#6*9EmBO3 a%q@*l&CK*u@{^18C)@JtZa&WFtPTJ;<`t{} diff --git a/doc-page/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree b/master/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree similarity index 98% rename from doc-page/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree rename to master/.doctrees/tutorial/tutorial-basics/how-to-tag-corpus.doctree index 1d1e16da5313be6fbc6d9c8d0228a1fcd12b3ff2..c4a5cb11afaf3bcf8f8792854769bba70324dabd 100644 GIT binary patch delta 62 zcmX?San52xE~BAYer8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k RK}wprp|PpK=6Q@8qyT{a6JG!T delta 62 zcmX?San52xE~8;tc51$HylIJkVzQ-?kwKC{QmSF9Wr}H1B9KZlGcd6*GBY+awn#BC QGPg8JH8a~hk8y((0EJHzC;$Ke diff --git a/doc-page/.doctrees/tutorial/tutorial-basics/index.doctree b/master/.doctrees/tutorial/tutorial-basics/index.doctree similarity index 96% rename from doc-page/.doctrees/tutorial/tutorial-basics/index.doctree rename to master/.doctrees/tutorial/tutorial-basics/index.doctree index bfb50dea117ec0426fcb32a45850ae269228fda2..d7a618f9541a2c8721e0ca633c7c1e94714f19b7 100644 GIT binary patch delta 72 zcmdlWvq5GOV delta 72 zcmdlWvq5G S#l*)N diff --git a/doc-page/.doctrees/tutorial/tutorial-basics/part-of-speech-tagging.doctree b/master/.doctrees/tutorial/tutorial-basics/part-of-speech-tagging.doctree similarity index 99% rename from doc-page/.doctrees/tutorial/tutorial-basics/part-of-speech-tagging.doctree rename to master/.doctrees/tutorial/tutorial-basics/part-of-speech-tagging.doctree index a90ca5d2034f6e73e2e9e89c3ff8766ee34e537e..aa90a7db5b15f50f3c3ab754de8a58a9f136881f 100644 GIT binary patch delta 64 zcmdmTh-u3qrVW{lhGzMhML9*5$@*zVi3aATi3TR-mWgQ=CZ?%|7KW*b=4r-eCT2-S UDX9i2Y37E;rUsj5G0vI~0J;SfssI20 delta 64 zcmdmTh-u3qrVW{lhGp5Q`Nr|4CHjfUmPSSfNd`%&hN+e*rb&rFD#^^i#KOqT*v!}> S#l*-rQBIL%vVNLTqJg<-qJfFIWn!9ziD{~#g<)!22Q0J|>~Jpcdz delta 64 zcmX@QmFehKrVW{lhGp5Q`Nr|4CHjfUmPSSfNd`%&hN+e*rb&rFD#^^i#KOqT*v!}> S#l* S#l*-rQBIL%vVNLTqJg<-qJfFIWn!9ziD{~#g<)!y_J(&1h(rpIMYsWSOj=W|U}PZklLdVs4q3W?^EQYG`4YnrNP8Y-VDXWR#L> RkdkI@Xl!b*c@ASCF91}}5?KHM delta 62 zcmeB`>y_J(&1hJbotkePZ(5?Cm~3feWRPT#lxmo2nPQrh2&9tC3`{JH%#6*9EmBO3 Q%q@*l&CE8>VJzeY09hasA^-pY diff --git a/doc-page/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree b/master/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree similarity index 99% rename from doc-page/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree rename to master/.doctrees/tutorial/tutorial-embeddings/other-embeddings.doctree index 55307e093f34ba15c9c2191c4f2e9451c66269a4..30d4f883ea3d61ab8b611526b57a5447ed94e16b 100644 GIT binary patch delta 64 zcmbRFoN4BBrVY7_hGzMhML9*5$@*zVi3aATi3TR-mWgQ=CZ?%|7KW*b=4r-eCT2-S UDX9i2Y37E;rUskmG5+2N0KjDxIRF3v delta 64 zcmbRFoN4BBrVY7_hGp5Q`Nr|4CHjfUmPSSfNd`%&hN+e*rb&rFD#^^i#KOqT*v!}> S#l*-rQBIL%vVNLTqJg<-qJfFIWn!9ziD{~#g<)!-rQBIL%vVNLTqJg<-qJfFIWn!9ziD{~#g<)! S#l* S#l* S#l*n+a diff --git a/doc-page/.doctrees/tutorial/tutorial-training/index.doctree b/master/.doctrees/tutorial/tutorial-training/index.doctree similarity index 96% rename from doc-page/.doctrees/tutorial/tutorial-training/index.doctree rename to master/.doctrees/tutorial/tutorial-training/index.doctree index 203974f77bd78cc7138918c09fabb033935582dd..d5101fe832c597d395870b37c4f0a8bcd1feba50 100644 GIT binary patch delta 72 zcmX>reO7uyDWkbrer8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k bK}wprp|PofeoB6FvHs*hW`)gX7#Vp0LHZT2 delta 72 zcmX>reO7uyDWiE=c51$HylIJkVzQ-?kwKC{QmSF9Wr}H1B9KZlGcd6*GBY+awn#BC aGPg8JH8ays$xklUpB%`nu=xxlBM$&XB^7x9 diff --git a/doc-page/.doctrees/tutorial/tutorial-training/train-vs-fine-tune.doctree b/master/.doctrees/tutorial/tutorial-training/train-vs-fine-tune.doctree similarity index 96% rename from doc-page/.doctrees/tutorial/tutorial-training/train-vs-fine-tune.doctree rename to master/.doctrees/tutorial/tutorial-training/train-vs-fine-tune.doctree index 8ba91c33de1b0e87d4cb98a0e35aa6a104a28ec6..e49fb3bb34cdc5efa0468cc99611a1414fcb7581 100644 GIT binary patch delta 62 zcmX>jdq#FcCZnNQer8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k RK}wprp|PpK=2?tJyZ~`!5|RJ_ delta 62 zcmX>jdq#FcCZl0lc51$HylIJkVzQ-?kwKC{QmSF9Wr}H1B9KZlGcd6*GBY+awn#BC QGPg8JH8a~hi_wS|0Clz!TL1t6 diff --git a/doc-page/.nojekyll b/master/.nojekyll similarity index 100% rename from doc-page/.nojekyll rename to master/.nojekyll diff --git a/doc-page/_images/api.svg b/master/_images/api.svg similarity index 100% rename from doc-page/_images/api.svg rename to master/_images/api.svg diff --git a/doc-page/_images/contributing.svg b/master/_images/contributing.svg similarity index 100% rename from doc-page/_images/contributing.svg rename to master/_images/contributing.svg diff --git a/doc-page/_images/tutorial.svg b/master/_images/tutorial.svg similarity index 100% rename from doc-page/_images/tutorial.svg rename to master/_images/tutorial.svg diff --git a/doc-page/_sources/api/datasets/base.rst.txt b/master/_sources/api/datasets/base.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/base.rst.txt rename to master/_sources/api/datasets/base.rst.txt diff --git a/doc-page/_sources/api/datasets/biomedical.rst.txt b/master/_sources/api/datasets/biomedical.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/biomedical.rst.txt rename to master/_sources/api/datasets/biomedical.rst.txt diff --git a/doc-page/_sources/api/datasets/document_classification.rst.txt b/master/_sources/api/datasets/document_classification.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/document_classification.rst.txt rename to master/_sources/api/datasets/document_classification.rst.txt diff --git a/doc-page/_sources/api/datasets/entity_linking.rst.txt b/master/_sources/api/datasets/entity_linking.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/entity_linking.rst.txt rename to master/_sources/api/datasets/entity_linking.rst.txt diff --git a/doc-page/_sources/api/datasets/ocr.rst.txt b/master/_sources/api/datasets/ocr.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/ocr.rst.txt rename to master/_sources/api/datasets/ocr.rst.txt diff --git a/doc-page/_sources/api/datasets/relation_extraction.rst.txt b/master/_sources/api/datasets/relation_extraction.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/relation_extraction.rst.txt rename to master/_sources/api/datasets/relation_extraction.rst.txt diff --git a/doc-page/_sources/api/datasets/sequence_labeling.rst.txt b/master/_sources/api/datasets/sequence_labeling.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/sequence_labeling.rst.txt rename to master/_sources/api/datasets/sequence_labeling.rst.txt diff --git a/doc-page/_sources/api/datasets/text_image.rst.txt b/master/_sources/api/datasets/text_image.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/text_image.rst.txt rename to master/_sources/api/datasets/text_image.rst.txt diff --git a/doc-page/_sources/api/datasets/text_text.rst.txt b/master/_sources/api/datasets/text_text.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/text_text.rst.txt rename to master/_sources/api/datasets/text_text.rst.txt diff --git a/doc-page/_sources/api/datasets/treebanks.rst.txt b/master/_sources/api/datasets/treebanks.rst.txt similarity index 100% rename from doc-page/_sources/api/datasets/treebanks.rst.txt rename to master/_sources/api/datasets/treebanks.rst.txt diff --git a/doc-page/_sources/api/embeddings/base.rst.txt b/master/_sources/api/embeddings/base.rst.txt similarity index 100% rename from doc-page/_sources/api/embeddings/base.rst.txt rename to master/_sources/api/embeddings/base.rst.txt diff --git a/doc-page/_sources/api/embeddings/document.rst.txt b/master/_sources/api/embeddings/document.rst.txt similarity index 100% rename from doc-page/_sources/api/embeddings/document.rst.txt rename to master/_sources/api/embeddings/document.rst.txt diff --git a/doc-page/_sources/api/embeddings/image.rst.txt b/master/_sources/api/embeddings/image.rst.txt similarity index 100% rename from doc-page/_sources/api/embeddings/image.rst.txt rename to master/_sources/api/embeddings/image.rst.txt diff --git a/doc-page/_sources/api/embeddings/legacy.rst.txt b/master/_sources/api/embeddings/legacy.rst.txt similarity index 100% rename from doc-page/_sources/api/embeddings/legacy.rst.txt rename to master/_sources/api/embeddings/legacy.rst.txt diff --git a/doc-page/_sources/api/embeddings/token.rst.txt b/master/_sources/api/embeddings/token.rst.txt similarity index 100% rename from doc-page/_sources/api/embeddings/token.rst.txt rename to master/_sources/api/embeddings/token.rst.txt diff --git a/doc-page/_sources/api/embeddings/transformer.rst.txt b/master/_sources/api/embeddings/transformer.rst.txt similarity index 100% rename from doc-page/_sources/api/embeddings/transformer.rst.txt rename to master/_sources/api/embeddings/transformer.rst.txt diff --git a/doc-page/_sources/api/flair.data.rst.txt b/master/_sources/api/flair.data.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.data.rst.txt rename to master/_sources/api/flair.data.rst.txt diff --git a/doc-page/_sources/api/flair.datasets.rst.txt b/master/_sources/api/flair.datasets.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.datasets.rst.txt rename to master/_sources/api/flair.datasets.rst.txt diff --git a/doc-page/_sources/api/flair.embeddings.rst.txt b/master/_sources/api/flair.embeddings.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.embeddings.rst.txt rename to master/_sources/api/flair.embeddings.rst.txt diff --git a/doc-page/_sources/api/flair.models.rst.txt b/master/_sources/api/flair.models.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.models.rst.txt rename to master/_sources/api/flair.models.rst.txt diff --git a/doc-page/_sources/api/flair.nn.rst.txt b/master/_sources/api/flair.nn.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.nn.rst.txt rename to master/_sources/api/flair.nn.rst.txt diff --git a/doc-page/_sources/api/flair.rst.txt b/master/_sources/api/flair.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.rst.txt rename to master/_sources/api/flair.rst.txt diff --git a/doc-page/_sources/api/flair.splitter.rst.txt b/master/_sources/api/flair.splitter.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.splitter.rst.txt rename to master/_sources/api/flair.splitter.rst.txt diff --git a/doc-page/_sources/api/flair.tokenization.rst.txt b/master/_sources/api/flair.tokenization.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.tokenization.rst.txt rename to master/_sources/api/flair.tokenization.rst.txt diff --git a/doc-page/_sources/api/flair.trainers.plugins.rst.txt b/master/_sources/api/flair.trainers.plugins.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.trainers.plugins.rst.txt rename to master/_sources/api/flair.trainers.plugins.rst.txt diff --git a/doc-page/_sources/api/flair.trainers.rst.txt b/master/_sources/api/flair.trainers.rst.txt similarity index 100% rename from doc-page/_sources/api/flair.trainers.rst.txt rename to master/_sources/api/flair.trainers.rst.txt diff --git a/doc-page/_sources/api/index.rst.txt b/master/_sources/api/index.rst.txt similarity index 100% rename from doc-page/_sources/api/index.rst.txt rename to master/_sources/api/index.rst.txt diff --git a/doc-page/_sources/contributing/index.rst.txt b/master/_sources/contributing/index.rst.txt similarity index 100% rename from doc-page/_sources/contributing/index.rst.txt rename to master/_sources/contributing/index.rst.txt diff --git a/doc-page/_sources/contributing/local_development.md.txt b/master/_sources/contributing/local_development.md.txt similarity index 100% rename from doc-page/_sources/contributing/local_development.md.txt rename to master/_sources/contributing/local_development.md.txt diff --git a/doc-page/_sources/contributing/making_a_pull_request.md.txt b/master/_sources/contributing/making_a_pull_request.md.txt similarity index 100% rename from doc-page/_sources/contributing/making_a_pull_request.md.txt rename to master/_sources/contributing/making_a_pull_request.md.txt diff --git a/doc-page/_sources/contributing/updating_documentation.md.txt b/master/_sources/contributing/updating_documentation.md.txt similarity index 100% rename from doc-page/_sources/contributing/updating_documentation.md.txt rename to master/_sources/contributing/updating_documentation.md.txt diff --git a/doc-page/_sources/contributing/writing_a_good_issue.md.txt b/master/_sources/contributing/writing_a_good_issue.md.txt similarity index 100% rename from doc-page/_sources/contributing/writing_a_good_issue.md.txt rename to master/_sources/contributing/writing_a_good_issue.md.txt diff --git a/doc-page/_sources/index.rst.txt b/master/_sources/index.rst.txt similarity index 100% rename from doc-page/_sources/index.rst.txt rename to master/_sources/index.rst.txt diff --git a/doc-page/_sources/tutorial/index.rst.txt b/master/_sources/tutorial/index.rst.txt similarity index 100% rename from doc-page/_sources/tutorial/index.rst.txt rename to master/_sources/tutorial/index.rst.txt diff --git a/doc-page/_sources/tutorial/intro.md.txt b/master/_sources/tutorial/intro.md.txt similarity index 100% rename from doc-page/_sources/tutorial/intro.md.txt rename to master/_sources/tutorial/intro.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/basic-types.md.txt b/master/_sources/tutorial/tutorial-basics/basic-types.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/basic-types.md.txt rename to master/_sources/tutorial/tutorial-basics/basic-types.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/entity-linking.md.txt b/master/_sources/tutorial/tutorial-basics/entity-linking.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/entity-linking.md.txt rename to master/_sources/tutorial/tutorial-basics/entity-linking.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/how-predictions-work.md.txt b/master/_sources/tutorial/tutorial-basics/how-predictions-work.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/how-predictions-work.md.txt rename to master/_sources/tutorial/tutorial-basics/how-predictions-work.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/how-to-tag-corpus.md.txt b/master/_sources/tutorial/tutorial-basics/how-to-tag-corpus.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/how-to-tag-corpus.md.txt rename to master/_sources/tutorial/tutorial-basics/how-to-tag-corpus.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/index.rst.txt b/master/_sources/tutorial/tutorial-basics/index.rst.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/index.rst.txt rename to master/_sources/tutorial/tutorial-basics/index.rst.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/other-models.md.txt b/master/_sources/tutorial/tutorial-basics/other-models.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/other-models.md.txt rename to master/_sources/tutorial/tutorial-basics/other-models.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/part-of-speech-tagging.md.txt b/master/_sources/tutorial/tutorial-basics/part-of-speech-tagging.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/part-of-speech-tagging.md.txt rename to master/_sources/tutorial/tutorial-basics/part-of-speech-tagging.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/tagging-entities.md.txt b/master/_sources/tutorial/tutorial-basics/tagging-entities.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/tagging-entities.md.txt rename to master/_sources/tutorial/tutorial-basics/tagging-entities.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-basics/tagging-sentiment.md.txt b/master/_sources/tutorial/tutorial-basics/tagging-sentiment.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-basics/tagging-sentiment.md.txt rename to master/_sources/tutorial/tutorial-basics/tagging-sentiment.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-embeddings/classic-word-embeddings.md.txt b/master/_sources/tutorial/tutorial-embeddings/classic-word-embeddings.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-embeddings/classic-word-embeddings.md.txt rename to master/_sources/tutorial/tutorial-embeddings/classic-word-embeddings.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-embeddings/embeddings.md.txt b/master/_sources/tutorial/tutorial-embeddings/embeddings.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-embeddings/embeddings.md.txt rename to master/_sources/tutorial/tutorial-embeddings/embeddings.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-embeddings/flair-embeddings.md.txt b/master/_sources/tutorial/tutorial-embeddings/flair-embeddings.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-embeddings/flair-embeddings.md.txt rename to master/_sources/tutorial/tutorial-embeddings/flair-embeddings.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-embeddings/index.rst.txt b/master/_sources/tutorial/tutorial-embeddings/index.rst.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-embeddings/index.rst.txt rename to master/_sources/tutorial/tutorial-embeddings/index.rst.txt diff --git a/doc-page/_sources/tutorial/tutorial-embeddings/other-embeddings.md.txt b/master/_sources/tutorial/tutorial-embeddings/other-embeddings.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-embeddings/other-embeddings.md.txt rename to master/_sources/tutorial/tutorial-embeddings/other-embeddings.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt b/master/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt rename to master/_sources/tutorial/tutorial-embeddings/transformer-embeddings.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-training/how-model-training-works.md.txt b/master/_sources/tutorial/tutorial-training/how-model-training-works.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-training/how-model-training-works.md.txt rename to master/_sources/tutorial/tutorial-training/how-model-training-works.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-training/how-to-load-custom-dataset.md.txt b/master/_sources/tutorial/tutorial-training/how-to-load-custom-dataset.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-training/how-to-load-custom-dataset.md.txt rename to master/_sources/tutorial/tutorial-training/how-to-load-custom-dataset.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-training/how-to-load-prepared-dataset.md.txt b/master/_sources/tutorial/tutorial-training/how-to-load-prepared-dataset.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-training/how-to-load-prepared-dataset.md.txt rename to master/_sources/tutorial/tutorial-training/how-to-load-prepared-dataset.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-training/how-to-train-sequence-tagger.md.txt b/master/_sources/tutorial/tutorial-training/how-to-train-sequence-tagger.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-training/how-to-train-sequence-tagger.md.txt rename to master/_sources/tutorial/tutorial-training/how-to-train-sequence-tagger.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-training/how-to-train-text-classifier.md.txt b/master/_sources/tutorial/tutorial-training/how-to-train-text-classifier.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-training/how-to-train-text-classifier.md.txt rename to master/_sources/tutorial/tutorial-training/how-to-train-text-classifier.md.txt diff --git a/doc-page/_sources/tutorial/tutorial-training/index.rst.txt b/master/_sources/tutorial/tutorial-training/index.rst.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-training/index.rst.txt rename to master/_sources/tutorial/tutorial-training/index.rst.txt diff --git a/doc-page/_sources/tutorial/tutorial-training/train-vs-fine-tune.md.txt b/master/_sources/tutorial/tutorial-training/train-vs-fine-tune.md.txt similarity index 100% rename from doc-page/_sources/tutorial/tutorial-training/train-vs-fine-tune.md.txt rename to master/_sources/tutorial/tutorial-training/train-vs-fine-tune.md.txt diff --git a/doc-page/_sphinx_design_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css b/master/_sphinx_design_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css similarity index 100% rename from doc-page/_sphinx_design_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css rename to master/_sphinx_design_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css diff --git a/doc-page/_sphinx_design_static/design-tabs.js b/master/_sphinx_design_static/design-tabs.js similarity index 100% rename from doc-page/_sphinx_design_static/design-tabs.js rename to master/_sphinx_design_static/design-tabs.js diff --git a/doc-page/_static/api.svg b/master/_static/api.svg similarity index 100% rename from doc-page/_static/api.svg rename to master/_static/api.svg diff --git a/doc-page/_static/basic.css b/master/_static/basic.css similarity index 100% rename from doc-page/_static/basic.css rename to master/_static/basic.css diff --git a/doc-page/_static/contributing.svg b/master/_static/contributing.svg similarity index 100% rename from doc-page/_static/contributing.svg rename to master/_static/contributing.svg diff --git a/doc-page/_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css b/master/_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css similarity index 100% rename from doc-page/_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css rename to master/_static/design-style.1e8bd061cd6da7fc9cf755528e8ffc24.min.css diff --git a/doc-page/_static/design-tabs.js b/master/_static/design-tabs.js similarity index 100% rename from doc-page/_static/design-tabs.js rename to master/_static/design-tabs.js diff --git a/doc-page/_static/doctools.js b/master/_static/doctools.js similarity index 100% rename from doc-page/_static/doctools.js rename to master/_static/doctools.js diff --git a/doc-page/_static/documentation_options.js b/master/_static/documentation_options.js similarity index 100% rename from doc-page/_static/documentation_options.js rename to master/_static/documentation_options.js diff --git a/doc-page/_static/favicon.ico b/master/_static/favicon.ico similarity index 100% rename from doc-page/_static/favicon.ico rename to master/_static/favicon.ico diff --git a/doc-page/_static/file.png b/master/_static/file.png similarity index 100% rename from doc-page/_static/file.png rename to master/_static/file.png diff --git a/doc-page/_static/github_style.css b/master/_static/github_style.css similarity index 100% rename from doc-page/_static/github_style.css rename to master/_static/github_style.css diff --git a/doc-page/_static/language_data.js b/master/_static/language_data.js similarity index 100% rename from doc-page/_static/language_data.js rename to master/_static/language_data.js diff --git a/doc-page/_static/minus.png b/master/_static/minus.png similarity index 100% rename from doc-page/_static/minus.png rename to master/_static/minus.png diff --git a/doc-page/_static/plus.png b/master/_static/plus.png similarity index 100% rename from doc-page/_static/plus.png rename to master/_static/plus.png diff --git a/doc-page/_static/pygments.css b/master/_static/pygments.css similarity index 100% rename from doc-page/_static/pygments.css rename to master/_static/pygments.css diff --git a/doc-page/_static/scripts/bootstrap.js b/master/_static/scripts/bootstrap.js similarity index 100% rename from doc-page/_static/scripts/bootstrap.js rename to master/_static/scripts/bootstrap.js diff --git a/doc-page/_static/scripts/bootstrap.js.LICENSE.txt b/master/_static/scripts/bootstrap.js.LICENSE.txt similarity index 100% rename from doc-page/_static/scripts/bootstrap.js.LICENSE.txt rename to master/_static/scripts/bootstrap.js.LICENSE.txt diff --git a/doc-page/_static/scripts/bootstrap.js.map b/master/_static/scripts/bootstrap.js.map similarity index 100% rename from doc-page/_static/scripts/bootstrap.js.map rename to master/_static/scripts/bootstrap.js.map diff --git a/doc-page/_static/scripts/pydata-sphinx-theme.js b/master/_static/scripts/pydata-sphinx-theme.js similarity index 100% rename from doc-page/_static/scripts/pydata-sphinx-theme.js rename to master/_static/scripts/pydata-sphinx-theme.js diff --git a/doc-page/_static/scripts/pydata-sphinx-theme.js.map b/master/_static/scripts/pydata-sphinx-theme.js.map similarity index 100% rename from doc-page/_static/scripts/pydata-sphinx-theme.js.map rename to master/_static/scripts/pydata-sphinx-theme.js.map diff --git a/doc-page/_static/searchtools.js b/master/_static/searchtools.js similarity index 100% rename from doc-page/_static/searchtools.js rename to master/_static/searchtools.js diff --git a/doc-page/_static/sphinx_highlight.js b/master/_static/sphinx_highlight.js similarity index 100% rename from doc-page/_static/sphinx_highlight.js rename to master/_static/sphinx_highlight.js diff --git a/doc-page/_static/styles/bootstrap.css b/master/_static/styles/bootstrap.css similarity index 100% rename from doc-page/_static/styles/bootstrap.css rename to master/_static/styles/bootstrap.css diff --git a/doc-page/_static/styles/pydata-sphinx-theme.css b/master/_static/styles/pydata-sphinx-theme.css similarity index 100% rename from doc-page/_static/styles/pydata-sphinx-theme.css rename to master/_static/styles/pydata-sphinx-theme.css diff --git a/doc-page/_static/styles/theme.css b/master/_static/styles/theme.css similarity index 100% rename from doc-page/_static/styles/theme.css rename to master/_static/styles/theme.css diff --git a/doc-page/_static/tutorial.svg b/master/_static/tutorial.svg similarity index 100% rename from doc-page/_static/tutorial.svg rename to master/_static/tutorial.svg diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/LICENSE.txt b/master/_static/vendor/fontawesome/6.1.2/LICENSE.txt similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/LICENSE.txt rename to master/_static/vendor/fontawesome/6.1.2/LICENSE.txt diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/css/all.min.css b/master/_static/vendor/fontawesome/6.1.2/css/all.min.css similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/css/all.min.css rename to master/_static/vendor/fontawesome/6.1.2/css/all.min.css diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/js/all.min.js b/master/_static/vendor/fontawesome/6.1.2/js/all.min.js similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/js/all.min.js rename to master/_static/vendor/fontawesome/6.1.2/js/all.min.js diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt b/master/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt rename to master/_static/vendor/fontawesome/6.1.2/js/all.min.js.LICENSE.txt diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf b/master/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf rename to master/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.ttf diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 b/master/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 rename to master/_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2 diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf b/master/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf rename to master/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.ttf diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 b/master/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 rename to master/_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2 diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf b/master/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf rename to master/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.ttf diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 b/master/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 rename to master/_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2 diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf b/master/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf rename to master/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.ttf diff --git a/doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 b/master/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 similarity index 100% rename from doc-page/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 rename to master/_static/vendor/fontawesome/6.1.2/webfonts/fa-v4compatibility.woff2 diff --git a/doc-page/_static/webpack-macros.html b/master/_static/webpack-macros.html similarity index 100% rename from doc-page/_static/webpack-macros.html rename to master/_static/webpack-macros.html diff --git a/doc-page/api/datasets/base.html b/master/api/datasets/base.html similarity index 92% rename from doc-page/api/datasets/base.html rename to master/api/datasets/base.html index 50ee702bf9..d277b7afee 100644 --- a/doc-page/api/datasets/base.html +++ b/master/api/datasets/base.html @@ -424,7 +424,7 @@

Versions

@@ -492,7 +492,7 @@

Versions

flair.datasets.base#

-class flair.datasets.base.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, drop_last=False, timeout=0, worker_init_fn=None)View on GitHub#
+class flair.datasets.base.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, drop_last=False, timeout=0, worker_init_fn=None)View on GitHub#

Bases: DataLoader

@@ -543,12 +543,12 @@

Versions

-class flair.datasets.base.FlairDatapointDataset(datapoints)View on GitHub#
+class flair.datasets.base.FlairDatapointDataset(datapoints)View on GitHub#

Bases: FlairDataset, Generic[DT]

A simple Dataset object to wrap a List of Datapoints, for example Sentences.

-__init__(datapoints)View on GitHub#
+__init__(datapoints)View on GitHub#

Instantiate FlairDatapointDataset.

Parameters:
@@ -559,7 +559,7 @@

Versions

-is_in_memory()View on GitHub#
+is_in_memory()View on GitHub#
Return type:

bool

@@ -571,11 +571,11 @@

Versions

-class flair.datasets.base.SentenceDataset(sentences)View on GitHub#
+class flair.datasets.base.SentenceDataset(sentences)View on GitHub#

Bases: FlairDatapointDataset

-__init__(sentences)View on GitHub#
+__init__(sentences)View on GitHub#

Deprecated since version 0.11: The ‘SentenceDataset’ class was renamed to ‘FlairDatapointDataset’

@@ -586,12 +586,12 @@

Versions

-class flair.datasets.base.StringDataset(texts, use_tokenizer=<flair.tokenization.SpaceTokenizer object>)View on GitHub#
+class flair.datasets.base.StringDataset(texts, use_tokenizer=<flair.tokenization.SpaceTokenizer object>)View on GitHub#

Bases: FlairDataset

A Dataset taking string as input and returning Sentence during iteration.

-__init__(texts, use_tokenizer=<flair.tokenization.SpaceTokenizer object>)View on GitHub#
+__init__(texts, use_tokenizer=<flair.tokenization.SpaceTokenizer object>)View on GitHub#

Instantiate StringDataset.

Parameters:
@@ -606,7 +606,7 @@

Versions

-abstract is_in_memory()View on GitHub#
+abstract is_in_memory()View on GitHub#
Return type:

bool

@@ -618,11 +618,11 @@

Versions

-class flair.datasets.base.MongoDataset(query, host, port, database, collection, text_field, categories_field=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=True, tag_type='class')View on GitHub#
+class flair.datasets.base.MongoDataset(query, host, port, database, collection, text_field, categories_field=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=True, tag_type='class')View on GitHub#

Bases: FlairDataset

-__init__(query, host, port, database, collection, text_field, categories_field=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=True, tag_type='class')View on GitHub#
+__init__(query, host, port, database, collection, text_field, categories_field=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=True, tag_type='class')View on GitHub#

Reads Mongo collections.

Each collection should contain one document/text per item.

Each item should have the following format: @@ -657,7 +657,7 @@

Versions

-is_in_memory()View on GitHub#
+is_in_memory()View on GitHub#
Return type:

bool

@@ -669,7 +669,7 @@

Versions

-flair.datasets.base.find_train_dev_test_files(data_folder, dev_file, test_file, train_file, autofind_splits=True)View on GitHub#
+flair.datasets.base.find_train_dev_test_files(data_folder, dev_file, test_file, train_file, autofind_splits=True)View on GitHub#
diff --git a/doc-page/api/datasets/biomedical.html b/master/api/datasets/biomedical.html similarity index 85% rename from doc-page/api/datasets/biomedical.html rename to master/api/datasets/biomedical.html index 01a61b0ebc..9f0b04bb47 100644 --- a/doc-page/api/datasets/biomedical.html +++ b/master/api/datasets/biomedical.html @@ -424,7 +424,7 @@

Versions

@@ -492,14 +492,14 @@

Versions

flair.datasets.biomedical#

-class flair.datasets.biomedical.Entity(char_span, entity_type)View on GitHub#
+class flair.datasets.biomedical.Entity(char_span, entity_type)View on GitHub#

Bases: object

Internal class to represent entities while converting biomedical NER corpora to a standardized format.

Each entity consists of the char span it addresses in the original text as well as the type of entity (e.g. Chemical, Gene, and so on).

-is_before(other_entity)View on GitHub#
+is_before(other_entity)View on GitHub#

Checks whether this entity is located before the given one.

Parameters:
@@ -513,7 +513,7 @@

Versions

-contains(other_entity)View on GitHub#
+contains(other_entity)View on GitHub#

Checks whether the given entity is fully contained in this entity.

Parameters:
@@ -527,7 +527,7 @@

Versions

-overlaps(other_entity)View on GitHub#
+overlaps(other_entity)View on GitHub#

Checks whether this and the given entity overlap.

Parameters:
@@ -543,14 +543,14 @@

Versions

-class flair.datasets.biomedical.InternalBioNerDataset(documents, entities_per_document)View on GitHub#
+class flair.datasets.biomedical.InternalBioNerDataset(documents, entities_per_document)View on GitHub#

Bases: object

Internal class to represent a corpus and it’s entities.

-class flair.datasets.biomedical.DpEntry(position_end, entity_count, entity_lengths_sum, last_entity)View on GitHub#
+class flair.datasets.biomedical.DpEntry(position_end, entity_count, entity_lengths_sum, last_entity)View on GitHub#

Bases: tuple

@@ -580,12 +580,12 @@

Versions

-flair.datasets.biomedical.merge_datasets(data_sets)View on GitHub#
+flair.datasets.biomedical.merge_datasets(data_sets)View on GitHub#
-flair.datasets.biomedical.filter_and_map_entities(dataset, entity_type_to_canonical)View on GitHub#
+flair.datasets.biomedical.filter_and_map_entities(dataset, entity_type_to_canonical)View on GitHub#
Return type:

InternalBioNerDataset

@@ -595,7 +595,7 @@

Versions

-flair.datasets.biomedical.filter_nested_entities(dataset)View on GitHub#
+flair.datasets.biomedical.filter_nested_entities(dataset)View on GitHub#
Return type:

None

@@ -605,7 +605,7 @@

Versions

-flair.datasets.biomedical.bioc_to_internal(bioc_file)View on GitHub#
+flair.datasets.biomedical.bioc_to_internal(bioc_file)View on GitHub#

Helper function to parse corpora that are given in BIOC format. See.

http://bioc.sourceforge.net/

for details.

@@ -613,7 +613,7 @@

Versions

-flair.datasets.biomedical.brat_to_internal(corpus_dir, ann_file_suffixes=None)View on GitHub#
+flair.datasets.biomedical.brat_to_internal(corpus_dir, ann_file_suffixes=None)View on GitHub#

Helper function to parse corpora that are annotated using BRAT. See.

https://brat.nlplab.org/

for details.

@@ -626,12 +626,12 @@

Versions

-class flair.datasets.biomedical.CoNLLWriter(sentence_splitter)View on GitHub#
+class flair.datasets.biomedical.CoNLLWriter(sentence_splitter)View on GitHub#

Bases: object

Utility class for writing InternalBioNerDataset to CoNLL files.

-__init__(sentence_splitter)View on GitHub#
+__init__(sentence_splitter)View on GitHub#

Initialize CoNLLWriter.

Parameters:
@@ -642,19 +642,19 @@

Versions

-process_dataset(datasets, out_dir)View on GitHub#
+process_dataset(datasets, out_dir)View on GitHub#
-write_to_conll(dataset, output_file)View on GitHub#
+write_to_conll(dataset, output_file)View on GitHub#
-class flair.datasets.biomedical.HunerDataset(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.HunerDataset(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus, ABC

Base class for HUNER datasets.

@@ -671,7 +671,7 @@

Versions

-abstract to_internal(data_folder)View on GitHub#
+abstract to_internal(data_folder)View on GitHub#
Return type:

InternalBioNerDataset

@@ -681,7 +681,7 @@

Versions

-abstract static split_url()View on GitHub#
+abstract static split_url()View on GitHub#
Return type:

str

@@ -691,7 +691,7 @@

Versions

-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

Return type:
@@ -702,7 +702,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the HUNER corpus.

Parameters:
@@ -718,14 +718,14 @@

Versions

-get_subset(dataset, split, split_dir)View on GitHub#
+get_subset(dataset, split, split_dir)View on GitHub#
-class flair.datasets.biomedical.BIO_INFER(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIO_INFER(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

Original BioInfer corpus.

@@ -735,7 +735,7 @@

Versions

-__init__(base_path=None, in_memory=True)View on GitHub#
+__init__(base_path=None, in_memory=True)View on GitHub#

Initialize the BioInfer corpus.

Parameters:
@@ -749,7 +749,7 @@

Versions

-classmethod download_dataset(data_dir)View on GitHub#
+classmethod download_dataset(data_dir)View on GitHub#
Return type:

Path

@@ -759,19 +759,19 @@

Versions

-classmethod parse_dataset(original_file)View on GitHub#
+classmethod parse_dataset(original_file)View on GitHub#
-class flair.datasets.biomedical.HUNER_GENE_BIO_INFER(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIO_INFER(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the BioInfer corpus containing only gene/protein annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -781,7 +781,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -793,7 +793,7 @@

Versions

-class flair.datasets.biomedical.JNLPBA(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.JNLPBA(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

Original corpus of the JNLPBA shared task.

For further information see Kim et al.: Introduction to the Bio- @@ -805,7 +805,7 @@

Versions

-__init__(base_path=None, in_memory=True)View on GitHub#
+__init__(base_path=None, in_memory=True)View on GitHub#

Initialize the JNLPBA corpus.

Parameters:
@@ -821,11 +821,11 @@

Versions

-class flair.datasets.biomedical.HunerJNLPBAView on GitHub#
+class flair.datasets.biomedical.HunerJNLPBAView on GitHub#

Bases: object

-classmethod download_and_prepare_train(data_folder, sentence_tag)View on GitHub#
+classmethod download_and_prepare_train(data_folder, sentence_tag)View on GitHub#
Return type:

InternalBioNerDataset

@@ -835,7 +835,7 @@

Versions

-classmethod download_and_prepare_test(data_folder, sentence_tag)View on GitHub#
+classmethod download_and_prepare_test(data_folder, sentence_tag)View on GitHub#
Return type:

InternalBioNerDataset

@@ -845,7 +845,7 @@

Versions

-classmethod read_file(input_iob_file, sentence_tag)View on GitHub#
+classmethod read_file(input_iob_file, sentence_tag)View on GitHub#
Return type:

InternalBioNerDataset

@@ -857,12 +857,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_JNLPBA(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_JNLPBA(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the JNLPBA corpus containing gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -872,7 +872,7 @@

Versions

-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

Return type:
@@ -883,7 +883,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -895,12 +895,12 @@

Versions

-class flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CELL_LINE_JNLPBA(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the JNLPBA corpus containing cell line annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -910,7 +910,7 @@

Versions

-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

Return type:
@@ -921,7 +921,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -933,7 +933,7 @@

Versions

-class flair.datasets.biomedical.CELL_FINDER(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.CELL_FINDER(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original CellFinder corpus containing cell line, species and gene annotations.

For futher information see Neves et al.: Annotating and @@ -941,7 +941,7 @@

Versions

https://pdfs.semanticscholar.org/38e3/75aeeeb1937d03c3c80128a70d8e7a74441f.pdf

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the CellFinder corpus.

Parameters:
@@ -957,7 +957,7 @@

Versions

-classmethod download_and_prepare(data_folder)View on GitHub#
+classmethod download_and_prepare(data_folder)View on GitHub#
Return type:

InternalBioNerDataset

@@ -967,7 +967,7 @@

Versions

-classmethod read_folder(data_folder)View on GitHub#
+classmethod read_folder(data_folder)View on GitHub#
Return type:

InternalBioNerDataset

@@ -979,12 +979,12 @@

Versions

-class flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CELL_LINE_CELL_FINDER(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CellFinder corpus containing only cell line annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -994,7 +994,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1006,12 +1006,12 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_CELL_FINDER(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CellFinder corpus containing only species annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1021,7 +1021,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1033,12 +1033,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_CELL_FINDER(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_CELL_FINDER(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CellFinder corpus containing only gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1048,7 +1048,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1060,7 +1060,7 @@

Versions

-class flair.datasets.biomedical.MIRNA(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.MIRNA(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original miRNA corpus.

For further information see Bagewadi et al.: Detecting miRNA @@ -1072,7 +1072,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the miRNA corpus.

Parameters:
@@ -1090,17 +1090,17 @@

Versions

-classmethod download_and_prepare_train(data_folder, sentence_separator)View on GitHub#
+classmethod download_and_prepare_train(data_folder, sentence_separator)View on GitHub#
-classmethod download_and_prepare_test(data_folder, sentence_separator)View on GitHub#
+classmethod download_and_prepare_test(data_folder, sentence_separator)View on GitHub#
-classmethod parse_file(input_file, split, sentence_separator)View on GitHub#
+classmethod parse_file(input_file, split, sentence_separator)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1112,23 +1112,23 @@

Versions

-class flair.datasets.biomedical.HunerMiRNAHelperView on GitHub#
+class flair.datasets.biomedical.HunerMiRNAHelperView on GitHub#

Bases: object

-static get_mirna_subset(dataset, split_url, split_dir)View on GitHub#
+static get_mirna_subset(dataset, split_url, split_dir)View on GitHub#
-class flair.datasets.biomedical.HUNER_GENE_MIRNA(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_MIRNA(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the miRNA corpus containing protein / gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1138,18 +1138,18 @@

Versions

-get_subset(dataset, split, split_dir)View on GitHub#
+get_subset(dataset, split, split_dir)View on GitHub#
-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1161,12 +1161,12 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_MIRNA(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_MIRNA(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the miRNA corpus containing species annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1176,12 +1176,12 @@

Versions

-get_subset(dataset, split, split_dir)View on GitHub#
+get_subset(dataset, split, split_dir)View on GitHub#
-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

Return type:
@@ -1192,7 +1192,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1204,12 +1204,12 @@

Versions

-class flair.datasets.biomedical.HUNER_DISEASE_MIRNA(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE_MIRNA(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the miRNA corpus containing disease annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1219,12 +1219,12 @@

Versions

-get_subset(dataset, split, split_dir)View on GitHub#
+get_subset(dataset, split, split_dir)View on GitHub#
-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

Return type:
@@ -1235,7 +1235,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1247,27 +1247,27 @@

Versions

-class flair.datasets.biomedical.KaewphanCorpusHelperView on GitHub#
+class flair.datasets.biomedical.KaewphanCorpusHelperView on GitHub#

Bases: object

Helper class for the corpora from Kaewphan et al., i.e. CLL and Gellus.

-static download_cll_dataset(data_folder)View on GitHub#
+static download_cll_dataset(data_folder)View on GitHub#
-static prepare_and_save_dataset(nersuite_folder, output_file)View on GitHub#
+static prepare_and_save_dataset(nersuite_folder, output_file)View on GitHub#
-static download_gellus_dataset(data_folder)View on GitHub#
+static download_gellus_dataset(data_folder)View on GitHub#
-static read_dataset(nersuite_folder, sentence_separator)View on GitHub#
+static read_dataset(nersuite_folder, sentence_separator)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1279,7 +1279,7 @@

Versions

-class flair.datasets.biomedical.CLL(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.CLL(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

Original CLL corpus containing cell line annotations.

For further information, see Kaewphan et al.: Cell line name @@ -1288,7 +1288,7 @@

Versions

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708107/

-__init__(base_path=None, in_memory=True)View on GitHub#
+__init__(base_path=None, in_memory=True)View on GitHub#

Initialize the CLL corpus.

Parameters:
@@ -1304,12 +1304,12 @@

Versions

-class flair.datasets.biomedical.HUNER_CELL_LINE_CLL(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CELL_LINE_CLL(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CLL corpus containing cell line annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1319,7 +1319,7 @@

Versions

-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

Return type:
@@ -1330,7 +1330,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1342,7 +1342,7 @@

Versions

-class flair.datasets.biomedical.GELLUS(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.GELLUS(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

Original Gellus corpus containing cell line annotations.

For further information, see Kaewphan et al.: Cell line name @@ -1351,7 +1351,7 @@

Versions

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708107/

-__init__(base_path=None, in_memory=True)View on GitHub#
+__init__(base_path=None, in_memory=True)View on GitHub#

Initialize the GELLUS corpus.

Parameters:
@@ -1367,12 +1367,12 @@

Versions

-class flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CELL_LINE_GELLUS(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the Gellus corpus containing cell line annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1382,7 +1382,7 @@

Versions

-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

Return type:
@@ -1393,7 +1393,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1405,7 +1405,7 @@

Versions

-class flair.datasets.biomedical.LOCTEXT(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.LOCTEXT(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original LOCTEXT corpus containing species annotations.

@@ -1415,7 +1415,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the LOCTEXT corpus.

Parameters:
@@ -1431,12 +1431,12 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
-static parse_dataset(data_dir)View on GitHub#
+static parse_dataset(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1448,12 +1448,12 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_LOCTEXT(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_LOCTEXT(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the Loctext corpus containing species annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1463,7 +1463,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1475,12 +1475,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_LOCTEXT(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_LOCTEXT(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the Loctext corpus containing protein annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1490,7 +1490,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1502,7 +1502,7 @@

Versions

-class flair.datasets.biomedical.CHEMDNER(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.CHEMDNER(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original corpus of the CHEMDNER shared task.

For further information see Krallinger et al.: The CHEMDNER corpus @@ -1514,7 +1514,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the CHEMDNER corpus.

Parameters:
@@ -1530,19 +1530,19 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
-class flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_CHEMDNER(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CHEMDNER corpus containing chemical annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1552,7 +1552,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1564,7 +1564,7 @@

Versions

-class flair.datasets.biomedical.IEPA(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.IEPA(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

IEPA corpus as provided by http://corpora.informatik.hu-berlin.de/.

For further information see Ding, Berleant, Nettleton, Wurtele: @@ -1576,7 +1576,7 @@

Versions

-__init__(base_path=None, in_memory=True)View on GitHub#
+__init__(base_path=None, in_memory=True)View on GitHub#

Initialize the IEPA corpus.

Parameters:
@@ -1590,24 +1590,24 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
-classmethod parse_dataset(original_file)View on GitHub#
+classmethod parse_dataset(original_file)View on GitHub#
-class flair.datasets.biomedical.HUNER_GENE_IEPA(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_IEPA(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the IEPA corpus containing gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1617,7 +1617,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1629,7 +1629,7 @@

Versions

-class flair.datasets.biomedical.LINNEAUS(base_path=None, in_memory=True, tokenizer=None)View on GitHub#
+class flair.datasets.biomedical.LINNEAUS(base_path=None, in_memory=True, tokenizer=None)View on GitHub#

Bases: ColumnCorpus

Original LINNEAUS corpus containing species annotations.

@@ -1643,7 +1643,7 @@

Versions

-__init__(base_path=None, in_memory=True, tokenizer=None)View on GitHub#
+__init__(base_path=None, in_memory=True, tokenizer=None)View on GitHub#

Initialize the LINNEAUS corpus.

Parameters:
@@ -1659,19 +1659,19 @@

Versions

-static download_and_parse_dataset(data_dir)View on GitHub#
+static download_and_parse_dataset(data_dir)View on GitHub#
-class flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_LINNEAUS(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the LINNEAUS corpus containing species annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1681,7 +1681,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1693,7 +1693,7 @@

Versions

-class flair.datasets.biomedical.CDR(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.CDR(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

CDR corpus as provided by JHnlp/BioCreative-V-CDR-Corpus.

For further information see Li et al.: BioCreative V CDR task @@ -1705,7 +1705,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the CDR corpus.

Parameters:
@@ -1721,19 +1721,19 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
-class flair.datasets.biomedical.HUNER_DISEASE_CDR(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE_CDR(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the IEPA corpus containing disease annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1743,7 +1743,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1755,12 +1755,12 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_CDR(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_CDR(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the IEPA corpus containing chemical annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1770,7 +1770,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1782,7 +1782,7 @@

Versions

-class flair.datasets.biomedical.VARIOME(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.VARIOME(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Variome corpus as provided by http://corpora.informatik.hu-berlin.de/corpora/brat2bioc/hvp_bioc.xml.zip.

For further information see Verspoor et al.: Annotating the @@ -1794,7 +1794,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the Variome corpus.

Parameters:
@@ -1810,12 +1810,12 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
-static parse_corpus(corpus_xml)View on GitHub#
+static parse_corpus(corpus_xml)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1827,12 +1827,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_VARIOME(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_VARIOME(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the Variome corpus containing gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1842,7 +1842,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1854,12 +1854,12 @@

Versions

-class flair.datasets.biomedical.HUNER_DISEASE_VARIOME(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE_VARIOME(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the Variome corpus containing disease annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1869,7 +1869,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1881,12 +1881,12 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_VARIOME(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_VARIOME(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the Variome corpus containing species annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1896,7 +1896,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1908,7 +1908,7 @@

Versions

-class flair.datasets.biomedical.NCBI_DISEASE(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.NCBI_DISEASE(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original NCBI disease corpus containing disease annotations.

For further information see @@ -1921,7 +1921,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the NCBI disease corpus.

Parameters:
@@ -1937,7 +1937,7 @@

Versions

-classmethod download_corpus(data_dir)View on GitHub#
+classmethod download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -1947,24 +1947,24 @@

Versions

-static patch_training_file(orig_train_file, patched_file)View on GitHub#
+static patch_training_file(orig_train_file, patched_file)View on GitHub#
-static parse_input_file(input_file)View on GitHub#
+static parse_input_file(input_file)View on GitHub#
-class flair.datasets.biomedical.HUNER_DISEASE_NCBI(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE_NCBI(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the NCBI corpus containing disease annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -1974,7 +1974,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -1986,12 +1986,12 @@

Versions

-class flair.datasets.biomedical.ScaiCorpus(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.ScaiCorpus(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Base class to support the SCAI chemicals and disease corpora.

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the SCAU corpus.

Parameters:
@@ -2007,7 +2007,7 @@

Versions

-download_corpus(data_folder)View on GitHub#
+download_corpus(data_folder)View on GitHub#
Return type:

Path

@@ -2017,14 +2017,14 @@

Versions

-static parse_input_file(input_file)View on GitHub#
+static parse_input_file(input_file)View on GitHub#
-class flair.datasets.biomedical.SCAI_CHEMICALS(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.SCAI_CHEMICALS(*args, **kwargs)View on GitHub#

Bases: ScaiCorpus

Original SCAI chemicals corpus containing chemical annotations.

For further information see Kolářik et al.: Chemical Names: @@ -2036,7 +2036,7 @@

Versions

-download_corpus(data_dir)View on GitHub#
+download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2046,7 +2046,7 @@

Versions

-static perform_corpus_download(data_dir)View on GitHub#
+static perform_corpus_download(data_dir)View on GitHub#
Return type:

Path

@@ -2058,7 +2058,7 @@

Versions

-class flair.datasets.biomedical.SCAI_DISEASE(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.SCAI_DISEASE(*args, **kwargs)View on GitHub#

Bases: ScaiCorpus

Original SCAI disease corpus containing disease annotations.

For further information see Gurulingappa et al.: An Empirical @@ -2071,7 +2071,7 @@

Versions

-download_corpus(data_dir)View on GitHub#
+download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2081,7 +2081,7 @@

Versions

-static perform_corpus_download(data_dir)View on GitHub#
+static perform_corpus_download(data_dir)View on GitHub#
Return type:

Path

@@ -2093,12 +2093,12 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_SCAI(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_SCAI(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the SCAI chemicals corpus containing chemical annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2108,7 +2108,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2120,12 +2120,12 @@

Versions

-class flair.datasets.biomedical.HUNER_DISEASE_SCAI(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE_SCAI(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the SCAI chemicals corpus containing chemical annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2135,7 +2135,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2147,7 +2147,7 @@

Versions

-class flair.datasets.biomedical.OSIRIS(base_path=None, in_memory=True, sentence_splitter=None, load_original_unfixed_annotation=False)View on GitHub#
+class flair.datasets.biomedical.OSIRIS(base_path=None, in_memory=True, sentence_splitter=None, load_original_unfixed_annotation=False)View on GitHub#

Bases: ColumnCorpus

Original OSIRIS corpus containing variation and gene annotations.

For further information see Furlong et al.: Osiris v1.2: a named @@ -2160,7 +2160,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None, load_original_unfixed_annotation=False)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None, load_original_unfixed_annotation=False)View on GitHub#

Initialize the OSIRIS corpus.

Parameters:
@@ -2179,7 +2179,7 @@

Versions

-classmethod download_dataset(data_dir)View on GitHub#
+classmethod download_dataset(data_dir)View on GitHub#
Return type:

Path

@@ -2189,19 +2189,19 @@

Versions

-classmethod parse_dataset(corpus_folder, fix_annotation=True)View on GitHub#
+classmethod parse_dataset(corpus_folder, fix_annotation=True)View on GitHub#
-class flair.datasets.biomedical.HUNER_GENE_OSIRIS(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_OSIRIS(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the OSIRIS corpus containing (only) gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2211,7 +2211,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2223,7 +2223,7 @@

Versions

-class flair.datasets.biomedical.S800(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.S800(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

S800 corpus.

For further information see @@ -2231,7 +2231,7 @@

Versions

http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0065390.

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the S800 corpus.

Parameters:
@@ -2247,12 +2247,12 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
-static parse_dataset(data_dir)View on GitHub#
+static parse_dataset(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2264,12 +2264,12 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_S800(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_S800(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the S800 corpus containing species annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2279,7 +2279,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2291,14 +2291,14 @@

Versions

-class flair.datasets.biomedical.GPRO(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.GPRO(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original GPRO corpus containing gene annotations.

For further information see: https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/gpro-detailed-task-description/

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the GPRO corpus.

Parameters:
@@ -2314,7 +2314,7 @@

Versions

-classmethod download_train_corpus(data_dir)View on GitHub#
+classmethod download_train_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2324,7 +2324,7 @@

Versions

-classmethod download_dev_corpus(data_dir)View on GitHub#
+classmethod download_dev_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2334,7 +2334,7 @@

Versions

-static parse_input_file(text_file, ann_file)View on GitHub#
+static parse_input_file(text_file, ann_file)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2346,12 +2346,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_GPRO(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_GPRO(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the GPRO corpus containing gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2361,7 +2361,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2373,7 +2373,7 @@

Versions

-class flair.datasets.biomedical.DECA(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.DECA(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original DECA corpus containing gene annotations.

For further information see Wang et al.: Disambiguating the @@ -2381,7 +2381,7 @@

Versions

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828111/

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the DECA corpus.

Parameters:
@@ -2397,7 +2397,7 @@

Versions

-classmethod download_corpus(data_dir)View on GitHub#
+classmethod download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2407,7 +2407,7 @@

Versions

-static parse_corpus(text_dir, gold_file)View on GitHub#
+static parse_corpus(text_dir, gold_file)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2419,12 +2419,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_DECA(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_DECA(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the DECA corpus containing gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2434,7 +2434,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2446,7 +2446,7 @@

Versions

-class flair.datasets.biomedical.FSU(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.FSU(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

Original FSU corpus containing protein and derived annotations.

For further information see @@ -2454,7 +2454,7 @@

Versions

https://www.aclweb.org/anthology/W10-1838/

-__init__(base_path=None, in_memory=True)View on GitHub#
+__init__(base_path=None, in_memory=True)View on GitHub#

Initialize the FSU corpus.

Parameters:
@@ -2468,7 +2468,7 @@

Versions

-classmethod download_corpus(data_dir)View on GitHub#
+classmethod download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2478,7 +2478,7 @@

Versions

-static parse_corpus(corpus_dir, sentence_separator)View on GitHub#
+static parse_corpus(corpus_dir, sentence_separator)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2490,12 +2490,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_FSU(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_FSU(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the FSU corpus containing (only) gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2505,7 +2505,7 @@

Versions

-get_corpus_sentence_splitter()View on GitHub#
+get_corpus_sentence_splitter()View on GitHub#

Return the pre-defined sentence splitter if defined, otherwise return None.

Return type:
@@ -2516,7 +2516,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2528,7 +2528,7 @@

Versions

-class flair.datasets.biomedical.CRAFT(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.CRAFT(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original CRAFT corpus (version 2.0) containing all but the coreference and sections/typography annotations.

For further information see Bada et al.: Concept annotation in the @@ -2536,7 +2536,7 @@

Versions

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-161

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the CRAFT corpus.

Parameters:
@@ -2552,7 +2552,7 @@

Versions

-classmethod download_corpus(data_dir)View on GitHub#
+classmethod download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2562,7 +2562,7 @@

Versions

-static parse_corpus(corpus_dir)View on GitHub#
+static parse_corpus(corpus_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2574,7 +2574,7 @@

Versions

-class flair.datasets.biomedical.BIOSEMANTICS(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.BIOSEMANTICS(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original Biosemantics corpus.

For further information see Akhondi et al.: Annotated chemical @@ -2582,7 +2582,7 @@

Versions

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182036/

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the Biosemantics corpus.

Parameters:
@@ -2598,7 +2598,7 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
Return type:

Path

@@ -2608,7 +2608,7 @@

Versions

-static parse_dataset(data_dir)View on GitHub#
+static parse_dataset(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2620,7 +2620,7 @@

Versions

-class flair.datasets.biomedical.BC2GM(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.BC2GM(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original BioCreative-II-GM corpus containing gene annotations.

For further information see Smith et al.: Overview of @@ -2632,7 +2632,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the BioCreative-II-GM corpus.

Parameters:
@@ -2648,7 +2648,7 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
Return type:

Path

@@ -2658,7 +2658,7 @@

Versions

-classmethod parse_train_dataset(data_folder)View on GitHub#
+classmethod parse_train_dataset(data_folder)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2668,7 +2668,7 @@

Versions

-classmethod parse_test_dataset(data_folder)View on GitHub#
+classmethod parse_test_dataset(data_folder)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2678,7 +2678,7 @@

Versions

-static parse_dataset(text_file, ann_file)View on GitHub#
+static parse_dataset(text_file, ann_file)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2690,12 +2690,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BC2GM(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BC2GM(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the BioCreative-II-GM corpus containing gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2705,7 +2705,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2717,14 +2717,14 @@

Versions

-class flair.datasets.biomedical.CEMP(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.CEMP(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Original CEMP corpus containing chemical annotations.

For further information see: https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/cemp-detailed-task-description/

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the CEMP corpus.

Parameters:
@@ -2740,7 +2740,7 @@

Versions

-classmethod download_train_corpus(data_dir)View on GitHub#
+classmethod download_train_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2750,7 +2750,7 @@

Versions

-classmethod download_dev_corpus(data_dir)View on GitHub#
+classmethod download_dev_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -2760,7 +2760,7 @@

Versions

-static parse_input_file(text_file, ann_file)View on GitHub#
+static parse_input_file(text_file, ann_file)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2772,12 +2772,12 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_CEMP(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_CEMP(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CEMP corpus containing chemical annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2787,7 +2787,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2799,7 +2799,7 @@

Versions

-class flair.datasets.biomedical.CHEBI(base_path=None, in_memory=True, sentence_splitter=None, annotator=0)View on GitHub#
+class flair.datasets.biomedical.CHEBI(base_path=None, in_memory=True, sentence_splitter=None, annotator=0)View on GitHub#

Bases: ColumnCorpus

Original CHEBI corpus containing all annotations.

For further information see Shardlow et al.: A New Corpus to @@ -2812,7 +2812,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None, annotator=0)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None, annotator=0)View on GitHub#

Initialize the CHEBI corpus.

Parameters:
@@ -2830,7 +2830,7 @@

Versions

-static download_dataset(data_dir)View on GitHub#
+static download_dataset(data_dir)View on GitHub#
Return type:

Path

@@ -2840,7 +2840,7 @@

Versions

-static parse_dataset(data_dir, annotator)View on GitHub#
+static parse_dataset(data_dir, annotator)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2850,19 +2850,19 @@

Versions

-static get_entities(f)View on GitHub#
+static get_entities(f)View on GitHub#
-class flair.datasets.biomedical.HUNER_CHEMICAL_CHEBI(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_CHEBI(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CHEBI corpus containing chemical annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2872,7 +2872,7 @@

Versions

-to_internal(data_dir, annotator=0)View on GitHub#
+to_internal(data_dir, annotator=0)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2884,12 +2884,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_CHEBI(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_CHEBI(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CHEBI corpus containing gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2899,7 +2899,7 @@

Versions

-to_internal(data_dir, annotator=0)View on GitHub#
+to_internal(data_dir, annotator=0)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2911,12 +2911,12 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_CHEBI(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_CHEBI(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CHEBI corpus containing species annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -2926,7 +2926,7 @@

Versions

-to_internal(data_dir, annotator=0)View on GitHub#
+to_internal(data_dir, annotator=0)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2938,14 +2938,14 @@

Versions

-class flair.datasets.biomedical.BioNLPCorpus(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.BioNLPCorpus(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Base class for corpora from BioNLP event extraction shared tasks.

For further information see: http://2013.bionlp-st.org/Intro

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the BioNLP Corpus.

Parameters:
@@ -2961,7 +2961,7 @@

Versions

-abstract static download_corpus(data_folder)View on GitHub#
+abstract static download_corpus(data_folder)View on GitHub#
Return type:

Tuple[Path, Path, Path]

@@ -2971,7 +2971,7 @@

Versions

-static parse_input_files(input_folder)View on GitHub#
+static parse_input_files(input_folder)View on GitHub#
Return type:

InternalBioNerDataset

@@ -2983,7 +2983,7 @@

Versions

-class flair.datasets.biomedical.BIONLP2013_PC(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.BIONLP2013_PC(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: BioNLPCorpus

Corpus of the BioNLP’2013 Pathway Curation shared task.

For further information see Ohta et al. Overview of the pathway @@ -2995,7 +2995,7 @@

Versions

-static download_corpus(download_folder)View on GitHub#
+static download_corpus(download_folder)View on GitHub#
Return type:

Tuple[Path, Path, Path]

@@ -3007,7 +3007,7 @@

Versions

-class flair.datasets.biomedical.BIONLP2013_CG(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.BIONLP2013_CG(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: BioNLPCorpus

Corpus of the BioNLP’2013 Cancer Genetics shared task.

For further information see Pyysalo, Ohta & Ananiadou 2013 @@ -3019,7 +3019,7 @@

Versions

-static download_corpus(download_folder)View on GitHub#
+static download_corpus(download_folder)View on GitHub#
Return type:

Tuple[Path, Path, Path]

@@ -3031,7 +3031,7 @@

Versions

-class flair.datasets.biomedical.ANAT_EM(base_path=None, in_memory=True, tokenizer=None)View on GitHub#
+class flair.datasets.biomedical.ANAT_EM(base_path=None, in_memory=True, tokenizer=None)View on GitHub#

Bases: ColumnCorpus

Corpus for anatomical named entity mention recognition.

For further information see Pyysalo and Ananiadou: Anatomical @@ -3044,7 +3044,7 @@

Versions

-__init__(base_path=None, in_memory=True, tokenizer=None)View on GitHub#
+__init__(base_path=None, in_memory=True, tokenizer=None)View on GitHub#

Initialize the anatomical named entity mention recognition Corpus.

Parameters:
@@ -3060,12 +3060,12 @@

Versions

-abstract static download_corpus(data_folder)View on GitHub#
+abstract static download_corpus(data_folder)View on GitHub#
-static parse_input_files(input_dir, sentence_separator)View on GitHub#
+static parse_input_files(input_dir, sentence_separator)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3077,7 +3077,7 @@

Versions

-class flair.datasets.biomedical.BioBertHelper(data_folder, column_format, train_file=None, test_file=None, dev_file=None, autofind_splits=True, name=None, comment_symbol='# ', **corpusargs)View on GitHub#
+class flair.datasets.biomedical.BioBertHelper(data_folder, column_format, train_file=None, test_file=None, dev_file=None, autofind_splits=True, name=None, comment_symbol='# ', **corpusargs)View on GitHub#

Bases: ColumnCorpus

Helper class to convert corpora and the respective train, dev and test split used by BioBERT.

For further details see Lee et al.: @@ -3085,19 +3085,19 @@

Versions

dmis-lab/biobert

-static download_corpora(download_dir)View on GitHub#
+static download_corpora(download_dir)View on GitHub#
-static convert_and_write(download_folder, data_folder, tag_type)View on GitHub#
+static convert_and_write(download_folder, data_folder, tag_type)View on GitHub#
-class flair.datasets.biomedical.BIOBERT_CHEMICAL_BC4CHEMD(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIOBERT_CHEMICAL_BC4CHEMD(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

BC4CHEMD corpus with chemical annotations as used in the evaluation of BioBERT.

For further details regarding BioBERT and it’s evaluation, see Lee @@ -3108,7 +3108,7 @@

Versions

-class flair.datasets.biomedical.BIOBERT_GENE_BC2GM(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIOBERT_GENE_BC2GM(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

BC4CHEMD corpus with gene annotations as used in the evaluation of BioBERT.

For further details regarding BioBERT and it’s evaluation, see Lee @@ -3119,7 +3119,7 @@

Versions

-class flair.datasets.biomedical.BIOBERT_GENE_JNLPBA(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIOBERT_GENE_JNLPBA(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

JNLPBA corpus with gene annotations as used in the evaluation of BioBERT.

For further details regarding BioBERT and it’s evaluation, see Lee @@ -3130,7 +3130,7 @@

Versions

-class flair.datasets.biomedical.BIOBERT_CHEMICAL_BC5CDR(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIOBERT_CHEMICAL_BC5CDR(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

BC5CDR corpus with chemical annotations as used in the evaluation of BioBERT.

For further details regarding BioBERT and it’s evaluation, see Lee @@ -3141,7 +3141,7 @@

Versions

-class flair.datasets.biomedical.BIOBERT_DISEASE_BC5CDR(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIOBERT_DISEASE_BC5CDR(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

BC5CDR corpus with disease annotations as used in the evaluation of BioBERT.

For further details regarding BioBERT and it’s evaluation, see Lee @@ -3152,7 +3152,7 @@

Versions

-class flair.datasets.biomedical.BIOBERT_DISEASE_NCBI(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIOBERT_DISEASE_NCBI(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

NCBI disease corpus as used in the evaluation of BioBERT.

For further details regarding BioBERT and it’s evaluation, see Lee @@ -3163,7 +3163,7 @@

Versions

-class flair.datasets.biomedical.BIOBERT_SPECIES_LINNAEUS(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIOBERT_SPECIES_LINNAEUS(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

Linneaeus corpus with species annotations as used in the evaluation of BioBERT.

For further details regarding BioBERT and it’s evaluation, see Lee @@ -3174,7 +3174,7 @@

Versions

-class flair.datasets.biomedical.BIOBERT_SPECIES_S800(base_path=None, in_memory=True)View on GitHub#
+class flair.datasets.biomedical.BIOBERT_SPECIES_S800(base_path=None, in_memory=True)View on GitHub#

Bases: ColumnCorpus

S800 corpus with species annotations as used in the evaluation of BioBERT.

For further details regarding BioBERT and it’s evaluation, see Lee @@ -3185,14 +3185,14 @@

Versions

-class flair.datasets.biomedical.CRAFT_V4(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.CRAFT_V4(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Version 4.0.1 of the CRAFT corpus containing all but the co-reference and structural annotations.

For further information see: UCDenver-ccp/CRAFT

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initializes version 4.0.1 of the CRAFT corpus.

Parameters:
@@ -3208,7 +3208,7 @@

Versions

-filter_entities(corpus)View on GitHub#
+filter_entities(corpus)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3218,7 +3218,7 @@

Versions

-classmethod download_corpus(data_dir)View on GitHub#
+classmethod download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -3228,7 +3228,7 @@

Versions

-static prepare_splits(data_dir, corpus)View on GitHub#
+static prepare_splits(data_dir, corpus)View on GitHub#
Return type:

Tuple[InternalBioNerDataset, InternalBioNerDataset, InternalBioNerDataset]

@@ -3238,7 +3238,7 @@

Versions

-static parse_corpus(corpus_dir)View on GitHub#
+static parse_corpus(corpus_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3250,12 +3250,12 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_CRAFT_V4(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_CRAFT_V4(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CRAFT corpus containing (only) chemical annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -3265,7 +3265,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3277,12 +3277,12 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_CRAFT_V4(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_CRAFT_V4(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CRAFT corpus containing (only) gene annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -3292,7 +3292,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3304,12 +3304,12 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_CRAFT_V4(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_CRAFT_V4(*args, **kwargs)View on GitHub#

Bases: HunerDataset

HUNER version of the CRAFT corpus containing (only) species annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -3319,7 +3319,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3331,11 +3331,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP2013_CG(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP2013_CG(*args, **kwargs)View on GitHub#

Bases: HunerDataset

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -3345,7 +3345,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3357,11 +3357,11 @@

Versions

-class flair.datasets.biomedical.HUNER_DISEASE_BIONLP2013_CG(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE_BIONLP2013_CG(*args, **kwargs)View on GitHub#

Bases: HunerDataset

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -3371,7 +3371,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3383,11 +3383,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIONLP2013_CG(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIONLP2013_CG(*args, **kwargs)View on GitHub#

Bases: HunerDataset

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -3397,7 +3397,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3409,11 +3409,11 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_BIONLP2013_CG(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_BIONLP2013_CG(*args, **kwargs)View on GitHub#

Bases: HunerDataset

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -3423,7 +3423,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3435,14 +3435,14 @@

Versions

-class flair.datasets.biomedical.AZDZ(base_path=None, in_memory=True, tokenizer=None)View on GitHub#
+class flair.datasets.biomedical.AZDZ(base_path=None, in_memory=True, tokenizer=None)View on GitHub#

Bases: ColumnCorpus

Arizona Disease Corpus from the Biomedical Informatics Lab at Arizona State University.

For further information see: http://diego.asu.edu/index.php

-__init__(base_path=None, in_memory=True, tokenizer=None)View on GitHub#
+__init__(base_path=None, in_memory=True, tokenizer=None)View on GitHub#

Initializes the Arizona Disease Corpus.

Parameters:
@@ -3458,7 +3458,7 @@

Versions

-classmethod download_corpus(data_dir)View on GitHub#
+classmethod download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -3468,7 +3468,7 @@

Versions

-static parse_corpus(input_file)View on GitHub#
+static parse_corpus(input_file)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3480,7 +3480,7 @@

Versions

-class flair.datasets.biomedical.PDR(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.PDR(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Bases: ColumnCorpus

Corpus of plant-disease relations.

For further information see Kim et al.: A corpus of plant-disease @@ -3493,7 +3493,7 @@

Versions

-__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=None)View on GitHub#

Initialize the plant-disease relations Corpus.

Parameters:
@@ -3509,7 +3509,7 @@

Versions

-classmethod download_corpus(data_dir)View on GitHub#
+classmethod download_corpus(data_dir)View on GitHub#
Return type:

Path

@@ -3521,12 +3521,12 @@

Versions

-class flair.datasets.biomedical.HUNER_DISEASE_PDR(*args, **kwargs)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE_PDR(*args, **kwargs)View on GitHub#

Bases: HunerDataset

PDR Dataset with only Disease annotations.

-static split_url()View on GitHub#
+static split_url()View on GitHub#
Return type:

str

@@ -3536,7 +3536,7 @@

Versions

-to_internal(data_dir)View on GitHub#
+to_internal(data_dir)View on GitHub#
Return type:

InternalBioNerDataset

@@ -3548,49 +3548,49 @@

Versions

-class flair.datasets.biomedical.HunerMultiCorpus(entity_type, sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.HunerMultiCorpus(entity_type, sentence_splitter=None)View on GitHub#

Bases: MultiCorpus

Base class to build the union of all HUNER data sets considering a particular entity type.

-class flair.datasets.biomedical.HUNER_CELL_LINE(sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CELL_LINE(sentence_splitter=None)View on GitHub#

Bases: HunerMultiCorpus

Union of all HUNER cell line data sets.

-class flair.datasets.biomedical.HUNER_CHEMICAL(sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL(sentence_splitter=None)View on GitHub#

Bases: HunerMultiCorpus

Union of all HUNER chemical data sets.

-class flair.datasets.biomedical.HUNER_DISEASE(sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE(sentence_splitter=None)View on GitHub#

Bases: HunerMultiCorpus

Union of all HUNER disease data sets.

-class flair.datasets.biomedical.HUNER_GENE(sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE(sentence_splitter=None)View on GitHub#

Bases: HunerMultiCorpus

Union of all HUNER gene data sets.

-class flair.datasets.biomedical.HUNER_SPECIES(sentence_splitter=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES(sentence_splitter=None)View on GitHub#

Bases: HunerMultiCorpus

Union of all HUNER species data sets.

-class flair.datasets.biomedical.BIGBIO_NER_CORPUS(dataset_name, base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.BIGBIO_NER_CORPUS(dataset_name, base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: ColumnCorpus

This class implements an adapter to data sets implemented in the BigBio framework.

see bigscience-workshop/biomedical

@@ -3599,7 +3599,7 @@

Versions

data sets by using the bigbio_kb schema.

-__init__(dataset_name, base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+__init__(dataset_name, base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Initialize the BigBio Corpus.

Parameters:
@@ -3619,7 +3619,7 @@

Versions

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3631,7 +3631,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3642,7 +3642,7 @@

Versions

-to_internal_dataset(dataset, split)View on GitHub#
+to_internal_dataset(dataset, split)View on GitHub#

Converts a dataset given in hugging datasets format to our internal corpus representation.

Return type:
@@ -3653,7 +3653,7 @@

Versions

-bin_search_passage(passages, low, high, entity)View on GitHub#
+bin_search_passage(passages, low, high, entity)View on GitHub#

Helper methods to find the passage to a given entity mention inclusive offset.

The implementation uses binary search to find the passage in the ordered sequence passages.

@@ -3662,11 +3662,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_NLM_GENE(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_NLM_GENE(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3678,7 +3678,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3691,11 +3691,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_DRUGPROT(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_DRUGPROT(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3707,7 +3707,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3720,11 +3720,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_DRUGPROT(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3736,7 +3736,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3749,11 +3749,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3765,7 +3765,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3778,11 +3778,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3794,7 +3794,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3807,11 +3807,11 @@

Versions

-class flair.datasets.biomedical.HUNER_DISEASE_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_DISEASE_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3823,7 +3823,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3836,11 +3836,11 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3852,7 +3852,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3865,11 +3865,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CELL_LINE_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CELL_LINE_BIORED(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3881,7 +3881,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3894,11 +3894,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_CPI(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_CPI(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3910,7 +3910,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3923,11 +3923,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_CPI(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_CPI(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3939,7 +3939,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3952,11 +3952,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_PC(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3968,7 +3968,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -3981,11 +3981,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2013_PC(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -3997,7 +3997,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4010,11 +4010,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2013_GE(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4026,7 +4026,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4039,11 +4039,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_GE(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4055,7 +4055,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4068,11 +4068,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_ID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4084,7 +4084,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4097,11 +4097,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_BIONLP_ST_2011_ID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4113,7 +4113,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4126,11 +4126,11 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2011_ID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4142,7 +4142,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4155,11 +4155,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_REL(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4171,7 +4171,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4184,11 +4184,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIONLP_ST_2011_EPI(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4200,7 +4200,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4213,11 +4213,11 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_BIONLP_ST_2019_BB(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4229,7 +4229,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4242,11 +4242,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4258,7 +4258,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4271,11 +4271,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4287,7 +4287,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4300,11 +4300,11 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4316,7 +4316,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4329,11 +4329,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CELL_LINE_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CELL_LINE_BIOID(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4345,7 +4345,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4358,11 +4358,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_GNORMPLUS(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_GNORMPLUS(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4374,7 +4374,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4387,11 +4387,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_PROGENE(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_PROGENE(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4403,7 +4403,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4416,11 +4416,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CHEMICAL_NLM_CHEM(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4432,7 +4432,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4445,11 +4445,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_SETH_CORPUS(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4461,7 +4461,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4474,11 +4474,11 @@

Versions

-class flair.datasets.biomedical.HUNER_GENE_TMVAR_V3(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_GENE_TMVAR_V3(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4490,7 +4490,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4503,11 +4503,11 @@

Versions

-class flair.datasets.biomedical.HUNER_SPECIES_TMVAR_V3(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_SPECIES_TMVAR_V3(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4519,7 +4519,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
@@ -4532,11 +4532,11 @@

Versions

-class flair.datasets.biomedical.HUNER_CELL_LINE_TMVAR_V3(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#
+class flair.datasets.biomedical.HUNER_CELL_LINE_TMVAR_V3(base_path=None, in_memory=True, sentence_splitter=None, train_split_name=None, dev_split_name=None, test_split_name=None)View on GitHub#

Bases: BIGBIO_NER_CORPUS

-get_entity_type_mapping()View on GitHub#
+get_entity_type_mapping()View on GitHub#

Return the mapping of entity type given in the dataset to canonical types.

Note, if a entity type is not present in the map it is discarded.

@@ -4548,7 +4548,7 @@

Versions

-build_corpus_directory_name(dataset_name)View on GitHub#
+build_corpus_directory_name(dataset_name)View on GitHub#

Builds the directory name for the given data set.

Return type:
diff --git a/doc-page/api/datasets/document_classification.html b/master/api/datasets/document_classification.html similarity index 90% rename from doc-page/api/datasets/document_classification.html rename to master/api/datasets/document_classification.html index 32c76275d7..7c6d16a016 100644 --- a/doc-page/api/datasets/document_classification.html +++ b/master/api/datasets/document_classification.html @@ -424,7 +424,7 @@

Versions

@@ -492,12 +492,12 @@

Versions

flair.datasets.document_classification#

-class flair.datasets.document_classification.ClassificationCorpus(data_folder, label_type='class', train_file=None, test_file=None, dev_file=None, truncate_to_max_tokens=-1, truncate_to_max_chars=-1, filter_if_longer_than=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', label_name_map=None, skip_labels=None, allow_examples_without_labels=False, sample_missing_splits=True, encoding='utf-8')View on GitHub#
+class flair.datasets.document_classification.ClassificationCorpus(data_folder, label_type='class', train_file=None, test_file=None, dev_file=None, truncate_to_max_tokens=-1, truncate_to_max_chars=-1, filter_if_longer_than=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', label_name_map=None, skip_labels=None, allow_examples_without_labels=False, sample_missing_splits=True, encoding='utf-8')View on GitHub#

Bases: Corpus

A classification corpus from FastText-formatted text files.

-__init__(data_folder, label_type='class', train_file=None, test_file=None, dev_file=None, truncate_to_max_tokens=-1, truncate_to_max_chars=-1, filter_if_longer_than=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', label_name_map=None, skip_labels=None, allow_examples_without_labels=False, sample_missing_splits=True, encoding='utf-8')View on GitHub#
+__init__(data_folder, label_type='class', train_file=None, test_file=None, dev_file=None, truncate_to_max_tokens=-1, truncate_to_max_chars=-1, filter_if_longer_than=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', label_name_map=None, skip_labels=None, allow_examples_without_labels=False, sample_missing_splits=True, encoding='utf-8')View on GitHub#

Instantiates a Corpus from text classification-formatted task data.

Parameters:
@@ -524,12 +524,12 @@

Versions

-class flair.datasets.document_classification.ClassificationDataset(path_to_file, label_type, truncate_to_max_tokens=-1, truncate_to_max_chars=-1, filter_if_longer_than=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', label_name_map=None, skip_labels=None, allow_examples_without_labels=False, encoding='utf-8')View on GitHub#
+class flair.datasets.document_classification.ClassificationDataset(path_to_file, label_type, truncate_to_max_tokens=-1, truncate_to_max_chars=-1, filter_if_longer_than=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', label_name_map=None, skip_labels=None, allow_examples_without_labels=False, encoding='utf-8')View on GitHub#

Bases: FlairDataset

Dataset for classification instantiated from a single FastText-formatted file.

-__init__(path_to_file, label_type, truncate_to_max_tokens=-1, truncate_to_max_chars=-1, filter_if_longer_than=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', label_name_map=None, skip_labels=None, allow_examples_without_labels=False, encoding='utf-8')View on GitHub#
+__init__(path_to_file, label_type, truncate_to_max_tokens=-1, truncate_to_max_chars=-1, filter_if_longer_than=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', label_name_map=None, skip_labels=None, allow_examples_without_labels=False, encoding='utf-8')View on GitHub#

Reads a data file for text classification.

The file should contain one document/text per line. The line should have the following format: @@ -563,7 +563,7 @@

Versions

-is_in_memory()View on GitHub#
+is_in_memory()View on GitHub#
Return type:

bool

@@ -575,12 +575,12 @@

Versions

-class flair.datasets.document_classification.CSVClassificationCorpus(data_folder, column_name_map, label_type, name='csv_corpus', train_file=None, test_file=None, dev_file=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=False, skip_header=False, encoding='utf-8', no_class_label=None, sample_missing_splits=True, **fmtparams)View on GitHub#
+class flair.datasets.document_classification.CSVClassificationCorpus(data_folder, column_name_map, label_type, name='csv_corpus', train_file=None, test_file=None, dev_file=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=False, skip_header=False, encoding='utf-8', no_class_label=None, sample_missing_splits=True, **fmtparams)View on GitHub#

Bases: Corpus

Classification corpus instantiated from CSV data files.

-__init__(data_folder, column_name_map, label_type, name='csv_corpus', train_file=None, test_file=None, dev_file=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=False, skip_header=False, encoding='utf-8', no_class_label=None, sample_missing_splits=True, **fmtparams)View on GitHub#
+__init__(data_folder, column_name_map, label_type, name='csv_corpus', train_file=None, test_file=None, dev_file=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=False, skip_header=False, encoding='utf-8', no_class_label=None, sample_missing_splits=True, **fmtparams)View on GitHub#

Instantiates a Corpus for text classification from CSV column formatted data.

Parameters:
@@ -610,12 +610,12 @@

Versions

-class flair.datasets.document_classification.CSVClassificationDataset(path_to_file, column_name_map, label_type, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=True, skip_header=False, encoding='utf-8', no_class_label=None, **fmtparams)View on GitHub#
+class flair.datasets.document_classification.CSVClassificationDataset(path_to_file, column_name_map, label_type, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=True, skip_header=False, encoding='utf-8', no_class_label=None, **fmtparams)View on GitHub#

Bases: FlairDataset

Dataset for text classification from CSV column formatted data.

-__init__(path_to_file, column_name_map, label_type, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=True, skip_header=False, encoding='utf-8', no_class_label=None, **fmtparams)View on GitHub#
+__init__(path_to_file, column_name_map, label_type, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=True, skip_header=False, encoding='utf-8', no_class_label=None, **fmtparams)View on GitHub#

Instantiates a Dataset for text classification from CSV column formatted data.

Parameters:
@@ -640,7 +640,7 @@

Versions

-is_in_memory()View on GitHub#
+is_in_memory()View on GitHub#
Return type:

bool

@@ -652,7 +652,7 @@

Versions

-class flair.datasets.document_classification.AMAZON_REVIEWS(split_max=30000, label_name_map={'1.0': 'NEGATIVE', '2.0': 'NEGATIVE', '3.0': 'NEGATIVE', '4.0': 'POSITIVE', '5.0': 'POSITIVE'}, skip_labels=['3.0', '4.0'], fraction_of_5_star_reviews=10, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.AMAZON_REVIEWS(split_max=30000, label_name_map={'1.0': 'NEGATIVE', '2.0': 'NEGATIVE', '3.0': 'NEGATIVE', '4.0': 'POSITIVE', '5.0': 'POSITIVE'}, skip_labels=['3.0', '4.0'], fraction_of_5_star_reviews=10, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

A very large corpus of Amazon reviews with positivity ratings.

Corpus is downloaded from and documented at @@ -661,7 +661,7 @@

Versions

reviews.

-__init__(split_max=30000, label_name_map={'1.0': 'NEGATIVE', '2.0': 'NEGATIVE', '3.0': 'NEGATIVE', '4.0': 'POSITIVE', '5.0': 'POSITIVE'}, skip_labels=['3.0', '4.0'], fraction_of_5_star_reviews=10, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+__init__(split_max=30000, label_name_map={'1.0': 'NEGATIVE', '2.0': 'NEGATIVE', '3.0': 'NEGATIVE', '4.0': 'POSITIVE', '5.0': 'POSITIVE'}, skip_labels=['3.0', '4.0'], fraction_of_5_star_reviews=10, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Constructs corpus object.

Split_max indicates how many data points from each of the 28 splits are used, so set this higher or lower to increase/decrease corpus size. @@ -683,20 +683,20 @@

Versions

-download_and_prepare_amazon_product_file(data_folder, part_name, max_data_points=None, fraction_of_5_star_reviews=None)View on GitHub#
+download_and_prepare_amazon_product_file(data_folder, part_name, max_data_points=None, fraction_of_5_star_reviews=None)View on GitHub#
-class flair.datasets.document_classification.IMDB(base_path=None, rebalance_corpus=True, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.IMDB(base_path=None, rebalance_corpus=True, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

Corpus of IMDB movie reviews labeled by sentiment (POSITIVE, NEGATIVE).

Downloaded from and documented at http://ai.stanford.edu/~amaas/data/sentiment/.

-__init__(base_path=None, rebalance_corpus=True, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+__init__(base_path=None, rebalance_corpus=True, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Initialize the IMDB move review sentiment corpus.

Parameters:
@@ -719,7 +719,7 @@

Versions

-class flair.datasets.document_classification.NEWSGROUPS(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.NEWSGROUPS(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

20 newsgroups corpus, classifying news items into one of 20 categories.

Downloaded from http://qwone.com/~jason/20Newsgroups

@@ -729,7 +729,7 @@

Versions

-__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Instantiates 20 newsgroups corpus.

Parameters:
@@ -748,14 +748,14 @@

Versions

-class flair.datasets.document_classification.STACKOVERFLOW(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.STACKOVERFLOW(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

Stackoverflow corpus classifying questions into one of 20 labels.

The data will be downloaded from “jacoxu/StackOverflow”,

Each data point is a question.

-__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Instantiates Stackoverflow corpus.

Parameters:
@@ -774,7 +774,7 @@

Versions

-class flair.datasets.document_classification.SENTIMENT_140(label_name_map=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.SENTIMENT_140(label_name_map=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

Twitter sentiment corpus.

See http://help.sentiment140.com/for-students

@@ -782,7 +782,7 @@

Versions

sentiments in test data (POSITIVE, NEGATIVE, NEUTRAL).

-__init__(label_name_map=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+__init__(label_name_map=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Instantiates twitter sentiment corpus.

Parameters:
@@ -801,13 +801,13 @@

Versions

-class flair.datasets.document_classification.SENTEVAL_CR(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.SENTEVAL_CR(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The customer reviews dataset of SentEval, classified into NEGATIVE or POSITIVE sentiment.

see facebookresearch/SentEval

-__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Instantiates SentEval customer reviews dataset.

Parameters:
@@ -824,13 +824,13 @@

Versions

-class flair.datasets.document_classification.SENTEVAL_MR(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.SENTEVAL_MR(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The movie reviews dataset of SentEval, classified into NEGATIVE or POSITIVE sentiment.

see facebookresearch/SentEval

-__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Instantiates SentEval movie reviews dataset.

Parameters:
@@ -847,13 +847,13 @@

Versions

-class flair.datasets.document_classification.SENTEVAL_SUBJ(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.SENTEVAL_SUBJ(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The subjectivity dataset of SentEval, classified into SUBJECTIVE or OBJECTIVE sentiment.

see facebookresearch/SentEval

-__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Instantiates SentEval subjectivity dataset.

Parameters:
@@ -870,13 +870,13 @@

Versions

-class flair.datasets.document_classification.SENTEVAL_MPQA(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.SENTEVAL_MPQA(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The opinion-polarity dataset of SentEval, classified into NEGATIVE or POSITIVE polarity.

see facebookresearch/SentEval

-__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Instantiates SentEval opinion polarity dataset.

Parameters:
@@ -893,13 +893,13 @@

Versions

-class flair.datasets.document_classification.SENTEVAL_SST_BINARY(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.SENTEVAL_SST_BINARY(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The Stanford sentiment treebank dataset of SentEval, classified into NEGATIVE or POSITIVE sentiment.

see facebookresearch/SentEval

-__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Instantiates SentEval Stanford sentiment treebank dataset.

Parameters:
@@ -916,13 +916,13 @@

Versions

-class flair.datasets.document_classification.SENTEVAL_SST_GRANULAR(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.SENTEVAL_SST_GRANULAR(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The Stanford sentiment treebank dataset of SentEval, classified into 5 sentiment classes.

see facebookresearch/SentEval

-__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+__init__(tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Instantiates SentEval Stanford sentiment treebank dataset.

Parameters:
@@ -939,7 +939,7 @@

Versions

-class flair.datasets.document_classification.GLUE_COLA(label_type='acceptability', base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+class flair.datasets.document_classification.GLUE_COLA(label_type='acceptability', base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Bases: ClassificationCorpus

Corpus of Linguistic Acceptability from GLUE benchmark.

see https://gluebenchmark.com/tasks

@@ -948,7 +948,7 @@

Versions

the unlabeled test data for Glue evaluation.

-__init__(label_type='acceptability', base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+__init__(label_type='acceptability', base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Instantiates CoLA dataset.

Parameters:
@@ -963,7 +963,7 @@

Versions

-tsv_from_eval_dataset(folder_path)View on GitHub#
+tsv_from_eval_dataset(folder_path)View on GitHub#

Create eval prediction file.

This function creates a tsv file with predictions of the eval_dataset (after calling classifier.predict(corpus.eval_dataset, label_name=’acceptability’)). The resulting file @@ -974,7 +974,7 @@

Versions

-class flair.datasets.document_classification.GLUE_SST2(label_type='sentiment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=False, encoding='utf-8', sample_missing_splits=True, **datasetargs)View on GitHub#
+class flair.datasets.document_classification.GLUE_SST2(label_type='sentiment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, tokenizer=<flair.tokenization.SegtokTokenizer object>, in_memory=False, encoding='utf-8', sample_missing_splits=True, **datasetargs)View on GitHub#

Bases: CSVClassificationCorpus

@@ -983,7 +983,7 @@

Versions

-tsv_from_eval_dataset(folder_path)View on GitHub#
+tsv_from_eval_dataset(folder_path)View on GitHub#

Create eval prediction file.

@@ -991,13 +991,13 @@

Versions

-class flair.datasets.document_classification.GO_EMOTIONS(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.GO_EMOTIONS(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

GoEmotions dataset containing 58k Reddit comments labeled with 27 emotion categories.

see google-research/google-research

-__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Initializes the GoEmotions corpus.

Parameters:
@@ -1016,12 +1016,12 @@

Versions

-class flair.datasets.document_classification.TREC_50(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.TREC_50(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The TREC Question Classification Corpus, classifying questions into 50 fine-grained answer types.

-__init__(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Instantiates TREC Question Classification Corpus with 6 classes.

Parameters:
@@ -1039,12 +1039,12 @@

Versions

-class flair.datasets.document_classification.TREC_6(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.TREC_6(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The TREC Question Classification Corpus, classifying questions into 6 coarse-grained answer types.

-__init__(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='full', **corpusargs)View on GitHub#

Instantiates TREC Question Classification Corpus with 6 classes.

Parameters:
@@ -1062,12 +1062,12 @@

Versions

-class flair.datasets.document_classification.YAHOO_ANSWERS(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+class flair.datasets.document_classification.YAHOO_ANSWERS(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The YAHOO Question Classification Corpus, classifying questions into 10 coarse-grained answer types.

-__init__(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SpaceTokenizer object>, memory_mode='partial', **corpusargs)View on GitHub#

Instantiates YAHOO Question Classification Corpus with 10 classes.

Parameters:
@@ -1085,7 +1085,7 @@

Versions

-class flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='full', fine_grained_classes=False, **corpusargs)View on GitHub#
+class flair.datasets.document_classification.GERMEVAL_2018_OFFENSIVE_LANGUAGE(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='full', fine_grained_classes=False, **corpusargs)View on GitHub#

Bases: ClassificationCorpus

GermEval 2018 corpus for identification of offensive language.

Classifying German tweets into 2 coarse-grained categories OFFENSIVE @@ -1093,7 +1093,7 @@

Versions

OTHER.

-__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='full', fine_grained_classes=False, **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, memory_mode='full', fine_grained_classes=False, **corpusargs)View on GitHub#

Instantiates GermEval 2018 Offensive Language Classification Corpus.

Parameters:
@@ -1112,13 +1112,13 @@

Versions

-class flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS(base_path=None, memory_mode='full', tokenizer=<flair.tokenization.SpaceTokenizer object>, **corpusargs)View on GitHub#
+class flair.datasets.document_classification.COMMUNICATIVE_FUNCTIONS(base_path=None, memory_mode='full', tokenizer=<flair.tokenization.SpaceTokenizer object>, **corpusargs)View on GitHub#

Bases: ClassificationCorpus

The Communicative Functions Classification Corpus.

Classifying sentences from scientific papers into 39 communicative functions.

-__init__(base_path=None, memory_mode='full', tokenizer=<flair.tokenization.SpaceTokenizer object>, **corpusargs)View on GitHub#
+__init__(base_path=None, memory_mode='full', tokenizer=<flair.tokenization.SpaceTokenizer object>, **corpusargs)View on GitHub#

Instantiates Communicative Functions Classification Corpus with 39 classes.

Parameters:
@@ -1136,13 +1136,13 @@

Versions

-class flair.datasets.document_classification.WASSA_ANGER(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+class flair.datasets.document_classification.WASSA_ANGER(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Bases: ClassificationCorpus

WASSA-2017 anger emotion-intensity corpus.

see https://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html.

-__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Instantiates WASSA-2017 anger emotion-intensity corpus.

Parameters:
@@ -1159,13 +1159,13 @@

Versions

-class flair.datasets.document_classification.WASSA_FEAR(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+class flair.datasets.document_classification.WASSA_FEAR(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Bases: ClassificationCorpus

WASSA-2017 fear emotion-intensity corpus.

see https://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html.

-__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Instantiates WASSA-2017 fear emotion-intensity corpus.

Parameters:
@@ -1182,13 +1182,13 @@

Versions

-class flair.datasets.document_classification.WASSA_JOY(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+class flair.datasets.document_classification.WASSA_JOY(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Bases: ClassificationCorpus

WASSA-2017 joy emotion-intensity dataset corpus.

see https://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html

-__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Instantiates WASSA-2017 joy emotion-intensity corpus.

Parameters:
@@ -1205,13 +1205,13 @@

Versions

-class flair.datasets.document_classification.WASSA_SADNESS(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+class flair.datasets.document_classification.WASSA_SADNESS(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Bases: ClassificationCorpus

WASSA-2017 sadness emotion-intensity corpus.

see https://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html.

-__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#
+__init__(base_path=None, tokenizer=<flair.tokenization.SegtokTokenizer object>, **corpusargs)View on GitHub#

Instantiates WASSA-2017 sadness emotion-intensity dataset.

Parameters:
diff --git a/doc-page/api/datasets/entity_linking.html b/master/api/datasets/entity_linking.html similarity index 91% rename from doc-page/api/datasets/entity_linking.html rename to master/api/datasets/entity_linking.html index 1935a8cf54..b1245219a2 100644 --- a/doc-page/api/datasets/entity_linking.html +++ b/master/api/datasets/entity_linking.html @@ -424,7 +424,7 @@

Versions

@@ -492,11 +492,11 @@

Versions

flair.datasets.entity_linking#

-class flair.datasets.entity_linking.ZELDA(base_path=None, in_memory=False, column_format={0: 'text', 2: 'nel'}, **corpusargs)View on GitHub#
+class flair.datasets.entity_linking.ZELDA(base_path=None, in_memory=False, column_format={0: 'text', 2: 'nel'}, **corpusargs)View on GitHub#

Bases: MultiFileColumnCorpus

-__init__(base_path=None, in_memory=False, column_format={0: 'text', 2: 'nel'}, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=False, column_format={0: 'text', 2: 'nel'}, **corpusargs)View on GitHub#

Initialize ZELDA Entity Linking corpus.

introduced in “ZELDA: A Comprehensive Benchmark for Supervised Entity Disambiguation” (Milich and Akbik, 2023). When calling the constructor for the first time, the dataset gets automatically downloaded.

@@ -516,11 +516,11 @@

Versions

-class flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT(base_path=None, in_memory=True, agreement_threshold=0.5, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#
+class flair.datasets.entity_linking.NEL_ENGLISH_AQUAINT(base_path=None, in_memory=True, agreement_threshold=0.5, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, agreement_threshold=0.5, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, agreement_threshold=0.5, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#

Initialize Aquaint Entity Linking corpus.

introduced in: D. Milne and I. H. Witten. Learning to link with wikipedia https://www.cms.waikato.ac.nz/~ihw/papers/08-DNM-IHW-LearningToLinkWithWikipedia.pdf . If you call the constructor the first @@ -544,11 +544,11 @@

Versions

-class flair.datasets.entity_linking.NEL_GERMAN_HIPE(base_path=None, in_memory=True, wiki_language='dewiki', **corpusargs)View on GitHub#
+class flair.datasets.entity_linking.NEL_GERMAN_HIPE(base_path=None, in_memory=True, wiki_language='dewiki', **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, wiki_language='dewiki', **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, wiki_language='dewiki', **corpusargs)View on GitHub#

Initialize a sentence-segmented version of the HIPE entity linking corpus for historical German.

see description of HIPE at https://impresso.github.io/CLEF-HIPE-2020/.

This version was segmented by @stefan-it and is hosted at stefan-it/clef-hipe. @@ -570,11 +570,11 @@

Versions

-class flair.datasets.entity_linking.NEL_ENGLISH_AIDA(base_path=None, in_memory=True, use_ids_and_check_existence=False, **corpusargs)View on GitHub#
+class flair.datasets.entity_linking.NEL_ENGLISH_AIDA(base_path=None, in_memory=True, use_ids_and_check_existence=False, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, use_ids_and_check_existence=False, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, use_ids_and_check_existence=False, **corpusargs)View on GitHub#

Initialize AIDA CoNLL-YAGO Entity Linking corpus.

The corpus got introduced here https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads. License: https://creativecommons.org/licenses/by-sa/3.0/deed.en_US @@ -596,11 +596,11 @@

Versions

-class flair.datasets.entity_linking.NEL_ENGLISH_IITB(base_path=None, in_memory=True, ignore_disagreements=False, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#
+class flair.datasets.entity_linking.NEL_ENGLISH_IITB(base_path=None, in_memory=True, ignore_disagreements=False, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, ignore_disagreements=False, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, ignore_disagreements=False, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#

Initialize ITTB Entity Linking corpus.

The corpus got introduced in “Collective Annotation of Wikipedia Entities in Web Text” Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti.

If you call the constructor the first time the dataset gets automatically downloaded.

@@ -621,11 +621,11 @@

Versions

-class flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.entity_linking.NEL_ENGLISH_TWEEKI(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Initialize Tweeki Entity Linking corpus.

The dataset got introduced in “Tweeki: Linking Named Entities on Twitter to a Knowledge Graph” Harandizadeh, @@ -648,11 +648,11 @@

Versions

-class flair.datasets.entity_linking.NEL_ENGLISH_REDDIT(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.entity_linking.NEL_ENGLISH_REDDIT(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Initialize the Reddit Entity Linking corpus containing gold annotations only.

see https://arxiv.org/abs/2101.01228v2

The first time you call this constructor it will automatically download the dataset.

@@ -669,7 +669,7 @@

Versions

-_text_to_cols(sentence, links, outfile)View on GitHub#
+_text_to_cols(sentence, links, outfile)View on GitHub#

Convert a tokenized sentence into column format.

Parameters:
@@ -684,7 +684,7 @@

Versions

-_fill_annot_array(annot_array, key, post_flag)View on GitHub#
+_fill_annot_array(annot_array, key, post_flag)View on GitHub#

Fills the array containing information about the entity mention annotations.

Parameters:
@@ -702,7 +702,7 @@

Versions

-_fill_curr_comment(fix_flag)View on GitHub#
+_fill_curr_comment(fix_flag)View on GitHub#

Extends the string containing the current comment thread, which is passed to _text_to_cols method, when the comments are parsed.

Parameters:
@@ -715,7 +715,7 @@

Versions

-flair.datasets.entity_linking.from_ufsac_to_tsv(xml_file, conll_file, datasetname, encoding='utf8', cut_multisense=True)View on GitHub#
+flair.datasets.entity_linking.from_ufsac_to_tsv(xml_file, conll_file, datasetname, encoding='utf8', cut_multisense=True)View on GitHub#

Function that converts the UFSAC format into tab separated column format in a new file.

Parameters:
@@ -734,7 +734,7 @@

Versions

-flair.datasets.entity_linking.determine_tsv_file(filename, data_folder, cut_multisense=True)View on GitHub#
+flair.datasets.entity_linking.determine_tsv_file(filename, data_folder, cut_multisense=True)View on GitHub#

Checks if the converted .tsv file already exists and if not, creates it.

Parameters:
@@ -757,11 +757,11 @@

Versions

-class flair.datasets.entity_linking.WSD_UFSAC(filenames=['masc', 'semcor'], base_path=None, in_memory=True, cut_multisense=True, columns={0: 'text', 3: 'sense'}, banned_sentences=None, sample_missing_splits_in_multicorpus=True, sample_missing_splits_in_each_corpus=True, use_raganato_ALL_as_test_data=False, name='multicorpus')View on GitHub#
+class flair.datasets.entity_linking.WSD_UFSAC(filenames=['masc', 'semcor'], base_path=None, in_memory=True, cut_multisense=True, columns={0: 'text', 3: 'sense'}, banned_sentences=None, sample_missing_splits_in_multicorpus=True, sample_missing_splits_in_each_corpus=True, use_raganato_ALL_as_test_data=False, name='multicorpus')View on GitHub#

Bases: MultiCorpus

-__init__(filenames=['masc', 'semcor'], base_path=None, in_memory=True, cut_multisense=True, columns={0: 'text', 3: 'sense'}, banned_sentences=None, sample_missing_splits_in_multicorpus=True, sample_missing_splits_in_each_corpus=True, use_raganato_ALL_as_test_data=False, name='multicorpus')View on GitHub#
+__init__(filenames=['masc', 'semcor'], base_path=None, in_memory=True, cut_multisense=True, columns={0: 'text', 3: 'sense'}, banned_sentences=None, sample_missing_splits_in_multicorpus=True, sample_missing_splits_in_each_corpus=True, use_raganato_ALL_as_test_data=False, name='multicorpus')View on GitHub#

Initialize a custom corpus with any Word Sense Disambiguation (WSD) datasets in the UFSAC format.

see getalp/UFSAC.

@@ -791,11 +791,11 @@

Versions

-class flair.datasets.entity_linking.WSD_RAGANATO_ALL(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True)View on GitHub#
+class flair.datasets.entity_linking.WSD_RAGANATO_ALL(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True)View on GitHub#
+__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True)View on GitHub#

Initialize ragnato_ALL (concatenation of all SensEval and SemEval all-words tasks) provided in UFSAC.

see getalp/UFSAC When first initializing the corpus the whole UFSAC data is downloaded.

@@ -805,11 +805,11 @@

Versions

-class flair.datasets.entity_linking.WSD_SEMCOR(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+class flair.datasets.entity_linking.WSD_SEMCOR(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Initialize SemCor provided in UFSAC.

see getalp/UFSAC When first initializing the corpus the whole UFSAC data is downloaded.

@@ -819,11 +819,11 @@

Versions

-class flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+class flair.datasets.entity_linking.WSD_WORDNET_GLOSS_TAGGED(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Initialize Princeton WordNet Gloss Corpus provided in UFSAC.

see getalp/UFSAC When first initializing the corpus the whole UFSAC data is downloaded.

@@ -833,11 +833,11 @@

Versions

-class flair.datasets.entity_linking.WSD_MASC(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+class flair.datasets.entity_linking.WSD_MASC(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Initialize MASC (Manually Annotated Sub-Corpus) provided in UFSAC.

see getalp/UFSAC When first initializing the corpus the whole UFSAC data is downloaded.

@@ -847,11 +847,11 @@

Versions

-class flair.datasets.entity_linking.WSD_OMSTI(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+class flair.datasets.entity_linking.WSD_OMSTI(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, cut_multisense=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Initialize OMSTI (One Million Sense-Tagged Instances) provided in UFSAC.

see getalp/UFSAC When first initializing the corpus the whole UFSAC data is downloaded.

@@ -861,11 +861,11 @@

Versions

-class flair.datasets.entity_linking.WSD_TRAINOMATIC(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+class flair.datasets.entity_linking.WSD_TRAINOMATIC(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, use_raganato_ALL_as_test_data=False)View on GitHub#
+__init__(base_path=None, in_memory=True, columns={0: 'text', 3: 'sense'}, label_name_map=None, banned_sentences=None, sample_missing_splits=True, use_raganato_ALL_as_test_data=False)View on GitHub#

Initialize Train-O-Matic provided in UFSAC.

see getalp/UFSAC When first initializing the corpus the whole UFSAC data is downloaded.

diff --git a/doc-page/api/datasets/ocr.html b/master/api/datasets/ocr.html similarity index 94% rename from doc-page/api/datasets/ocr.html rename to master/api/datasets/ocr.html index 0fa82d95fe..0e3183fec3 100644 --- a/doc-page/api/datasets/ocr.html +++ b/master/api/datasets/ocr.html @@ -424,7 +424,7 @@

Versions

@@ -492,11 +492,11 @@

Versions

flair.datasets.ocr#

-class flair.datasets.ocr.OcrJsonDataset(path_to_split_directory, label_type='ner', in_memory=True, encoding='utf-8', load_images=False, normalize_coords_to_thousands=True, label_name_map=None)View on GitHub#
+class flair.datasets.ocr.OcrJsonDataset(path_to_split_directory, label_type='ner', in_memory=True, encoding='utf-8', load_images=False, normalize_coords_to_thousands=True, label_name_map=None)View on GitHub#

Bases: FlairDataset

-__init__(path_to_split_directory, label_type='ner', in_memory=True, encoding='utf-8', load_images=False, normalize_coords_to_thousands=True, label_name_map=None)View on GitHub#
+__init__(path_to_split_directory, label_type='ner', in_memory=True, encoding='utf-8', load_images=False, normalize_coords_to_thousands=True, label_name_map=None)View on GitHub#

Instantiates a Dataset from a OCR-Json format.

The folder is structured with a “images” folder and a “tagged” folder. Those folders contain respectively .jpg and .json files with matching file name. @@ -523,7 +523,7 @@

Versions

-is_in_memory()View on GitHub#
+is_in_memory()View on GitHub#
Return type:

bool

@@ -535,11 +535,11 @@

Versions

-class flair.datasets.ocr.OcrCorpus(train_path=None, dev_path=None, test_path=None, encoding='utf-8', label_type='ner', in_memory=True, load_images=False, normalize_coords_to_thousands=True, label_name_map=None, **corpusargs)View on GitHub#
+class flair.datasets.ocr.OcrCorpus(train_path=None, dev_path=None, test_path=None, encoding='utf-8', label_type='ner', in_memory=True, load_images=False, normalize_coords_to_thousands=True, label_name_map=None, **corpusargs)View on GitHub#

Bases: Corpus

-__init__(train_path=None, dev_path=None, test_path=None, encoding='utf-8', label_type='ner', in_memory=True, load_images=False, normalize_coords_to_thousands=True, label_name_map=None, **corpusargs)View on GitHub#
+__init__(train_path=None, dev_path=None, test_path=None, encoding='utf-8', label_type='ner', in_memory=True, load_images=False, normalize_coords_to_thousands=True, label_name_map=None, **corpusargs)View on GitHub#

Instantiates a Corpus from a OCR-Json format.

Parameters:
@@ -566,11 +566,11 @@

Versions

-class flair.datasets.ocr.SROIE(base_path=None, encoding='utf-8', label_type='ner', in_memory=True, load_images=False, normalize_coords_to_thousands=True, label_name_map=None, **corpusargs)View on GitHub#
+class flair.datasets.ocr.SROIE(base_path=None, encoding='utf-8', label_type='ner', in_memory=True, load_images=False, normalize_coords_to_thousands=True, label_name_map=None, **corpusargs)View on GitHub#

Bases: OcrCorpus

-__init__(base_path=None, encoding='utf-8', label_type='ner', in_memory=True, load_images=False, normalize_coords_to_thousands=True, label_name_map=None, **corpusargs)View on GitHub#
+__init__(base_path=None, encoding='utf-8', label_type='ner', in_memory=True, load_images=False, normalize_coords_to_thousands=True, label_name_map=None, **corpusargs)View on GitHub#

Instantiates the SROIE corpus with perfect ocr boxes.

Parameters:
diff --git a/doc-page/api/datasets/relation_extraction.html b/master/api/datasets/relation_extraction.html similarity index 89% rename from doc-page/api/datasets/relation_extraction.html rename to master/api/datasets/relation_extraction.html index 4dea964c35..00fc457c52 100644 --- a/doc-page/api/datasets/relation_extraction.html +++ b/master/api/datasets/relation_extraction.html @@ -424,7 +424,7 @@

Versions

@@ -492,7 +492,7 @@

Versions

flair.datasets.relation_extraction#

-flair.datasets.relation_extraction.convert_ptb_token(token)View on GitHub#
+flair.datasets.relation_extraction.convert_ptb_token(token)View on GitHub#

Convert PTB tokens to normal tokens.

Return type:
@@ -503,29 +503,29 @@

Versions

-class flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010(base_path=None, in_memory=True, augment_train=False, **corpusargs)View on GitHub#
+class flair.datasets.relation_extraction.RE_ENGLISH_SEMEVAL2010(base_path=None, in_memory=True, augment_train=False, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, augment_train=False, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, augment_train=False, **corpusargs)View on GitHub#

SemEval-2010 Task 8 on Multi-Way Classification of Semantic Relations Between Pairs of Nominals.

see https://aclanthology.org/S10-1006.pdf

-extract_and_convert_to_conllu(data_file, data_folder, augment_train)View on GitHub#
+extract_and_convert_to_conllu(data_file, data_folder, augment_train)View on GitHub#
-class flair.datasets.relation_extraction.RE_ENGLISH_TACRED(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.relation_extraction.RE_ENGLISH_TACRED(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

TAC Relation Extraction Dataset.

with 41 relations from https://nlp.stanford.edu/projects/tacred/. Manual download is required for this dataset.

@@ -533,29 +533,29 @@

Versions

-extract_and_convert_to_conllu(data_file, data_folder)View on GitHub#
+extract_and_convert_to_conllu(data_file, data_folder)View on GitHub#
-class flair.datasets.relation_extraction.RE_ENGLISH_CONLL04(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.relation_extraction.RE_ENGLISH_CONLL04(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-convert_to_conllu(source_data_folder, data_folder)View on GitHub#
+convert_to_conllu(source_data_folder, data_folder)View on GitHub#
-class flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT(base_path=None, in_memory=True, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#
+class flair.datasets.relation_extraction.RE_ENGLISH_DRUGPROT(base_path=None, in_memory=True, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, sentence_splitter=<flair.splitter.SegtokSentenceSplitter object>, **corpusargs)View on GitHub#

Initialize the DrugProt corpus.

Biocreative VII Track 1 from https://zenodo.org/record/5119892#.YSdSaVuxU5k/ on drug and chemical-protein interactions.

@@ -563,22 +563,22 @@

Versions

-extract_and_convert_to_conllu(data_file, data_folder)View on GitHub#
+extract_and_convert_to_conllu(data_file, data_folder)View on GitHub#
-char_spans_to_token_spans(char_spans, token_offsets)View on GitHub#
+char_spans_to_token_spans(char_spans, token_offsets)View on GitHub#
-has_overlap(a, b)View on GitHub#
+has_overlap(a, b)View on GitHub#
-drugprot_document_to_tokenlists(pmid, title_sentences, abstract_sentences, abstract_offset, entities, relations)View on GitHub#
+drugprot_document_to_tokenlists(pmid, title_sentences, abstract_sentences, abstract_offset, entities, relations)View on GitHub#
Return type:

List[TokenList]

diff --git a/doc-page/api/datasets/sequence_labeling.html b/master/api/datasets/sequence_labeling.html similarity index 89% rename from doc-page/api/datasets/sequence_labeling.html rename to master/api/datasets/sequence_labeling.html index fe95a9b095..fc0c73e45a 100644 --- a/doc-page/api/datasets/sequence_labeling.html +++ b/master/api/datasets/sequence_labeling.html @@ -424,7 +424,7 @@

Versions

@@ -492,12 +492,12 @@

Versions

flair.datasets.sequence_labeling#

-class flair.datasets.sequence_labeling.MultiFileJsonlCorpus(train_files=None, test_files=None, dev_files=None, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner', **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.MultiFileJsonlCorpus(train_files=None, test_files=None, dev_files=None, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner', **corpusargs)View on GitHub#

Bases: Corpus

This class represents a generic Jsonl corpus with multiple train, dev, and test files.

-__init__(train_files=None, test_files=None, dev_files=None, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner', **corpusargs)View on GitHub#
+__init__(train_files=None, test_files=None, dev_files=None, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner', **corpusargs)View on GitHub#

Instantiates a MuliFileJsonlCorpus as, e.g., created with doccanos JSONL export.

Note that at least one of train_files, test_files, and dev_files must contain one path. Otherwise, the initialization will fail.

@@ -522,11 +522,11 @@

Versions

-class flair.datasets.sequence_labeling.JsonlCorpus(data_folder, train_file=None, test_file=None, dev_file=None, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner', autofind_splits=True, name=None, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.JsonlCorpus(data_folder, train_file=None, test_file=None, dev_file=None, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner', autofind_splits=True, name=None, **corpusargs)View on GitHub#

Bases: MultiFileJsonlCorpus

-__init__(data_folder, train_file=None, test_file=None, dev_file=None, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner', autofind_splits=True, name=None, **corpusargs)View on GitHub#
+__init__(data_folder, train_file=None, test_file=None, dev_file=None, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner', autofind_splits=True, name=None, **corpusargs)View on GitHub#

Instantiates a JsonlCorpus with one file per Dataset (train, dev, and test).

Parameters:
@@ -548,11 +548,11 @@

Versions

-class flair.datasets.sequence_labeling.JsonlDataset(path_to_jsonl_file, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner')View on GitHub#
+class flair.datasets.sequence_labeling.JsonlDataset(path_to_jsonl_file, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner')View on GitHub#

Bases: FlairDataset

-__init__(path_to_jsonl_file, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner')View on GitHub#
+__init__(path_to_jsonl_file, encoding='utf-8', text_column_name='data', label_column_name='label', label_type='ner')View on GitHub#

Instantiates a JsonlDataset and converts all annotated char spans to token tags using the IOB scheme.

The expected file format is: { “<text_column_name>”: “<text>”, “label_column_name”: [[<start_char_index>, <end_char_index>, <label>],…] }

@@ -569,7 +569,7 @@

Versions

-_add_label_to_sentence(text, sentence, start, end, label)View on GitHub#
+_add_label_to_sentence(text, sentence, start, end, label)View on GitHub#

Adds a NE label to a given sentence.

Parameters:
@@ -589,7 +589,7 @@

Versions

-is_in_memory()View on GitHub#
+is_in_memory()View on GitHub#
Return type:

bool

@@ -601,11 +601,11 @@

Versions

-class flair.datasets.sequence_labeling.MultiFileColumnCorpus(column_format, train_files=None, test_files=None, dev_files=None, column_delimiter='\\\\s+', comment_symbol=None, encoding='utf-8', document_separator_token=None, skip_first_line=False, in_memory=True, label_name_map=None, banned_sentences=None, default_whitespace_after=1, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.MultiFileColumnCorpus(column_format, train_files=None, test_files=None, dev_files=None, column_delimiter='\\\\s+', comment_symbol=None, encoding='utf-8', document_separator_token=None, skip_first_line=False, in_memory=True, label_name_map=None, banned_sentences=None, default_whitespace_after=1, **corpusargs)View on GitHub#

Bases: Corpus

-__init__(column_format, train_files=None, test_files=None, dev_files=None, column_delimiter='\\\\s+', comment_symbol=None, encoding='utf-8', document_separator_token=None, skip_first_line=False, in_memory=True, label_name_map=None, banned_sentences=None, default_whitespace_after=1, **corpusargs)View on GitHub#
+__init__(column_format, train_files=None, test_files=None, dev_files=None, column_delimiter='\\\\s+', comment_symbol=None, encoding='utf-8', document_separator_token=None, skip_first_line=False, in_memory=True, label_name_map=None, banned_sentences=None, default_whitespace_after=1, **corpusargs)View on GitHub#

Instantiates a Corpus from CoNLL column-formatted task data such as CoNLL03 or CoNLL2000.

Parameters:
@@ -631,11 +631,11 @@

Versions

-class flair.datasets.sequence_labeling.ColumnCorpus(data_folder, column_format, train_file=None, test_file=None, dev_file=None, autofind_splits=True, name=None, comment_symbol='# ', **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.ColumnCorpus(data_folder, column_format, train_file=None, test_file=None, dev_file=None, autofind_splits=True, name=None, comment_symbol='# ', **corpusargs)View on GitHub#

Bases: MultiFileColumnCorpus

-__init__(data_folder, column_format, train_file=None, test_file=None, dev_file=None, autofind_splits=True, name=None, comment_symbol='# ', **corpusargs)View on GitHub#
+__init__(data_folder, column_format, train_file=None, test_file=None, dev_file=None, autofind_splits=True, name=None, comment_symbol='# ', **corpusargs)View on GitHub#

Instantiates a Corpus from CoNLL column-formatted task data such as CoNLL03 or CoNLL2000.

Parameters:
@@ -661,7 +661,7 @@

Versions

-class flair.datasets.sequence_labeling.ColumnDataset(path_to_column_file, column_name_map, column_delimiter='\\\\s+', comment_symbol=None, banned_sentences=None, in_memory=True, document_separator_token=None, encoding='utf-8', skip_first_line=False, label_name_map=None, default_whitespace_after=1)View on GitHub#
+class flair.datasets.sequence_labeling.ColumnDataset(path_to_column_file, column_name_map, column_delimiter='\\\\s+', comment_symbol=None, banned_sentences=None, in_memory=True, document_separator_token=None, encoding='utf-8', skip_first_line=False, label_name_map=None, default_whitespace_after=1)View on GitHub#

Bases: FlairDataset

@@ -680,7 +680,7 @@

Versions

-__init__(path_to_column_file, column_name_map, column_delimiter='\\\\s+', comment_symbol=None, banned_sentences=None, in_memory=True, document_separator_token=None, encoding='utf-8', skip_first_line=False, label_name_map=None, default_whitespace_after=1)View on GitHub#
+__init__(path_to_column_file, column_name_map, column_delimiter='\\\\s+', comment_symbol=None, banned_sentences=None, in_memory=True, document_separator_token=None, encoding='utf-8', skip_first_line=False, label_name_map=None, default_whitespace_after=1)View on GitHub#

Instantiates a column dataset.

Parameters:
@@ -701,7 +701,7 @@

Versions

-is_in_memory()View on GitHub#
+is_in_memory()View on GitHub#
Return type:

bool

@@ -713,7 +713,7 @@

Versions

-class flair.datasets.sequence_labeling.ONTONOTES(base_path=None, version='v4', language='english', domain=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.ONTONOTES(base_path=None, version='v4', language='english', domain=None, in_memory=True, **corpusargs)View on GitHub#

Bases: MultiFileColumnCorpus

@@ -722,7 +722,7 @@

Versions

-classmethod get_available_domains(base_path=None, version='v4', language='english', split='train')View on GitHub#
+classmethod get_available_domains(base_path=None, version='v4', language='english', split='train')View on GitHub#
Return type:

List[str]

@@ -732,7 +732,7 @@

Versions

-classmethod _process_coref_span_annotations_for_word(label, word_index, clusters, coref_stacks)View on GitHub#
+classmethod _process_coref_span_annotations_for_word(label, word_index, clusters, coref_stacks)View on GitHub#

For a given coref label, add it to a currently open span(s), complete a span(s) or ignore it, if it is outside of all spans.

This method mutates the clusters and coref_stacks dictionaries.

@@ -752,7 +752,7 @@

Versions

-classmethod dataset_document_iterator(file_path)View on GitHub#
+classmethod dataset_document_iterator(file_path)View on GitHub#

An iterator over CONLL formatted files which yields documents, regardless of the number of document annotations in a particular file.

This is useful for conll data which has been preprocessed, such as the preprocessing which takes place for the 2012 CONLL @@ -766,7 +766,7 @@

Versions

-classmethod sentence_iterator(file_path)View on GitHub#
+classmethod sentence_iterator(file_path)View on GitHub#

An iterator over the sentences in an individual CONLL formatted file.

Return type:
@@ -779,11 +779,11 @@

Versions

-class flair.datasets.sequence_labeling.CONLL_03(base_path=None, column_format={0: 'text', 1: 'pos', 3: 'ner'}, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.CONLL_03(base_path=None, column_format={0: 'text', 1: 'pos', 3: 'ner'}, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, column_format={0: 'text', 1: 'pos', 3: 'ner'}, in_memory=True, **corpusargs)View on GitHub#
+__init__(base_path=None, column_format={0: 'text', 1: 'pos', 3: 'ner'}, in_memory=True, **corpusargs)View on GitHub#

Initialize the CoNLL-03 corpus.

This is only possible if you’ve manually downloaded it to your machine. Obtain the corpus from https://www.clips.uantwerpen.be/conll2003/ner/ and put the eng.testa, .testb, .train @@ -802,11 +802,11 @@

Versions

-class flair.datasets.sequence_labeling.CONLL_03_GERMAN(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.CONLL_03_GERMAN(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Initialize the CoNLL-03 corpus for German.

This is only possible if you’ve manually downloaded it to your machine. Obtain the corpus from https://www.clips.uantwerpen.be/conll2003/ner/ and put the respective files in a folder called @@ -824,11 +824,11 @@

Versions

-class flair.datasets.sequence_labeling.CONLL_03_DUTCH(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.CONLL_03_DUTCH(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Initialize the CoNLL-03 corpus for Dutch.

The first time you call this constructor it will automatically download the dataset.

@@ -845,11 +845,11 @@

Versions

-class flair.datasets.sequence_labeling.CONLL_03_SPANISH(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.CONLL_03_SPANISH(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Initialize the CoNLL-03 corpus for Spanish.

The first time you call this constructor it will automatically download the dataset.

@@ -866,11 +866,11 @@

Versions

-class flair.datasets.sequence_labeling.CONLL_2000(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.CONLL_2000(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Initialize the CoNLL-2000 corpus for English chunking.

The first time you call this constructor it will automatically download the dataset. :type base_path: Union[str, Path, None] @@ -884,29 +884,29 @@

Versions

-class flair.datasets.sequence_labeling.WNUT_17(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.WNUT_17(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-class flair.datasets.sequence_labeling.FEWNERD(setting='supervised', **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.FEWNERD(setting='supervised', **corpusargs)View on GitHub#

Bases: ColumnCorpus

-class flair.datasets.sequence_labeling.BIOSCOPE(base_path=None, in_memory=True, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.BIOSCOPE(base_path=None, in_memory=True, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-class flair.datasets.sequence_labeling.NER_ARABIC_ANER(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.NER_ARABIC_ANER(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

Initialize a preprocessed version of the Arabic Named Entity Recognition Corpus (ANERCorp).

The dataset is downloaded from http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp Column order is swapped @@ -926,11 +926,11 @@

Versions

-class flair.datasets.sequence_labeling.NER_ARABIC_AQMAR(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
+class flair.datasets.sequence_labeling.NER_ARABIC_AQMAR(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

Bases: ColumnCorpus

-__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
+__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

Initialize a preprocessed and modified version of the American and Qatari Modeling of Arabic (AQMAR) dataset.

The dataset is downloaded from http://www.cs.cmu.edu/~ark/AQMAR/

    @@ -956,17 +956,17 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_BASQUE(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_BASQUE(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -class flair.datasets.sequence_labeling.NER_CHINESE_WEIBO(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_CHINESE_WEIBO(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the WEIBO_NER corpus.

    The first time you call this constructor it will automatically download the dataset.

    @@ -984,17 +984,17 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_DANISH_DANE(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_DANISH_DANE(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -class flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_SIMPLE(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the eng corpus of the MIT Movie Corpus.

    The first time you call this constructor it will automatically download the dataset.

    @@ -1011,11 +1011,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_MOVIE_COMPLEX(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the trivia10k13 corpus of the MIT Movie Corpus.

    The first time you call this constructor it will automatically download the dataset.

    @@ -1032,11 +1032,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_SEC_FILLINGS(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize corpus of SEC-fillings annotated with English NER tags.

    See paper “Domain Adaption of Named Entity Recognition to Support Credit Risk Assessment” by Alvarado et al, 2015: https://aclanthology.org/U15-1010/

    @@ -1053,11 +1053,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_RESTAURANT(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the MIT Restaurant corpus.

    The corpus will be downloaded from https://groups.csail.mit.edu/sls/downloads/restaurant/. The first time you call this constructor it will automatically download the dataset. @@ -1074,11 +1074,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_STACKOVERFLOW(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the STACKOVERFLOW_NER corpus.

    The first time you call this constructor it will automatically download the dataset.

    @@ -1096,11 +1096,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_TWITTER(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the twitter_ner corpus.

    The corpus will be downoaded from https://raw.githubusercontent.com/aritter/twitter_nlp/master/data/annotated/ner.txt. The first time you call this constructor it will automatically download the dataset.

    @@ -1119,11 +1119,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_PERSON(base_path=None, in_memory=True)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_PERSON(base_path=None, in_memory=True)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True)View on GitHub#
    +__init__(base_path=None, in_memory=True)View on GitHub#

    Initialize the PERSON_NER corpus for person names.

    The first time you call this constructor it will automatically download the dataset.

    @@ -1140,11 +1140,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_WEBPAGES(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the WEBPAGES_NER corpus.

    The corpus was introduced in the paper “Design Challenges and Misconceptions in Named Entity Recognition” by Ratinov and Roth (2009): https://aclanthology.org/W09-1119/. The first time you call this constructor it will automatically download the dataset.

    @@ -1163,11 +1163,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_WNUT_2020(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the WNUT_2020_NER corpus.

    The first time you call this constructor it will automatically download the dataset.

    @@ -1185,11 +1185,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ENGLISH_WIKIGOLD(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the wikigold corpus.

    The first time you call this constructor it will automatically download the dataset.

    @@ -1207,23 +1207,23 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_FINNISH(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_FINNISH(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -class flair.datasets.sequence_labeling.NER_GERMAN_BIOFID(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_GERMAN_BIOFID(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -class flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_GERMAN_EUROPARL(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the EUROPARL_NER_GERMAN corpus.

    The first time you call this constructor it will automatically download the dataset.

    @@ -1239,7 +1239,7 @@

    Versions

    -_add_IOB_tags(data_file, encoding='utf8', ner_column=1)View on GitHub#
    +_add_IOB_tags(data_file, encoding='utf8', ner_column=1)View on GitHub#

    Function that adds IOB tags if only chunk names are provided.

    e.g. words are tagged PER instead of B-PER or I-PER. Replaces ‘0’ with ‘O’ as the no-chunk tag since ColumnCorpus expects the letter ‘O’. Additionally it removes lines with no tags in the data file and can also @@ -1259,11 +1259,11 @@

    Versions

    +class flair.datasets.sequence_labeling.NER_GERMAN_LEGAL(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the LER_GERMAN (Legal Entity Recognition) corpus.

    The first time you call this constructor it will automatically download the dataset. :type base_path: Union[str, Path, None] @@ -1277,11 +1277,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_GERMAN_GERMEVAL(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the GermEval NER corpus for German.

    This is only possible if you’ve manually downloaded it to your machine. Obtain the corpus from https://sites.google.com/site/germeval2014ner/data and put it into some folder. @@ -1296,11 +1296,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_GERMAN_POLITICS(base_path=None, column_delimiter='\\\\s+', in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_GERMAN_POLITICS(base_path=None, column_delimiter='\\\\s+', in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, column_delimiter='\\\\s+', in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, column_delimiter='\\\\s+', in_memory=True, **corpusargs)View on GitHub#

    Initialize corpus with Named Entity Model for German Politics (NEMGP).

    data from https://www.thomas-zastrow.de/nlp/.

    The first time you call this constructor it will automatically download the @@ -1318,11 +1318,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_HUNGARIAN(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_HUNGARIAN(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the NER Business corpus for Hungarian.

    The first time you call this constructor it will automatically download the dataset. :type base_path: Union[str, Path, None] @@ -1339,11 +1339,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ICELANDIC(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ICELANDIC(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the ICELANDIC_NER corpus.

    The first time you call this constructor it will automatically download the dataset. :type base_path: Union[str, Path, None] @@ -1359,11 +1359,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_JAPANESE(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_JAPANESE(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the Hironsan/IOB2 corpus for Japanese.

    The first time you call this constructor it will automatically download the dataset.

    @@ -1380,11 +1380,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_MASAKHANE(languages='luo', version='v2', base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_MASAKHANE(languages='luo', version='v2', base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: MultiCorpus

    -__init__(languages='luo', version='v2', base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(languages='luo', version='v2', base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the Masakhane corpus available on masakhane-io/masakhane-ner.

    It consists of ten African languages. Pass a language code or a list of language codes to initialize the corpus with the languages you require. If you pass “all”, all languages will be initialized. @@ -1401,11 +1401,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_MULTI_CONER(task='multi', base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_MULTI_CONER(task='multi', base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: MultiFileColumnCorpus

    -__init__(task='multi', base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(task='multi', base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Download and Initialize the MultiCoNer corpus.

    Parameters:
    @@ -1422,11 +1422,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_MULTI_CONER_V2(task='multi', base_path=None, in_memory=True, use_dev_as_test=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_MULTI_CONER_V2(task='multi', base_path=None, in_memory=True, use_dev_as_test=True, **corpusargs)View on GitHub#

    Bases: MultiFileColumnCorpus

    -__init__(task='multi', base_path=None, in_memory=True, use_dev_as_test=True, **corpusargs)View on GitHub#
    +__init__(task='multi', base_path=None, in_memory=True, use_dev_as_test=True, **corpusargs)View on GitHub#

    Initialize the MultiCoNer V2 corpus for the Semeval2023 workshop.

    This is only possible if you’ve applied and downloaded it to your machine. Apply for the corpus from here https://multiconer.github.io/dataset and unpack the .zip file’s content into @@ -1448,11 +1448,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_MULTI_WIKIANN(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_MULTI_WIKIANN(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#

    Bases: MultiCorpus

    -__init__(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#
    +__init__(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#

    Initialize the WkiAnn corpus for cross-lingual NER consisting of datasets from 282 languages that exist in Wikipedia.

    See https://elisa-ie.github.io/wikiann/ for details and for the languages and their respective abbreveations, i.e. “en” for english. (license: https://opendatacommons.org/licenses/by/)

    @@ -1477,11 +1477,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_MULTI_XTREME(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_MULTI_XTREME(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#

    Bases: MultiCorpus

    -__init__(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#
    +__init__(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#

    Xtreme corpus for cross-lingual NER consisting of datasets of a total of 40 languages.

    The data comes from the google research work XTREME google-research/xtreme. The data is derived from the wikiann dataset https://elisa-ie.github.io/wikiann/ (license: https://opendatacommons.org/licenses/by/)

    @@ -1500,17 +1500,17 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_MULTI_WIKINER(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_MULTI_WIKINER(languages='en', base_path=None, in_memory=False, **corpusargs)View on GitHub#

    Bases: MultiCorpus

    -class flair.datasets.sequence_labeling.NER_SWEDISH(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_SWEDISH(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the NER_SWEDISH corpus for Swedish.

    The first time you call this constructor it will automatically download the dataset. :type base_path: Union[str, Path, None] @@ -1523,7 +1523,7 @@

    Versions

    -_add_IOB2_tags(data_file, encoding='utf8')View on GitHub#
    +_add_IOB2_tags(data_file, encoding='utf8')View on GitHub#

    Function that adds IOB2 tags if only chunk names are provided.

    e.g. words are tagged PER instead of B-PER or I-PER. Replaces ‘0’ with ‘O’ as the no-chunk tag since ColumnCorpus expects the letter ‘O’. Additionally it removes lines with no tags in the data file and can also @@ -1542,11 +1542,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_TURKU(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_TURKU(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the Finnish TurkuNER corpus.

    The first time you call this constructor it will automatically download the dataset. :type base_path: Union[str, Path, None] @@ -1562,11 +1562,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_UKRAINIAN(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_UKRAINIAN(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the Ukrainian NER corpus from lang-uk project.

    The first time you call this constructor it will automatically download the dataset. :type base_path: Union[str, Path, None] @@ -1582,29 +1582,29 @@

    Versions

    -class flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2017(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2017(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -class flair.datasets.sequence_labeling.KEYPHRASE_INSPEC(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.KEYPHRASE_INSPEC(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -class flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2010(base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.KEYPHRASE_SEMEVAL2010(base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -class flair.datasets.sequence_labeling.UP_CHINESE(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.UP_CHINESE(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the Chinese dataset from the Universal Propositions Bank.

    The dataset is downloaded from System-T/UniversalPropositions

    @@ -1622,11 +1622,11 @@

    Versions

    -class flair.datasets.sequence_labeling.UP_ENGLISH(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.UP_ENGLISH(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the English dataset from the Universal Propositions Bank.

    The dataset is downloaded from System-T/UniversalPropositions

    @@ -1644,11 +1644,11 @@

    Versions

    -class flair.datasets.sequence_labeling.UP_FRENCH(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.UP_FRENCH(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the French dataset from the Universal Propositions Bank.

    The dataset is downloaded from System-T/UniversalPropositions

    @@ -1666,11 +1666,11 @@

    Versions

    -class flair.datasets.sequence_labeling.UP_FINNISH(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.UP_FINNISH(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the Finnish dataset from the Universal Propositions Bank.

    The dataset is downloaded from System-T/UniversalPropositions

    @@ -1688,11 +1688,11 @@

    Versions

    -class flair.datasets.sequence_labeling.UP_GERMAN(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.UP_GERMAN(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the German dataset from the Universal Propositions Bank.

    The dataset is downloaded from System-T/UniversalPropositions

    @@ -1710,11 +1710,11 @@

    Versions

    -class flair.datasets.sequence_labeling.UP_ITALIAN(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.UP_ITALIAN(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the Italian dataset from the Universal Propositions Bank.

    The dataset is downloaded from System-T/UniversalPropositions

    @@ -1732,11 +1732,11 @@

    Versions

    -class flair.datasets.sequence_labeling.UP_SPANISH(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.UP_SPANISH(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the Spanish dataset from the Universal Propositions Bank.

    The dataset is downloaded from System-T/UniversalPropositions

    @@ -1754,11 +1754,11 @@

    Versions

    -class flair.datasets.sequence_labeling.UP_SPANISH_ANCORA(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.UP_SPANISH_ANCORA(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#
    +__init__(base_path=None, in_memory=True, document_as_sequence=False, **corpusargs)View on GitHub#

    Initialize the Spanish AnCora dataset from the Universal Propositions Bank.

    The dataset is downloaded from System-T/UniversalPropositions

    @@ -1776,11 +1776,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_HIPE_2022(dataset_name, language, base_path=None, in_memory=True, version='v2.1', branch_name='main', dev_split_name='dev', add_document_separator=False, sample_missing_splits=False, preproc_fn=None, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_HIPE_2022(dataset_name, language, base_path=None, in_memory=True, version='v2.1', branch_name='main', dev_split_name='dev', add_document_separator=False, sample_missing_splits=False, preproc_fn=None, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(dataset_name, language, base_path=None, in_memory=True, version='v2.1', branch_name='main', dev_split_name='dev', add_document_separator=False, sample_missing_splits=False, preproc_fn=None, **corpusargs)View on GitHub#
    +__init__(dataset_name, language, base_path=None, in_memory=True, version='v2.1', branch_name='main', dev_split_name='dev', add_document_separator=False, sample_missing_splits=False, preproc_fn=None, **corpusargs)View on GitHub#

    Initialize the CLEF-HIPE 2022 NER dataset.

    The first time you call this constructor it will automatically download the specified dataset (by given a language). @@ -1803,11 +1803,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA(language, base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_ICDAR_EUROPEANA(language, base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: ColumnCorpus

    -__init__(language, base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(language, base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the ICDAR Europeana NER dataset.

    The dataset is based on the French and Dutch Europeana NER corpora from the Europeana Newspapers NER dataset (https://lab.kb.nl/dataset/europeana-newspapers-ner), with additional @@ -1827,11 +1827,11 @@

    Versions

    -class flair.datasets.sequence_labeling.NER_NERMUD(domains='all', base_path=None, in_memory=False, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.NER_NERMUD(domains='all', base_path=None, in_memory=False, **corpusargs)View on GitHub#

    Bases: MultiCorpus

    -__init__(domains='all', base_path=None, in_memory=False, **corpusargs)View on GitHub#
    +__init__(domains='all', base_path=None, in_memory=False, **corpusargs)View on GitHub#

    Initilize the NERMuD 2023 dataset.

    NERMuD is a task presented at EVALITA 2023 consisting in the extraction and classification of named-entities in a document, such as persons, organizations, and locations. NERMuD 2023 will include two different sub-tasks:

    @@ -1856,11 +1856,11 @@

    Versions

    -class flair.datasets.sequence_labeling.MASAKHA_POS(languages='bam', version='v1', base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.sequence_labeling.MASAKHA_POS(languages='bam', version='v1', base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Bases: MultiCorpus

    -__init__(languages='bam', version='v1', base_path=None, in_memory=True, **corpusargs)View on GitHub#
    +__init__(languages='bam', version='v1', base_path=None, in_memory=True, **corpusargs)View on GitHub#

    Initialize the MasakhaPOS corpus available on masakhane-io/masakhane-pos.

    It consists of 20 African languages. Pass a language code or a list of language codes to initialize the corpus with the languages you require. If you pass “all”, all languages will be initialized. diff --git a/doc-page/api/datasets/text_image.html b/master/api/datasets/text_image.html similarity index 96% rename from doc-page/api/datasets/text_image.html rename to master/api/datasets/text_image.html index 5ddd56dd43..bfbb874fbf 100644 --- a/doc-page/api/datasets/text_image.html +++ b/master/api/datasets/text_image.html @@ -424,7 +424,7 @@

    Versions

    @@ -492,17 +492,17 @@

    Versions

    flair.datasets.text_image#

    -class flair.datasets.text_image.FeideggerCorpus(**kwargs)View on GitHub#
    +class flair.datasets.text_image.FeideggerCorpus(**kwargs)View on GitHub#

    Bases: Corpus

    -class flair.datasets.text_image.FeideggerDataset(dataset_info, **kwargs)View on GitHub#
    +class flair.datasets.text_image.FeideggerDataset(dataset_info, **kwargs)View on GitHub#

    Bases: FlairDataset

    -is_in_memory()View on GitHub#
    +is_in_memory()View on GitHub#
    Return type:

    bool

    diff --git a/doc-page/api/datasets/text_text.html b/master/api/datasets/text_text.html similarity index 90% rename from doc-page/api/datasets/text_text.html rename to master/api/datasets/text_text.html index 495cd0691a..3927a54168 100644 --- a/doc-page/api/datasets/text_text.html +++ b/master/api/datasets/text_text.html @@ -424,7 +424,7 @@

    Versions

    @@ -492,11 +492,11 @@

    Versions

    flair.datasets.text_text#

    -class flair.datasets.text_text.ParallelTextCorpus(source_file, target_file, name, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.text_text.ParallelTextCorpus(source_file, target_file, name, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#

    Bases: Corpus

    -__init__(source_file, target_file, name, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#
    +__init__(source_file, target_file, name, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#

    Instantiates a Corpus for text classification from CSV column formatted data.

    Parameters:
    @@ -515,7 +515,7 @@

    Versions

    -is_in_memory()View on GitHub#
    +is_in_memory()View on GitHub#
    Return type:

    bool

    @@ -527,11 +527,11 @@

    Versions

    -class flair.datasets.text_text.OpusParallelCorpus(dataset, l1, l2, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#
    +class flair.datasets.text_text.OpusParallelCorpus(dataset, l1, l2, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#

    Bases: ParallelTextCorpus

    -__init__(dataset, l1, l2, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#
    +__init__(dataset, l1, l2, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, **corpusargs)View on GitHub#

    Instantiates a Parallel Corpus from OPUS.

    see http://opus.nlpl.eu/ :type dataset: str @@ -554,11 +554,11 @@

    Versions

    -class flair.datasets.text_text.ParallelTextDataset(path_to_source, path_to_target, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True)View on GitHub#
    +class flair.datasets.text_text.ParallelTextDataset(path_to_source, path_to_target, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True)View on GitHub#

    Bases: FlairDataset

    -is_in_memory()View on GitHub#
    +is_in_memory()View on GitHub#
    Return type:

    bool

    @@ -570,11 +570,11 @@

    Versions

    -class flair.datasets.text_text.DataPairCorpus(data_folder, columns=[0, 1, 2], train_file=None, test_file=None, dev_file=None, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, label_type=None, autofind_splits=True, sample_missing_splits=True, skip_first_line=False, separator='\\t', encoding='utf-8')View on GitHub#
    +class flair.datasets.text_text.DataPairCorpus(data_folder, columns=[0, 1, 2], train_file=None, test_file=None, dev_file=None, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, label_type=None, autofind_splits=True, sample_missing_splits=True, skip_first_line=False, separator='\\t', encoding='utf-8')View on GitHub#

    Bases: Corpus

    -__init__(data_folder, columns=[0, 1, 2], train_file=None, test_file=None, dev_file=None, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, label_type=None, autofind_splits=True, sample_missing_splits=True, skip_first_line=False, separator='\\t', encoding='utf-8')View on GitHub#
    +__init__(data_folder, columns=[0, 1, 2], train_file=None, test_file=None, dev_file=None, use_tokenizer=True, max_tokens_per_doc=-1, max_chars_per_doc=-1, in_memory=True, label_type=None, autofind_splits=True, sample_missing_splits=True, skip_first_line=False, separator='\\t', encoding='utf-8')View on GitHub#

    Corpus for tasks involving pairs of sentences or paragraphs.

    The data files are expected to be in column format where each line has a column for the first sentence/paragraph, the second sentence/paragraph and the labels, respectively. The columns must be separated by a given separator (default: ‘t’).

    @@ -609,11 +609,11 @@

    Versions

    -class flair.datasets.text_text.DataPairDataset(path_to_data, columns=[0, 1, 2], max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, label_type=None, skip_first_line=False, separator='\\t', encoding='utf-8', label=True)View on GitHub#
    +class flair.datasets.text_text.DataPairDataset(path_to_data, columns=[0, 1, 2], max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, label_type=None, skip_first_line=False, separator='\\t', encoding='utf-8', label=True)View on GitHub#

    Bases: FlairDataset

    -__init__(path_to_data, columns=[0, 1, 2], max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, label_type=None, skip_first_line=False, separator='\\t', encoding='utf-8', label=True)View on GitHub#
    +__init__(path_to_data, columns=[0, 1, 2], max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, label_type=None, skip_first_line=False, separator='\\t', encoding='utf-8', label=True)View on GitHub#

    Creates a Dataset for pairs of sentences/paragraphs.

    The file needs to be in a column format, where each line has a column for the first sentence/paragraph, the second sentence/paragraph and the label @@ -640,7 +640,7 @@

    Versions

    -is_in_memory()View on GitHub#
    +is_in_memory()View on GitHub#
    Return type:

    bool

    @@ -652,11 +652,11 @@

    Versions

    -class flair.datasets.text_text.GLUE_RTE(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +class flair.datasets.text_text.GLUE_RTE(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Bases: DataPairCorpus

    -__init__(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +__init__(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Creates a DataPairCorpus for the Glue Recognizing Textual Entailment (RTE) data.

    See https://gluebenchmark.com/tasks Additionally to the Corpus we have a eval_dataset containing the test file of the Glue data. @@ -665,18 +665,18 @@

    Versions

    -tsv_from_eval_dataset(folder_path)View on GitHub#
    +tsv_from_eval_dataset(folder_path)View on GitHub#
    -class flair.datasets.text_text.GLUE_MNLI(label_type='entailment', evaluate_on_matched=True, base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +class flair.datasets.text_text.GLUE_MNLI(label_type='entailment', evaluate_on_matched=True, base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Bases: DataPairCorpus

    -__init__(label_type='entailment', evaluate_on_matched=True, base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +__init__(label_type='entailment', evaluate_on_matched=True, base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Creates a DataPairCorpus for the Multi-Genre Natural Language Inference Corpus (MNLI) from GLUE benchmark.

    see https://gluebenchmark.com/tasks Entailment annotations are: entailment, contradiction, neutral. @@ -686,18 +686,18 @@

    Versions

    -tsv_from_eval_dataset(folder_path)View on GitHub#
    +tsv_from_eval_dataset(folder_path)View on GitHub#
    -class flair.datasets.text_text.GLUE_MRPC(label_type='paraphrase', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +class flair.datasets.text_text.GLUE_MRPC(label_type='paraphrase', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Bases: DataPairCorpus

    -__init__(label_type='paraphrase', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +__init__(label_type='paraphrase', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Creates a DataPairCorpus for the Microsoft Research Paraphrase Corpus (MRPC) from Glue benchmark.

    See https://gluebenchmark.com/tasks MRPC includes annotated train and test sets. Dev set is sampled each time when creating this corpus.

    @@ -705,18 +705,18 @@

    Versions

    -tsv_from_eval_dataset(folder_path)View on GitHub#
    +tsv_from_eval_dataset(folder_path)View on GitHub#
    -class flair.datasets.text_text.GLUE_QNLI(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +class flair.datasets.text_text.GLUE_QNLI(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Bases: DataPairCorpus

    -__init__(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +__init__(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Creates a DataPairCorpus for the Question-answering Natural Language Inference dataset (QNLI) from GLUE.

    see https://gluebenchmark.com/tasks Additionally, to the Corpus we have an eval_dataset containing the test file of the Glue data. @@ -725,18 +725,18 @@

    Versions

    -tsv_from_eval_dataset(folder_path)View on GitHub#
    +tsv_from_eval_dataset(folder_path)View on GitHub#
    -class flair.datasets.text_text.GLUE_QQP(label_type='paraphrase', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +class flair.datasets.text_text.GLUE_QQP(label_type='paraphrase', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Bases: DataPairCorpus

    -__init__(label_type='paraphrase', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +__init__(label_type='paraphrase', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Creates a Quora Question Pairs (QQP) Corpus from the Glue benchmark.

    See https://gluebenchmark.com/tasks The task is to determine whether a pair of questions are semantically equivalent. @@ -746,18 +746,18 @@

    Versions

    -tsv_from_eval_dataset(folder_path)View on GitHub#
    +tsv_from_eval_dataset(folder_path)View on GitHub#
    -class flair.datasets.text_text.GLUE_WNLI(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +class flair.datasets.text_text.GLUE_WNLI(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Bases: DataPairCorpus

    -__init__(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +__init__(label_type='entailment', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Creates a Winograd Schema Challenge Corpus formated as Natural Language Inference task (WNLI).

    The task is to predict if the sentence with the pronoun substituted is entailed by the original sentence. Additionaly to the Corpus we have a eval_dataset containing the test file of the Glue data. @@ -766,18 +766,18 @@

    Versions

    -tsv_from_eval_dataset(folder_path)View on GitHub#
    +tsv_from_eval_dataset(folder_path)View on GitHub#
    -class flair.datasets.text_text.GLUE_STSB(label_type='similarity', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +class flair.datasets.text_text.GLUE_STSB(label_type='similarity', base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Bases: DataPairCorpus

    -tsv_from_eval_dataset(folder_path)View on GitHub#
    +tsv_from_eval_dataset(folder_path)View on GitHub#

    Create a tsv file of the predictions of the eval_dataset.

    After calling classifier.predict(corpus.eval_dataset, label_name=’similarity’), this function can be used to produce a file called STS-B.tsv suitable for submission to the Glue Benchmark.

    @@ -787,11 +787,11 @@

    Versions

    -class flair.datasets.text_text.SUPERGLUE_RTE(base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +class flair.datasets.text_text.SUPERGLUE_RTE(base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Bases: DataPairCorpus

    -__init__(base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#
    +__init__(base_path=None, max_tokens_per_doc=-1, max_chars_per_doc=-1, use_tokenizer=True, in_memory=True, sample_missing_splits=True)View on GitHub#

    Creates a DataPairCorpus for the SuperGlue Recognizing Textual Entailment (RTE) data.

    See https://super.gluebenchmark.com/tasks Additionaly to the Corpus we have a eval_dataset containing the test file of the SuperGlue data. @@ -800,14 +800,14 @@

    Versions

    -jsonl_from_eval_dataset(folder_path)View on GitHub#
    +jsonl_from_eval_dataset(folder_path)View on GitHub#
    -flair.datasets.text_text.rte_jsonl_to_tsv(file_path, label=True, remove=False, encoding='utf-8')View on GitHub#
    +flair.datasets.text_text.rte_jsonl_to_tsv(file_path, label=True, remove=False, encoding='utf-8')View on GitHub#
    diff --git a/doc-page/api/datasets/treebanks.html b/master/api/datasets/treebanks.html similarity index 88% rename from doc-page/api/datasets/treebanks.html rename to master/api/datasets/treebanks.html index 0c9f535ee8..ca54dfd2bc 100644 --- a/doc-page/api/datasets/treebanks.html +++ b/master/api/datasets/treebanks.html @@ -424,7 +424,7 @@

    Versions

    @@ -492,11 +492,11 @@

    Versions

    flair.datasets.treebanks#

    -class flair.datasets.treebanks.UniversalDependenciesCorpus(data_folder, train_file=None, test_file=None, dev_file=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UniversalDependenciesCorpus(data_folder, train_file=None, test_file=None, dev_file=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: Corpus

    -__init__(data_folder, train_file=None, test_file=None, dev_file=None, in_memory=True, split_multiwords=True)View on GitHub#
    +__init__(data_folder, train_file=None, test_file=None, dev_file=None, in_memory=True, split_multiwords=True)View on GitHub#

    Instantiates a Corpus from CoNLL-U column-formatted task data such as the UD corpora.

    Parameters:
    @@ -519,11 +519,11 @@

    Versions

    -class flair.datasets.treebanks.UniversalDependenciesDataset(path_to_conll_file, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UniversalDependenciesDataset(path_to_conll_file, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: FlairDataset

    -__init__(path_to_conll_file, in_memory=True, split_multiwords=True)View on GitHub#
    +__init__(path_to_conll_file, in_memory=True, split_multiwords=True)View on GitHub#

    Instantiates a column dataset in CoNLL-U format.

    Parameters:
    @@ -537,7 +537,7 @@

    Versions

    -is_in_memory()View on GitHub#
    +is_in_memory()View on GitHub#
    Return type:

    bool

    @@ -549,67 +549,67 @@

    Versions

    -class flair.datasets.treebanks.UD_ENGLISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_ENGLISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_GALICIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_GALICIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_ANCIENT_GREEK(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_ANCIENT_GREEK(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_KAZAKH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_KAZAKH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_OLD_CHURCH_SLAVONIC(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_OLD_CHURCH_SLAVONIC(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_ARMENIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_ARMENIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_ESTONIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_ESTONIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_GERMAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_GERMAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_GERMAN_HDT(base_path=None, in_memory=False, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_GERMAN_HDT(base_path=None, in_memory=False, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_DUTCH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_DUTCH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_FAROESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_FAROESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    This treebank includes the Faroese treebank dataset.

    The data is obtained from the following link: @@ -619,283 +619,283 @@

    Versions

    -class flair.datasets.treebanks.UD_FRENCH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_FRENCH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_ITALIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_ITALIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_LATIN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_LATIN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_SPANISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_SPANISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_PORTUGUESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_PORTUGUESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_ROMANIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_ROMANIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_CATALAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_CATALAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_POLISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_POLISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_CZECH(base_path=None, in_memory=False, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_CZECH(base_path=None, in_memory=False, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_SLOVAK(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_SLOVAK(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_SWEDISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_SWEDISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_DANISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_DANISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_NORWEGIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_NORWEGIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_FINNISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_FINNISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_SLOVENIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_SLOVENIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_CROATIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_CROATIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_SERBIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_SERBIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_BULGARIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_BULGARIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_ARABIC(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_ARABIC(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_HEBREW(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_HEBREW(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_TURKISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_TURKISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_UKRAINIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_UKRAINIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_PERSIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_PERSIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_RUSSIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_RUSSIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_HINDI(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_HINDI(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_INDONESIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_INDONESIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_JAPANESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_JAPANESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_CHINESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_CHINESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_KOREAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_KOREAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_BASQUE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_BASQUE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_CHINESE_KYOTO(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_CHINESE_KYOTO(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_GREEK(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_GREEK(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_NAIJA(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_NAIJA(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_LIVVI(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_LIVVI(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_BURYAT(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_BURYAT(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_NORTH_SAMI(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_NORTH_SAMI(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_MARATHI(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_MARATHI(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_MALTESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_MALTESE(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_AFRIKAANS(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_AFRIKAANS(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_GOTHIC(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_GOTHIC(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_OLD_FRENCH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_OLD_FRENCH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_WOLOF(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_WOLOF(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_BELARUSIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_BELARUSIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_COPTIC(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_COPTIC(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_IRISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_IRISH(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_LATVIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_LATVIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    -class flair.datasets.treebanks.UD_LITHUANIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#
    +class flair.datasets.treebanks.UD_LITHUANIAN(base_path=None, in_memory=True, split_multiwords=True)View on GitHub#

    Bases: UniversalDependenciesCorpus

    diff --git a/doc-page/api/embeddings/base.html b/master/api/embeddings/base.html similarity index 90% rename from doc-page/api/embeddings/base.html rename to master/api/embeddings/base.html index 6891088f90..0204a86d7a 100644 --- a/doc-page/api/embeddings/base.html +++ b/master/api/embeddings/base.html @@ -420,7 +420,7 @@

    Versions

    @@ -488,7 +488,7 @@

    Versions

    flair.embeddings.base#

    -class flair.embeddings.base.EmbeddingsView on GitHub#
    +class flair.embeddings.base.EmbeddingsView on GitHub#

    Bases: Module, Generic[DT]

    Abstract base class for all embeddings. Every new type of embedding must implement these methods.

    @@ -498,7 +498,7 @@

    Versions

    -__init__()View on GitHub#
    +__init__()View on GitHub#

    Set some attributes that would otherwise result in errors. Overwrite these in your embedding class.

    @@ -515,7 +515,7 @@

    Versions

    -embed(data_points)View on GitHub#
    +embed(data_points)View on GitHub#

    Add embeddings to all words in a list of sentences.

    If embeddings are already added, updates only if embeddings are non-static.

    @@ -527,13 +527,13 @@

    Versions

    -abstract _add_embeddings_internal(sentences)View on GitHub#
    +abstract _add_embeddings_internal(sentences)View on GitHub#

    Private method for adding embeddings to all words in a list of sentences.

    -get_names()View on GitHub#
    +get_names()View on GitHub#

    Returns a list of embedding names.

    In most cases, it is just a list with one item, namely the name of this embedding. But in some cases, the embedding is made up by different embeddings (StackedEmbedding). @@ -547,7 +547,7 @@

    Versions

    -get_named_embeddings_dict()View on GitHub#
    +get_named_embeddings_dict()View on GitHub#
    Return type:

    Dict

    @@ -557,7 +557,7 @@

    Versions

    -static get_instance_parameters(locals)View on GitHub#
    +static get_instance_parameters(locals)View on GitHub#
    Return type:

    dict

    @@ -567,7 +567,7 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    Embeddings

    @@ -577,7 +577,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    @@ -587,19 +587,19 @@

    Versions

    -classmethod load_embedding(params)View on GitHub#
    +classmethod load_embedding(params)View on GitHub#
    -save_embeddings(use_state_dict=True)View on GitHub#
    +save_embeddings(use_state_dict=True)View on GitHub#
    -class flair.embeddings.base.ScalarMix(mixture_size, trainable=False)View on GitHub#
    +class flair.embeddings.base.ScalarMix(mixture_size, trainable=False)View on GitHub#

    Bases: Module

    Mixes several tensors by a learned weighting.

    Computes a parameterised scalar mixture of N tensors. @@ -610,7 +610,7 @@

    Versions

    allenai/allennlp.

    -__init__(mixture_size, trainable=False)View on GitHub#
    +__init__(mixture_size, trainable=False)View on GitHub#

    Inits scalar mix implementation.

    mixture = gamma * sum(s_k * tensor_k) where s = softmax(w), with w and gamma scalar parameters.

    @@ -625,7 +625,7 @@

    Versions

    -forward(tensors)View on GitHub#
    +forward(tensors)View on GitHub#

    Forward pass of scalar mix.

    Computes a weighted average of the tensors. The input tensors an be any shape with at least two dimensions, but must all be the same shape.

    @@ -649,7 +649,7 @@

    Versions

    -class flair.embeddings.base.DocumentEmbeddingsView on GitHub#
    +class flair.embeddings.base.DocumentEmbeddingsView on GitHub#

    Bases: Embeddings[Sentence]

    Abstract base class for all document-level embeddings. Every new type of document embedding must implement these methods.

    @@ -676,7 +676,7 @@

    Versions

    -class flair.embeddings.base.TokenEmbeddingsView on GitHub#
    +class flair.embeddings.base.TokenEmbeddingsView on GitHub#

    Bases: Embeddings[Sentence]

    Abstract base class for all token-level embeddings. Ever new type of word embedding must implement these methods.

    @@ -703,12 +703,12 @@

    Versions

    -flair.embeddings.base.register_embeddings(*args)View on GitHub#
    +flair.embeddings.base.register_embeddings(*args)View on GitHub#
    -flair.embeddings.base.load_embeddings(params)View on GitHub#
    +flair.embeddings.base.load_embeddings(params)View on GitHub#
    Return type:

    Embeddings

    diff --git a/doc-page/api/embeddings/document.html b/master/api/embeddings/document.html similarity index 89% rename from doc-page/api/embeddings/document.html rename to master/api/embeddings/document.html index 0be571dfe1..6644f73840 100644 --- a/doc-page/api/embeddings/document.html +++ b/master/api/embeddings/document.html @@ -420,7 +420,7 @@

    Versions

    @@ -488,17 +488,17 @@

    Versions

    flair.embeddings.document#

    -class flair.embeddings.document.TransformerDocumentEmbeddings(model='bert-base-uncased', layers='-1', layer_mean=False, is_token_embedding=False, **kwargs)View on GitHub#
    +class flair.embeddings.document.TransformerDocumentEmbeddings(model='bert-base-uncased', layers='-1', layer_mean=False, is_token_embedding=False, **kwargs)View on GitHub#

    Bases: DocumentEmbeddings, TransformerEmbeddings

    -onnx_clsView on GitHub#
    +onnx_clsView on GitHub#

    alias of TransformerOnnxDocumentEmbeddings

    -__init__(model='bert-base-uncased', layers='-1', layer_mean=False, is_token_embedding=False, **kwargs)View on GitHub#
    +__init__(model='bert-base-uncased', layers='-1', layer_mean=False, is_token_embedding=False, **kwargs)View on GitHub#

    Bidirectional transformer embeddings of words from various transformer architectures.

    Parameters:
    @@ -517,7 +517,7 @@

    Versions

    -classmethod create_from_state(**state)View on GitHub#
    +classmethod create_from_state(**state)View on GitHub#
    @@ -539,11 +539,11 @@

    Versions

    -class flair.embeddings.document.DocumentPoolEmbeddings(embeddings, fine_tune_mode='none', pooling='mean')View on GitHub#
    +class flair.embeddings.document.DocumentPoolEmbeddings(embeddings, fine_tune_mode='none', pooling='mean')View on GitHub#

    Bases: DocumentEmbeddings

    -__init__(embeddings, fine_tune_mode='none', pooling='mean')View on GitHub#
    +__init__(embeddings, fine_tune_mode='none', pooling='mean')View on GitHub#

    The constructor takes a list of embeddings to be combined.

    Parameters:
    @@ -569,14 +569,14 @@

    Versions

    -embed(sentences)View on GitHub#
    +embed(sentences)View on GitHub#

    Add embeddings to every sentence in the given list of sentences.

    If embeddings are already added, updates only if embeddings are non-static.

    -extra_repr()View on GitHub#
    +extra_repr()View on GitHub#

    Set the extra representation of the module

    To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line @@ -585,7 +585,7 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    DocumentPoolEmbeddings

    @@ -595,7 +595,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    @@ -617,11 +617,11 @@

    Versions

    -class flair.embeddings.document.DocumentTFIDFEmbeddings(train_dataset, vectorizer=None, **vectorizer_params)View on GitHub#
    +class flair.embeddings.document.DocumentTFIDFEmbeddings(train_dataset, vectorizer=None, **vectorizer_params)View on GitHub#

    Bases: DocumentEmbeddings

    -__init__(train_dataset, vectorizer=None, **vectorizer_params)View on GitHub#
    +__init__(train_dataset, vectorizer=None, **vectorizer_params)View on GitHub#

    The constructor for DocumentTFIDFEmbeddings.

    Parameters:
    @@ -647,13 +647,13 @@

    Versions

    -embed(sentences)View on GitHub#
    +embed(sentences)View on GitHub#

    Add embeddings to every sentence in the given list of sentences.

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    DocumentTFIDFEmbeddings

    @@ -663,7 +663,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    @@ -685,11 +685,11 @@

    Versions

    -class flair.embeddings.document.DocumentRNNEmbeddings(embeddings, hidden_size=128, rnn_layers=1, reproject_words=True, reproject_words_dimension=None, bidirectional=False, dropout=0.5, word_dropout=0.0, locked_dropout=0.0, rnn_type='GRU', fine_tune=True)View on GitHub#
    +class flair.embeddings.document.DocumentRNNEmbeddings(embeddings, hidden_size=128, rnn_layers=1, reproject_words=True, reproject_words_dimension=None, bidirectional=False, dropout=0.5, word_dropout=0.0, locked_dropout=0.0, rnn_type='GRU', fine_tune=True)View on GitHub#

    Bases: DocumentEmbeddings

    -__init__(embeddings, hidden_size=128, rnn_layers=1, reproject_words=True, reproject_words_dimension=None, bidirectional=False, dropout=0.5, word_dropout=0.0, locked_dropout=0.0, rnn_type='GRU', fine_tune=True)View on GitHub#
    +__init__(embeddings, hidden_size=128, rnn_layers=1, reproject_words=True, reproject_words_dimension=None, bidirectional=False, dropout=0.5, word_dropout=0.0, locked_dropout=0.0, rnn_type='GRU', fine_tune=True)View on GitHub#

    Instantiates an RNN that works upon some token embeddings.

    Parameters:
    @@ -723,19 +723,19 @@

    Versions

    -_add_embeddings_internal(sentences)View on GitHub#
    +_add_embeddings_internal(sentences)View on GitHub#

    Add embeddings to all sentences in the given list of sentences.

    If embeddings are already added, update only if embeddings are non-static.

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    DocumentRNNEmbeddings

    @@ -757,7 +757,7 @@

    Versions

    -class flair.embeddings.document.DocumentLMEmbeddings(flair_embeddings)View on GitHub#
    +class flair.embeddings.document.DocumentLMEmbeddings(flair_embeddings)View on GitHub#

    Bases: DocumentEmbeddings

    @@ -772,7 +772,7 @@

    Versions

    -get_names()View on GitHub#
    +get_names()View on GitHub#

    Returns a list of embedding names.

    In most cases, it is just a list with one item, namely the name of this embedding. But in some cases, the embedding is made up by different embeddings (StackedEmbedding). @@ -786,7 +786,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    @@ -796,7 +796,7 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    DocumentLMEmbeddings

    @@ -818,11 +818,11 @@

    Versions

    -class flair.embeddings.document.SentenceTransformerDocumentEmbeddings(model='bert-base-nli-mean-tokens', batch_size=1)View on GitHub#
    +class flair.embeddings.document.SentenceTransformerDocumentEmbeddings(model='bert-base-nli-mean-tokens', batch_size=1)View on GitHub#

    Bases: DocumentEmbeddings

    -__init__(model='bert-base-nli-mean-tokens', batch_size=1)View on GitHub#
    +__init__(model='bert-base-nli-mean-tokens', batch_size=1)View on GitHub#

    Instantiates a document embedding using the SentenceTransformer Embeddings.

    Parameters:
    @@ -847,7 +847,7 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    SentenceTransformerDocumentEmbeddings

    @@ -857,7 +857,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    @@ -879,11 +879,11 @@

    Versions

    -class flair.embeddings.document.DocumentCNNEmbeddings(embeddings, kernels=((100, 3), (100, 4), (100, 5)), reproject_words=True, reproject_words_dimension=None, dropout=0.5, word_dropout=0.0, locked_dropout=0.0, fine_tune=True)View on GitHub#
    +class flair.embeddings.document.DocumentCNNEmbeddings(embeddings, kernels=((100, 3), (100, 4), (100, 5)), reproject_words=True, reproject_words_dimension=None, dropout=0.5, word_dropout=0.0, locked_dropout=0.0, fine_tune=True)View on GitHub#

    Bases: DocumentEmbeddings

    -__init__(embeddings, kernels=((100, 3), (100, 4), (100, 5)), reproject_words=True, reproject_words_dimension=None, dropout=0.5, word_dropout=0.0, locked_dropout=0.0, fine_tune=True)View on GitHub#
    +__init__(embeddings, kernels=((100, 3), (100, 4), (100, 5)), reproject_words=True, reproject_words_dimension=None, dropout=0.5, word_dropout=0.0, locked_dropout=0.0, fine_tune=True)View on GitHub#

    Instantiates a CNN that works upon some token embeddings.

    Parameters:
    @@ -924,14 +924,14 @@

    Versions

    -_add_embeddings_internal(sentences)View on GitHub#
    +_add_embeddings_internal(sentences)View on GitHub#

    Add embeddings to all sentences in the given list of sentences.

    If embeddings are already added, update only if embeddings are non-static.

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    DocumentCNNEmbeddings

    @@ -941,7 +941,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    diff --git a/doc-page/api/embeddings/image.html b/master/api/embeddings/image.html similarity index 94% rename from doc-page/api/embeddings/image.html rename to master/api/embeddings/image.html index 9a7b1d20c9..ed3b2a9f62 100644 --- a/doc-page/api/embeddings/image.html +++ b/master/api/embeddings/image.html @@ -420,7 +420,7 @@

    Versions

    @@ -488,7 +488,7 @@

    Versions

    flair.embeddings.image#

    -class flair.embeddings.image.ImageEmbeddingsView on GitHub#
    +class flair.embeddings.image.ImageEmbeddingsView on GitHub#

    Bases: Embeddings[Image]

    @@ -497,7 +497,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    @@ -507,7 +507,7 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    Embeddings

    @@ -534,7 +534,7 @@

    Versions

    -class flair.embeddings.image.IdentityImageEmbeddings(transforms)View on GitHub#
    +class flair.embeddings.image.IdentityImageEmbeddings(transforms)View on GitHub#

    Bases: ImageEmbeddings

    @@ -561,7 +561,7 @@

    Versions

    -class flair.embeddings.image.PrecomputedImageEmbeddings(url2tensor_dict, name)View on GitHub#
    +class flair.embeddings.image.PrecomputedImageEmbeddings(url2tensor_dict, name)View on GitHub#

    Bases: ImageEmbeddings

    @@ -588,7 +588,7 @@

    Versions

    -class flair.embeddings.image.NetworkImageEmbeddings(name, pretrained=True, transforms=None)View on GitHub#
    +class flair.embeddings.image.NetworkImageEmbeddings(name, pretrained=True, transforms=None)View on GitHub#

    Bases: ImageEmbeddings

    @@ -615,11 +615,11 @@

    Versions

    -class flair.embeddings.image.ConvTransformNetworkImageEmbeddings(feats_in, convnet_parms, posnet_parms, transformer_parms)View on GitHub#
    +class flair.embeddings.image.ConvTransformNetworkImageEmbeddings(feats_in, convnet_parms, posnet_parms, transformer_parms)View on GitHub#

    Bases: ImageEmbeddings

    -forward(x)View on GitHub#
    +forward(x)View on GitHub#

    Defines the computation performed at every call.

    Should be overridden by all subclasses.

    diff --git a/doc-page/api/embeddings/legacy.html b/master/api/embeddings/legacy.html similarity index 92% rename from doc-page/api/embeddings/legacy.html rename to master/api/embeddings/legacy.html index 100e160525..11630efb8d 100644 --- a/doc-page/api/embeddings/legacy.html +++ b/master/api/embeddings/legacy.html @@ -420,7 +420,7 @@

    Versions

    @@ -493,7 +493,7 @@

    flair.embeddings.legacy
    -class flair.embeddings.legacy.ELMoEmbeddings(model='original', options_file=None, weight_file=None, embedding_mode='all')View on GitHub#
    +class flair.embeddings.legacy.ELMoEmbeddings(model='original', options_file=None, weight_file=None, embedding_mode='all')View on GitHub#

    Bases: TokenEmbeddings

    Contextual word embeddings using word-level LM, as proposed in Peters et al., 2018. ELMo word vectors can be constructed by combining layers in different ways. @@ -511,22 +511,22 @@

    flair.embeddings.legacy
    -use_layers_all(x)View on GitHub#
    +use_layers_all(x)View on GitHub#

    -use_layers_top(x)View on GitHub#
    +use_layers_top(x)View on GitHub#
    -use_layers_average(x)View on GitHub#
    +use_layers_average(x)View on GitHub#
    -extra_repr()View on GitHub#
    +extra_repr()View on GitHub#

    Set the extra representation of the module

    To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line @@ -547,12 +547,12 @@

    flair.embeddings.legacy
    -class flair.embeddings.legacy.CharLMEmbeddings(model, detach=True, use_cache=False, cache_directory=None)View on GitHub#
    +class flair.embeddings.legacy.CharLMEmbeddings(model, detach=True, use_cache=False, cache_directory=None)View on GitHub#

    Bases: TokenEmbeddings

    Contextual string embeddings of words, as proposed in Akbik et al., 2018.

    -__init__(model, detach=True, use_cache=False, cache_directory=None)View on GitHub#
    +__init__(model, detach=True, use_cache=False, cache_directory=None)View on GitHub#

    Initializes contextual string embeddings using a character-level language model.

    Parameters:
    @@ -581,7 +581,7 @@

    flair.embeddings.legacy
    -train(mode=True)View on GitHub#
    +train(mode=True)View on GitHub#

    Sets the module in training mode.

    This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation @@ -621,11 +621,11 @@

    flair.embeddings.legacy
    -class flair.embeddings.legacy.DocumentMeanEmbeddings(token_embeddings)View on GitHub#
    +class flair.embeddings.legacy.DocumentMeanEmbeddings(token_embeddings)View on GitHub#

    Bases: DocumentEmbeddings

    -__init__(token_embeddings)View on GitHub#
    +__init__(token_embeddings)View on GitHub#

    The constructor takes a list of embeddings to be combined.

    Deprecated since version 0.3.1: The functionality of this class is moved to @@ -646,7 +646,7 @@

    flair.embeddings.legacy
    -embed(sentences)View on GitHub#
    +embed(sentences)View on GitHub#

    Add embeddings to every sentence in the given list of sentences. If embeddings are already added, updates only if embeddings are non-static.

    @@ -665,11 +665,11 @@

    flair.embeddings.legacy
    -class flair.embeddings.legacy.DocumentLSTMEmbeddings(embeddings, hidden_size=128, rnn_layers=1, reproject_words=True, reproject_words_dimension=None, bidirectional=False, dropout=0.5, word_dropout=0.0, locked_dropout=0.0)View on GitHub#
    +class flair.embeddings.legacy.DocumentLSTMEmbeddings(embeddings, hidden_size=128, rnn_layers=1, reproject_words=True, reproject_words_dimension=None, bidirectional=False, dropout=0.5, word_dropout=0.0, locked_dropout=0.0)View on GitHub#

    Bases: DocumentEmbeddings

    -__init__(embeddings, hidden_size=128, rnn_layers=1, reproject_words=True, reproject_words_dimension=None, bidirectional=False, dropout=0.5, word_dropout=0.0, locked_dropout=0.0)View on GitHub#
    +__init__(embeddings, hidden_size=128, rnn_layers=1, reproject_words=True, reproject_words_dimension=None, bidirectional=False, dropout=0.5, word_dropout=0.0, locked_dropout=0.0)View on GitHub#

    The constructor takes a list of embeddings to be combined.

    Parameters:
    @@ -715,7 +715,7 @@

    flair.embeddings.legacy
    -embed(sentences)View on GitHub#
    +embed(sentences)View on GitHub#

    Add embeddings to all sentences in the given list of sentences. If embeddings are already added, update only if embeddings are non-static.

    diff --git a/doc-page/api/embeddings/token.html b/master/api/embeddings/token.html similarity index 89% rename from doc-page/api/embeddings/token.html rename to master/api/embeddings/token.html index 448b00a430..40210d53a5 100644 --- a/doc-page/api/embeddings/token.html +++ b/master/api/embeddings/token.html @@ -420,7 +420,7 @@

    Versions

    @@ -488,17 +488,17 @@

    Versions

    flair.embeddings.token#

    -class flair.embeddings.token.TransformerWordEmbeddings(model='bert-base-uncased', is_document_embedding=False, allow_long_sentences=True, **kwargs)View on GitHub#
    +class flair.embeddings.token.TransformerWordEmbeddings(model='bert-base-uncased', is_document_embedding=False, allow_long_sentences=True, **kwargs)View on GitHub#

    Bases: TokenEmbeddings, TransformerEmbeddings

    -onnx_clsView on GitHub#
    +onnx_clsView on GitHub#

    alias of TransformerOnnxWordEmbeddings

    -__init__(model='bert-base-uncased', is_document_embedding=False, allow_long_sentences=True, **kwargs)View on GitHub#
    +__init__(model='bert-base-uncased', is_document_embedding=False, allow_long_sentences=True, **kwargs)View on GitHub#

    Bidirectional transformer embeddings of words from various transformer architectures.

    Parameters:
    @@ -514,7 +514,7 @@

    Versions

    -classmethod create_from_state(**state)View on GitHub#
    +classmethod create_from_state(**state)View on GitHub#
    @@ -536,12 +536,12 @@

    Versions

    -class flair.embeddings.token.StackedEmbeddings(embeddings, overwrite_names=True)View on GitHub#
    +class flair.embeddings.token.StackedEmbeddings(embeddings, overwrite_names=True)View on GitHub#

    Bases: TokenEmbeddings

    A stack of embeddings, used if you need to combine several different embedding types.

    -__init__(embeddings, overwrite_names=True)View on GitHub#
    +__init__(embeddings, overwrite_names=True)View on GitHub#

    The constructor takes a list of embeddings to be combined.

    @@ -552,7 +552,7 @@

    Versions

    -embed(sentences, static_embeddings=True)View on GitHub#
    +embed(sentences, static_embeddings=True)View on GitHub#

    Add embeddings to all words in a list of sentences.

    If embeddings are already added, updates only if embeddings are non-static.

    @@ -570,7 +570,7 @@

    Versions

    -get_names()View on GitHub#
    +get_names()View on GitHub#

    Returns a list of embedding names.

    In most cases, it is just a list with one item, namely the name of this embedding. But in some cases, the embedding is made up by different embeddings (StackedEmbedding). @@ -584,7 +584,7 @@

    Versions

    -get_named_embeddings_dict()View on GitHub#
    +get_named_embeddings_dict()View on GitHub#
    Return type:

    Dict

    @@ -594,12 +594,12 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    @@ -616,12 +616,12 @@

    Versions

    -class flair.embeddings.token.WordEmbeddings(embeddings, field=None, fine_tune=False, force_cpu=True, stable=False, no_header=False, vocab=None, embedding_length=None, name=None)View on GitHub#
    +class flair.embeddings.token.WordEmbeddings(embeddings, field=None, fine_tune=False, force_cpu=True, stable=False, no_header=False, vocab=None, embedding_length=None, name=None)View on GitHub#

    Bases: TokenEmbeddings

    Standard static word embeddings, such as GloVe or FastText.

    -__init__(embeddings, field=None, fine_tune=False, force_cpu=True, stable=False, no_header=False, vocab=None, embedding_length=None, name=None)View on GitHub#
    +__init__(embeddings, field=None, fine_tune=False, force_cpu=True, stable=False, no_header=False, vocab=None, embedding_length=None, name=None)View on GitHub#

    Initializes classic word embeddings.

    Constructor downloads required files if not there.

    @@ -648,7 +648,7 @@

    Versions

    -resolve_precomputed_path(embeddings)View on GitHub#
    +resolve_precomputed_path(embeddings)View on GitHub#
    Return type:

    Optional[Path]

    @@ -664,7 +664,7 @@

    Versions

    -get_cached_token_index(word)View on GitHub#
    +get_cached_token_index(word)View on GitHub#
    Return type:

    int

    @@ -674,7 +674,7 @@

    Versions

    -get_vec(word)View on GitHub#
    +get_vec(word)View on GitHub#
    Return type:

    Tensor

    @@ -684,7 +684,7 @@

    Versions

    -extra_repr()View on GitHub#
    +extra_repr()View on GitHub#

    Set the extra representation of the module

    To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line @@ -693,7 +693,7 @@

    Versions

    -train(mode=True)View on GitHub#
    +train(mode=True)View on GitHub#

    Sets the module in training mode.

    This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation @@ -715,27 +715,27 @@

    Versions

    -to(device)View on GitHub#
    +to(device)View on GitHub#

    Moves and/or casts the parameters and buffers.

    This can be called as

    -to(device=None, dtype=None, non_blocking=False)View on GitHub
    +to(device=None, dtype=None, non_blocking=False)View on GitHub
    -to(dtype, non_blocking=False)View on GitHub
    +to(dtype, non_blocking=False)View on GitHub
    -to(tensor, non_blocking=False)View on GitHub
    +to(tensor, non_blocking=False)View on GitHub
    -to(memory_format=torch.channels_last)View on GitHub
    +to(memory_format=torch.channels_last)View on GitHub

    Its signature is similar to torch.Tensor.to(), but only accepts @@ -816,7 +816,7 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    WordEmbeddings

    @@ -826,7 +826,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    @@ -836,7 +836,7 @@

    Versions

    -state_dict(*args, **kwargs)View on GitHub#
    +state_dict(*args, **kwargs)View on GitHub#

    Returns a dictionary containing references to the whole state of the module.

    Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. @@ -902,12 +902,12 @@

    Versions

    -class flair.embeddings.token.CharacterEmbeddings(path_to_char_dict=None, char_embedding_dim=25, hidden_size_char=25)View on GitHub#
    +class flair.embeddings.token.CharacterEmbeddings(path_to_char_dict=None, char_embedding_dim=25, hidden_size_char=25)View on GitHub#

    Bases: TokenEmbeddings

    Character embeddings of words, as proposed in Lample et al., 2016.

    -__init__(path_to_char_dict=None, char_embedding_dim=25, hidden_size_char=25)View on GitHub#
    +__init__(path_to_char_dict=None, char_embedding_dim=25, hidden_size_char=25)View on GitHub#

    Instantiates a bidirectional lstm layer toi encode words by their character representation.

    Uses the default character dictionary if none provided.

    @@ -925,7 +925,7 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    CharacterEmbeddings

    @@ -935,7 +935,7 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    Return type:

    Dict[str, Any]

    @@ -957,12 +957,12 @@

    Versions

    -class flair.embeddings.token.FlairEmbeddings(model, fine_tune=False, chars_per_chunk=512, with_whitespace=True, tokenized_lm=True, is_lower=False, name=None, has_decoder=False)View on GitHub#
    +class flair.embeddings.token.FlairEmbeddings(model, fine_tune=False, chars_per_chunk=512, with_whitespace=True, tokenized_lm=True, is_lower=False, name=None, has_decoder=False)View on GitHub#

    Bases: TokenEmbeddings

    Contextual string embeddings of words, as proposed in Akbik et al., 2018.

    -__init__(model, fine_tune=False, chars_per_chunk=512, with_whitespace=True, tokenized_lm=True, is_lower=False, name=None, has_decoder=False)View on GitHub#
    +__init__(model, fine_tune=False, chars_per_chunk=512, with_whitespace=True, tokenized_lm=True, is_lower=False, name=None, has_decoder=False)View on GitHub#

    Initializes contextual string embeddings using a character-level language model.

    Parameters:
    @@ -993,7 +993,7 @@

    Versions

    -train(mode=True)View on GitHub#
    +train(mode=True)View on GitHub#

    Sets the module in training mode.

    This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation @@ -1021,12 +1021,12 @@

    Versions

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    @@ -1043,7 +1043,7 @@

    Versions

    -class flair.embeddings.token.PooledFlairEmbeddings(contextual_embeddings, pooling='min', only_capitalized=False, **kwargs)View on GitHub#
    +class flair.embeddings.token.PooledFlairEmbeddings(contextual_embeddings, pooling='min', only_capitalized=False, **kwargs)View on GitHub#

    Bases: TokenEmbeddings

    @@ -1052,7 +1052,7 @@

    Versions

    -train(mode=True)View on GitHub#
    +train(mode=True)View on GitHub#

    Sets the module in training mode.

    This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation @@ -1080,7 +1080,7 @@

    Versions

    -get_names()View on GitHub#
    +get_names()View on GitHub#

    Returns a list of embedding names.

    In most cases, it is just a list with one item, namely the name of this embedding. But in some cases, the embedding is made up by different embeddings (StackedEmbedding). @@ -1094,12 +1094,12 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    @@ -1116,12 +1116,12 @@

    Versions

    -class flair.embeddings.token.FastTextEmbeddings(embeddings, use_local=True, field=None, name=None)View on GitHub#
    +class flair.embeddings.token.FastTextEmbeddings(embeddings, use_local=True, field=None, name=None)View on GitHub#

    Bases: TokenEmbeddings

    FastText Embeddings with oov functionality.

    -__init__(embeddings, use_local=True, field=None, name=None)View on GitHub#
    +__init__(embeddings, use_local=True, field=None, name=None)View on GitHub#

    Initializes fasttext word embeddings.

    Constructor downloads required embedding file and stores in cache if use_local is False.

    @@ -1149,7 +1149,7 @@

    Versions

    -get_cached_vec(word)View on GitHub#
    +get_cached_vec(word)View on GitHub#
    Return type:

    Tensor

    @@ -1159,7 +1159,7 @@

    Versions

    -extra_repr()View on GitHub#
    +extra_repr()View on GitHub#

    Set the extra representation of the module

    To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line @@ -1168,12 +1168,12 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    @@ -1190,12 +1190,12 @@

    Versions

    -class flair.embeddings.token.OneHotEmbeddings(vocab_dictionary, field='text', embedding_length=300, stable=False)View on GitHub#
    +class flair.embeddings.token.OneHotEmbeddings(vocab_dictionary, field='text', embedding_length=300, stable=False)View on GitHub#

    Bases: TokenEmbeddings

    One-hot encoded embeddings.

    -__init__(vocab_dictionary, field='text', embedding_length=300, stable=False)View on GitHub#
    +__init__(vocab_dictionary, field='text', embedding_length=300, stable=False)View on GitHub#

    Initializes one-hot encoded word embeddings and a trainable embedding layer.

    Parameters:
    @@ -1222,17 +1222,17 @@

    Versions

    -classmethod from_corpus(corpus, field='text', min_freq=3, **kwargs)View on GitHub#
    +classmethod from_corpus(corpus, field='text', min_freq=3, **kwargs)View on GitHub#
    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    @@ -1249,7 +1249,7 @@

    Versions

    -class flair.embeddings.token.HashEmbeddings(num_embeddings=1000, embedding_length=300, hash_method='md5')View on GitHub#
    +class flair.embeddings.token.HashEmbeddings(num_embeddings=1000, embedding_length=300, hash_method='md5')View on GitHub#

    Bases: TokenEmbeddings

    Standard embeddings with Hashing Trick.

    @@ -1270,12 +1270,12 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    @@ -1292,7 +1292,7 @@

    Versions

    -class flair.embeddings.token.MuseCrosslingualEmbeddingsView on GitHub#
    +class flair.embeddings.token.MuseCrosslingualEmbeddingsView on GitHub#

    Bases: TokenEmbeddings

    @@ -1301,7 +1301,7 @@

    Versions

    -get_cached_vec(language_code, word)View on GitHub#
    +get_cached_vec(language_code, word)View on GitHub#
    Return type:

    Tensor

    @@ -1317,12 +1317,12 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    @@ -1339,11 +1339,11 @@

    Versions

    -class flair.embeddings.token.BytePairEmbeddings(language=None, dim=50, syllables=100000, cache_dir=None, model_file_path=None, embedding_file_path=None, name=None, **kwargs)View on GitHub#
    +class flair.embeddings.token.BytePairEmbeddings(language=None, dim=50, syllables=100000, cache_dir=None, model_file_path=None, embedding_file_path=None, name=None, **kwargs)View on GitHub#

    Bases: TokenEmbeddings

    -__init__(language=None, dim=50, syllables=100000, cache_dir=None, model_file_path=None, embedding_file_path=None, name=None, **kwargs)View on GitHub#
    +__init__(language=None, dim=50, syllables=100000, cache_dir=None, model_file_path=None, embedding_file_path=None, name=None, **kwargs)View on GitHub#

    Initializes BP embeddings.

    Constructor downloads required files if not there.

    @@ -1371,7 +1371,7 @@

    Versions

    -extra_repr()View on GitHub#
    +extra_repr()View on GitHub#

    Set the extra representation of the module

    To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line @@ -1380,19 +1380,19 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    -class flair.embeddings.token.NILCEmbeddings(embeddings, model='skip', size=100)View on GitHub#
    +class flair.embeddings.token.NILCEmbeddings(embeddings, model='skip', size=100)View on GitHub#

    Bases: WordEmbeddings

    @@ -1416,7 +1416,7 @@

    Versions

    -__init__(embeddings, model='skip', size=100)View on GitHub#
    +__init__(embeddings, model='skip', size=100)View on GitHub#

    Initializes portuguese classic word embeddings trained by NILC Lab.

    See: http://www.nilc.icmc.usp.br/embeddings Constructor downloads required files if not there.

    @@ -1433,7 +1433,7 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    WordEmbeddings

    diff --git a/doc-page/api/embeddings/transformer.html b/master/api/embeddings/transformer.html similarity index 87% rename from doc-page/api/embeddings/transformer.html rename to master/api/embeddings/transformer.html index 9ce2d83601..5a4c49ce99 100644 --- a/doc-page/api/embeddings/transformer.html +++ b/master/api/embeddings/transformer.html @@ -420,7 +420,7 @@

    Versions

    @@ -488,7 +488,7 @@

    Versions

    flair.embeddings.transformer#

    -flair.embeddings.transformer.pad_sequence_embeddings(all_hidden_states)View on GitHub#
    +flair.embeddings.transformer.pad_sequence_embeddings(all_hidden_states)View on GitHub#
    Return type:

    Tensor

    @@ -498,7 +498,7 @@

    Versions

    -flair.embeddings.transformer.truncate_hidden_states(hidden_states, input_ids)View on GitHub#
    +flair.embeddings.transformer.truncate_hidden_states(hidden_states, input_ids)View on GitHub#
    Return type:

    Tensor

    @@ -508,7 +508,7 @@

    Versions

    -flair.embeddings.transformer.combine_strided_tensors(hidden_states, overflow_to_sample_mapping, half_stride, max_length, default_value)View on GitHub#
    +flair.embeddings.transformer.combine_strided_tensors(hidden_states, overflow_to_sample_mapping, half_stride, max_length, default_value)View on GitHub#
    Return type:

    Tensor

    @@ -518,12 +518,12 @@

    Versions

    -flair.embeddings.transformer.fill_masked_elements(all_token_embeddings, sentence_hidden_states, mask, word_ids, lengths)View on GitHub#
    +flair.embeddings.transformer.fill_masked_elements(all_token_embeddings, sentence_hidden_states, mask, word_ids, lengths)View on GitHub#
    -flair.embeddings.transformer.insert_missing_embeddings(token_embeddings, word_id, length)View on GitHub#
    +flair.embeddings.transformer.insert_missing_embeddings(token_embeddings, word_id, length)View on GitHub#
    Return type:

    Tensor

    @@ -533,27 +533,27 @@

    Versions

    -flair.embeddings.transformer.fill_mean_token_embeddings(all_token_embeddings, sentence_hidden_states, word_ids, token_lengths)View on GitHub#
    +flair.embeddings.transformer.fill_mean_token_embeddings(all_token_embeddings, sentence_hidden_states, word_ids, token_lengths)View on GitHub#
    -flair.embeddings.transformer.document_mean_pooling(sentence_hidden_states, sentence_lengths)View on GitHub#
    +flair.embeddings.transformer.document_mean_pooling(sentence_hidden_states, sentence_lengths)View on GitHub#
    -flair.embeddings.transformer.document_max_pooling(sentence_hidden_states, sentence_lengths)View on GitHub#
    +flair.embeddings.transformer.document_max_pooling(sentence_hidden_states, sentence_lengths)View on GitHub#
    -flair.embeddings.transformer.remove_special_markup(text)View on GitHub#
    +flair.embeddings.transformer.remove_special_markup(text)View on GitHub#
    -class flair.embeddings.transformer.TransformerBaseEmbeddings(name, tokenizer, embedding_length, context_length, context_dropout, respect_document_boundaries, stride, allow_long_sentences, fine_tune, truncate, use_lang_emb, is_document_embedding=False, is_token_embedding=False, force_device=None, force_max_length=False, feature_extractor=None, needs_manual_ocr=None, use_context_separator=True)View on GitHub#
    +class flair.embeddings.transformer.TransformerBaseEmbeddings(name, tokenizer, embedding_length, context_length, context_dropout, respect_document_boundaries, stride, allow_long_sentences, fine_tune, truncate, use_lang_emb, cls_pooling, is_document_embedding=False, is_token_embedding=False, force_device=None, force_max_length=False, feature_extractor=None, needs_manual_ocr=None, use_context_separator=True)View on GitHub#

    Bases: Embeddings[Sentence]

    Base class for all TransformerEmbeddings.

    This base class handles the tokenizer and the input preparation, however it won’t implement the actual model. @@ -565,22 +565,22 @@

    Versions

    -to_args()View on GitHub#
    +to_args()View on GitHub#
    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    -classmethod create_from_state(**state)View on GitHub#
    +classmethod create_from_state(**state)View on GitHub#
    @@ -596,7 +596,7 @@

    Versions

    -prepare_tensors(sentences, device=None)View on GitHub#
    +prepare_tensors(sentences, device=None)View on GitHub#
    @@ -613,16 +613,16 @@

    Versions

    -class flair.embeddings.transformer.TransformerOnnxEmbeddings(onnx_model, providers=[], **kwargs)View on GitHub#
    +class flair.embeddings.transformer.TransformerOnnxEmbeddings(onnx_model, providers=[], session_options=None, **kwargs)View on GitHub#

    Bases: TransformerBaseEmbeddings

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    TransformerOnnxEmbeddings

    @@ -632,33 +632,33 @@

    Versions

    -create_session()View on GitHub#
    +create_session()View on GitHub#
    -remove_session()View on GitHub#
    +remove_session()View on GitHub#
    -optimize_model(optimize_model_path, use_external_data_format=False, **kwargs)View on GitHub#
    +optimize_model(optimize_model_path, use_external_data_format=False, **kwargs)View on GitHub#

    Wrapper for onnxruntime.transformers.optimizer.optimize_model.

    -quantize_model(quantize_model_path, use_external_data_format=False, **kwargs)View on GitHub#
    +quantize_model(quantize_model_path, use_external_data_format=False, **kwargs)View on GitHub#
    -classmethod collect_dynamic_axes(embedding, tensors)View on GitHub#
    +classmethod collect_dynamic_axes(embedding, tensors)View on GitHub#
    -classmethod export_from_embedding(path, embedding, example_sentences, opset_version=14, providers=None)View on GitHub#
    +classmethod export_from_embedding(path, embedding, example_sentences, opset_version=14, providers=None, session_options=None)View on GitHub#
    @@ -685,16 +685,16 @@

    Versions

    -class flair.embeddings.transformer.TransformerJitEmbeddings(jit_model, param_names, **kwargs)View on GitHub#
    +class flair.embeddings.transformer.TransformerJitEmbeddings(jit_model, param_names, **kwargs)View on GitHub#

    Bases: TransformerBaseEmbeddings

    -to_params()View on GitHub#
    +to_params()View on GitHub#
    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    Return type:

    Embeddings

    @@ -704,12 +704,12 @@

    Versions

    -classmethod create_from_embedding(module, embedding, param_names)View on GitHub#
    +classmethod create_from_embedding(module, embedding, param_names)View on GitHub#
    -classmethod parameter_to_list(embedding, wrapper, sentences)View on GitHub#
    +classmethod parameter_to_list(embedding, wrapper, sentences)View on GitHub#
    Return type:

    Tuple[List[str], List[Tensor]]

    @@ -741,7 +741,7 @@

    Versions

    -class flair.embeddings.transformer.TransformerJitWordEmbeddings(**kwargs)View on GitHub#
    +class flair.embeddings.transformer.TransformerJitWordEmbeddings(**kwargs)View on GitHub#

    Bases: TokenEmbeddings, TransformerJitEmbeddings

    @@ -762,7 +762,7 @@

    Versions

    -class flair.embeddings.transformer.TransformerJitDocumentEmbeddings(**kwargs)View on GitHub#
    +class flair.embeddings.transformer.TransformerJitDocumentEmbeddings(**kwargs)View on GitHub#

    Bases: DocumentEmbeddings, TransformerJitEmbeddings

    @@ -783,7 +783,7 @@

    Versions

    -class flair.embeddings.transformer.TransformerOnnxWordEmbeddings(**kwargs)View on GitHub#
    +class flair.embeddings.transformer.TransformerOnnxWordEmbeddings(**kwargs)View on GitHub#

    Bases: TokenEmbeddings, TransformerOnnxEmbeddings

    @@ -804,7 +804,7 @@

    Versions

    -class flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings(**kwargs)View on GitHub#
    +class flair.embeddings.transformer.TransformerOnnxDocumentEmbeddings(**kwargs)View on GitHub#

    Bases: DocumentEmbeddings, TransformerOnnxEmbeddings

    @@ -825,25 +825,25 @@

    Versions

    -class flair.embeddings.transformer.TransformerEmbeddings(model='bert-base-uncased', fine_tune=True, layers='-1', layer_mean=True, subtoken_pooling='first', cls_pooling='cls', is_token_embedding=True, is_document_embedding=True, allow_long_sentences=False, use_context=False, respect_document_boundaries=True, context_dropout=0.5, saved_config=None, tokenizer_data=None, feature_extractor_data=None, name=None, force_max_length=False, needs_manual_ocr=None, use_context_separator=True, **kwargs)View on GitHub#
    +class flair.embeddings.transformer.TransformerEmbeddings(model='bert-base-uncased', fine_tune=True, layers='-1', layer_mean=True, subtoken_pooling='first', cls_pooling='cls', is_token_embedding=True, is_document_embedding=True, allow_long_sentences=False, use_context=False, respect_document_boundaries=True, context_dropout=0.5, saved_config=None, tokenizer_data=None, feature_extractor_data=None, name=None, force_max_length=False, needs_manual_ocr=None, use_context_separator=True, **kwargs)View on GitHub#

    Bases: TransformerBaseEmbeddings

    -onnx_clsView on GitHub#
    +onnx_clsView on GitHub#

    alias of TransformerOnnxEmbeddings

    +
    +
    +embeddings_name: str = 'TransformerEmbeddings'#
    +
    +
    property embedding_length: int#

    Returns the length of the embedding vector.

    -
    -
    -embeddings_name: str = 'TransformerEmbeddings'#
    -
    -
    property embedding_type: str#
    @@ -851,17 +851,17 @@

    Versions

    -classmethod from_params(params)View on GitHub#
    +classmethod from_params(params)View on GitHub#
    -to_params()View on GitHub#
    +to_params()View on GitHub#
    -forward(input_ids, sub_token_lengths=None, token_lengths=None, attention_mask=None, overflow_to_sample_mapping=None, word_ids=None, langs=None, bbox=None, pixel_values=None)View on GitHub#
    +forward(input_ids, sub_token_lengths=None, token_lengths=None, attention_mask=None, overflow_to_sample_mapping=None, word_ids=None, langs=None, bbox=None, pixel_values=None)View on GitHub#

    Defines the computation performed at every call.

    Should be overridden by all subclasses.

    @@ -875,7 +875,7 @@

    Versions

    -export_onnx(path, example_sentences, **kwargs)View on GitHub#
    +export_onnx(path, example_sentences, **kwargs)View on GitHub#

    Export TransformerEmbeddings to OnnxFormat.

    Parameters:
    @@ -1015,8 +1015,8 @@

    Versions

  • TransformerEmbeddings

Ni)~^mCYo(#ZRD0_rnc{SM=)lNfAAdt@vry${+{3advE8Q zVeN&K6+fhi%OwxDOI*yQEtp+0Z&1PD`2(gGWeyye>PmH$q?KeA4|Ywb|G6?!(}xbs z7?d$+XmR?$A(;b9GBUh7xn`m3&D<6DO(dy%70q3qZ}-N@r-I3gck)iPcwSLT`SgcM z+zBa3-pSokEu(wHOhQ!ENuIk$jN%RJ{u|y}nKtjYJp@PRGQ9~YtE^)GoShogb!Fa) z`>Ml9b&Bu{&nxCTy*bk|5uSVB$^Rd&j(m4Wq0KwmbuqNF7;nY=QY*wq7G|Y(-4#0S zQ`}8Wig)-nS??^!T`@n&yK(m?I8lu19==WTDs{uKh}JgsxdTDoll2Ew6Ky}fv%ms) z_kjn3kbY5F?vO*#-tRst6Fci7>z|jCyl)=qVL=!}FFw{1fm7#gZHwjtRXM$5&gUb7 z&H_S_-q9ECl2D4+vKL7X&gN!%*Z(wI)I7J`!rfy0Bjq+O!aYVGQS0Ki`OQt{Bost& z4LB=(y+VBy7mBO;y6m`gPKUBs?&+vNPm^HeAa0QreT3m3%HW#QyY4MH|65@ai4PU+ z&^Vhr?C2~I4pnj`h|+&S{orxVg{aO)Xk9JX$mZubhkKkWh{Vp}zJPrzxvlojDhXBT zgx$|_d6qf?+R=nwSPL6|;OwvxxEK5~XzaYWwMNKj;XXjD0v)BqxKGvx!Kxq<-sx$F5SszBedNhAGnu4h8UT4fDS45^VM?K z{qF#fZ>RCMLh)F>r~gsF@cwuXzsf>=I#Bwnh+wzN8v>JDe7)acfTg1FA^r+tX*0k; z$MpLIE1qSq#3pme%$&{~OX;A?MV3gd?I^zwb%{I-W+qK>Jk?^Nx8^XBU>4x^XyEkg!my zsvA^B2u-0#J4wHEL5EKhh217$OoGo-gzo4tGPEa62*Oqel(53Yvn1e$2_b0e^I1YO z(yzR_vBJxyPW?0)?NnaPSQ_WorV8BktzxoKxRouhEZxPzq{!Rg}m^%GqrSJ~&AP9FXM++jftqzGRg-FvxR<9D?L#iTu zs|1~d-z~-iw@%1H8pbH_;WNS(Q`Z_i!u^xF?!**eZBCJ)m}h zI218;n5~c@i8By0#@D!)B5pSgOmBxc20L5G!7wox^hnWsq)+`yL~W@oL=3$lLF|Jb z2}%ee&)z25AitNGr34<6lAx`xcol1@QT%m&Re$k+m{T4r^x8e510wDgU05MN3HwaP z)-g)F4>`64WPiSBCk=U`1Q#cWfA#0Xsj1@KnDY{?*~bRT?u{H=Mu>u{Lb1$$iy~B5 zGK`%erdwn8nJIpQIXbcWhOZHWpmwnsc&9r53{}^(Qbb*RZm?H9B|5S70af=qf7^fx zE5{NECB}mNIq@vovHYF%@pbi!;=BGqBkNCzPT2Mr5p|zoju~u1*%B1LA;zPNq?jl| zBjxU+Be~MpS>qRy^-qb({Gx@mHt7)B z*1W!w0;l7o`oJ*KSESIEC}EEX1%$C*=p%JQ*Jlt&cDkeyma4WC$z)y|I%5Y(sK+5} zR(A9P?+%upjYOs&PK}gm{FiOt>(PIX$GZrRO_pqE1FQ0+5VAd14~6t8QilJdD4)9h zxfT*=bO28jNUg}7rI0i}ENO7H;${id7ooko&Td#DMIjAj1cih=CFx{sp;!aK%Wsyz zUq30?t@i?7u97Yz6IcpM{v=iT-|2i~oc9Xa#Zn0Si!>Bj+5+;%NPP!v-XR5Chke49 z)k>iVHqeRt71F0d(sWF+!-z)dNprJ$9zmN`2$Y?LD9AV;FkuR5`9gB|Y%BcqX0~O2 zE{T?U0ouz2RqjudJ>`A?4)UMk> zAg?FN8t6`WuKAXBFhxc!s(u~(E>%v$r0@o&`Yt)-mE3z|bD6tF$fGdxq%$9093>Za zL!1j3=7G7g4x5VP*Uf_Dge|jV)YZvg17-KahMQDACOb&7OSz2i%wa(K1*JV}N#&&sHKIvWO*X@^` z{!a{j2a2Wd%dwahh3>yO5PwV#JQGx$my_YjXP%22M~ z(-#dj@qkHu>2?M6w!CvMFeY313S;H?x0EU5?IJ~me@sx$YJRUAd<%$@r!-@XxWS%V zs3c$}YdawV`nePhO8{EmKJ%r%u}s;FSsSS^SKSKb{s1cdDmV!?tx+%^EfRwYVo?%o6^tB*W=?e~WHd@hzXrulXt?6Y3vVmmBNjW_dkIj=2mVn2TGYwtt`i~cwDOiej8K>p?*2+S zj2SvgoC&+XQMw}=7uS5NXi#=u2@5!3FkK&CQeL)%j=rM&ThKfYUB3XkxyK^kR1b3` zY@8ZFHpZ)o5Y4O3?g%q0dZ>ZlL;B`Hl8Rc@D6tg2>7(9?shBn{A}xbeHc83j=am{5 z)nA=uK2vRj)ftvLf#9KPbX?b6BQ!A6VNZ^V`I(`w@%vNNX#pW-KbctQQja1&ScVm) zsvHnMHj*v#RMaj{iA7NLh#HMqJ!s>6GU!nivt}4=p>Ba1@CByvqmm?8xkUXH>Vjxs z`>#_M3I6LV!(ORYGcj>ul~Qa3eBxH?Fo%rkJJsnB|FXK-Jm(Rwqs9*?_EF5x(RR7y zwOy)>%-yYiftVg00Qj$04Sb8m+}^QA?T_(_o$DH#RSo8Rs0Mrh;|s{#k5GpB&drP+ z+pMAvWF6{A$Pwz_=+F3ga_NZrA;QGYC@463GbiIus*#xKaO!6@kLK? zK{#|?4fvph{mAOGOX|Nd4`L~L28_O@79n*NYo00XkBi4&lV;ZL(1vj}56eTq$!h`E zEhcr6qMblW%>(M=0;E(n2oCc71aSro3Dze1F9J;5$w(~|^YA#WMSBo7ch{EsZ#Ilt z(OX093;hbqb-%C!1jHCaRWMzIoMG!sDx7K$CB@(k_J>;lbKUa$oU){ zt?3|ssRbj8%7rao1={3`*6rV+qm@f2)&cxQtxDHCVb^!I+Gq44PNE+kRh%Q^Us1AQ zIIr(R{A`bnF?r)wU4hkheSyEDbTxLuq(~h-SAFQK(K_k{Ae&i+IC7=8?tq=KdZz!> zWeSJ))CV9(?LnVH%D;+T@L+kCZnnufVdA|OoTF4ba3gg5CR;d+I``9L>Ky&B!rZw# zCR%XL-~;7{VP1E#v1JP9%+fV@u}lyA@Z9*V{^Cb<{6XagzyBf~zqq$!6tb*Rzy7O@ zSC{AkZ${YRWz7@%M06NC_XL$s=}R%@vKvGzP+wPX(pQK1U3!_!lASnTZ=l28)bTeZ zDlQV5YW3BaqqCs_C?Pl0tg`ig*Cz%euU$}fR9|7T#w5XAr!4qIsS$AbjE;H#>ARbb zI-&=Yoo%{K`nZ$?a^^q!ab$_40|kX=^(50fN6R<*o>0wmVG;YAF1OTrY+E@ZUDmsi z&H1+8P|4fYBc4b5Dp@AlRQRK8yT@d+NrLoX8|v93izP#E471^1PEmqPqT*~07#?ZU zOoOngyX|XiXo!Zhhpg3-8K`8l{?lP%Y zrvi0&0! VL10ri2P(L5lBL~cGnZBsBLHlHrDgyC diff --git a/doc-page/.doctrees/api/datasets/text_text.doctree b/master/.doctrees/api/datasets/text_text.doctree similarity index 67% rename from doc-page/.doctrees/api/datasets/text_text.doctree rename to master/.doctrees/api/datasets/text_text.doctree index 24538ec4d0d6435ac9442838cd5e4c90b2d37ba2..1191db29195868febbfb3df7e02c9c5a5b81b4a3 100644 GIT binary patch delta 5280 zcmbuDZA@EL7{~iOrIga!mVuV7K+A@EiE-LeTE+~b5SK>g5XoR92zEk61%WdCpwWpi zgh{r{yY565#3(M=iw1LpXUt}6qcLW~Z5rcLa3L{%aERH9i!UEGPYa2J+b=%t_w&2| z^Z!3Dz4wd5(yd`>yaQa`j%R{x!IG!$3l#dD#U8)2sJO%**i__cacy$7_=^K>Z;^Lr zVRMVKIZ*6!dz{LUko5lA%4D$e)GD*``UayRxWu%~~a8fADs?T;<)cr26xf%dcEWqSPdLe^63NdVZzeRn$U^p;wOf zX2UXZ4#l#kjhy5nSU%djLdhD;(Gi_HRD)(^eBT>6DslbCPEwtVLn9wvN#?w~`@C6h zs*#i}A8)a##7&=DlMGzheSXNrQmesi99^l=gg^rtjfPd%!x}k!D`TP-Zl=-=O=I`! zz`!r+q4kbs%I&;A7rstH`XYPA0dlewJ+qa7`I7>0XQ@>7c)^-9p9_A$#w2~z^GE;T#)-GElDJ2F>{A_zr^g!S7d<9uoC5|V zC&orsqk%gu_<=gM0y|QtmX8ZAy?dHUP{;2szU^Tr^n4b$<=at5wU|e0v4MJ+ ziNlt7TXE4=E$U6v9l$@yfe3gC+t!YY>!zzCQ7U;|^i=rxiaG9g7=3v0)yHBnj5IEN)3fuu zNlYRB+w$?@Fs>(C7e0e|tnM`aM%*@B0E9=8zNHs(@V}z?6VdjHLtmnW?>LJ;N-Av6 zC9+Qo*tBW15WR{4Osw%TO7X7<{IeOfC4=Gu#f_>fHebPL63&@e!!=yVI`#Mhci)Ij zk^iFM;+xuW;>$t>pZyyjNM#WdNFld&vmsPx60e=&C;J<$>|zAXtot9lQ-0f16}qW? ZddXvBpYrng3DEwWMk}&%jz;b0_%DS7j1>R? delta 5328 zcmb_gZA@EL80LKoEiJc{!CF2B7Aj`AxJV1su}P*(mtkS931hk~Q@-YOD7Ybu7@Y`< zx?o+r!xIq(S%%5ToRB+wfuVE8Y*7{i#<+>7m^e*vFi`xAg7;ofXSx39sr_?*o##B~ zdEVzay?3@*IQOd1RSC|T-Q|@T_hnVzTwI#%a;2A~my|opv&*tdiseU%J3Vui%bnrQ zSXGwkx+U9H?siM<;L`=ZOmwbYC#F{kVpoP$;epb(ghAdvhAr_QWl59^$Rb;hQUh5Lt1%t0DU zeHU|k?#Im>H_!b1E6iD%31eAn3slov2GsJ-PP>el$mN{_^9d~2so|KNen~>)YCQ#Y zUkdU>i@F{78kbKFyobh8QOg}WopfObS9ly)z|QBOZQg)wYyQIkeGbNR8jwe?unYOMK;unR*Tvn(JZ>YByK)0pz{?H;|0a-(1Pn7)rGVk-xbV1STU0N;YIy%3fIH z3RCat70tMpDMr}+F>d~j={UM5CgePZYq(9?K7dA=JdPcaP{gKB!ScVqg3#Gs zbZ`Yl=1ns0a;{ld4*k>_Ok(kG;}xEPR(6*GCIGhl`#{QPon-1ei=!NFDDTPao%3j+ zxDRkd(85lk+b?p}`ajs`M$p2c+Ft->miPqrXD5G0 eo4DzCWRpiXsJ(9~=)UG?QF-57>Nn}$!#@EmesI+Q diff --git a/doc-page/.doctrees/api/datasets/treebanks.doctree b/master/.doctrees/api/datasets/treebanks.doctree similarity index 88% rename from doc-page/.doctrees/api/datasets/treebanks.doctree rename to master/.doctrees/api/datasets/treebanks.doctree index 806fbc0ea7b3a761af7e764012362b04c368e2fc..7d9b0dc69eed0ca7e76fa9daa4741e0eb919d2ba 100644 GIT binary patch delta 9540 zcmbuEdr;I>6vw&u^4Nt%T}I6jas@X_sM)HEv}V`JhdF+MOeyT9LRE&TYW6aSwtpZh)Mo^yV8 z&z1LX{j9h18kbV1I_GQ>5}vy-Z&6-UT5x7)iaBCzig`>#R7z&#n6Vilks%o=5t(7( zW5QEI(=*KJnGqpjW6g2}*~tETm=u%qIPCCgj*PN96r5SnLcOEs# z)XVh0bnE)fpg1n+YCxcrJoUvIMz}XCO%A;<7>w#iYvH7z$xA zZ=b`Qw^kYDgH`zm8YN5rNF1n%)sRj33SB#^!9%X7N7v43(AExZMABHLec$TkSx0R+ zkL=;m$AUEe9B4+>k8(Lk%VHdjMgFzbtRYFi@&mGlWck`MEJ@{!Xh#y+*meg)VeE*P zi`vr>6tb}+-;qEvwwdIX$7eAVA}i9Wzx2FeGabyEo)Tv%?%4@GKa9Eh#13$BviaDU z?d5pep!kB+6q~73??jxGKmPkY;#WG8L?fH5_?OU^kP+RF0iWndIBxu?=YWX@(&&PN z;&b~FJ>Qm2P5kO`>I}QRNGu{dN`C<%)wNtjir^=2g3S>(_!D;s_9d7JsS*i+ur6+k z)dMz;AkB!X;Y+?|R%i((m_^tg+z>*#cNP1=`> zS0Dts%qxh=AnjP1O^b*-A8HksPw7H%J`0sYwbX@Fms00~%LK-y?4wcU{cdAVs+5AjtqA!COcBv7L-Nyi?eA5(MbX8 zo;T0)+fmI^l>#9Z>`14q^kAqU=Med`!%e6rdYHEx)jsV^LLpScbf}h~b|GVj6zJvZYs6NAQcKGt0}&EBCOMO2tetmO4FOJXdWCw0URwnkBMfTzw7o za_p-ryUvYbZUMjM#^PX>f#zWjpa#eGq7jx*RL*-8+n8+Pm7lrjDcTusD*Umt!FyHio@PFJ8jb zN;(xoG5el+#DP}26lo6^u?ERnlne_d(~GX#JIMY)nKM1zX;vsLLth65+%w zI^4|x1q4b5cG%oW6IFDff!RMe0n#aET~{-&NWqFsI>Hgo?$iAo`aPC#R~~hP=zNNK z?NYf^0sjIzRLfOXM6s_HaI2UWV#`XzdUBD+WQcs9UUIA}h$*4>u~vC*7I#m)9$+^I zt_qZIr9s`TGQq%4Df;VXakEHab~(j-aH%O&1*TW_#MN9wQ6KWfWmf24OHr%468mHy z4c5A}98fgM#IwSYZ%{b);OfIY@dO;BzhJ9LnBE6UzN6R&Zx8~Lv=-6x6!Yz;w(_{k zc$$${=qN2s^$j!)KXaSv;K415c{fy#BLsRtn%03rQr>dnVA~^_h3HE5;AM~Lm#%!x zBjQtPWmEK}0jJdmMkiiZMh7}f9QDV}`ac-v;wjad08?EVrk{fdF4QKmsyDlYta5nR zmtosD-0087YiSk_V(3m;9>Cm{XHS2)>Cdo}7=%igmdke(o~t>8IlN25j!-llSEOL} z7^YbhOwjrY!)|%pb0Raq=op5beINv)w5F9#K~=drwW1T44sIqe>?+Jvfs;urP|Fqb zHoD}MAKVPEYc9hy3iV*B!20>jtmV?%7`nSBQ?q&G`wn9E+%X0Zz+$zV4+%fR@C9DNJ!3*-a2Z6hYf5Bf(eAcS}jg&6PxOR`fV+? J;S@W^{sv-1h4ugd delta 9652 zcmbuEc~I3=6vw^yvb@KlVQL2E12H#b*z^g~Adtfo(tuQ?8aL!A2nZ@NDJ}$=D2|i< zgsUxRlw0LOS3FjxndDUF2Be{mL`*Y9YT%U1OiK6n!%X1%hsXEN`|Et?^E>C~r301L=wT791M(hQnGE{AFOE(`j@j+Rtx@!UUrDO|A}r<%l1hsl z<1NZ#hvLn>v^#NTF=Kp;qXO)D;)uso)@F=%6xEYfxZ^w~zt2m{w!4d;QyfTH1?%8A ziwH_xg-o>ngf%HFUQRoX`OMa1Hf?#9S!~UijW~CjG#AUWf}J~mR)6tNZk@xU`%91| z2QeIENumf}>ZjoNwCFO1<7n~M7>=XGNy4RMq=KVl!x;pJHh*)xxXA4Y7BPQwo`NIf z{bmdYSrWqwrZNZZ+BOfdYx_b3kgT>3Xzbh>t)R2+!(@$iwAiL)fQwjLH3tJG%|!;N zqITslhDWp>LuGO6u|(l_T$RNYCsElG)ihrGS(AqGiEdg~H%t+uxJy4_GAOEPqS)Rz z7r`Q;n%-1!Jo(2d42R4@k=&Ar;LsCTgkSepuyLBVo^xv|L zL(;tFM)%bcTSH2%B=XU#s1B;@R^1?q079mTjKZ}XLlu18$Pq^z6_4me%>1tgV&OS! zm;AKzXWnnlkh%ZcDjIRk&MO72l6r#?b5x~={NER}HT-uu8i`8VPB8q|Q zQO*K+1otC&^n(`<_Dy7PM;7k!C9y#L7IGHRz}ipqfNdljNn``_j?Sf^ov3&ZIgKDP zLUu}!c?clmfJj?29IEQw?rmkG=e2GV$iDqL4jpu%N*V82?~>B1M%J6}&zQWvjf^$5Pnte~{H!k-U6n?ADtg~>CyENI z&mn5#ZSK?+EN&E&{9IQ6sSw)n1n9R-P}G~EI*r`)_`ZJB^uP#u!;_*$P$>mcDnLQ! zHxNa~J^W}q(9+`;!RT8(fPM$z+#+F_KVGchz5OC@dH__%{C37(0i=bgxu&S(~hN}#n!G=6oG z^j}#%yXU`ylkxu3r67Nb?mq?O^=Wv>@>v}q(^K(~x)cnb{Se3xvM8pb>!-rTUtB<) zpk)E-Xgr`$n@a~NJs7i;)+56VWv^50>H$SX^f@JvTM7LU3zYm8MeiI@8>m$YRJ|FW zV>#tAF`n8&(OZWhaChrNGHcOJikV*J<*E%1@205nUfObLYl4sW(!olHSpY=^vhSe= zd}$XClMg?H=DTlb12Uhu^u99;Izbm<>#QO0^hp|_bkv7+sKOwtzm3P&Qzxy@YH$9; zLh1m$FVH9)<2@yF$rSLrL{BSQfvpL}sjmPwSoa&nylfiATpByWYt8gorT>~+aa{6t z$p%3;aa@LRuiNw!Cv)kJ)5gVRH(oiJ^y8P>XqRh2Q!L2Vxe8yp$tq#DLt z8k^t;XV&GYf=>^23vn>?z{K)`KFkH)>%~wPbh-jag|N<1<&w!8oclA(y2yycgDfJ#ZYl*OsVMD2Z&FCg5r$caZPSa|cGL6h{`}tmIsfzV?Cu!<_b7kR zNp!|jPWMT7{&B5CZ{tk4HZI4MZ*%13$co`^}^o@DGQsA16nBLT+QLKiQx z2MonE49%&A^lTYqRdQfG^ehryTjHaYjUA=23}sV-wps<-Dpw;#HCoFUx?YLe>iZ1w zQg~XYLdVgDC|)S*a+%4~4QHqsTvIYmIS&7;3@y%PS|V~yOVo!UxM6x)H^YD{iizKw z(`ZEnmm>DGR>d+5CDxy-k8-iZ9v6!$aGjT<;KDZ^$VxPSU&6x6wbVn(fdo}uPx#@? zq@Dp*W*vb%%v1+Z#{k~a6jZBZ`I2NhPnhf@f#2OBgn0O;z3cR z1nTecy)F^q_wFX~;@N7S1rAl-M1M>1*q00IE-qL7Gv<~TA( zOYvrjiOPFSNo2m)3FKk;eeyk*l2l4}D|~fIQV~J?r6TDRL|@=9<&=iAYRQ`!HE#5mFbK zk1<$5tt%;N;wc72SQnL!%nGBjjM0Y|f@ENcirTyR5$b!h<8I!o^Lx%Y|NnW;v*}*` zO&`Crilm*Ww%IkNjQUh_MV4BvvZyS!G+UN6!(wJX7Og5hQ?1o#HJR3Q^{y7hEO z9(SsqR_Dl}F4xXmrfRU1WL-JZWH6f-!O@$-ywPO(-CK;3;wr~g_FlDR-`pR+=8~(-`1--`%%X0!=9HG4~XM_Vsqm zgaksrzD>rRT0nojlY(pDJZ9sYdjjDRftMF}1`S9Aoc8a=jB()fzVBjZYB(`K%g^5! zM!?{vu~?WMdC%!B*(gd)77M1aB#fH#8O4Kmd<#a=`EZ6x{z$27KnIh5H5gg`V}k0k z@9Gke%zWmFu89-Z1%H%0-$*9f<`U@BZ#y0u$vy1-Vj5$-O+1o}mydDw3yIjv`d}Cd zaYl(roHKg^k$5{I$=#KM?PcHb*+?;+kEKNFWzoi!)Zo7Z?}s>o+S05-^XM}&avAgV Nb2B;Kx^1L|_YXO1fUN)k diff --git a/doc-page/.doctrees/api/embeddings/document.doctree b/master/.doctrees/api/embeddings/document.doctree similarity index 60% rename from doc-page/.doctrees/api/embeddings/document.doctree rename to master/.doctrees/api/embeddings/document.doctree index 0b8e738187c83a66aaca68217bea0b064e5b758f..904ec94bd7b699f85e595f8caf5d84cb0211034e 100644 GIT binary patch delta 7454 zcmbtZX>3$g6z1H{w9K?`I<&>wRytD@El|4BmPNLR5DEn>vedG5O$6zR3J4W2QP$A% zz)M&p3dFD|%cUFvSwt40VQXT7P^K7?8YMyzm0*E--)C$O97s8ZJiebf8r7WM0!TA0)?sW3OaC?&0L zT3&KNVPZj1dQwViVnRVleno=X6dEp0zZUqeq5{oKd@28)`Br z4)NxgAXCR-MfG@7=Z+tfIg-!U^pQCdpS_0gS?#=!~L>x&ySCi0|BOxzCb+3eVHfaGVAP3AsD zH0>F}+TE~n?|njDsMT&vJ~j*jMDRfy6(jzLmD{($5cLl{(~g_};bjJKO?=;IW)gA7 zqNu{jyyVm0U_pGyUN%t-I2{~7jOvUFf#O!}H?-u=|-Yh?j|P&Jv>hpN55P{a|ka@WKJGv zf@prR3QE)okH0j)NYxM*C$rZ@!;?6sj+9I~r|^BTV6B-A zcMK`m&}`1VGv;er3;@noLR9Y9GJHPD7&m(hGF^FqnST0=mya=d-7CZL$d`FUV;jmHD#g< zMjnyCp%kbMZBzM9j2a16qBx(XKnT`kz;H7YC`rXT(SzviBfS1V&f;*fXAXrPJ#uGR6$Q#50>eLrx_HUT??y- z^^GzLu~ZuJY){;}5l;COoSe9RBeHQ{?4pY)d~72OMd(k!N7#X;yybPTtkwnI!G*)Zo@7)lLI zX)Od{k5l0A^R84qBJ0kOU4-kfvFG6eF$qxuT%Zaq&njHG;;Bn~co~w2G_-qop!AZo z)if9QeX@FjGBIXDDH9c%&X4leP!N@*OiVoBq;r`O*&J%NuGSF%NvJ-K}WFUvQhsRaaF1z_>8*$3GuI z4?|Eg6FntweF_R&?_`OV^;hrey=EuA{}4E9O4)X*K}lu9wZ#oSFtaLx3-Ge%*(`m- zsO@iXeh{l}H{)P-2%`)+IyTDfytUyys+T){eIf+Tq#y zhE3bqpgoQqAY_CGC4q&Y9BJ|hmgI#X?Pw<9^}sFz*rB$qz5|~d#NHw#AbviK9VRO= zbvO%j+s)t+%%>sH?Ivp^t1*O)(rU&MT*j?($z*2dgZHvY_%w^nBS@{oJX@<`Q4V`b zs7|@)k!ymln1c6mS$wef8!gwWF(}ugl)Y*zESIom40x9& zAG1(7%cl5rOWI!vSaXgQ63Y6Slr|n*$J~>`-Al}8?}0H_8F^CBrO=?=lfwBQNl#`g rOPu)=^KBI+Ik}X%&OS1bM>ej(>RVZKxma8fB~assd6SB@|d=-%5-vjE^5$P@Mn4(A<(DT7A;Q>tLxz%xhz?+^sN%rbLC%6qA-WYFoV7 zqdgF=lhBbRx$hUUkNv>H+l|~EY@T8|hxneZ4YKfzKo5XS_IMAx`GS=EM?WvCHF8p- zHIY{bo%Y0^JA(bXj2P$&uL8a%>_gqFho^V!W{(SoQ zL*!LjtUj59^2w9DHEv)t+cYwYM^3eQVL>*`>`xb#kLM+sW85NAl}WtmrHd2z&e@B# zI5KIp>5J~170mO58C^={j@`o37U&V>r?f^V@ZH6|kR^~t%?*CEX_=m{FCC!mN{-*L zXSfaAxZF1YtC}RYvCNY%EI)YUh$F>W24n5gWEiB^aKAQ!Q(WRm)?^*c5oi~s*uT+GQChhg5t-BlX1dTjt zufa99E&HmGhS*uH$yL6*^>7MtdGJL?AGuK~epG_9+IH~b4&L1zAhxm%4D8WvNTRLc ztV^m-zFF&TgdV(4ZLk|+TBsvEnvL%d1Ngu*en_WPv%-EkL8kLwm+%g0bNEqKkj)o< zw@>R*uQ}Je(RxX6{^yUuXfv}pjC@zi8BJGWyz<`L?ts!=Ee1aSL8KAeX_6S7TRw#^ z`D=w6;`C!B6=3E^I;?;s!fg&pjGH~WK{w@ZUg&$9=07#D`cq^qYYhbN78etyh)uT#b_@`K-;=Z2D@SeAA0-n2$6084=0Zj za$N0=cIM~!>|{IWL}E|q;YQAlY<3Xnsj*h0+7z?&k)m|DOB78)g*6b?{U3pJA}0j; zqV3A&2xP5cpi?|cNY6?_`<0@j;#Xqs5O|8rb{4Cc09v}EAVW-ugZuzj(pf~uSiqWA zmXHAsB6}u>-YV9MrZiaT@0!>)8(7`Jrk9s{ilTf74#zcOwlJ1KJ+i8@+2ni2UIa`Ik^jBFRHwnKxH`zTL2QMLmvBIqa&foyf)*e?eT*U%&O!Z@Vw z$W$GKiB49gGCpt!enuxz!uqkgcF>5JDhNlz$Xd|9Fa~v)5fhJr4(Sfr;&u&e!en7o z6J!cUJ(xYZwwx+e(OK}poKb~+dLAxd3Qm5U#f**8s1}q@5W6qJVgv;tQEHLV7ctvL zNENNk5P>m%mH+CS(4BrMhO?Gy&R3LZz7G8{PNqN$3GJ;%IGD<7=Y8-ImIpwbT8>Fl zp`!F5tVYPqUV^V}gKY@e#MIwmpHsssq%0!!54ejVB_WH1Y}P@TkL8K-yR_&H2N;Og z=78UnagoNH3t)f$3ubm?AXtu%BzrMlrDn8POYUR3SJ^Xe8AS%tktU6LtB?03l}-rL4D)9;1EFGOAbIHIJe_>YLdcr`C6rdw zSV+7#qG4XLE*?xgmA#y}89~0r6w^zns&t}PmpdXSnvBLcR2M8|u_G#DNig#AP!ltZ znGZsus2EOM%>QyVx*Sv63Q-}mz67h-mQ)hMq*;w%y0OH0&{tNr;*D_xy+>E@g?%EK zjPNUU$*br6rMSLVVb3oi<(MXX ze1@pgJl#-g6dlXRO@m8r1J;mOx8Rk5{>i6gh6T~x@_^Z_F3Y9&S`GeQG%J~gv1-{4iA4OUl@Z}P#rPTYaRJabCT@GiX)HZ&*XDsj96bw$}ks{ ztOGl{x)s9NPp8S%*XJQ5K!VdyAV*V+SoSR`#I&uNu%>1rcg2U3Mb%|jhIi)*(W8@~ zV5{p`vF>|gk_;hxQf8sumL#w^@&a!$V3G~p{N83CmH_=}e~P?(05Le1n|*Vj^I=N#vzeknIYS6LexXD+E6#-w5%^ z8-US#Kgxu>XttkxAVX^N+=S=Mn0fd@3Yk$1Hgqy5inTM&kQcBJBkU)#gEPU!tR(WH z7-CGpG~>-5^2{l5iNT48&76hC&hzAH30 z=g&wXH;NZbh2-V~^Y4&v1SB_?FE1cBnjMZRgA48RYl~PX_o-+=TN#@RH@_e^fyZ^*eVkBDo0M?rGjFN4~36CfD!e+3dJ4jNBaMaMTQ(W@3*yknb_G z$@w!}H+P(vLS990KiT1^F1QvDJEu&(M^xaoq0BWW@?D|=u1wr+hjNisNZD=XdRD>& E03GO=asU7T delta 2923 zcmaENf%)GBW|julsl^*v(isiQvQzVo<4sHS6O%2Cj0}JV@KiI~)xrqA|`9|5>c_Kh3eX~UHV@iyGMfLS46Y`=uZu6{! zN6eV{`bY{nQM~zJx(<0MBN7~?$Fs;RO(KD%obl#odFJFLs>sQp==@(`OkP|7wF9G4 zx#9=8+JVuyc|(0CSy8wwbo2h!sceivlWSAdQR|*LJ!i>^4WNI?$rJoIC+i+l*gSojF}W^*8MCXvb@PfD@?^yh*fnXJx6Hpo zhW5<|mr0SK4P3|=990Gv!H3rtu`&i@MsDrqb7Vy>u*Cv08dL~B+xDHTpamPDGTDCz z`{s(B8yT^=u5h;k`L2T)t+Owhoy=O$;HcSV-D3&ld(Lb!D9u!ym_lwnY;aU}@`ON+ u$?@|;H?y5nCf_3}@chJc&53;1s7yX^lMCD`FuNVfMOLudZT|JNgb4t(%BtW1 diff --git a/doc-page/.doctrees/api/embeddings/legacy.doctree b/master/.doctrees/api/embeddings/legacy.doctree similarity index 77% rename from doc-page/.doctrees/api/embeddings/legacy.doctree rename to master/.doctrees/api/embeddings/legacy.doctree index fd975381684832fd28fd2211ca829727543fbbbe..39a4678aef4bd5ef3a1001f0a28f498c9698464b 100644 GIT binary patch delta 3572 zcmbuC?@Lo*6vuhgyLkmSH8l}yD-_eHZR$3~iY-Urg4~9wP?{@eX}{2Xkq9=mGSFc4 zV7E7^7$N>B%>!Nn@kfwQA)#3i4H{~pY4#=v#IozmsJw4H`vcDB`JV4N-{-ma>L@e& zj0tcuO^J^KN{B{xv84Q5dD3=itc1mkwaZn ztk)!K)zD17_;0?9*0dO4nTf!a8mWA*3~sUGEU|K-p(I{%-hQdVQO=cRlWowmCC3-+ zwXKKzPz|lAIvib%uu<@1wOmdYMiZeTrVrnMoEkD%=v8L>qC!B>US$xsXeK6b?~IV3 z4T-+Ji-FpN4nk}jCv|yu8@^Embg4Q;v2B`uJT{sJr%7R6+bxQo(Z9zphcKG-3AB@| z)xprZPbwgJuH`V+E(hFHme(Uga&}oVQY^ zg#pX)J-9%ul?N1z;mU2a@k}7C9teXAg@Y2Y#wt&nagBM=aHRBO6l(A`T39QgmY7)Z z)a?jBA{6yfXt;6TPpq-3hH0#4tJv9_*X1Zxjyst|K~L0&(Vhn^XUHUHX-9MW=21}7 zGLF0Wj&T+vk>5KChn@?H41aVFN z#eK4fnD2VMoH~bCxH9lb^g8PsR3k$151VF{N}+0G7O~oYIIu7}g!ahgjuIZx1kPY3 zEOosOr-pmM;CjiTOok$p(d@ee@H*bwtZQyc0 z#nuYjE~m{iEZ1rxhe0*{4hhNy*W6Ud#>i}k;UxyS4!P7d$AInUG9jH!S)>tXdmc5c z1X1Te2=#pa!B_c_CYgv#z95vSkn!=Jz$?Sa-B_eV?t`9q-xcbqi{o8sf_=JNue7tsSRT;K7?LksEfWGO#wBL)AZ KlNbJvsO%RT17wW= delta 3530 zcmbtWT}V@581B;@+tgg5rbW~BkBIC?HyxGEY0@-lTUJ8q+H_crQd0&+SYkmGUet%} zrWEvIQT~u`crwC@$f7VC(hs@J7D5I!>C!|xXR{kUH@(}(0k=c=_?+N|8#Y;}%K?a*qW zll+YQ|1sLwrH2J32{&3m2h!r;n#3z12k54{9pc*hn#=}UorAWH$e=IbP&lw{$;A;U zK_OPg4J`;8IX?<$V6T))QyD1R_yH?`hwvFBbWSb-R$dwolO-4`AKL?;HYY_PJ>eKZ zL;5fwL{&!h?>5FPcF?XkX4Gc0u@f`to9E;m#L$J9z}S zu}dOI?#J!`69%-;5D(6xW<11tI_@ul`z3lDgqh}7GW7hc1;$KwR}1aTvx<3~`)0_m zRO1T4vl7Ffs#myi3vD?j2Gh~EQ9^>8btO1KAz1y1nG{su7HYl3Kwn$22saL{%XcCK z1zr7y^a;G}?NSsQ2Ynz zU~pUH$^_EDHYCCvKMs-x1{wH0Jd3cAs(cl6`e8JjdNi~AG(qb~8D`1rzG)`JVX$}KXJ40>*&3-$IY zccq1#gmv$#mq){WGNrknXKvP@}io z_OmV>G2qG-WRZA%GL}DqtS66@;dVQu#;q?V68gqp%6f~)8DxUI0&xy~_-v zf~ax9+=ytSF~%esHEP5y+jG~biBaRO#28-^TyafeqRBJS_y1}+wVXP2&bfViXy1!J zfz#)n`l{;N>#MK6x_j0AM=e{vjQ-bM-vxQmrl;$T>9955T|3<=lpPYpjkT9YIK_AaK5_?Uz97=+H^Cl&)+uRJ(fOiS8J^?(SA)UEVrwTdfdFS zsW`^X`SxZwL*I0|Yucp)^wWH0ePv_i=*pujM^!d; zZ`#tHouhwtH>%BA^Mdl0neC;mdv=w!?%Z=hY3BT$yTWbfZwpI%W_Ik}xqE8+bhveT zX3w@AyS8q@&|6zdbJZ;hBU>0o#+oh6?)0lxbfzlHx~r=7>F^E>ksQaBGccRVnLypy z_~#t_GlYLO)69UJW|hrnxVv%=IG^vHKHHe?)WQpc6dH6l@ef8*ey^;)rafQkRL-l6 zs>xqdIUOjjjB(zP#Lqdf)h)097^HjQ{${D(nrSp=!{$wm=JXXYe+0vfMnScnGVIOs z-L38ckEH^g_f2J4cO@jFoIv(4=x{9kGSRAn3EG{e!Py5>dm9E?!`j}Vsj%4|ohr4$ z(N4XL|4a{!1l3l|y%RAD?0rJ1)(S_0QmxiFG*N5R4@|T`&#+z&TYL96JNW6`b8kOX zY9459W|BigThE48s@EIsk|mJc?YCZZb{mp49t<&T4qZGFTqLJ5(V8oj!|@>gBpAB* zVz3dD;SJqYti`+#JP`h=oa+VQHJorj8s56g11{Jb=t)7C)*+M(Ug<7BG+)v=nb>WL zdhJYw#+Uj>-GMu1YvXJl&{uQKuoX5BhV#_+X0+WeA|U?Yb?0p{CbvsQ)X)d+CwB8sn&GATsy81(*6OYJ{y&8S9dX~M?;D%M!yTKuK( z`u23Zc9++alK3_t@Xd^0k7r1uE*o=Uv(#=h^)WBsE4###>h43n?i$JNJ|Maq=&r8T znK{?!a-u__%3htnsd0SHGY;T#rqrpmCk~csozNUp_rz9bZm!X6Pqb!B&Gs`o4e}`N zA))vTA8NXelG5`geE52x@DHWM>~8cJ0YTyi;*U>uek|vm@~fKp_tIxxc~3&|61l&P zv3@Y_K83LV;Q{-}1Xv;~f&FX@b``UDau(vRc+}BqxUZfbzGn20K_qnC3z1GsHO2`N zo#gsd&dvR!n(7(;sXA#CZA7CSWQs=pz@3zmz!kApk_#f|!~am@ztG=B5mJesd!g1^ z=^qK=C6SZm#2qSK_&vyJfNq`KRh;%HNHfzPy{< z*WSt(XtxQ}S2jj30!ms_mLGV`!D@J@499sCK8pG@~tMlD!EA94NYkbR=1J!n=Gc{Ij%x+;m);0UC;}2V=YK^Hav!xaqi#M@v z-V)2Rxx;7g+p&Fg-|ijcW=78=vTlr?lQp81;T>~Wimj})XKSqCovfk6H+QNv`dw9` zr5#qRu(b2tLGpAOQxTTj^M-5IT@5>rwO#tcS^Dvn)!nr-om!1K3YC|42PfK%GOBCl_llY5Ew=Y*TlMF7$wNVljx$hVF_HZAHvp>zo&T9N)#>(c`?lmXqhB zPiY{de|W8R*YB7p*IL1Fax$bab=_x$)8a@d;${~VZ9OJCHUnspoD+=1Y90@~Ml!E71vkhS z-Lo`)GY6-EXThg?<2Gwm$DC=^3*}mkf{yZZv4*2-L2MIG6cLjXeC?HDr{i_gLLDy+KjeO0u16C|4aAT&yD}?AR@uan zZW_HO_HzuT@jFBvb3L-jFK9}+9JU6#5F^+DEU)-T$17H&5)vhSVHIk^En(awLKDuGCMNau8#Vh=Feo&R(psLIG4huJjd(^nkG^5q*&(ND=G^Zc9YR9mTDITl!K+dNdm4A?fLU;BJx% z;EJRfTNESyP70BY_uV7ej?_lQ75)jk1KF44B-ssq;BJx$;EH74jf#@Li$VnBJ@-hk z9`-7p=^wirJqJ1Nm70~C6GAV^Kb0zavA-KPiFr3gaN++pdNw>jxi1kZQyYDO6lLER z!f(c$^Dl(o$Z%>IAUzMuxe)H-4#cj}eY^JPI}oqW8j*Vetnivx0KX4-J^~Bi*eBx) z;7?&5{snN{KrDc}kICV9ZYEsOZbr;LFnu2oCKn-<;78q-VNF(3MDk3204^k=ctc zzGhqUPAy3Ic`+~e0|VW`nQB;@<~y2dk41#Pkd?}Q)^=a`FSK1HTH0AOgV)LApq8YR z{z{?u$A!@QL;8AS^ga4d%#h^L!~>aXOgr~n*G*vyFKoM~$oAc6J9h#MHk+8I$+64bQC_(Ko47>O4{?{-RIU z&^$IqE7_;fTKq?b6Sx*Nwae3-*=oV?RHIR2>gLLsfG0G!E1@!=LAg{9roy0uBC43#g?M{1Xg3<%XbwlmYh&o9B)|#TO!-xz?I6uAb*odS65&E9l_tYQLaESe9hRw7 zj?WT$zSW>1s3rI!6%1=LmvB)mn{YY_8NU zS4hn2(*aCZby_@^W{{+UTn#v}$dH;MbMBNlcS56JTlbF&kALN5W1R^#dHX2CV?y5O z^}^)sYXre9Z(p~7o6=HD-oDDlZ$i+g>XEnapy?vY+ZxDQj9o+CY~;G+&GF53O5Xa! zfr@wR?sCcChcj?rTn0-r)s(#FOPUARVY*f@*KEv{4wTxErgp<|E<~*x^<<6Mz_sGA z{jfOVW7;`0Xas7g7YakCt}-Peo#iy?Ith)Ki=6P&=oekU(Cevb6V^$i1U!nLCh#WRZF|#*l0R$f*J@ zLQ_oztYrP9=h^WM;DjT8;R2ANr$dPaz#tTdq_e#*tIvy2Ae_zPGf0o3%WRd5c^Vb zUh>HmIe)p1VMUN#DWm&AV?!C2<38P|E~D34EiCQRNMw59*kwfB*sQ1vwA?|&G0W(_ zxP$H=EWK^;1kvPvxJnc_-ti5$A&y@ZDc&8=+qEC4wD``zKD7_VP7w8wz!s6f|kGqH*?BOI&E~c+8Ra4 zlhIKvE*fvPP<@M&;sfV%D4)^pB#K-tAD3ncPYSC~jWOf0&fVp6iL-^#&D3OLv>*S0 z@ym3qs@@(dZpVrPH`l^BHkuAoU)(3LHkzL09fiI+%|01+h|S#OKiwjGB2+IxQ*C*g zc@8Y)l#aF06sHYyv}OAWqIY=VMI*x)}*oFHdUxJz7f7L2@Se^y_uEHJz%l9y9LTN|ZL~O*9@qT)$9vS11E#F{e{1yVl|4@>$ zdW|V5rWW>l0W0FR-B&KX6*!-@t%Z+Krk^q=$hZw#s?lxOPm3q(GVET}cru#ivFtcvZ0KNfd_Ki#sdS6@xDw0Mg5delhO$GipB(z^^tt>v~dhZGh!>ji=M@wb*1bi-) zoty!b-7goa>?8mvI|;TYW%m?}k1M;I=!q#i_O$rQ?us_0Nm1#rg(ht-Y!zKpa2g0W@WC>4?203F0+eR>ak@-*yt_-V5`9cc-b#Cn1{2uDtrfe^{PU} z-%=gE6HTN#lrw=ktkR?w5;c+lpbjP2p48!oF%Yf}KSEDT9kQp~>M)(4D#*oa$jF*9 zDFYR2NAs{X+v@sEJjl<+gJe&>L84r%IB48kwNeyb*l|M})nLPd6E) zr_eRXH{%Yv_dHU*v4i5=65JWb0aD9(il|TO@5+F#T5BTTMCEYhp2|xMnUYvSUC&5i zDOyQj`0!L%^LWP;csR=OiyG328AI}w=5P;5onlpKqb)bDi&&1@JR4Nf!9#{>e=G6R zhOYif&1kcCMkyy2&p{(!c7mh??R1^VzSYV^p5&5aF*h}V_10H>f`~iY@6}W;>18T= z`S4U>J$Gfu=vqH;_qL+|p7SK%ZT>C_o#f*^r<<@Oh5X-|dy!67?&n_QT|h08A`UmL!1$&08S^bvi zWQ>k`ey^h^`tyaN`U*WuzfNjSNbx@jtK*F6Sx3t*=(#GM&;rh)c5lMKbW?0@IrLh_ z&OH9|PU?f30Z;Y1cUvPd8L!w5#oGzpd1}`skHWkkO^fePFoIJZG0p_6lvwe?bW6>g9HpGD&agV7ZPhZMiY(gc$i;!KEa8{MwB$m;FCUKgxx%P<}48rmy*5)`w<=g8 zw5)oenD_s9nb*H@@YA^M5=A$=WZ;qZ`HvqkO{t|G+}Ul%ppnl~=^o_(`}Roq{F{53 z$~k;^nLhs>KXA9tFM#Lt`LFPIQOM`#Ju8F2BNS!sY*GXtRa7{M^lBRU03buFFNn z;XRl_*AW2eDm^U|3?H2iOv@*foC1#fiBQeX6@+=(c6>h$(V{jT_8mKA+{h8MOSgxu zpcGIs0MjL-LrFONXP)fChRi}hC{y%u;6qC$lv`<&SDm3WezBBu0s z6C1vOrg^sXzUl2ECE6~4ClVXzy)Ny3>j=4}OSvLN%INb1fZ0XWGC6Ees8PAvD~Xg)=BzO@!qAQ6U0cf)`{aujmi-jAJiYAh)TO!R@VcXJ9ui9 zxJvZN199RnWt7Lj61te0YQ?X2&yCx5mmrR<#o?KmxD)YGwIehTH{tswYCpyPWkXkc zqmX+=j3AfJPT3B+1dV(yj=nV9%f8i?h8x^$A*QA#aD3uBKE(}P$1iF^xAiiiTlgR| z7l^m}fx8!o0(i~^;$eRmg%*gsXJwmw3q(#Q|F`A>QOQTU3&h_B)cgy?SK(_P zQ@R(3{o53}U?(<(wrRHa`wVb# zS%A$4>+5=>KFW1tJk`F!R4Dk;0#HDu)f5U83)?zKTMkRcfHx`GCB>WcR1^3<#>`#G zAJ7wXCD~IBS5lB~Ah&zBp|+qW-NV= zOu8?$+FKrX(EY6?=A>(+VWw9*#CfdAh0<}dUn@yJE1ssy4fOli3PsVG1cnbrF$z0Q zkUuear*|mcD8g1W%@akq)Z0Z0*KpuQ7J{hEng}dh=ZCL_5%r70_%$H$RdnnE9^*ba zhDcU1r!^Ort25QIbsZh;^=sGBu~0DSS5};EW5j2Wu8Q4!uMt%>js6SDwU3TSw))}m zj%NU~PLIT9ZJD;*B$g1756PVn>t6`V)^p@T0)VZOU~QEmLbpoM8Oe+M#M<*PJZ`O? zPfyHRv8No?YJq`|%ax9(h4lmNN^iC*?F@&{p78$C!y%8@Wh8k9ofR25D-V#xx23NI zKj~4EY+L$9t3@tbO5NCupJq#69e41^9dgM-9NU^6XG@B-r^z3bMSX8P+2R&eAu4(g zfk{|YTo26SCAkh9e%d<}uSNX?n&z>nf9LHY#iDZHDHfHcsId86Kl~Jn8a*A&RLY#g zqEaslu&8_n$}HN88{MKhiK?1LufSOQXi@X1A#PLG9-U%Slk6?6>HwNZt13AZR`r#F zN=~b4Zuy>feTW+b>R8cZ>sQzxs@`r?Q$C1m1{%$Hm0PHd;+^9#SX~oZdQIaU@|8r+ z;Qcfe$Q@>NjA-u*E>TOdsVk8H&p@KaR*-o-gCX?FJ%eF-Vx9qe%HbJAeDn)h$L_@q z#{Ae#Z(Add+iF=!mZbiTJ4*EjgrnnGy>9Y=MG%TDKD6c0fYvA9bkN=?#<|4HIQ~V^ z-neb|6-#H`sLh+(6qT8_Lf|QN+fVAU--k%3*+tjVL>aJt<_1jyYW~pgZTQ+Jo$k=@ zllyiaVB0nnC)>8ei2Xh_YfSFgufi5OwfI;Pg-xYrsZ5#82Vu2*WDk&t#EViVw5SXcFUnEV#4- zAoZZtKn9Qii_g`$GwNZsG>!WZ=7Ooiu0(m<1a7n8=CQ&3m9Rd-Jp)PrqgzW+Z-Dy> zG!}N%FYN=wV`3Vi$j&@FHorVjxuPJW15S+3W>gK~@&R8Vka-wCoYUq$ZN!4mB^tw4}#(j@q zb5yg?r{bC)h+ZXVQ)?H)^mhTPM@;_|P5XmsHa}WKWMFvtZ5{+GU%_67#tR$V8J96# z`cxDeCo!{^E_!T-J{5(=-;x8WC^Rm0i=>@@)M8O3eFY`;Jro)rJw`66#^{MHsn}DF zCDj6htyfFWds<6}nwYMZ+r2HX(n^fm#Y zrmyS$%d^YkwvSxN?*d4aCBJ)IuBq8ZH`2uWzFeCD)cnh}GQRd|T<7JZeO#{X*iOqe zm7)xG&A2Wb-8VfxA1uGCFt#`1&n^C_ZG;)Wmf$ zZ_2(}V!Zi8LHJuzc$GNx;BWmHJ@XLuKhqQQx7gF-`&(DA z8(rq;_S;q=56imBWoPb8EUm)@cvj~mwY&y+m`_Lsv{j1DqTSXqa4c8il6kUsk&m}p zSen;eRGhl;alVW_Q%2URxP$KfODD3fQAs*$>VU&K<5#Zhjdx1rKQ^8ncPLEs`JGyY zndlq>V~6-xbN1m88Fhxhc&+m9jn^Bx@=rC?i@ZZkIXZAY8u>J*q%@sb-kIZDGbP=L zfqw2wJPkw2@95r=F@Z(jm)Jr35<87k%TLJ~liSf%m`ymk%K)*Dj;>=PK^GtH+CB$; zI$c{stfVu0hF`0y>rkZFfcaLShgA19b(4&&xiFy;08FR^Ypb~I!@c)m6x@WqoSv8o zWlxK5Lie^C6FnHv_!hMMJHT;A3ox7xu8F}qLJ$M-k1{^3y-_Oej|3A)^H)S0|6$yA zDeV_&^R~@Hp&ei~yXZYM(Y}WiJ_)G#HSJ&FYoA$JbWOXHPXCxC;Xal%Cbye4u6U@s2p(JZ&x7mRP6OyTL^WTIrZ-OyO?aoxg+VtLQkeNFY%v9^)M7vWD_dcOi zYtf5Fvm8#8=Q?}$H#_*d)hC1AxXkqLhOM!cp3TlSdT zX6oxzE7yYJy5h+8+itR2Sf09jYl*tC`BHc4b-($lxP$HsAE_0i$p~^Usjv5})Z%Hn zY>fY&6@{Ycb^^mKpW5m=)*e4!wb`$gTky<`!T4@iaSui%N&R}v;z)RZq{K)ptkiy+ z%8zgH;IrCuOZ=2}i_6QrSWDS^>!Oh_NGe5v_TFC1zSYWh4J!PJ8L45fV!!dpZ0L%= z6p7#5%V6KY2as8k>(Bha-6gpMaIGX4saH9HmFy2S{*U>)C{&V*_ndBEy);;Fss98a z2I3FoT(mc8LSOe!$XyTot2qhseLrwFK?HC`kX6jS$ytcM)C~U9-$@~o@V2b8~041ogn*S|AgEmxg#e@Ug8JtCW!!^nI@!iW68-Bb|36&1MImZ`Ls4gVW|7lmlRd+w12C&xaizU)en zBUyVvOf30>BGR}0lXMg5p`1keH$QMUkp%FZL|Soz*9sOQ67RW3A`Qfg-~?g3CE_>w zC*UT)DQJ|(jBoY>cN0JW&q;ti{w@j;fcIR40RC^yOh4z+ub-KIHv<*<^G|MMG_<@n zt+L4C=bs?cZ>O1ma(&jA-1#R8vx)qZC&24oXjHZ$t|WXmVDZrFvoOwx{*+e|(z6V( z-i~JqGGIyiBzjD{YWj#=Nq9F#s)wx1eeC{RN%#`#g9lAKR}yxuk(iuUY}@K%lo%t^}o4@WfiXCz@8?w5=(F{RJODW-RVFKXA7bFM#KC;!pQ?QOJqsJ^LMVa@A~aP^SCi$XNuJ@-h1#SB+J-akpVs9cnjNZ0s*yNM)#=Ooh8{9P0x67RW3 zBJ~=s?)WF*Ccrat65#oM;BEp4;5i9!pTCPj1mHavA%Oo|GhD6Kq0v9lT8O1h^)p=k zZlEH6xcVK8hStL7NQSF-p#szP9T(`ArM)d{Ozv>C!fYa3{YhYYq2X#4n2y+W+NY!~ zJX#p=5xa9U1;;Gr0<3;bOa{5yMv>g@muZ)fPd5(LYmL%$ zD`>S`Ue(ylW*9IZ{fGs*SrcrP7wgs+`z zR~z+Gja7Nw9E^^#TE>l;@nGmct#L3M8VQCF9><*m^i*z^4%LPzZr(oB7_EhE%sr@; z>IXWd19ZJSiWcLyQZQFSQDnMxFesx`a${D-;Q7vQbi6jkZtnceM;F55ap(hFdny{i zKSiC@U|5Tf(raBZ&0VRDRNEH!36{nuWocW9DOWYJtptp3KdqJDX?<jIr660QB7i&$iP=XsT^Htz`YMYdpd`=4#b)wT+9h=pwB{ zrDlEpp6Frp7?FPF^~lt&(|S?hHl8VsPn2L4(zVJ!yiwrRkN6zNTK6ktTgO_Tk{i!! zfoG=cQxScA?}(l>5uLM?unW`Hu~wB|p_WqQ7b)y8l|z zz^N#+%NwP0dDFpkr-}Om0(CeTdcsnB+Mx`gMYJ~xEyr#!RaUwd z(A3``8abRqdY!KRj?*qcpqaZo!?Oqi*Lf@H8_mu>#sY2*RM&Ueau~4jn-Fp;yfHM@ z6y5^lkWY}XYC3}hP;)VY4R^%GF9b0mXpV0lzhL%K>|%q@B}Hp8&|O@LUK*coaY+%@ zP)#hM>8h4msfndl>}KGmn0B*z2U}V<_+>5!<~p?YYLyO#NT!)>G!Kud1FyJorp~WO zhx~O~kUS_YCBe9QMjata$X~8QITK#C)|pb1zgrnX6YdASUYPu~2!dPwIu>wKdWy;4 zGuZe|2>Mh#%d+R7>Eg=YI>=v)U_<_F{JP}N@y)Nr^0#2d)bwGZqk-=FcC}p#C$J_( z(5PMx=U*`&XF;u-j75ekUJTxOO6>Q%bk?av4Eb96n&V67JODr0DLbACM86AI`gr9r zbZxxyl?LWreH!loT_nY&S*bf4$+^_s%@~m{r>MBPo90K#G+hTZ#61QmCB9B#XY!S% zYf;|jbl564t5c-5>Vdq8uGGAvdT^}KJg}uS)!MRs+qSJ^TeqLTdz&lPBoD6%ogn{I z2>MDP?2FaY7Z`#P>Wg0MOk}Q}^0*J*BM5Hw^#cpIseFp5ukW()n-Fxt@Tjk!qUqwQ zuVWyNF@g>CW#iYSz8v4|=z-TX`LrQM&)09o%Ey%$Y4(STDNj1ZWTXsA!Iz$oHlR)C z{$p1>Lwm#sHnfM0Uzhf9eDlI3!lX(&*n`X^(OWWzR$QWQ=OU!Gl<2+^ z+E>E0nf3NZ&31_^1fmLsYL8(Rpd^n(uLvGvo!eu0wYc>v6v8_anIDEB#Xo+aX zS=<+SIbP>iO*Eg+umsL9H;?Fbx@Z>MJbDcQ<5KF{JbJCwmnmnuq-Jg&y_(I&1fWmc zW9I)5O*KJX)Xk&gA+iebMp)F3_#zhweMn)Q-$$h6=_9!@o*kI^K<_C3l!@{M1ZL!o zl-318ayuyn-+~IQDbsDu5qtiI!mSm1{#GAR`%k^2_Q!ogZORUviP8~$d(F?nI(DHo zT_MFar^fo?D14%MrUUc~(q815CsWdORgulOs{qTl=JV)^6VX)D6$@ZoHa}9wWGu?1#P2~%=Ut< zb^?B?0Z$fb5N0v?gF@qzygaX4H_fbH&X_x4*6Fn_Kc?a_Mw9Qv>PlMy3k;BAbl~ zK%clrh5Zwn9w`-eGE|sCyrIJUh}TsZc*y0}{ii~<>4V}My{>G9KR=2nB$v`J}FkZ$ZnZS7ri$F(FtAThq{8NtgX+Hz9H^K zrTpQn(i-9(`k%8;)1{BbD(*#+RqjMng!aqvF7Wao?m`a=-0STk<#qu9d_&i=7xZ4IX1a{ZVi0uw zjiO`pYy!a0rjm8iIX(tlyf2Qd(?tv*CgOk1(1#n)C>B2}nSI~Y#PHN$dacCOP7r*S7` zyW+Xh+0-Da2G7O$6j)l13s7o1%pr}Xb)nVhk)`+Vjiv3>v{q6G(?3w=|8E6PNmX1# zIesZ_+x@*Iq8!sv!WE{ftdlsG)8A_BKaO$ZQmZKyW4@0@zOba!XjEF|J2}2J51cA; zMc<~;_5Hx<`bQNxaC$Vp_Dy!N>mzR8xovdcj%|DN1E&L7V{#ujRhUg2IQ=Xz-ABVR zlv8ocb7Qj|^GO<;biE)Cq;AgHjdnm)vJ_bJ^Tb_gb}H)SFygxF!*-{M3{adWk=o68 zrxe;Hn6mC4mBM% z$0MHVomZiF#8UvuD|xGtlQ`Wd&qv=tR!w(+{WXhIJM+;rnih^n5Em9WX7?*$Ojdx; zuNNfY=`BXUME)ers>vCrX}R@xk@HfkPK^;Cxk4v*QZJk@R?;_`@BSPy0NIPl>pD+l z$4;IFSUobuJ!q;iMb6lXiz|-Sk)a1s4$@3dzbb)sBamVvUHSK}JFDKyGsdpXm^Wz& z5p*CeVf)LrLJ>iS3v)mfL5K5cYN`90Hhd9ukSbOwtsa67A4bpIjsFNeF*lw)ExsFn zNgPs+H|BCV=W3y@AQnBPy6xRpEfFWy#tljoTmv0*jr9C+0W6Du z+#p|c&#>%u5&~kC4=_Avs|G~I}rA*taAi5Q`tV`|(3+|Np+p3TC!`G|g=+4p8*XedJdZ%=r+H|U^J7Qvvby$P<9rXFAM7jP`kt4)eMk*jWcL*-IhXalnh>zn`?-s z%>CFDeNjjpW_6Wl@AJZ_rEmcx65s+z)Yy7a1oM=(HVSV7VeKTCg6_JT_sPi9jLY|ovATI>bEfQyk_5Z{9(&f ztueJ_78ewRP4R{*X-#z6)mm$8?(o_Bc5L5)_}q@2dVKDkS)*~s=M+v8@wtP5*hf2f zPA+92qH|wG-$`qjCi5~jXNLgYBBMp-BpZPp??8`_SY+E$DndKNX14cabEF9EJd^{f z2<`lX7_XacZ1}>jlQOEfzK77xF|Uq2M2 z{H_`r`4p$_cU5wHYx-S^3ef=?UElq#mjP;izw0+MCgAqFp4^My6$cAjTi6PWdtW4C#6Ego8{A?o+^s)GXGwP}7G~*Ro$3anIaHEAV3Do| z%ty?j`U}x{KJy|Rst-}4O_Im+I8>|mhxJy2=aiW~m9dY72uis!#=mv#V||r6=H8Wr zsPyO8yi+OWU_A&}K0V=au)c++#T_hSEZf04T1SVrleH98Jh@h16a?@gPIIk3mw{u= zwIYVg=~}%%2UOu&y+@2UAMXp-N=mEZ{~lbc(>6)h>QVH>Tr2jp_^#E3*s*DrP%&t( z*@JhrHJ^8-`bc%Ky7w&+KSdvF)*jhLORuZ8Q0;7cL)(NIRKH5EPk*Hp*G}+2`tGei z{@Q#liQtAm`%7-=K^9M-6{K80!=3PcFsZcm-MJ~L6J_CSNLEoSgNyR6tK@I zAgB6O*2TW(-Vn0N`vDsts^uUxxP@H?T#|~Sfnu{qY_SOkq(~Db>(3E`%4c)L2G0mJ z0{3H5&sLK%a>-t`zk$341f@hld6emy7L%#gQ7{Nq5HXXH;Bcc8v?`5GZ5opttyqMAUnom#uf{v5=K z0sJVcm6Xfj9IH+i?}shf@hQ^$<^o7_ltCJ`M`~|fkxwHW3CW&tBqYn)Z}@?`Z-f%SwHu*`A>#3~Kh*gD#otAt8=-j5=_*2c zK(zJuHw*>ofol5J3_&R_i#|<*?z_))!s$hPruF#xk@cC*C!fi<5$foyF}Zyvh1rD9 z^rygdAAP2itW^dVQ|>P9!r+tcl2BCAQ?g@NT}Ss!ddluapi}8%^9NrKqzdJXorAmaghIhN_WfaAT#gMWoE{0nu>)fP z&m0?{yc}t=jZS-VBz|*gsa>vI17~t_WH4-(Ik|_C`}V-E)C9GJ)2l7sGh>s-*{ERl zA^H@O@?@$~bQ3|~?!p>@F%AAL7JO5c7mG>W2v}ZSnttS>jHbn7lB8?wm}ERh@?=GI zf_*eeeqk8l6E+*=0F9Dfel(vT(X9B(f#_#ZFC5VW@rN3!@1);TbKr}i`Y@Y@Ni1Cv zdBVRhLeu`BTAO7CvR4anR65m0c)Ghmpv5v%qobzDl4q@kqlb@D5+E|kqaSJSjBDNm z(cCw`y~Rs49p^MqvH$QUYP3l@IAFNUgpS)t>uGg#4^^<#MLk@)27p%nO=w_g#e!kB zHlRD2EVUU7vufd+$AZhlnG)8%7D);+FPMV3^lHWALw!4OqjdZl=NFNGYdbqmLrE%@nDK@|ETeZ4XI92;x; zr}}}g?uxm?^R8>w*h#%a3Uu@!V4E4xFXmUVnffZ0nT=75Iiu2@jW}qnL`@XOH>dk~ zN7G1lW5aNC*G^6npH1?8E_BYXmRB#;ni3310ggRmr2;rm0zf#-IIH0y8e#72lmUa zzvF(RAE8~A>V5&Em0zC-4tQRUPlap|Ity`tU%177vUHkcY~SBVgn{J(Tv0cCZPv!@(kU=c;_HC1m%yU|1ZcQ|MKw~-qB?cTFgf~Xi{*1oa53kIA` zhX<==M+ACB8}RrthaQ!1eg%}({XA19{ITaR#BG-r+N|B-)f_2&{_0GI@mfWkjn`0T zqOro*593)Eh&n%vMm{^DhiAW)<6AR4s|XQ&lSbF~@a!=`k?`ywzV=Oa(YLhsQ2mrW zyYwyXHCbbFhi4UL6XDrU1JivB&mM1wXB#3pa4SZhjLni1%fPH%(~EQ`&7EysONPMm z>9fQeY1L1xsO;F)xP_b|i_=@MVlCq|43E(wU?}chr{9994x)TbQG6Avf}+ioSY3c= zrYj=bMHR7y&j@bERm1A( zARNKM<+yDmsJ04W2bIHf9#^!vhAc*`bon~1vG}ooM!z#2S^)AmBmRaTxO*Q_ z0N3^riIUucVM)*aP(1o-e;0-J5qZz)KBjJ{IvfRx41!~lev?xWf2ldV+dqf* zlq?NUc^jnS?R)^4d$}L>19#Iv0MAK-&-lA2L<8P)k2E+TDd7oP9IbyNNn*ZKl=+T- zW^T%SBPV74-4EPN839~TMnsN;gPVvW9d)MHv=pKZ@4EEGn7T+N&~;rJ}10(38~ z&n9wx$lDpg&4UYYbQ+jwx-;r`bZ(E^O02In9G%lr2PpKkvZuPuRQ`1llr<)|$x)d7l`uJL z!9Eqiwmq912|$?~C_j@O^O&4t&ypr*Jv}j#!=9F&$vGV+r_GKbF3{$jgPHbfbIy$0 zN}IFJusM%PA7R4itmfbHWr4Cf#%shy#aGJiTo{j`fZf@HMtSYd4)*P0+MOGEnZmVv zSebUG!VdsJOK3 z&P%e!4I&0wmTAlvO7?KCOhV_J0HV1_)_QN^u+8Ads=#S=N#A_ zep~YdKZv!LpX)AHO7(hJYfaP;vrisHNsaA(O^`rFm`zdeFL@q}+e-6utYLo6%p54U zHfl+cvxRv{oP>G~5L6qWOG{-$Pk z%-KF?qEg5X@Nt>Klx7DWW(YEQ$Ntu|15V!QryUprD)QTb^YFFLA$cU$AH!K=a@zrg z*%OxDd~2d02=ZU@Tr#Owfj%54XXqZ&7_S+Q){mDoW= z{pxxN_eJ243;i)$rGpp979OXwnB$XrWsb3S17{?rI^sx2i5-4z4bIdWIB?(% zmP>oHxNE2u-VuzK+U@4}Bnt;kJ}tnJk1OjzX?nWKkLc=0aSv5%wZTTcc9?DKvKyAu z;ktKx*{Jm%2ZwR^<3RObSVy)cUGRtDg$Ixu9HaoCLC~J;EH;{_2j%El{t70}PLh<` zgeL}+qvB8%$A#GpTLB`LFm(sQ>9OFZN?4Z=^tj(7Lvz>$ILgLGZC4t0xluoe(=l79 zV{8Q<2ApQ2-srSyhX+{)IHZj#$Y{}EsHrqs7{?4S-fC5+YKSe;ftC>(I1%Eq>uwD8 zvjt!)pyq>fRTyBLVh(2;&BFxbvKueIB;Y%g@|sd?l|S0Y5L$-L0dSzcE;Q2ax~HVD z4zm+RYH;)n0>pEGj<+}s`2xyzw5$$IZLS}Ap!-FMbIqtRMW8>q9DQw!8UW?hrs;=E z?nG1V#KTI~k1HSWP^np;zlY~)vq=5-&^M3Ne;-fX_10Xqk~h*@p^ME4%`oj7x}$}p zPQ#m@P{&9Pr|`6^3eo+9c21r|O!rmvTdq?mL=qCqRFb@c&C{f*ZlOJgP+o_oI!RbR zy^uuAj~GQ9_7VFN1|h;_M?#79kAUy-5b%BdBjBI+PQZ^JSpq(8fi@vGX^xe$#jS@! z_kCT_CYjOq5B(#~*Lo+;!~G(ToM47{?d-+K<|fHWf+U7Hb`WOyV`8nBmVj^+ebOK0 z_sibNa|}k&7v*P8GlNL4Sc)EuausZoXL{PYS)qBFNqeO0Rd$@=FLzI&)5=p}t#ODQ zM-J~Ok&mm=3{!tsL)+}-8voE9Welw{&|O(?v_t)D+h&$k$SbJO$?570b1vcb;tzg^ zeRQsdi)#2OK4W&#g^K43z)@4%yMU=}!qhH6d!JWEwAw>`oPPBRstzQnBoCK~7CQq2IO}sOx)xDW}?!hqkBl%yOgV9m8IKZ_;)h4`s z@sX(Mq?SB`T9zz3JI^X2sY5iw=J`&kyM-et|5UVpMj_mYGoG_(#C+Qo#u-m~tt(b@ zWpT1RKdsN(<+#3pz;MS^)RyGP&}_wvte#BwQ(sbKUkCSmHW?FwF3uhY_C7S#ba>9| z;9QFebD~KleipknU1C}gzbZD z`XH+*Z1h@(WeVF#mawHQ62C%FxU8)ca!H?RqV~5|KjxT=iQ1RgR7?mtMeQLp?T@G# z^Gr(GIpDY$<%Xo$7EDiO51%_V~G%b-Sa5qtsP#FsM2qgYG``D1Vh zu`j3{VlgIJ!pfBpz|^qB)4uf&up<@Vs73FBDbow29pnSm*!;wEOmRwQQcX11qmjc7 z((6>w6bZLq!dXaJouzA*P&REJ$DB6OVGFu{q@vQnIc%iqpXw)Ni&i=~7qInHvZj5D zC2V69qstI08(S{1a(q)eqAaCE%^pfFQ9C*V{XK}9u{$Xx&Ul%ye*D)#zP-y9LOU2<2$bsufo zL<3hYKeSEIxNQ`>qec@=BoA8snsQdmMmE{hOb9t`6#S~8ymi1uP|uB{xl zx=2(@a#q_&^&@`4XqB!aNeTo9{5;2}f&&Phg*d=3+@jis73*R(7|eLk;1wboIX*6v zaR%a7nvogFO^A5@F>`E#nvo-c!#dDCMi$y)XLq$o2X~;nV>@i2 zeAszcKJl7sufJmArc18bKYSKK@S`Z`7&d27jjV-ok7sQjq!v_f8|epogL-{zAA26& zJ`!x#e;hj$Ru5F#s>m8`o>N^(Y#un7jaOcO#SOz@{owfiYp=iTNfVb}d)fXgZrDFT z`~TZ`lLK>|ZNRu5QX4+2+?g(oZ!@TZ?2lpk*6h7fs?Atg=B%jP5kngGj8aJqD&aSf zc;{`mnZssC+qN4o+5X(#AwJdTgRf20FtvOjD} ziCm&>+t1g9R16UVZVf}oL1-2ckO`+^)bke>YiR=( z%J_d2VlNz2Kz*Ck{~v|;KMFBZ^Z$=Rd_)u?UlhQVya=wSodT_|1jI?6Xq;Tu*a_WX zIH7*;S)4eR6@~yr)*Z54^kKf#@RXgSr3g>Hy#eFl$+zr@l5g)xJ8ypH3EJ2fa{I`o zGtI{A1lv+-<*z|k#&HXI)y?Ml?zViD=(Mgb>fRGodD)=pdY z)U0Jsr5yLUJdg_}JgF6H+iGDg6dQ@sFH>Ml>c(a*2TNCO#;bGuPD?>$*#a-Tg>n6=NIL}ftiW8J(*r7J&CK<^=Rm@J@Y2$`&;XWzc9 z37u9_Pf80&76LX!+nfhh9BES7@m(Y0=#N7Fi|E{aWKY+I6k!rk$RAOoO;X|^T&_GR zBhGuQiD9M>jA&$c`}o{pxmj~pF3acIzgatkk#TKjcd4|3$WA6cJ@XfLs?&)ySMv6J%s z98g8H_q+Hsottb45>Bp^c_l^3+RA)S-s9vx37Fze?v?b!PMEQ$98RwA2z#xqJl<{; zc5k_R2*-9yE_Ov+OLVaSx7OC|F-&pWt6s8lApTLhnA#hqJ*EVIx;3WXU3z-lw)?Ur z;zeqcww<>^SK_LvMRPREzSj?aE}-W3gYLrDKDDs;e$XEHK|72qai5hnCbu7?Fq`m$ zZUMwT`a!3fR$7xle#P4x&|T6C(xgQCKt8d9mSshSC6_?u-wL>om!DP`7ykKFg#sqm&PaW5^M!=bRqi0VTEXXq9OWZ`X$%;flks=XQ?M?j|Zq8 z@q7lFYIt7B`f;US=!ctK;x(x7ph;JhhVA9D6zs6Z>5}LC5nhp?@sSMXB9aT2o%C!@ zm;HepP=(9>R$`=70@^BHxa`tMDYf5&%l;G)jl1kO(Gzpo+0){?>=(9hXM8v@4P%i% zBpv(gTl4wss*hBsy?fsh@qG2MW?hqVuH_l2w!`NlGqyDnoO|x=5VQj=875buSX@9a z5ib`O`YW}vcm`M^oh|(;v&ytBZH8MB(ytHI4k@ zc=oOkcEw#Q>DSQ+7Fva$R}%dseEx?b&MW<0xI@ppi*%)^ho0}|!%;!#KwfNDvUSO0>rc*9hqU zuS**!qr^7oC@qxT@)OMA0okFr9b8`O6AZJ9yPKUlyTrDHqDiF#VQVwp?mbwomusDA zD!z18co-0HBCOnKQstyZeVWy$k{1POM>2yt?ha~=sdQ4_wYWrx-qm1;Va8*_(I zo~$heuce9Ips2dV>nIGhY(6z^oHF_P2zCsqKhVc%K6Ll1(~Ol z@bi!;{BVn|K(K5gwZbyd*U*v_0iTZDolXFnT)jJ3R?irh$ygdx(CJvUGExf7L zQTT2;Y>ov_Y8(oomqu_592|!KPlcp>rbDzY!*j=7UuZ23!)blW;&Wjgy_fM>wLUo0 zVU_usVJ$4RWU&#G!~P$hD5dlaDmrQ^Y`?{IrV2aGrnppPN9&BBfqR+-&d-iQrO_Ce zN*l__P+Eun@vpa7PYxefip3160jn=)^ec>Lmw#Z82`K_{Osn||Z8&!?XgI5wbZFrG zBRa;ALOG~`STZ$0FJI8O4jd^7SE|*Xc@blHG*s(#j6wapd<`Mx^s8@ks@CXQ{2JTP z8?R$ZC@39lRHxZl`wkA`qq>Y#o6v|FgOZkn`eSAm9@8LxLZwltH9CkN)~83&THexV zYP3b{h&0NXne)(?=1(l9F%?ZgL4Cgk%ugDjW@rRV&76}DpNfC%u@~W=6Tm<3WIg)_ zDfp-C=AXr_$@Gtf&?$D>zD|v}?|>x!l{sUuwJ`4AV*uN5tmXa<0aX(O-#j ztxeQt#R_GFiBG(K6ZN@R30zd4?aU$e&g{SNI|&$5i?sG@VZEYxu+pg=8@v|3HV;)> zCtCH3?Y@cdl#L*KOPJ@G zH4(H2lQ3DDYMA6Zm6+2y?X3pv>4m5%OqLn}Tchzy<2Q7N^C}{(e+7z13(d)7#wzCe zIQ->fo^j={tsA3%V|vc7ctpXne_@|y7A!l+z3*U{C4xxtWag#>YeTD5s<#fE4^t9H z*O)EgL5o2a{-R&$*dkR{A{&FnDO|TYk1(<=zOf)S6GKBzBOw<8LMzEXm14NR5G{mh zxDSn(_hXs{dR@pgu)TkGp2J%$Sbq8l!|;b}TLgD%71_~w>H6HHA#+5MVobM@rp(2!F7D~5)&ravo0 zCZX|Fe}=|4RHpjI-uR*GZk<~P8>5$I(4X9-Vk-09acm$Mo@z8|mX|(t7?C>W5Hn3E zDulHLrN2ySk-6ct3C}icSU?-aEK21Ht!{BrFDP}|4cs$ln_ z)f}LYDJaN1bJ|aU+mGE2DyxP4i@{jeJ^`Uhw@~4rp5%H=RTqC$L{O%@9^Hj>! z{41@K=XuFcESvJKEb63Z(RR^P%ks-vZrEI!M(hp~v*2XBT#Z93RMlHzmMN2~f`w^O z+K`fZR70%nL#7OxrVc9v(z(jmt)xG-=CAkC#kNYq+^Iedb2m~%wQFNg;9QHGfyqf` z2GktHMbAo?{z)GvVc2YYWVx0(Cugu{!e;xSiV}A}%CUG7S)LT*%bDf*cYK}o@KJW; zV>tSe_O83;dbW8Sr*p-BDRCVqihP6R1%k`l%qLVQ1pygck-#=7Yo}LKO~kvq{#;QI zm-NY^yvUiCX>}l{Ot!OI4)gG^=a?%+V|dQ|VT_yS%(JH)IrEyi@AatbCE@H;I8FIz ztqBUg1;e>g;RCwatctrAL!5Zsm8;2^)l+H;J@-0%My zE93HVuZa1x)n6L7?Y?q}oCZiBfS-m{)oxB39j&%To2~ZfsOyy0aCFORO;Ie53wz>8 zA?=Ov#5oO3n-zrsVVCuYZpKT9-s{j5etBjooImzHL+jj3=A|_i+*;b^-Dq9_gwDTG0ay-q#26_Tb^BCx7c)Lg{>-&#d z1}Vk=Dpa&i^s=FA$LHw>ow!O@*^;cABt_Qf=>&jbQZD4apO>To45{sdpy*4#6x9IzM)o*meJcvuL^kAWfh$6L9zMf z74iBi80IA~v1RAhuvki+>;7fT0nXIB7_;VH_!dt$Ibfj(X1g+hVmY`lzR5BySoQ6Z zfc+gW9`MWT-tD_af=U%x9Cehyd}hd+;H5kntdrK!VuU5vF$ z7cLWGfujyRZ*apD->I|O$0xp%v~v8S&@nJ(3W>$??vu-_& z5AU@IdHmm+MGc&Gp`W#d-w9OM8v*IHg&$z_vsC6eh!hOrpUt<;FM3gfofnMm!yP27 zO40MMCW2ymYu1?DMGX{YxwTeQi9Q62xzH6)Wp(r}j4%3kz~U>LFJheR&lk=|eZ%m7mR%Vd!kt8UaGnUVn>` z>VBjd6!w?tP4CRe@`xUyKDhs~-Wr=Wl5bigF*&bT4EY}c%eM*Yi6Q?8O^e5n8Nt6N zDa~WZ$vV9*glR>%mY&-T79|GptpI3&D$b2B+X6bnn?DkiaNKsu62+=K_A9t(y(~tu zE3}Yu>&4^HD9@tx$$sE&XIlVQ&bD{aI^pl4ki*S;R_>Y|9n}}D7jhIFxkc+8{)xI* zMQuLH%th-9{lMLX62KLqQWvfBe(;5e#Cz?LNQ<{}I25%T!IH5aYQBt+vhXco-u=c4s{fSP~N`W<}jb^O;>>)3>-mumC(uth+p zS)K1bxzcXWwZ^w>IZ$m^I#XjfY{_pexMtsV{9y}j(Vf~dTSB?Brg)?L*DY;YaE;9! zK6~HJUE5KK@BH)iMe8@S#^heKD$FJpt!Dw^LKm%kwMy&O?xTI4intQzn63EG8GY_5 zFGJSjJKYCRyB0@s3>FOMU`phF=UEBgdSxA1mi2ZOXS}FL*i?18isDVYm_tx&wP%A` z>2TP@x!EdenUovTsL4m`ivXuga5}8oWcxU5I|_Bga1ghJQdF#vRJ^)a)IO9qwgG4@ zy6lJ^L%8DWtP@3hd!4oCM#Ku(NjQ02t}Hj;^fHFknV^oc5^?2=c=|oJS5te;0;WdA z;?&gA^%1Sb#O|nMAZ+GJwz8M4Vt3S&e0m|q%y)7xq9?YK%btAOqkOHhNswhB7YSbI z%{X-km63LucF~HX-57P0y5i#c#G1Tr`){}1L6AYP4vX{8GFj1&x97}HRIz6v41pC3+o5kmDJQb zhZM0OVAyOQMlk8Z0>LD^&r}uH{hg&0R7wszE4cI+2h!Am0)cU{`KPqdE|q~oQC325 zktCG0vXK_G|FB^7I728i59Je93oFv6r?Pd8>v2g&;D$5# zgVMNPkEiRh5Pl=7P!;_>fw9fjQCKY%FjhbI4#jJ%zK^DPjMaa8yGSus9JsNy6(8th zQ&iYox6QO)7I*6VpIULT=;`b9U86*mt1jz>RmEz}h2`o@wT$)W04}HDr^e;x^pU?$ecEEd?9(_ktA(ZX+$Nd2v3V`c zBu~a2bYHcU950PdGEG!%ry2J>i~I%Sos#A^$msls|_2Cm9o1?8K*C zyS7r|({??E{I0Aqxnsx*vz#wAFW^={?4uWOMur*`VdTFFZLbl4~x#_ipWx?ng>aCTokJKHZ|HL6#!%{v(Sh$7Ee0DaC5tRyy;?m zhd!{Ht5wn5;l4)QS zZa@!@nD_KYqVs$zUU*M$rbe42Tg{xR=_iupnx1}v{s zrB{~x44M}Ag^1Z~UnuQ<_NA*<$<=wkAOm8|xX8k|q+R|bS4~}a>}l~`d$mWN zQEblP7#OKP;{`nYc*leHxd1=^Y{#(FCbR?(#i%C)CCV2G&6#+w!U+}7C7n0?JDk&T z+wNdPccCu^l zYDi>_Wae>v#EbG2!he9_Hdht8&wAl|d6)N+z3=sPZx`Mvz>7>lpVC`23|((6fNH8~ zGy$l6Ty*AA;(Yi1=jb_Q>6y^pa`XPb&_=E?B@==*O9C~{&HFqVauNVczXWSLC1T^- zpCNbjPHFv*p(kej+0)`%|HsLSW`#Dq;}UxX&soaO7GUq4=L8g7%h0PjUP5K77fM7P z3#98JVrpH#X+JA&yR=RtDva0)xA#JI7sPWdY{++^X&yuVL~j=<%1{7L)~BN%biyhH zX0JkYi={{!?IZvUfvRb=2`~Go`}_>em0pN0QMJ!!jx7zkhM9HJ+t?buUpZKsG~(@|TO$+8w0t}J$uGTih^b-x}D^#$=z*^_Um zeW+Bo?FqF~wP2OH$EGa5EKsKE&0nGJ6&9RfBn^hR8H-BLPqaJra4)-ogjc6)O(3rq zMd&*9+xPC;wtWPbSfP~Np-L5JrRGZIa4)~)itYTOT;23UZC1RhwkB$gLt#@wqmvt= z>|LeQnwSphAeH!ak*nMNE=aCxk8D@&O;!ujkfdlY>c(bF-P6}q({INebYJvHEhH^I zkXuH5t!($cc%CjxXDbbSqtd~r_6{FKx6Ap5qWhPmF-Jz^ee z!~^jMd@dWh+8Z_UpY<~GpYYLSo}pj0%hV#4PH-R67QodZZE>BGaAFgeJDuq7q|i}q z-gml*^^)YoGER6}+CM>-_0~s{IEnX)L?iwQy3f%MqY<3WOcIUzfxAg0fGZLm1w$ui z!k*RWpXBeL5P5jNJ(A}nmmN;h$NEanYQ6nl&9LO3p_@Lp<)lx;58O>30bJ3C-|8kL z$iCw3PJb7LD8zg2kwV8Oe4+$-aH}3p`U|&7(#CwL2=hw+#N32=c}~K-!4KR`7y&#d zVczZUq7Y$t&pi_6Skp62P-U(BT~b87P}KO8e>QGv{8dhBeAN%!O$`BDQ6t0Be8=BO zA$st>d!)xeyfR3T!h76%*>0~rc9Y=0a+2U!KX5k*1aL(HZ)KxL`@1Ma0N!(t1UNpi z9!n5no%V?o3*()Vj9va|xyiB(jq(`y%lyFIWD&p>Su!N!$^K3X5r+3&gfRYZ&7%&^ zB}qTi^qN3L{xrP?qoU;(YZ>Z`o~E~Z$LPKbwrOQazet?z{G<#_JoX53!ox zZ`PmHPK&?E8i~ny#kOf*4_LnSt7n_`ooHHoo0bur)p%u0zzzl!ukpI1f=6IaVh&#n zjKaF&nCf2;^$^n`rlv<8(KhP4UU^vq^|kJ3cS^MYg-&pdqB>#gsq=ct?Nim;^)j#L z$LDbS2vM25zZS!n327!D>LEZi{iPN5GicCrrPpy;G1POkz>3+aDz9nvhO7o!$<)=? zwC78tB1g61OB(p<4gF3U%q0{Gzc;?qK@~)kJD(EGnkxLEmj(ShpAW}vAGz8`X%vw` z>Hi1AtSk4JcGS`uZbx|;8u`qW9@G0T&=pQ~|HG`0?q%esvXN)U@XqxEcf0rkcy1T} ze19i}TzuZQ-)$!?MUn3WNfs;2`egqE-OP1$P7+P{fxAg0fGZMt!mP9Y4hoTn_uC_R z7A?&BLjMfi^m$%R`po-*yXhl84?=b88{1bB%=Ff8y=CA$0 z-GmXqa}wr3e;0)a!+Y+LFntNL{CpCWI2kxeZ0IsN!5llMze6N)+L=WC~ zkM!s@%zBQ00&WtViAH(ic{}{T-6Rme6$!jy)=T_d6e0lcxkm!@H_ZA}|Fqm>c}h;Q zRQ$l*WD&p>Su!N!pudwsgyDS`A&mc9Gt8y!f?qFNA~|nbG>JzdKP+Yga((ltWy@p`hSztD z9!|U(j(()Q>keLrdx>#zQP^zBZ8H6p!rI>!!kRdk{$*;kN$MaNSXWt}qgL9(9*))~ z-We4QZyrG1e#SAu=qP6$5pEp`sGd8D8xGaOL#@%7M)OdqIXyHY{+=q8Z#Q0u4@PHj zwL#)5@pf=%wt9ySivH9g9SEDVrMmuwc%y$b*Qixn6{DSaB?lQyhjU?lngpd$50J82 zt|)o2BqgY}@OcY$|EIao3`fUnIFmVYGHc7unEOc~Y90s3&uySRC zVF)!-1hb_(f_i6m3Rld)(z4G2oVo~_^?EQ@YB6yoZ?M_GF6dksPH&kFXB$miJ_BtL zHfCnV2A@J?Izc&~6j>lH9vJP4se6I2=Qsj!Nn3FvjYCeY7&1FbY9nl`n?RP38ALf=|Y{yynlfpxXt^QEa0Y4 z78C2wvGJP_^r?Ep`hTNof5bY?ydMp@juC9gwT)kwTsyw09Z|Ma@@fwym%RRY25EYb zS3NOb6V{t5xRV${*(R^MHcP9<_{*{2@^GfqskP}X^XLc30%JK7?7JG@HA^^O2{#;m zchITh?vpaiEnZN56PM*+7FN6+OojM=8?x_|SMzv)V0`nXLg)H%Q@YaGSCiCrXykCj z>Gi@S^=yLRmeg}B;O0P!N$Qzw{3e8)lDY*=7gti(LsDY|8AI|jB`&Ltpw=is&aiqGhmJ=pSOt@>P4D)Jkm=QQ3VJMH3+h&- z(W&8!I@Z$=$9A(5j?jAjaHB&@aYU5{v4lPl*25-QY7$|muo@}yg7uAe3Yn8$3DEgh z6V<0NWG0L%yGPk^Y#2sT93#;;3M z9pB8|bfj5Qv6nrZT(Wvg26>9h>ZS5*l`g0bqbiLh0#>v<9W9s0R8E)LC8wOJ6Iz04 z)eD7!cX=6CXFE;89$+X)NEp3dn1p?tAh;#$uPorEd=!(gkFxQb5cH{fB<%BOy0{W{ zG9)ZUupwbKeq9pg_-2dC82Wfgafb~pmw>!A1G~iqWIG*(3x=@p$Wn-*i;jOK(EsUVIzfSNovO@?`j{OL#%mB&de2{ z*+2v1GO<>Er>#3r^^RMYi_EI5Cjpc%jn*R;XQ8Pk7Wt~Ox?;8KEsU^JOJ>;i6bOhy zyisP@k9a*A1{QK5dt4#gDl>dhZam|Lxlwjy*1T~G7_rSKv0;VLpWi#8pI{<7XZ1rD zrmgCSGAM3f*C={xBNuFMs3*toiA_AmH;?iNvC>3#!(5u^=S4MV#0I{c#+b$n&Yh1x3bp^oqU;67g4>Xr1wYFn`UP7lLH_e9e-yXvc9%*X36V^mRZ%zO_IywGU&K>%l}++iEBzpvB7Bos zaP@QEE>cQd3E+u)y6L@6&U87I2UMt{tRiIe0Rq7C>QvL{O?cVI6fig2^7OACp({uF zmw7+;kMR*~8@u5`4j9vTGmU*A_4p(JC@cxqR;9VBkNy$^;W}&CMN((6rz4=VSbVdW zbAKZ_br$Quta%ro8_lD%0$XYE5mPD;t5_#%(A_I@zPhVKm)s*2ecLX8kg(RTx`IjbsKK|3e{eYdm?Ea!aW%HiAY_ zYndgWF7^X=r!EWNDs|a=_GO>Hi$aOZyl18J>@t{AUDDyPVTJ;e&GfZAeQPEzD>jRU zXwZF6T%HBg{E5p^#sn6-KE$32wjpu(f*pE&hyz(;awje;%q9|-j|0R$TCJ0vdP`h@ z`7-q7Fk3=b$!jl9ae~nDl_hh4$xZ;oRAXl4E1!8o*v8HlA`=kzPL0ykRL&V`03NKv z>M6&UN3_)u3bdINmCa)&26xArO`AUUNqp-n)Y?}ca7f8)J9E3A7xGkJ-Hy~BD z95&n7EEGs>jRiM^*t%$xJG00PM4n#*IX;bSTN4k_~Vn8 zHyd+}PJ41BesgK5U9McyXwFWK42JEp2+o4w5By3^Pzy4>*SAR&8 zJpHPp$T?}@oaGi|!zwNyXoLohfI7|}q4j~BP6#@+rW)d=!_mc!92#6$+mncG*bb30OzUi4B zx_c7F6?A=qwxBWy$YT)~{d}yb;A36=`+h6FMMZ@LzFk?AML+a&_pk1EPCf3as#{gJ zZucEBe&5FriaWP&ovJ$L)H$b4ojRpS;2kLSlwGL(au=$`qq1?=0FMsv&oG{2aRH>O zAvO!$EDCFJ9Q?77g??B!sk}DvF_}g!0ww1|B}=3RzE=5O6Jg>c%a4vHiPhp^MULI5 zUIUtY4j?^#2ykK6pUQgX{+-9J`+8OY{+t zt?ct=vA(C=9E+9%?C5D|=ep=g_$|_fQamvhL@|0a->r!q5KRf+t>v5J{S2ar9ka5g z9a=MX?nGwV$zAf$IA3beM7=l@zJ;6JY!l!fY3JAAj?UbKt|c z1a~kMllyb(-lSenp91747}d}dpQ1*l6@GM-WTx}S6ness{#T}x(nas|i^|QB`cQl# zE&iJ*c~>S>388yCR>~xF4{nsJyJNQi`-A#$U#31VvwuPKA%-rupiwZ3-OU-ZvpHr9 zu#*>iJG6H+x^HJ1oxt!nuu>)rPus?p0^C~qiei>>xeszdenDOP*Wj+HVmmqus)dW~ zxZNPp{Y!wIHemz@{5;@OF}Dz%nK-~dxy2rpw2b6()n7^MQORXCQ8&3q#W6e$j*|}5 z`t=>w=>3yH^C1PezxRmK;fd{0v8VC(_il;f5BjR*p*?VJtUJt)%MP`{0(TTHoLU!F zh4#QiTTU-<>(+_lOf}I1dqdm7RNF3BiF`VC4_qu?v=aX5BnY;_M!QREF5k2WLk~9= zx*(hwP7F0iyG~zP*aQbzOMQ*Xo<4R%%f>?dRiW$j(|0h@&<%oMhODG$w_e~Q)pShX zMp|psFhp^!Xeh6NU0@z!Grox^y`H#9v?Oj|LR0sAn7;$GcQDUNJ-~YM2NJ~R$3wL_ z#{HY3gr?}l2!^}yiCNf*AT;s2jq4ION_{+OqrwO~yj}5bKwbt_0T-zokbAvNI5r?T zaLbAYP-`6O8ui0h6J{u@k?6|V>T*4?{NSxHy$5IUN|oJ}5-e9{LYxz<6u}2N7GYvn zm|UaWhcU)-P$;VsJ_5Iru=Bn`RH_<1ABLEtt2tc+@y*iPpjnI8Imz1cBC~fv1waAY zIF;N9Q@cx0$eJ5N%TUldRoJl1+blGW83|X|2VT^gI5q+Nkf{#M!gq^aNqufeG=*=F zsv?=~DOd^S9E|F&cvSwH!V-{3082ok#uSZW^Opp+7H!3CflooJ+!pv}d}6i$dkU}x zBHnvcP`y$g348H`YapiML{J)w;6G*Pt?A&4u2;&9F%0@RuXS3p)&~yh;$WklJ>cbm zhCtki(*odv)2C+_BsN2+=R!A<7@w)MC_IhyhFInYg5-9V@eA$;a&d-~Uw6Y)ps_`d;xKdHfBYRl4c~u!8ou_eD#m;NaXsdzU%!5Zy8rl8 zTA%FukA&I8{^K_QVvb7T80UNudyq$*Vbuo8)RFs;-l-?`gJcw7pKrlPoO_WW*ZN8T zAX_C^hivt%vQB~Vamm_+PfW71rvS++#8JCa^{n0X+F*9M%J!(>BtNbjVVSiuP`WCO zbs%3Cnf#)F?dB>%hT4#Ix}KIYtn<9@SynT%m3oRD`vM?Ywgt_Lj2ea#w=Zb08I!YA zbt#1+E@(Ez4YY2WC<0%hk&I#_B{*CAm8(JR9Vx;c@z}DjU!?KOD4L}lt~!`oFy6jBW;`80^6GluKz4fs|M*Rf(C&pd-SL6^eS<=avQ zFz)JdJyVxjp24@K^~tU-39|`xxeg%as4f#aPMth_`Sb~B(XxEfrj%5f3w_dbF&YwV zQ6(n~u-yiL-jULj06=L7e3lfjg{5tf4E6s1<6H}V(Y5bKYxh5NZZAa3t4b+*j zn}@g6f!;j9q;vu_bN`W8KGgOBEPE60N#;E!c%z+l%CF+Oty?CF+Dc%+^m-lB(^F~m z)Emv79wk#)d?G5$7xssEG26xeL%#kC_^lnHsj^-Niee?`6 zg2`fsbr}=4OL!4d9iXRq(d}@6u48yLe7KvrQ3R*dHY>L8d0zNlzU8f?`*2_8ZNfVQ zkW?1bk*vZlsFr&N)S{}<&wzwEYWq~7%{BfAjK!ky6Ovl`OZUO|QngE_16F)k2qLS$ zG-N$20f1_kU>&M`X0ZwGJxE|vwrxDV5&Flq`WaJdtpkU>b^ihV~203wlA*;ch^*IvsQk;de3K5!anK7d+9JO@TU>bT&)Z z8NO+Ce>~32iuyjN8ltGb;BCSo@C0y(^)m90;twiONl^JT5|K0dFalr*q^i*^@G?gk z=VoLs+#Z4EEW(YLSW2}=;X^6aWXD0O-G*c6>10CT~?RWUZq#An) zmTE)!wuteY9d&S{R10fFjup`N)SL zSvh8V>MIq8D@~Sxzkjnxu()Ii<~ZNeNO~<-8eYpR{z^ex67WZ#smp?N18>%5qFf}r z3S<~zDq4+TxK5+B`h3SQ_%h7#D|PLxl&;-AaEG;PH#oaSZq;-0nH^%$Lw?!$R=9kj zLT*~$S4XxSzY=0D^CHIK#C<7L@-0mzVbO_uA^TRjL-7zzYKT$Oc&3Y=<$^5!oBDiJ zJAEGH{YX9j`f5LL`|(!+{JZgNn#x3?9E13aM(|dDBbg4s^0wWI(@Tsa?J_$-m3iiO za%jmPXq4~ukJ5g_(mjE6dcY6dPA36ep%YV4axjVb{4e?&$wVjKcAIpXA$6#r46*U# zB}-)Y@sY6qu)pti1Uu_E($P~0_2eMxF!tu>XD6by4NQtG;#)f48drov zUWPOTBN%G+;v-w$x4r7z?A^w*n$}uctQ83YaPeZTX-keJ#}KcdJ#qZU`k)$~KW~bx z5rH__s4)))d`ACOaoyHC4%B9y4-cl#ukA!x*Tn<1E!w<$9IuC}AuhjndYf=8vjy-( zqAYx`idny5fSLmLpopB&>kxqH@vFkiPL&teS|3G$!W{S<%hAvQEX$x z6H=|yM1Px^6WkLpZJk2tfqm9$y{s|avla_yDPw%jwNpG`yYZNOdug;D0j#StB8!-N zIIer(Lg_qMk!~t-wiqe16u*M;OK>u+KgKAq2|$MjrS%ohC?k}o{Wj$$qvM(rZa}0k-=oa*j*w84JCDq*-Fp27E~_k3JZnTi~j5 zfDHPHD_#MoSBL?@;#o`a^8Y8`P<yb>O7D=`qhDv;HX}6K$ zYnAUc5ylVCM&U`eo;9Gk=K#_}B-#2M>zVsg)t#9&$<`kMwwkF$7fSKOfS5$q2@pM6 zk}VTE@OvW3mgSr9BwJ=>O*^C~**fNhI`!O0#G#5LTV|UusPrUTW+lC&0ZFz_&8e%d zBwPLtrY70ioKyF-BwJ>m0^}%|)+y5gDJc>Gp(Hb%MW)abNw&VsKFuY`R(~c`387oW zN|}VNH_6sWramxl{(`6um3$_Uf?4ct&Y0B_Y6(+Bdq>8|J2H(AUP_4rxTe0ZA`H+Lay9@s?SFa+&-vf=L(O0m--2tD9NrrgM z#0vgdF0yS&6G?h3{gp(>rCfCrnJwA27^*!-+VFSoDE>J|Ks^&T@Har|JaTazcD7Cf9i#s97KE&59)dA*qw<|y+7uOkn_-bOITyt?@IEI>w3q2}|;^QN5s}TDPP>4!ZqyK;z zlB1_OR2*@qbsyl@>9ls|<=TntA&!tsPKC+-TQS+K(MY-sW zi$Ij$;80-x!KnI0{WMEQ*bEX0U^7V6n8Gq7FW0ruDz_S5jZe&KU{3*7L&SUENnWlq zA!Rl@1@FttWj7k){4uVx@YZU*af41eLv@WRi(U0;Z(YB$9PN=DrZY9O_u-0TV$X2E?4yKP zZPW8N=i$XcfIhr3y#d$yGz*nRAsT@<0>4ffSK#`fI^>6>FB*mJi<`yL z-g5uhG8}nv@2pD(%0o+eMo%O-9vFfhOMasi_Jv(yRIFB2IM5GlyMfSRe)#{^poz18 z-v(z#zr#v=-%w$q=#&49}>l3_V$+o+^0AP7loO^e9F;vaI<%x3N z++Cin;6e#Qmz**K#LZD+%zP(IyNO)>BuT5|JRl*>nFyPs+DJ%qmS|Oi)+Ki~OrHU; z+QjrWsG1L^jf6B#3~RTMn+T>wr|p!vaMT`=GF)6E2}dnXGjnNUYDKXda!>$N;i#3e zMbggSYq98(_5#iNq@$K^WqKU7uZK?ZCD$A9i7mO(r^b0uf=xbQ33wkr|`TBh?vbA`d*`kE;bzAENsR%3shgwyW$2~w@oa+w?Zko z7Nk??T82TXuhkl4S^P^pLOvsO6#Cc6gq`Tq2!^{qDF|BT;$%Ib1LN9jXgSm9%5Yt45y=#&6K)f7cpX5@Q4Tvin#3er3cnUwb$c}FYbk>RCZ+UfO6CCx zya8J2NCHa$Ab};=>=Jkkdch^|&G^J5Fnbz*2~4plDe0B1Do#6>y(!ZQCw4blQ!V$3 zgEexw>Dyj9+1fR_W==N1B0b1_PNeG;CUoLGiRTXsZjrspBA!1G*KOT7u@)H#N^l`f zF)_KMUH(Eme%lhn8}{&7s2URX@Lg{cj)fuzp4rRw2)1SQa{a5f7umdAzhooV*-Z82 zc#cp!1y!?qxoin93@=xlc9~<&?Ff>KE(|y#?vFl$_%T`Rs4nXy4o<#2{Y6}k+h?YO z^i!Y`c%d(wrd*!wI66Du3*XDVyp{BzuSMP_yhDHxRVM;TdSORYPAZL!& zL7*__Ho}=OBBzazkmE9O=@zIZO##V_z@qO%zI1JFhAhS;05An4ScfU#Pse-_^p9Hu z7vmGN2H4a1TLWjxJig9!%+_hDnE`7unE|rF4whrbTl>TlBtW7hzICKr=1Hk+g#f1) zG+C;EdUdksGT84i8;I++-Z`;UJz?7v!0o4Lesw(B%!>W*plXO>f2+3%hiDYQlWCgq z2bHuW%*+iKRf7>xqgNsThCr$smEdKLaxjglxd8kiH0l(9#MV;seF#36l1~l-BwrcF z(~0Dh06_9dux&}c&p=1GG0DfCf+Zgj#H1zekcn+6nVt>0E0eZ4y6aBa{LQ$l z--^4+o_t-+A!YOGb0EduC2&o29C-o380q<%7dwP<5}GcE!;>|iodnfQD~qLtkw&?% zS}PT+EU(Pc!tP4B+P`@_M6U3l74|sJNtvGjQmHdP-6;EwQA1Y)4#|Vfm<**_?W$OL zG;W~v<^!cGl9ZF1O}S=do^+m$eI1wnjLd|l=pY2c)fX-1pJy8bU!K{1B0Ya-N~e5j z+3cO7ov{^}`Cr&7w2L;2Kyb$~?W84sI{})K z(OiA9i&0V6XU4ztK^@sr-cZLkx6|92#;xD2>-9H9RKmZRUz?b|@WFi1>IST>&-|E}^R&k!^ zHvbcVitz2Fe`Pe(m85D#jQ{r13P=gIV#V@R>Nfwc(t2gzULxEkwwE3T3#ikDlT6io z81#;>jHbUBp72kZsu`c<+DDoYpu2u4?5~iJ_VG#8JO_HJ8l}1`I-gX{M`9b?9P*@U zKHBJs&U@KB*GB*>pZ(zRT%QD0vwN-?!C9(i#sqDqYMy8|IB+QPhi^533tMqKZZ#4R zOk=1u6Ce4SUOP~5sx*`f$^w#~A*k&u>>e2^H7hm9GFWMj#_{->>X7O^O?1KGlUGiO z(hw%xB1l7J`zf#c`YJ<}W?!Et%taDLp-UX&;=J=c;SA`NE$Qp{m>(oDd>g9UlU<3y zw!fyQ#o7$&BbQ0^g1D#8%RPPv?B#LY1DEO0gG0Hxo^UJ0eKFo_u3X1Tu@04dl3rbz z46$$XUn$OY4<=rAW9=SIcp0BG;DV*78l4i-8_{&8^5nkG=fjosFw$8O-SMZQ>et3INkbeQFiwP`zdb-G0#B9RsMFf5RO*N zmEW+@0<|V@(?A zYzwu}{gPqsJ7pOw*mQ!)v!}98rbR((tw&Kp?2+X^=`S{mh23D0uw*F1kj(*X4lr8E#eU49gP#mn@h%870lD2_%(s+1-7~%HYvMx8v(1c86Y~sTt5ZRr zXA5wi;ovszyjEnTkVvvkxtAg^;S!YJDVaK6X0)Z#P@Q(uhevy`*)i=NZKSM7{(UhU zjSfH^xMzE!2vwC?cQ9+mmed!nnI9UvK6(8DS0$wyiAJkb^M*-$+RL-*)W!h_ znf3`b)`U#M*SX2G2N9TCrhU(7OBYF*WZJjcXmkMTz&$eU=TP;zl4-L+rV-*bndV1) zfK2;6A={8?&j#Z;U8X(LKBE7sBRYSXreRl;X(n<_nP&MtA=511Ebz@@l0|0CAX#*O z3ZfIT$PaZgUmv|AzyK7vl+YKEw)ZY_DP0=?Rpe5V?iaay@b_8-txIPixklQ^rL=7u z*dia848?YQVgdH-$rrWG_l`Tg9d#qu0>N?U+L@x>;A*z}o@FeA#J6wn`zVVS7ke&( z_GlB^tBv*mc2y0c3uXW2bt$gfx^V(ISUD1S+%+8yZu_R^SH`2XZ8dujRPKYSA*Y6} z^ETm#-50%c`IYh<@!FgtMsog5RA02HvMa1FZS`IFEQF2z2DPfUujr}39!XU8^b+SMIN zIilX%u`yhrnJqd4ds??oAaRlGb=r*`i;@_l91a58LJE`o8HejSejwO9))uA3e?NB3 zSogrx)}(^m?|>(=ZGLXl(51aY&|otr_p8>rDn=fR8<^-c&f~6*|BOd#Qw@IQNtlYB zMlhzn%6M1Dr0u%Y*D34OQh#CeO+R6FsJ96R^KjsruZ{15fl+VV)v?eIU)kB!ZmPO+ zwz?vWJ_1fG_ItBfheZ5iycOn)X$W^E+)F(ZynS$W{7AJt7GXTDdRK>tzvd3+1rZ+s zsY3I(rk(v2qEgl9>wxMUwP=ta;u>``AlI%@-M4g{4t1nbLyJGWjBrC(sBg>nMG zY_r8JX|ZV2E-4Q+YIP&`GkmPgJJSZfN`eR%e!$md#n}c_eORz1AFGE=uoyyC%7t@3_SgepoI^Iu^9#T zwxysOKNWszI7yIhv;d+~f+v*IyowzNh(bl?oB6)R`{-*hJPOvBy6}Q5dLpJ0r z`c=AF)K?_aE(D%XeX+WD_S=rz;<^(TvCN4=hr=@ENT%^ceK^$IO|fBs8g7aW!q+}= zXE(+2%vHaBEgnr+ujQ(b(t2e#$OyLygX~;@n4>{vJ4>L<4sMLy1Z~=lF?HHVLo9VV zf;wRyf5|qWuwD!;IE^slzPBY8v(QnvM+{{I#Doq*&^+84R>YV%8Q~$EL&93gQiW#! z9imfVT1mJh&cjMD7hq7g(V#SI?3PPv;GwU;J!d7jUadA*c_khPV1ua)L2TY28_7}@ z4ci!~ja2(#kUf>b;c9sh#>uZ)<0p3UtN;rrhw}w+eH%K&8gTDg4MNQ^gtl7lsaD{| zHauJ~I8tp^*q^f?BprTiuu$7#sZ<_r7I#(4@xg)#+dm@B2Rb0l6pb{r)-fG}X!QtF zL$W8B8j@*EBPjj$gD*gzxvB9*d}5{sdkQc$BF(A*2SDsyNJ`{CGGP|0V#NK&KMY+As#y4TE#fjm!<_ClA!O|?@~2Jjr1YV0}- z{es@^v|iawHNtJeRQmyNTaKpM@hS6*+iDlWFzmLPHnpU&24`=~ET6rK)K*+(a_#^J z{z%M5>kd*#0&58X^r-}E3c7TCT7r>secF#tOrNr+0DUTyPPot8k<0VhZrkTU6G#1v^u8YMQ_28=Ds?<1E7YB z+}q%5pMDvCk-Nc?;_aPjy|Rm3!fit2HUVOeBKJ6pbR-Vp0{3&!q+Q@D7jH>%n>G>U z(pd5g2-|%C-?=mn5w;Ql2wMp@yRiK}^nwf9AK()cw(M#Ag)K$GrCc18B$gK1yCGcW z#xZ5`MxSZhn`1>JP7hEdOO)?P$xczMnS>5oD&5Mp0g3x0gl(L7PxkRsf=TQ~r{6yQ z_qcBBT@y$WCuqR!c8bW$<+7l^#)G#lEWB}7{|!|`qJ!sL=+lypwI2tr@6`nyOF0hP z;yZN4v6SPzy~wsbcPzm2Y7_TK;%=y#eS6N9a?vlT}u}4A+d!d?- z9ng%bMvnm@b2I@$1UNSYu7%;)4S|H<7Un?oYN#SrzGOgP%O`|TYI}Vp0f5SvU>z#o ze?icV&_AyA--b_2>$9iv*ZQZ+8)Tdp1SK`ArtULjvXo7Au)?yXcp|Wdf~WgZgsi3) zG&|l87*}UU7MIt(aoq`(mXZ)+3flHB1^P@p)XWO}Q&2TTfq&E6ghL7n;K@sY@CTKy zB)ZHE2vt)NMWat50ER%S8r=;qbCh~scIM*l*U+L}+z~fRIrk)dE9IQ*KFGOya3r0a z^N|2R&PlLs$+`c6j&M2m-}uDj9D53ub3_W0iZE`ujU-cmLw99ja7TCD*8xqxNOpAw zKC!N{Ctp`{xDIILONPoXs%5+ksLQeBGGXb0H~cD~OH4rB`{3fAU48u(o?N;hk zjmn9c;|b~*{*M5igBefSiD({%Vu zz5kZKflL(Q?Y2pwIjV9@P-YtcRSrV_N#l6JKMp$;9u1_z@BP5-R1m<43R9WhmqQSL z(FhK@Sl8Hw{>?-Q-gXvB_`lWn`K>A;&wc(A0Ttn!PRGO7J`p|cn@%g1uY-`xmCM(v zXJi(n^~%2KM7T|CIvovM*y-9!-Yc{nVDa_U3!$G8{wePj!e_aN+6>QVf`D>679U-U zC?j-oeC`!G4|=Maw7SNa#x}S?<+)errAANmshZ8neIdZ|ab^(~#Jp;97p*&Qo^{Z*L z8*%)q_ZyPySBoa>duHlliMlw!7D#|zLR8y#2Aw8v$?*iUn5&yY9LlmhaE-4dPS{GTU=7! zA0yVb(swK=?}JJ{iLWkXKFGe!Yf1U7cDnmD-i6d9<|F`;*k~CEG z0i58>?V0D2vJR*SUsBc>6^&`9W)_+O$EwP8xK4)ay;b+x76ZQwX4^t zOUi0muk1@o!fj$nc@yBe(Oj&a&eV|=lBGmM~>^i*3eA420=+Xss61tnHo zvI>ajn}u4i#xfYo)2-^&Lp8(D$K)imeFKNr;7nVwz_yfe^M-zcZ1$t&db}FQ7bxkw zy8vbCs@Khw%JN}?T6sXH+r@BzPVMBpP_N|?CW88k&~|?&w26!tAHhlsr33;wZp(Pl z&P_cpG&eK~-7k#y4%x*DcnJdgXrx-KkHVb@MYs&BQmqzt0n70*;9AQoTR4x;0rjsU7(i+Z_EGj7{cUEm|66tvKD&6 zXjGpQ+59h$vT^AU)J3@`2guVWgyQ1LjITeR@^AbK%x)fkojd-F(tGN{w5)S zQi*KWmTwk?Fdngv3Bj%7V`;P?`dSK#@l$ct&zIS!saO5%78jJrORsi~7W&J(i*WRK zDZ5UD?@O^m+O@rqlLl`!<2yj*{-uRoBTaVbxl|k~6swII|EbU{!dd0UNNJ!@Y!teN zYYh>Csn58SUAq%rs?P^EW8tX9+*$yYEOQHAyXRIwnC>bBz$cOsrn|-ft#>oq3|hf@ zuR{o&L1#eKd}fdlrYq+QUXK-HSDP;;a&7a)@=c$~YH%$U25sQASa_FBo9qTqfZ+g$ zBIV51gXY@NDa6P=*UmGyP7B>&{4%B0Ux7pc4SBt~%!%N%m8=TPgf92Td|R%=UhY+S zPnl#@hM9x{!`ESx3`T9!R2wtCfrB;HDhBBYP=c zwaIjp_#)ER?F!p` zk~`yqBjuljpf7ltQe`P+?tGRZC^2{NwR`S_+)4Liguo|{c_-aN25_DCv(26#vi|E3 z)S-H2&%Z*|d}dGLPC7At@Ybdn!P@jO@oSqtmTy+I!E1`xG9gB~E80-%aKcXE*}_qzPO7RhI%2Za{EZREK-4T!=coHyYU3maxnzOZ4wx!CD_EbG1Z zv6${8?F`4#(7i=|XGq)oiu280h|66-0ICNwy*IJE6!5C@xh~ZF`+yh5bz5(pF#CWx z-@`HxkI}Xz=RL004^=}BYV7ki;fRzLz!Ued;Cq#x?zt-W1@S~7Q8Fqa0Ol{Js?k<> znWJOZ!MNP1I|gmpoVxlQEH}efAWm6EHrZtu$ad_#E37Ew*trA%VoQQG1!~Y8EcZf3 zxa4{-J~7F~p2lBtofX@FX?L)g@f#4Q|SX12}oe6uQ z{k1{3)OjrG_~sRiSX6Ib5fQ5L<`q5yQhw&iI6LzzM5U_HCjf;x>dgQl#C7PYfLfal zO?tuPS;wVNL+Vq>pP*0wS@3{$AM}9Ty0R*mb8y8a!ZbgHL*ZeX%SC-(*c8?jOBsm- zun8n;Oz9YM>&lCvRc;cTk59}bU{3)iLBxCCNhZw~vIJ?RT77t=ktJl($fN1X0hZ8@ zN^|-_$vF5k)?%J4nlJLf?dGE~PfHF~hWd8b%U5k)wY0Eg$zHf;d`}~JK61TrK9Yxq zW;rD}o1uo+Qyd=s26v__>8eq~kc73Os(f*l?t-a_&6sScey7T*opA#PE^V2QkTPhK zf>?RlKTcoi!`I%Cx99KU!DZLVgqY|x2!?BAiXB}N&SBhrs>D`KQ+rS6^t9J-%1wMl z*`{h~22$hqe&BX$ z2;fAGNvq@l;E8&E(96B%U?v*yHru4Z45>2&1&B!}FIghHj*ry$WBh%$BW6BS0y~@t zJdLX=*@XO)n(6X4V<#?eCJQe7-|CT;J7bnm1ZbX-mgmBl!y_$U$Z%@tPjw|R?va-3 zR$-*&hSh4M<(X-{vPW7HZWED~mjl{!Tv#0ERnB}(5y2pAYYI&(#~CAi0F{u-*C6|F zqkM6}V!A86tR`f#yc9DME! zblzMC2Kw{ulorF_|9cLN?{@;#RR4Fn@qL$3!w?>J;~SeXnagE-zaws7q8Z zjc@rY-%r=_aFa^9KOS6mc(VlYF;F=DG)X~P51OVDof;9zPy7oLCM#;733HZdcCwm%y z?YSw=aGk}u6`u!Q5xQp|H`9U6OqyFU)b`WbuLq2)norkb{>_QiaoyHCCd^KLj1%b{ zBDYMYr1mtp=o}m;Q!{xA*_Q#-a3OmMeC^XH<1S=ZF2}=QMt+eC(|TnWvV_}&kX;54 za}=`2ChSb&4=!R~2@Tp7D3*lw{s}1eK_s_;cwGUoI})!F0Ekx!HoJIjK`*#?eJegO z@yedYU%XOKK}tG%lT2D<)Vfe98;3B+Wb=-g0>+nFvdG?h;<~L{CyeY(;Gf&(v|XJ`8vB2ahi+RucsH>>4pl=ovA^bR!m)|X zfoq%Ct$_0}4`Ew;wPc)+`I)yD*@BOM%to$rn7Z`z1Rp;RRkH^l+cNwZ=VRhD_8fD5 z2O^4B3_2smj~+n$m@M|ZE_3RN6IAJI`v39b+d=jJ%@7-u#Qu<1aCKmx?_S2`t)vfO zfwu|o5FlFGhC32h*ay{A?0{ZWHM$d^=BV(~1vgjw8vs!@wVx2zGSp!sRFEoOG9Iww zKM16>?SGU2K*dY24i)cDU;kq0pNJE{Cmtt&PvfuUH_2S*&h+)>l+@IFa8f1NOb2VI zWO4ukYAAHd>@B1-y`VYK4;WVGgf3wH%cq@j-3gQsiO^vR*7noZ?~ezXSz$MzYKX#q zgSQEX+!Mf)Y3uO^m8vAJT-&m!nTVcI9RV-|Qq|~kc$uT5^RO}(aqoflY$A^MSjx74 zgfFFRlU;`a?Z8oV5*951fNYas+mdY$Ku5T2`#3%^*~XrNWgC&fq#%r2Mr_IKlF(h5 zbJEdWcgp%N#$EkV+*S7E>uL@u>zBW%*cdo_5DxA2v+J(Ac>oq1;Il8D7LT<~w*S(r zL(+w9c)I$nI+*UEk-6O?P3`d!BcwT7Il7>+fcqkzaWj!F40@{iFT%d?$#FqK9-{lM)s62OT@o}_$3{suBph_~A& zg$_%on8fs%t$Z?e^9v7x1HSN&SPE!A5(mD?KR!EkUKdE6oBhD;)DggmI#ZcKl~YLk zMI(5RzmZH7;%#T4kpEkK6Wl6s^W2~LGN2-Sf94B}in_{BmHYVb&#+{DE7vVoH^Ki` zTCeQ;GlW~NmWeLW4?)#-x`>ha-)BPa_)_KH@d^Kw`QPzbu1KVI2T}WDVJ}#{Ek=U9 z@yY-G8|av7E9&mveDc5l5!>L_iYNd3pNyX9yqC>8{4An-mkvSWUU&ZY$yc=F9cBb) z`QI56w3+{XBALd(oyZ$L10R=~;#koUfHkyOq1Kavj=iUFQk7(#?JA`trH)(^ujLGWpi3wxAm5Zu@V&sF#VH<^z>93J@rPjrw20f zaeL0#mf0xno=F>(rO8F{2yKf{@3zc#s2bv)-05w?;V%%t6UiFzy*g`2JDa{Oxk^Eg z0?{$rh5$_Ow4#&i!L?PBn_(r#g^u=)BS+4 z)(R0|3-zw_>H`ofFA5SEhYSes7km@j36GkEaIkCa_9%Td9-~dN`t=UsC;AG4F~xnx%m+X9cEu~?e*{%Sg#5pGn{Wtu z4qRJBxH2C+>xZwNSIRZ>0ov+n<^!=dlbH|r2*Q+*m8euTx*LX=qY_FHJX{?evBRd0 zOs1AwW%J={shA{Rf?~Qy(8jtj4LOD+0f1tXU`FKhGFx)$rq(SJM6@P*oR&K11Vd>iA+UIbaaEfy03K2;&Ge127a28z)Fw7# zGP_G{Zi*Y2$h6HPZP1Q*q}i1xVJW%-!E~rRYu>JSmFHfl8lpU}@iyU5o*a0P@_dUQ z{((}Sd<3KceJeOCQK@RQ7KWIk@=O&#Tz!5JT1~Fz+$n=T1m8;qDtQwW=mtR_s{+*> zW2atJZjRI;pFZ9iP%RJb0hbtNJ%_(yAz9d0E;Va(F-oR7VYMam$F1TX?5YD~EpVg!5>TIEK-xA2J>0qiNj2oSyRBxTSRmcvIL zI}5b}jD$h1lU0URRGM-c0bG3gJZvYqp?33eBqLD9EfLTYf@dVpr7PXv7&Q!Dv#(XL z8I!qOO83#YfdhBY%S|E~nL?o-+Noo?Wvj9Z&G1QA>L!kkJO2`u&=MVlV7Qj0pbvSN znDv0d1GLu^uc5t$3_s#@Cw28GZ&w}h8HYn9-_DM7Nnjwup#k6Oo3K_4&!uXVmgyO1?WtnV0vYG zdf~u1;TlM&ed3NW)23@pFAp{Am2zVYGj5;P+87^6^qfJ~u}U`*FAG~S$4zvgB~3Po zVYYwz_>F*Tb%B{h`o1=<+j`psS>?wVkt&IFL8i0EG_+_8N68dRo?`W0fEq4V?}4v< zI^;PJt7}lK>ai{Vkk%`^SS8#h#OgHwF-Ng_v_5Bhi95JZ{W>(46sneU$G(Xtmr{~X zK%l-F;C8f0CINszm0+_A)Sp8yxIldvpO`>pPvb98$rG7!>R2a`wza<|Os>WYPI)T0 z?Op!k_0EjPdE;jVW5|_77HRuTT(|Yk2_kJ1xaamac|>zLZ9Kitr=q;RuPIP9#P>Dd z+l0gS#er+SuaMKmCu3VYw#+zf+~w^>ws^8dY~(tBsf$a`Y2y`8HT!8}TRfTTv@ypV znbW3yCYMAQH9>42O-B5fEH^MsAgdYw4$ofQy{`}RPSj5n=AP@!BCP)-g(OSI`~|wbjfhQhQAfk zx9v5O1OO^sf_12L|0&~Jp?_Sf--b_2tFx!^*XkSP(bQ0nVzCLUEVyR13}@YX!_>KK zqJve^QMy3rC6H{tj+|6<3{%KsdOv7@1FW_T(@=O1X0<93{#M{f4cZ9 z@i4hTucOE->AnC}LlpE6y-heIodBLZU5r1dG$j$`(?mqg=<^7GA&{y@?}wK;N;fAP zbFub2Xe}w$h=XOg#P8udDbHlLL7sgON6<+ep9BE%OoDAoo=x5<<=GT`V)BeV13$}?~HEOn*iK_L1fc zrDirC#ccq~%f0S1Z|{Su*?km@;OxvBV}dr%ydAJit3Ck;(h@io`NXH5&>#}$-~Jg1 z$!pz!kIWWq`vBJ#?*T4%$2E_yEB4e~-FC1`jz-QEU)aeBsi2J|qxVkU9}7InmW{bF z;8QH$kLw<|sLE7iaFt9JT-yh}ejSh2W+!-8j88z-kQL(}y-hgGI{`d#;0xcY)}?#N zp&Ech)97&oz|cokqi@5@PPH1-U;MyVDl>DfcSI3Hr_WL{4uZ{x@1;_d!vIn9AdaY$ z1*8N3D>4bz6kS0F!A^$$afjF`_{0{F?8&z(i*CT~cX|-){5|DnU#VCcDEIe4xT7a{ zz&*7nkl+Ol51G4euin1CY~w=&3dO_pWZOMGxRLH^5!ax5%6+9;e|c$Pf34mxWAn&Z zpKJDv8y4nkGRn^Y+Nm=vi|jltuG@O|fpW72<4>-;C@|r03r59}JPKJmMEi)JqNT_+ z+pkBqjJJgBOJjuD#IGZc?INh;v(}{K!#K9>>|5ogx`UBT%w8)m!AHlwpgs<@)5j=t zA4wdW&LbR;9&1N@7Hz}cF?pWn;_n848ou~@OUhvFK_S})n$6+H#%0U)Kq7;YUA?8+ zAdg_$zV!nBuxwYgwrkm7vC%Bo#hcxgYPoNuS*bR9hesDdAjo{|;Eb5xLv!zU?Ml^=!n{i@OwXfg)x)ZnI+kUYs$FoD)X%TDbYJu&5=gY;0h z=*h&Z?&xXdU28Uv*)KFlhs%5-9;v^hsrPx&xKtdvELL43xSseev;sZ;ELMUu-T1%b z&j(2n{Z(n62juCe2&P?99%|Hho&bG8d(6h+(Tyw|edEq+;SfP-pqGEUll46M)+8E# z^boel)r*8kL-`s0sOUg_DA|^)KL%Jn0qEIMe;lf2U#=qiMaFV@9zd0VH3$yjWm3Wg?p?n68B;9rObO&ijL`fL8_rvsoq&OiO6=x^9`5c>^s z0@IY3WcDmQB=)FX(zHDqpO|UOp2pv_-4@68h{T}IJzuw^Q!^fH$!^@5J#d=0t@lho zt1sF6wDYDuosopb922w@ABU6;D}m=!*_pnjveBqv%y0WK7;MIz8tSB#b|nS_^~MeS zt(h z3#AKA!-9)j-v&aj+xqEMT6pfyu>M5wmE_BG<^3z8hQW_^<&Djl4CqqcKZqM>-8BIX zHicZ$M@Rll?Vz2I7}`6M2>(|+%JHTx@S`4RziN!H)ENq40_>Bc^s!1PP zcUU8egH6sU;LPueS!%T=Le9KO0HBE_SW^(DFYvE~k#jxVhfhoov!?((ER<8bXI{^V z55u*mf#Vx^Ps^@*j6O!10@1U` z2qudi*X5qh!Dn#K@M7LU|I-+XgU;Y?^TPMCFmEN@ZF0G{3GWc#46YxGWR7BQRCBZg z8dBBhmq6GYO^GZ5o*NXSFf6}8;XJ4NN~kJL2FaknwvPy*)%Lnh0sxaif_0b-{&Tu- zhW>G@;Vt;YtOoWp{#L^|@{ngcd$#JC-HqAJ1=(~5cETdJVCnEI?>_=1)LE3pB)B`S z+q!)MngoP*Q&6{muJ@DikTV+q_e0eX1K=y(CLGdJ08gIl#UE7qlBn}(I-+d!F$BO6 zNL8cT;bo3eGKjsoczhgM_KU~ldEY0Xj+BdXI3O4A#F2Fpt}Ow8T$Etjl8etmN4Q-4 z13odi$ex1bB9X?VsMf(q z@&(08{p?KVd>1>UbrPB`oWsxezAXtV4hP@7y*32l;Qf`s&1>LZ;l^mSTHIAFH`qPH zc+)V8lke-V)Ww&B5I$b*W09r9#pZx`8!v4Vzu@Xqe6(cA-u=b;o`#G&r!bgY&lDdA zR9D4Gx-s~CqlT_v9O4X{F{hGi5AEokqy8o`-NnjV z)-{lAmgBbROF0UZ4PGu*6I7T2?`7xNGxhx){=VDyc5mPfr{ex@KX5zl1#rUs27cNCyn88e>0h=!dq{XDsy#HB1x0@_n0R1hQ{+}|9I>)`BNZGX6@E(2g4Gu(?kF# zns}wt(f%ef(Sx_#COwX@nQ{rL9BO^ z;h!=k5;<^)+nCyt-|C`;IuZ>Ay^F%w`nAbw3kY(uG{J`yo zqW~UgSKsAtB9mRsTlU+BXfL1}^OYP09l0?->F>MU;Ju$WOlJEedy4+A_<`GTFMt#7 zoo>t@`oU+yJ8!j3yyxb|{EdG^c53`OkQ)E(2X3c^08Z49eoJAu$v;UL&lu1RN8MZ- z$V3(1dYe?q$&GoUe>`@YEQCrS(rK9=xSb{fIMKxG#@y_0A`?A$%WcwQ+}xO#`bTJ| z&_#h1>h}Y;Q%C?0q)^@8L?#OHmfNJzbK=H)i+{9sYP~6tTDSRu+o>gh2U6>O{w6X} zi?`e+wc2%Ke%?O-I{`iuNPq|Z!0iMOzyk^J3x5-t2*6uzlK^eFG5_H2yB$5hR>yGc{5pX;r~{5W70Y+8bw2dg^c9s##{tr4tHY~;A^iVXhvlS^79Q9t7F%* z#A74%%2+GMgU72^;6=Kt*Q`|!9xqJmmEDa=xJ|e*i-7A+-I&Z_$#dW?@OTcyY2$NX z3@uxfPm7lB^6c6|4>;vqv1Axn^YjZN)*63qI7W{>5Bx-xVzu(ha-*>2fZAx!}PPE$8`_frCd%V@IXb1XKg#f`n%&%+I&{t zlTUX-RahIAVp2>hNO1&DG)eFCHsJ_%6~Gf2*73b6!rb##<`=<3YDCNE4g|o^M^&RY zz{?!9i<5cz=Gk|kHM?fv%q+A@^dNkPKC+8I-pFplVBUlyaP6suq@<7l6tE64=0Cdh zE9eN9WRKtzlVt2EK#~aw&~8?Wvq=ZC+O0Q{!>4 z`A>pR+SyHbHm=)x*96)cO3=WRgSi}No*n5jMmLkZGI2Uo4Uvh*c$;v@L=Ifvz&=z- zfea>?E%EVUY>RI?83&qA_4Xp$j&v6rxsEC|ZrPLdcnws|XGhv~pqXQi1ipD7NYxd@ z`q4DRkI7<3bS0;6@ImGay%=}UeH%k<&_U)tFMKcS@>bH-`JlH6?-1Z1vmJY6EMPCP z>vt>7h}_YCf;h`jzlR8LuIk?c!?CM+=Yi!GRFPU=G9YOE-wBCqT`-1deF*@xz69Hr z*1rS#$F=^Q_{6k6dm4YOf4V%q+OE3K5Hlg0>OjxioD2lkSjW%_O(Co41Kjdw~Aq55SFIgy4|(dsG-Y#hs42VOzu~$a@Fu%7&kD{X`Dy0{L|yn+H{0pl@g|+ z%?QTSTp5$)U*PSE*J$4gRYTO(mEI;C%)^0e>rGd({HhGJLXfC2Wu(}~nK4|i z4VUZ9(J}3&@96!L(IS9W`9kPJ_{0nZ_7q?sM7;N%Y~-9#z8Y-jzIu7M-ev^(>I}}$ zxGlF~aPvfR6e|5qGYL+xnFMitOKRX*gn7B)p}r!%{;J?hJ74>C%opRjtqF@*BceM~ zR$v-m^dlT9)1i6BQT(3(H9U^uG5Gqx#!;+iaTM#d1n!Td^~xScLAd3%jiSXq0}yl6 zVz$5sWp;4=HKXd%U+T1xu@tG(QK~h`HlP4L2cvQ>8jWa*B^Q@j5JG|V6M__m>*Ypy zs99`QYD0zEZVXT;z!~(BYMk#QOBI^^hrzH_6W_0!#2KUig(KlwZLX+qMqAu+Nevcx z5Y|&DjWn9IK?n=!7lWw`?XJ}a*+`ZaMr$L5#z1YP+7E;5sSFNR%Y!h^SvJ`QykJUVf#mcreQN4fVTo4sM&!LugZ>QI_=njPuet*2P@y8`*SzjNmTgZt9g{x3Ib z7^1{}=MFYwvYBd2t84$QaRaS)P9QT*A(PAPzFUvL|0xbI9hreEWG@&pJC( zCg+nKYCwmi3;ysd&MS2=-4uMe6nzEd>gKM--pX(nByk281m12|MC)XUyZ;6L#Uq4+x@Mdj;M6Nep1pJ%1ZqGjq-_A4LGkuC8Tb@yxSboWcV3#r*Qe(VQs zKU*q*)6v^$TsX-g$UkWekNca+bo`dL?p9G=O3aYrGeL!e@fSG){s;B{&;I_~&&K{K zkOs4cbWv*vPCE?*aH7E!&xwNtJkRqepjXS%5I7iZWE?>89235Q(WdPyd7Y1Yx@f5XM}&syoLBI zt!Am7KwR#D*G?COv7xkKOR-UIY%C}zF|KtOW-qJN`^m)Phc&t(Dt@{Ep`4m4LQhp= zM+?Jg`STX?d!cQOMc-1+?M8dC4WVxJua%Ar8XeI^LAFC86@cYsUiYnc`=M&~Ln4gc zENvm<0Y};$vqi3(q7=$A9Wh zH|ew!cdqRpy$Z#n@(WG%HB2POB0WdGlf=iTK{f*M69+TI3`x8vWp=MXt?Z65MFxBp z>AT~)2X5yj4MW^yr+C<0PT74b9=L5y;f;EH0IG&WJ$}{Ogd^&a1J}iEz$v?*U|U?4 z8mH`j>g`1~0s130a-F}_wW;Tn-D6NS9|7t*Wydk+x2;gu;)!fx`{;hekI7>5x^$)t zK4JG)FSZ>t|8IuYpc8g;YFv!k=en0|c`NB&i(|b_c!vPCL=tl(sIUjBQPBadsA_Zv zK<(62V@4Uz&5|atxh1zAkkm4r1g(USmZwcNz~|D=lMDxJc$Yv(+ul(L06dNotf`vC zR+RrN{dv$o?jU_JJ~0O=d-8c5xgK1|R<2&fmI)+_{yy9a z&QRLkEFdMosLJ)a`1FTi_QiEuZ%C1l1eySz z$N+-xRcewTG9$30*9G+r(J{IT0WkDY)#w%QGDjI^Wm+z{?tzw)f=kc*@gDd_N-No2 z7{nFW^G?pjNdO?NB-pm3)&0;BF0CHGCnl}f)A&oPjq<>#^9-;qFEoke%3q{cQEm^O zw!Jx4L`w7k`m;!_qnscO$wdbvh4n};NN;~f5Z-Qd_$Amk;<^VekC77@rW9-c%UqICmG4`~#35OUHz>{Zw@rUekjHnqsi~vkI_GNgPqa1UxF_&d?hHbKpI9OU= zhroAIp2=>*g!-yLLEF}s1OW0(f^AElErkAYd3HQLF?q(G#$TRosuoAf^}Zp9+ipjq zEf2H7sF4mlDaRPoSOscGwOPh*ur5(wkz`v3_*Q2@7Tau9T(|Z131XY6!!~7Gp{J+P z=&3iFJv}cO#={21>g7X2y<3s~+kyN$`2LTv3f(9-P$q3uoU$*Dhn`v5odZ=vq}|KC zO*o{T0DffaNXHO~^7yGrc{0X)b{x?>IvW9)@~;EYBt2K4>p#&8fUDW#E4J zQp!Ntb&!F}aTJ}{bP@o_Knb=j8TcmX2$zA^;S-aA>}mXE;0Ad)iYFXWmpyb1PM}FA zTj)Uiou+qzZki#lcv@f#MLkdsS!wpgJ)|k}ZowPvn06fYX-0jI$72E&n8* z{*AwxOdJ2a^>oEyr9_)y7gMj&)s}9sI9O&9R05rwN`u4w!0j{;z=;N)u!|G@4P?ST zZ#N6}{om?g7bL%;`;cXrqR%tzVhf-mJnZ5OMnQwvN_v6kAnam23%k$`ooq_$l|Af& zaLdIW(IvVSaGj(5WUe1$6~L{hGW0)bJ&|sdanGh1Cc!A@OC*zk(0!K>G1g_J5xjAh znp=IiR&S2%8G+-#1$Jn$QY!3+hz%v-dVzVL;Jodw(E^$Sg{{S1@xj+zV3DL80_3O$ zvYYw9tP~sm6I0g%P4>_)FsB4b*og!M?S%|bsX;=aLX-c8*2)`sX!PzOo< zT8v6r5a9?wsT|o_)ed5)D<&pL8kh?);U~ z?v7?8-sy~c9`R+N8&1S8hUI;s28ZQqyEhiPb{8AXCL|bu;P|dR)!M!?KI|_J?OD06 zTnPVV+ zhybiH5I;6R>+GH_2IBjy_d0~Y7>GxpYW5fi)KZZVL}tW5$oVi$#qOlV9^|4-Dm?a@ zo77DCCIR4^vn5MC_L^HIQ$6;Y+m=GrTNz`?KO}R(-^gC@vt%%M2<|Nj89YWxwSq@dl zb<)g$NfTpNn=~eJZIj0G%@$?SAV1NZK%RoX0=NqG&doP1Jc#{s4O}_G`>2vSXzI*N zL45Y9vm8$a6uKb+jHYweEMHoHc>AS=RamTDz8ohJyjX6XA>N|}MK9y2Y@^JN9c-XL zAzi89YZYm3r2+%8rLP}B0AhZ?CyFTBZ-CahJKOwdu-@ws)PZ^e>;4|9<}^QWe27vW zcPy34Ea1HuyW0FPk!zbDmTyjy^TWe4WOtbWg4q5QDfmpVy&vjiu3SDApojiKhM(yN zR|$$8_%;9Zt^lZy^G~I%D?PIQUWFEl-4G87#`S0KpbI-G<@psQ} zQPQx4d+3d{KP$pEDwU=>aMhn=xat+C&waX|e*=1{5->dg^l77pA(rgvey|yntyG4W zZfT5$dMs|B^^OU$bE=R?9$}^35-sTo5`hf1Nl4~GSOt9xCo7|7G>x&gWr?sZ+8GJx^-x~^t! zLxtw(aC{tAdq>lMFAPi-w)*r}kDm$?w;TXfn7F${f2E1*pFzUJm2;kEQ5z=i7olZt z;(iIAn2F1tf=%2Yb6lS7g}%xYza|!iIqpsp^S!vM-;cY>o_t-UBr(*_?tx9MBbjO3 zLk{I0b|4j!fG&cVFxX@iUnqwnd-)f|fiC!B@eW)x4!|;TU<#Lg153enne5}Z*0cuX zeJz1FUD`SVHnoNtRhBlk4>F$bfrPk?G4Oe`rZ#I$xH#vnYnw4s!7fe04lX|FstTpY@VimUA z#%>zpy9TXkwUOrVNONraz@gh)GxwB-%Jm{#Dh!Zj_7|JwMzc6L41dh#4fa7Rd*RPn z;?I$K75+M;Su6GJDwg)*uh8&R=wW?yto6LzwOSLrh-Kx+^Cz_qX_QONp^?G9t1)-( z7`&N_32uk`O0_}Em)ii43;3Hd&!F4r+h1u8^sxmFbRJq16{^JsoCJp#b0DiQ>?Oio zD*MWSzR9gw1I23m=hW6=<*O@zHOM(U(vTlbZB6Yj?;6w6j%cs@@5v9DaO*Xn%(kixfGt^>xg ztEJ{x>rjqq1Ls>z~NFKWbNbhAB@Vac{m2(wZ;ITs0w2mYaLRB zeUXvko-$y(AO4 z<`zdFu@=2*O|AfY9nwECINTSrARv~#051!>5gjRYD0{=08_7?vh8yLP{#xJFgUC|z z%2yB98s$EkIks(HS8MKYc^Ga4 z*bO&q50yA4;+tKNpr8*YN9$4v#hmYD2xX`krNDt@-#Rb_KueYnCBj zG|ad$xLu<>+;j5s)qu~r_1z@{Jia0DY#$WC!(=TY%kC}Ldn@JUZq^0}fMo;C!74O1 z6H-RQEb4C#jGaHDwGeo6urHpT@c{Z7!^k1mx8^lQAwl=meFK#}16BAB`1jyy4OxFq zW3UJl?Wz%&*9}0_;p}hzXJ55eD#FdKtXLW9hfCFg z@tVc@o-&9h7~NseDPXN8$X9^TU*3)4yY)QnEuQjYuL0Wb_zz6DQ0Zsyr{hch9Q_=% z+Cxw@S~KxATHg2(`{DY=z=@z8*zcgzHVw>dP2-)31^K{KaZ}6*=sG_Ul+-4+zEKVE z*3?P^c7evOLp$Ys5Gs&qVgCX0MlhEH=+8N*KVg^W{DDiN=i?UOGXsi0V)5yjP<#%H=g)#-2^N3GV$y6VZo=X= zEY{C~Vlx(}9|FZ$SR6DLim6!KgT?!>n0F`?^RajkiyvZf&O9j2$KspMgW|hbl#hWT z!s5GF{0NKh9}C4pSnOK>#ou9Z!EsQ$6pJOW?GY`<;^SC+8jEkA0L2fmD4hbu02Y^Z zL2)G(d%B?*#Nzs;P~3pUxjj&9#o}{Vd>Mx`c^^FkHx~(P@IIt%~-q(izn7X@gx@SJq?NvVli(M6!Woo{^?LG!QvZOJcz}* zGoaXn#m}(#6&AO=0E#=XIP^>?j=-Y21&XV%_z4ydWAPs^gyI=2Zaf=`F)VIA2a0!L zvF=842soQ+=<0KSX}-JD0X7;Lo9xZ#o8;NI1P)tvA7qDwL75LgvG;HJc`9N zS3>bxES|#R87$u42gQf6IB_Qwr(p4IEWVG$+9DLEVbQ${ie4e1Hekkt7;_xyQM`Kak1H~RJ@KSen^EKpzYNPEzRgS%?gSYfhHk1$@wU(eJa z&XldPO3%~agFRYrq5(YLge87~WdN91rP>G@P-CsxrCPPh^%j`f)6Wv`Zvs8>hOvvl yT!38XV0eJqX@G*{4aSz1_Ih^wn(4UNm7!8~q#t$a9#n6$`q3B^b`zJ-z5fr^VhG;= literal 0 HcmV?d00001 diff --git a/master/.doctrees/api/embeddings/transformer.doctree b/master/.doctrees/api/embeddings/transformer.doctree new file mode 100644 index 0000000000000000000000000000000000000000..8e422c26e57e775ce6ba70a0263a034fdee620bc GIT binary patch literal 173647 zcmeHw3!EfXb@x7JclOD$>RM3#`f9|bY_fb{1tEzh@ z!|(g}{phW!y7!)Q&pG$J?yXa=o_p8K88c_lf8Nr@SgBk+HdrVYtF@xjXnFICwc+tm zr`l}Y*;@aa*6po+ueV+}+Nh1!hnYB&Tz9_ zs|MXmb4xv?dAGFsOTFIQX1Q5$lt*b;G zCT35won0ZjvjsuJEn>sbswIIFE44J&TWy^cUr>GRTKNkJY`cj|F=tyr<5R!45YrhL!%`z0 zyv2kPTQlr$M-#T*W22Qljj;l$kooA+aOy{#7753VfO5URR^F3+t*~jwEtIk2duS~| z+^dIjwGpdi#B+YlzL{*L^)lL>BD@7exC8246Ir#9pw=7E@HOokdZ&$!SDNKKS&e)^3j7Hoo*;0qilq6R zTD5XqA(*d{dtp(X5eEwg%R%xWc-m90GV>IA)aT7V$W7QSElwJM{o{r)OKCQX9oWBP8(Zcd1I+uaFy}bO#$bZxl$xUz*5xCT zrd zvo=f&Z#G(`e=6Pf#uhvZy2TgbX)$ZQe?6PPwWZa30b(LABKc+NgRAc08YrwdS%E3+ z^%jhjol21lS4aflL$Svpxgqz;?`bZ%h1WW;In`YA_!yiMa;f?}?Vem_PsJ}Yb@7nM z{{*vo(x2fB%q##uR4YacJuRF=^}<+5LEh`R-l;ZfzN-hrHs(~x56mBf*s1MK+XF4m zxU}ciS2k<);nE=Qc`Kh%uQ#t!hTK7BCDGiI;ph4@7J!1ux_$JJd1=x1Z4Sf1n>BWv zjMni1E+d+Nfe`K~G|Wo(B>ZC)a9T((LoM(0c%KgP#afLP%GH*;7DIaTaD#D92&uOa zcd%G0<>4~a4{LC=P_N>$7c}xEzVuIoGpAVV02{Vhs2_5gEpL%ZK9W>-2~A; zERcBtp~}`$yl$r{&8K!N-MRS3#uaKhn>8&xIX+C{NgZH#*rAmk<^>!|pp+TLt~z zK*&wh%_n`Haz~>4Cs|Pbcxsg6l{ZbVbf0k4V>tW!f+M~k{($lKCyc+NoN@OXz}oc3 zOP>w#1Rl8iXqyRk%L(7H15WrZ;e@+iYX_G5;iX4O|HB1WsAYQL?ij}6j(F*trN7r# z(m%FI)|DOuoga7Kj3G)B?$h{(UB9ta`i^&M^tzXBb+96VU!6wa&h--pi+*VQ{UiPF z{?bpy4c#BM`pE9wSvE~<8hE(L?kwuDS|E*;=*|Js0ydX7w^zBPdByHh^+_8)*j=GC zc2^N#t}Mgu?;7ho`rRBxO6vTcjUAz-w zjtt*6Se;V*Vd8a7ZTE29mjR}GGv@5(>FO4`x;3~e;Oc}s#D0hAx4UlZ#Yl1tQPPK! zhefBDN6?OFwUNqiwP%`RAY^r1-I(!A&$V{MsgG1@N0H9RHwvR;6(>Jh7#l$keR^`P(ch-zcF z683qY7u%BS@!03m-+DtZ_w-(`q?`MC8piZ`uhD$jjk(UnXmZ`<_gHBW<1W7woown* zb(imCZ54O<^mvk({&U-=eV(m}KqvHShUXR zN<6l5cH(&KR5Z0M`sjFUSL#iXom&R>Z`r&v2*_5ngKGw4l3byHY!poDFd(~wgk!?J z09d(n%>uI1VvLd!kqK)7pRYzkOl3rNC6G<-mQqA^IrUgAOdR+=RS{W%0LMjS!`6AE zi^%dA%PP)dJ0cvBjiPJ%h>S^0l89_t>@vg%G&@fN`8eov!bU+QB)hQ%d%WEc6EMmx#o$P|)^e4aUy(G;4=(tVbSQ+L)t#7j~Y>@UUs78*@i% z^&;&vY|QakZ1Oi89<~aWJ^Fem=3dWE8>k7Jp37)AXJsfP*ob->D{ zYZgWIMcEf6gc7xX^P}Yk9rspTq*OWg9abMN7DiS_@BG*i`@?qISAD{joAf;TN5R1O@YwFj z-52!r-ZvdQxmY@f-MP~&ZMjcpX(6rB!vO`-J9d(K?x$%O)3ICIRydetQk}Mw%r2(w zifPd2g&)XC{+)G_F^<~bqEk{=;ft)T;;7B@SAmJXejlb+w3EpGAPcfjbb@RTxBn)t z+U-71{3$V=IoG!GV#xYmsWDCLBt*+&SDb{km}){NVGWwvY5@6-hHFFYH#%e9aQxM7o=Kfw9B-&H>p?<=o)Scrm zR|DO6YhosxDA{@y^;j)5AXq*w$3A6vem&@R*8;Jwl>f;eX^CwOp;{l z^f%gc0;b^e!bU?S-TJaNtm-l6{P|RXqK;WU4VMYqKON*=MuN?3qqxCX<-P zT#N_N>CV0$t0NVio;?|zGIL_FrohZ-Ch93pk?4Ko>Ke>~{)W`(Cys5RS8P{en*+c) zVQjOn%>=s^+w9nh*kqQltc5n7BB?rp%zrE3=3tcus{ zN^m3eExfW%(3~2g+Nz$ONrU|e#=xgYTxn1mPlHINgaaf*}Vabn@ z>or!Z;a%=SsXVT&R*x%k{H)H_3nNGCkKT(@wz{Xvm3lXL7az0QU8#2jeZ9MaZ8JBBmX8pkkg%?f#Kq*6DpGNip|68piaU63a!%J+k@;(m}E|OX5m=);jwbC+T5y zN@|)PVr>;C>7-z-h^&_>^nAz-6Vp9jN6*UUygFH&zP=2j`&eo;T1HGtca5lFhSX@bG#}7VB(3geI9FhtF!9FNhi}u@0W} z-N|1A0-`8e>T{FzP$uRGhhWXv?0Gozc z(ko<`_h76J4fFLF0*3i7@Q+K^{Pa+i)==!SSkbV{=TrY|c3E_VT^0jovCEGT>dY=b zN>|J-v#UwA%NN$2QM`YbZ;Uy^tfg(Ieu2lyfSjM{wAuOPP*CsH(y4g zH?r&@@xKIpr$t=qN@;71yrbK0S08XZZ^kkR=rgsMZM^Is&F6YllE%B5=_4Mr{s#p(!Y zhShn32FPZ0L|0fHF<=&}GfcQMt5c*aW_8%rBwL+}u9r2dFD^8kOM`0GxqenO5Ou<= zMQ2ft*nVI&7C=VRb0d`miygF|DoFa<-Q|}%^^LjUMWvt=1gjQztQq>dSg(!M#+w^+ zDDn#<+zbkE=Z9+J)nb84P9p=%%4uxO;SCg&ps3Vv&{w3f@N|SKZZyZMgo9r;Zewn| z;p8g?ej<2dZn)AAVK=I|Gw zc5mm+j|YIJ$ARP6MI!u*Nvrtxfq)Xx{)VmMpQNJuej0}R8?v(AX_jemcgWI0O2r?v zLD5!UFB-+5zTS;g!Ses>Az#0CT@Qt}R_3s(!N#V8aud!bYayBc7gpxSIGdkEr=-s2 z!>p~6i|J*GoGcR8QPL|mpP&+ApJ(2dGg#QG8ztSI#0bwkbjmC|OT`R)55;6e^z%M1bYD*5%q)|5 zekYSa#vsNAj#S2#J~*yrgtCGHPq!To_wa9^lIUnc6|XDI%qwwH*1ISb-{)d}J& zEs-LdNPkKC6e}Vd^ZE99F;C^}zMExskF(h!LR%I@d$loq)Bxe57NqSJXw2NJ1Zh99 zg7jwA!a>@Psmn^&ha1#5_U5waSwQjsl9QXYz-GS9(qmfvV{dt5d~B?SS9}}D&Npux zuhEycSlv!4i_9^xZ(Px<&Qz*8loB&>mmSn%Jk~(9;T#8_k#oyJ$(Rt! z7O71H?ev?HP1jiG7Q?2i&?zCC^49UKY~oN9HqD{jlb8_yLr!GW4k#^?IPi>2>WfZ~ zg*bJR*-lI@{6J3hjn;|AaO}0oIo7g{Z{-+=qHwH@cKo0nR9c>K@R@lQnYs+|Y}ts} zPB1OviR9YD)~UvD?V;pc`=WJxE7v#_g=^Mz_DwsWv^?X$GxBUjWLi1IvXjhaf@9$a zl3`C;=NZGWe@o7=XRYH~8OEU`W!R#HHW$QA%Ph<n@a%iP75)C}!nH<6+2a2NXl%8X99 zZva*ALI+RLl8b3p|+75*8Td|IBuj(-Nv4r`U$$w%QZu2Gk9sR^Ly*f zxr5>M#X_?%c%5JA@m9HMH_wNl1aoi36x3}y{WBl~;jx2!abwWLg{?vT(;zJxo^SOm zkXS45-(kSlB`;llgtucXTjJL8d63^h*Yx!f82_n00^>dZL`ZlC-XIgnwD=U>w5Xe4 z*`&jU9weA#1YgYR^JdS;9aMN{mz@YX*5xunTs}q8z{O?0kY5Gh!}J(SDf-}1I$?Q; zO-dIxb;H;qET2c$?g-0rzP>fODDvTcoF;5AVW#*hE7b=ySrBh+Nb1<9T~@23-r-Xe zW?TC*(0bAoIR1cdlhbJhIzf?BANaapqTZ*!4Vu2q0f^$mB9rJ+Hj$o8**~^z%GE)b2##W&!0K~P&4|nPIQdO z!N+$Ai`>|8_8HHOITzp{2(@bUSng=yIDOz6>64^dYj}Kg4PP^l|{*YVHlt;q`m32z1SgzGvp@{=gL*q?+RL46n+Zcm< z1Hb1$vsEBxXF!>kSj8pF7cbYuV&{*{&KJoeB-XP5%NJSgf%U_SOM|}N2dBdex9#Y{ z&epiEgfkiBb{7u}lp6!}Msr{QJCsZj_amu)N|4kaqp!J+ht7S?+#{4WuB3SP2Na1q z3FOTj3+MIErYHHc7y@3MJKY-4^o;Cs$__^3abj8lavMbxUSZ*gf z{qFA-_`DcCJIxC8XVYuBQKwm|6`>d}$Tq;BkAi+wHgE%y=*BbSbwDsbf0auGIWK_A z{pR3rxjAy4z?fMwOM!J;7*>m^!;LI(>ef$SUyn2b7DbcGHU1IFm!9K^w#ztR z&nK4Vm_5$4AO!bWE;agp_>v|xdLq~BXGSO83|L(+f@jL38l4-C)ei$m-bbdl(NGvE zPTEV;x=?${&8v1#GGyUmzVrn{blTcYtfZE^fQB*cR}YskZo}Rfc>mgMd7enSjkAk> zXNl@sE2=SDJFC&jW{`vlrSmeUC1|VcdqhvaD;D=6V3N?{UeE^Vsd;;E`)1Tz+pg?; zoYxL5)8a~MhAi$ASe2by+_MsCMY6g@;BK|L+FD|kcU_{vl@|lWf`Qomv#)fJsW!jR z9_RRx4W|f5bcOX51De{-kAN)J_XwuTt?yB~V%C>kO}_Qr2j912+Z$Nj3o}~X0ErH4 zu0^_n;eB_$za%v^Uc>MSATk@u9jW@>3dX3Jf;3v%3;KE=p58W1p@nHmQiVct#_s!R z@?8vt9>91B74t{Y)Mk06NHK3Y7m9hS+>riAJG4y2EU6h%%y(d{&K0vgY7sufg!>4f zS=F+#beK|3xF$tFBxD78^#nj=42VQmsAMrFYm3)rz6UcgTIJ;0Z?L(B96BsD`` zz*A5NoqGZ2q|nP0q`ek1uzCX#3z&HYmh4za87KjpSgY_3e(r0)3;~_b~X9l!L`9DI{$s`%&x&03ZdXbhR3mSb$Ld&z{DliEAT!xy$w}( zB5MvnxDJSvS*eG%f%;3=i5uRA_|*~~jQZ;N-E(DrSMVWCa(BMyq*$52*4G%PHMZ$ zB8lgInTBC5i!M>K%T->Wt>0aTd{!W+F-JBYvtr|JV;Mi?^fqzQKeO?F&^6(ijeoO4 zv7OoQp)AE2Suq#B3h5XJ%~ewN87mZ3CcWOeGg7RL7RuF@H*4&8OCH87J;ok3aTvg9 zwm1lHA)2#NjU(mZ)(Nk7?D!rWbQ`ZYEp~$2n~xi8pQRDJp_n4Pk4roDJ_wUo--Bygn=S88V#_&d)d+3(Mxm$2VLRAIob!tIPXdC?WN zPYh@(oFumIYrufpzQ3a@X8YJx0^8@Cfvk4#8vY^$%6>Z4My=k-QKcXoe_2MuXQ0x7 z<%=&2J7@q2zQ=*`r%FXqQ3hP<)TKs8p;SZnrB?l+FIXbquA44rFsMY!X)6=Ny~Yz1zmj((y=R_e^?IW}?D$_Gw9U;`6U9%n zwhGD%6_N4hBeCw`4~3wJKPA4WWx;m^I>EvvDQUCLI=(eW&!MQVl-p{hoNEV^_LXuD zTw0hI`@~8SahBNID!F^PtlVGF3gfccmE8ReAVR|2{dJ6ox;oHYfhjr6ynPp5DL;3M zJj{G`JG9K)y`(0$LXr*cw?W;`or3l85ll$!Ot{B^ztt-U>1vj@w`>p?K$NV#kRJFC z-z7oH_M(aC3jaY27~?-!j#<40)8^iTM_0^yU{{mxJ;A-!k zh+PN>%bzQ5LR15!_LiFWr5U&vT#HZE*xiJCg1*z;O)%#l6(^o1U*A*8EFjvsl^fSY z(c>orl0?O_*68sQ=$bHk{DK{dEqe5!sL`XhG-|$j;fQY#L`Ylsb-%y2;*zciz}FcG zET*Z4WtxXu?f^2_TFm+#bd@oysE5zuROi@Or9512BG)_*{f`#v)z%4j8`X)3su;mu zXQa&J60|6-Mt&T28k&|-lW%?YHS5^$!29-@ z_lkqJH<7M=VaBLcAkl%nIV0Z9k)s=i2Gw-=0+`jEmlDr(m&A4L6|(N8?zB*YHCNy zMW^1_d+-)~eaUGwP_QOn8>0^oHT-WGZP;)a4$+}TqAT8=Z9D z(7FLf@XQ6H<~fWFxDN!7rd>rNoyFp~@1%W#=yL%jqD+tdBaxDd?q_Kjro)v(KI*oK zIV~PuSXxLM^OZIz+CD)PjiSsL@5;J_xOG<&v zpi|Pc@;|b+3f7BMwc*c6BHkN3M!*Kp zDd9fA3$5c@_W?K*g;UmA&R5w1rR5d}o{?Mgg<0hs(nUJIr{sIn3M_{2984Ob*xM?bBhhNPE1M%NOf})=$lDklb#0=q(W!Z{VdoaScfM=q z&Y;rEZ?!|q+#HeA3~i3Q8(KDd7=?7$h01^5djI?kI>+~)HX5# zGV1MKN!9V%)!Rk1U2UKO=BQJTFRbS$Y@yF1D(wC#kk;H#EfxA}N-Fe~*>W-*x}HA$ z0s#&CH+nrl#q#{Mfut^w>5{5{iLq?XfTgnPBj}nwsmjEHmEk3k;AMETe&`kgHC>DI zn(ixHU5Go0mo4g`3He7}zeh~wy*@>ke34{5OOvhWfIbOXbuDqx0et|fx+Y$2)@o9U z2_}hd)fb%OhRp{Z4cP05jkom*j*cW&DnSmo2&p=DZSNzIT|{y9V|yH(~E`EjjOTD(L| zxEBL+ExV~VZqbKS#X@Gs6cVmUVgH4!Kp{RYRa@FRFrq86ief-hwYGn)@On&@r$1jz zS1kR>u54*Vm+7lc%V1`$!lpCBEH{w23Y$L6pjJIAvvOA7GmQuEKT?IQ3jS)IU6KO0 zM~qIoIj|-e37#pBYOG)+7~KHUw5!4v&q!fD9qL3QHpz|th_gGPliH6^YPBycop5DAWL0csnj-Gy3?CzfdlZ1Bnf3-n+ zilX6d+sW?k3heH~?a(squB2wj?m8H&bGvIXkDA(@aK8t5R?DlcC1!ioDs1s9RXH9g z77VQKA%KgHzDqyU_m@gP(*N!+{Z!oW7V?(|bHVFc2(7hya?St52PhnUU7xDzk$i=p z0L3S%$7-?4v7p>Jq1RLOcNr~P1f&l1Z{}o*=yftjMf3|!0oLJ&Uhk+x^oyvyvc0F% zC0#^6A7k0{jwPb+L)Y{XJqfLwHKI32qD1u5tr)3}sqQeX**6QaI>+atjru`^ztWxA zhEddXHk~r#tH9<=&}#V)wEK6kq7C%Y576$1sn#Lw;R{tE*CO7}*VDJ{z3nS8WA1J5 zqbufZv#ZJXwy*ZyW1?@t0g*WaI_E2h8M)fDLOx-(ik;^e1+ z{?;*>9R01sh|=GBi$H%Hx267m#Fw2c`ui(E-|4Qujp>IH1F7`4oVGhb6zHP<{xQZ& zsK5UMO{anW-hrCBJ9q33!t8%-hnA_oB{f6(`->QBQuVhf78C9%E86LAqfa~itv6TV zZ6P{P!e7QbGwN^A75ZBYm|lOMjY)I;y^gM!{$^KGpug#0=_tOI$d8}?Px{|FCb9Z^ zx~n>K8tuyG9f~~`Jg5)Vum6dio@Qxdjy_RN-=eHn3za;512sn7~ppzm{zf2`u23^n%Z^hwDEMrE~x!SaaVI4k7w z&GOq;Ps4C0Lg(~rjE;J`TIKo_ zB^P#XfpfZ3I;Vfz4lUC;mDCJ5r#ms$q&la%Vx~IJKLbd6a>3}+&N& z=g<`kCD>JhP{QSicT^Mew($alZaRb$IwrB<1lKFJbiTzw*J1SQf2Q;dBOG*nJh3*G z7`LVCaEVp$?RxesQh|I?m&Bk6qAY1SC(i9Ge!SjV?|>KsaP zPyM&;pwfEk9DKZmQ9bn#FSB{-_t|G)^VENru_TSB{wG#oF`haHlZGhvwu+}NHJ*Dd zq1HuD{TmoBp{M>Rqhq{xFh!pFF7niONl*Q2?a(qkbxF;Tr+yyBnp96+*RbTNKMjy} zPu=L#&QsT$E1tR#9Vp|y02=M7m)dOuimvee#DM92zlF~ezTYCcV!j`{O5pqXZcx_u zSZ*G!RVt`MpD!LqQMdANzHrP*RTx&^*fmd2?@Rhpmp;s36jmL0f)~f9YNH_a2X&b? z=KNZ@kp&wj?F-juK@8M{ZKC2014buZHCfMA6FgIF)o{zVV4~R8+5nRG@o82rD3Kg- zgCP%DpAsbm!fTIyDE+{T17bw^fp*_r64JehhT(|Gl=aDBK@7RMy+Iq(xiz1lcz|px zCvc;60x{-X_Ksc0vW9m|4jB{i~%eUWGmcID*wTY+^# zU*tF2OmJ#^kzJd&;XUfDJAy6kH@8E}^hG2!L%zr=jMcd>qQ1qPNL5U@4+5~&BZ*cJ z%rDuT((bHhq@zPhLLI<6Spx(zdMBc*GN7sE+aEIhJmB-p)EDTAc_-{@^1YK=P)xE` zZ}RWR2D+<*y>9lQBYEObjW9#L$FNmL%E4E zi>!s5`N^m19=R@aF;3DFbV}+ZEnsaGCrR5alsj@tzipjT z%))+4a=yIJI=+=J9E!phYeBC2?SRtqh6B&Yn@KC5_LtU4#&GL%$+`82b$lzgIFzK^ zny>>(%PkH(4Y%xVm27*o-R??+JM*-}5$>~$hlbTvzU?|i5$@JqdZn;mwnNK|a3wWE z5$-qO6?GorZb}(SP}2Pc;Da^9jd2WFjJqWzKqUn){6MJpzxO@M@P}2~rr!vRU60zK=8 zRr2VXupa(xb||)b_&yY^nqYzttGtFF@?e*Jcti@&>#Vq>s~GSqMgm;~)hvUhV!&^r zYx;@-Q8fVLKCHqiXE* z_q%{;^+ZA@fP4`5d+0`iB4y5nltOl|@JW-wsSsV20b`sB`zLdL3KY0s@f2M#zk*#& zzF%>9y05h9rbcrn&dZo4Cj>h1AlAftmV9KxZI~0>#p>aI$YrwRbbXoV+S%?PEC~8~ zADrH4U`~Mu9lcn78YkTcy4MDCPwfe;M%RR%z$QBso4({wz;VN%)BQ|(QF7Z|MPo2( zDtd7)Zg#F0+Y0xDdldj#l_8gLrU4J2taE z4Vb4ZrUBX2DkO@-Hju%S&?=vsW_rvFJcco*C~i29xx+iR6wrN-qbH zd164hBNgR$d?CrAC?5;@PX9XQ0WBgl~hs9Uayg_--yBYh<(JFdz5X& zrviecR-8XZ*My35_DWsJ>9)<9PvB6XIG0CFR7wT4%cMu8NVreZ7^WWm2i)vjk0x6X z6Yg42%Bo0}CBZc58R#H1slXqa^jkhTGQ``WD>SJXFq0gPG#j9e zuj}>XA79)Phj71JZU&!TEYu65?5p&RP~j9kJKoiAEZzjxsmni6nsdnLltL{LJX6xt zys~jj|AqjP_ugriwlGA4slU>sePZ!wK!_-NWBb$z?N<6 zo#>i=+nR|5D|AmH(X~(4O@C(x(oWK4^X0HWL|K|Eh{t@5tf5Q3Mg~Q_9xOBxn7B8U zy?IWxSuZ<{79Fy=!n-o~)>NAJXf%gSzCe>WC$9C6{cfF@p2)J;s=K@(&he6?FSdGWzZ=$m!P)}yfdLQtRyUj{(Yc0X39iA;>>icE|c(A25zkA8j%@OjGU({#mB zM(oO#igB5$>hzO!*D9YY%C3!#ml`k1l%LVRzoLDxj!hLtM<_#^R^Aw^mDQ>8kCsmD ztA>yIVkTyhC|UC@qmyn2tT|+YX9}YlAQ;J-uLh93`=)cUMwb&a8=`$q%QvvvJ!xW} z3?>|%l(FSJB(dBd(J-d@>hkC6dRB7{B}7M;f|v++7CPDNks1L%%VfnER(ZRD+A0xn z^z^%8aL)$T2@URQW)`C&Tev$eA$6M2@cbX8d!?aM1_m%09bnWTyGC`mihAkv1Hmrv3-! zNOW!1pG2HKFn4YHA=wA!UgTpMV}cZ0K_k;HrC8r`0cH5W+yem1ed9l*E9M)stI79` zZ}vZ^#&l%xT2j}%XstM2LFtZwAgJmgH$SJ= zqyC~HlZia)zcV`NR>0~}6Fl3RGCbNfGDKpC2-X`-_B+}t$v3sE#vmoA|8gaSb zWFEIMf}Us@>`KtHA6O?0dah_Q!6^!Qwo=fu_1qxKcv(BN%%De7GZgfE4r`$EphvB= zmPp-AxHU||7XHMjI2H)0mDUn~Q(i(B3JuHd&wce05fa7it_W{SbcMGi1~g4o`%L6( zKmhJ-y_T++x5cg|-`l#8c@YjiN0rC^P^H{xcFoheJQPAS>xF8AzINr*z@)0kQZ>phSHHDXTWV13Bwl)}Lxc&5~<=E-od-Wfph zJ~pjWmLVpG3!^QIXu|{jh$qq^`D8$X^iGu|pZgFEV>(r<6(2t=i6NiL^hc!8H=o3K zDqpeACC0h>5;`UIRKCF4D$dnBe_Ey=sNY8&SkX=r{`*;w{Z1#y_6AD8MAv)*`pUKv z{03eKjN(KI1qLUo<%@ZQ6E!(`<*PAM)k^9HPqkm< ztWjS1D(bOXXkCb3+r09c>&H=D_27Q^MF;Wz^er26?DBf2+NjlU!RZ@1W}+vXPo-ot zeb;l(t*>kzA1hZ64YEO^^2&z@A#QHwvPQ}Yud;P|YD#(D*zo}Z*m8_XyQkm-G?=%8 zp{#4I2j2rL)`nZ|06KWR?5|P0=F@T;=&EFt=P)?lLi&E#v9U^dxZG@=V9$>h>ebc> zcN+#^GH5207pb&RlgH0N7lKmA1)n_-_dajdjDrg2#3PZjjgSwvbuR^kgepotJOaYy zV-B@Zfc%yZUjWgiUlot}5Dx|~RzBX0u`Zw zbj`kwXr7=#&>s>QPHLl|z{lx{lGg2n(jUWE87cjz=-M4h8x?|LDLfnMPLa6oiS^ed ztxd81Mi+_wNOodRbdA`PDb}Z{`(`Gq8U4{xRL_L(k{{b$+9J}1{L z8DFH5Loqk8!afVuT>9*$tj9aoq^bOE!k4v~I5qXR3CR<&Mcm}E&^F5B%bZtMloKC9c@jB8(rg(k1CtK& zRsFH~st^ovJUc6$_+qduUS{l-k**2)PP>m!YU~ZywPe{A{oT;6R8A}f6p6|RSt}VxB#Mx@)78p}n!v8}L&_w@20vzHfOSj#_Zhv7q7Bi7 z6aUl>#a1}chmvG2U$R572{wmFY!7w6}nI04BfYg(C6=0K4Bb!Zm0W1SLi-5U?$x+3>3KT zE7BFyee7!Tb>EfPm}jL5yP^Ls$fo}U3LQjGYh!hw9NY+-WTiM?7s?w_AKvZ@M@*{K z`cmleps#oDwAP1`L=ieMd#%K`2J=s?6g_lJs1)CChhkHT914`8Su2qqWYUU~c4SwRuO0UVl>)n=9y7l=A5`ee>?7J<01ies6r@rC&exF29jPM!*_V(kD)PHQ z-)aBed_biL9oe-iiO&S|NUbt|hOP-!=KM2s^`<-d*5m<)0+rdON+Pw(q(P-bxKGg- zrUrcsH#^s$iI&5Jdo~DVQ=!UwU^;Xi+6x^ju!jzv@QINjx)xobL&boZbm&fC#&zf} zx?(z%T_x6`(ziDcZPSeD?ITgl2e^t7KQXw**GRlH!1J;IPj+R)vkNs6FVX$Sm(=RT zOEc6-+?~P!)?w(rZ}M7+#@nF!p#2**9LC{{L(ykgyIL194|b^wKGC_=Lq?|*iiqHu z(xqmNjl}H10Fw7R)6W;zxh77kPFiim-w22iWo7KO5hWqrSI{s_KP#J2t85F2pQ7yZ z?2V*r@#Z#&+Uf;FBPz??=vDZX6RP@ye*H_Vvo>rHlb}n9>hD-lwU+05FS^1s$ius$ z9-r@Zi9aQ8W(ysuMgzxEmxed}& zbgXpyW*jTsF5lDn>vm|F$4VtN`SO%3b8o;{*}WfDp3lP&s5|gu{NvI!E6+z4!f_GH z8W#OVY8x5+8RhwIr($)DJvsGIO2`zlx5!!TaA{g^-DvNF)I{6YM)--BemJG`d^D7G z`7?hCB0A9zdFzO+XAXYg#^|kOrz+UF!A&%I}}^4-iMO*2-9y9L~fdmozJ&f zaY=WC={Fe(GMVG|plf%`aoiCmPPurUXGF?!eYh1OQG~>;F^(|l3qH*;riZLdux273 zWHe87jOp`sD7IrvK9nTKm>#u5u?aVa0tdDoWu={`E~+=#8GmJO_r(}Edx*i@Llhh} zUMbThB&^mDj{t0&ynq+76fEibpXe!K7a_4Q^)K-Wlp*OVx+0M&1~gMmiHLp8ucR|B-EuP0Z0j4G=0|NZdltq{XXN09J7GQEvC^jX^p+JcmhMw-LJeRu8^!^P? zC>icabpM(K|_=?hB>zAnxldN@LsnH$5A zR2@&{3$%uQl*c}NzgXUo-o+bzK@rhk8a?^ips)9lX&+!oK1Ars>_?yO4rq{CS>A=N z36<;fgG|~|vfXXb7^b$o9XC7ImPv(v!u>qpwbPhV^qD951#}Tw zQ_KNc^HnsRY+6%vh1L`UX40D9018}dev_`4)?`0PXEgRpH|KN{gl+tz=f z6;#l6;j{=i~+xl)Bq^D|I ze>b-E&)puB-#pX~EpuC6QZuxz{}fbOcHf9?>z@O3u&w`A{NvI!+t#NG;n0ZX4GsEp zUxS8IW5%}rs}pbQht=Ms@9f`2Gge|HeP{n%>t-xFiV%Tw#OD472n^prI62%y*_67+ zz(-$Z={6MJM~ut1zkffvrr%Ita>MrbNoM%|et*aliXof2#sAzf$yf*^LJ`~icFCHY zZT`OmD!!N{+2;QOHCKec6Jh&vMg@HY)hbvHlY9+byCZC!Z}WeKNCN*Q;A^~1ByW-x zZdvUrz25HA6cUkjoByT8o^`4Wd|10^*`}*P%TWnjjGDUPp~8DET2fxjT_k*Li6^7( zauQfZ4l1;f<4b<%zVsRY%V&;2P#0Hw=KkrRulI@PLc|c}RYY>CE8G4joo!Pi)@}bq z=$bH3wZ;y`mZ$Qeq}}!(B#7K-8@mCUt+=GK(i<5GbV*F8IQO7ycNAybwm+v_ybd%r zJLDR17ZQmgB<>7j+dsVU(`^0UU}c0gVQ?*@d!nuXq8*BD>)(fxWb40fhhh_O4h4zW zB-EAakh-b%zcW6|-tJGKE3=0pEcC$ke+CnQ*adU)+UF5sjsd(4y+y1eBp9y1&!kaL z`*y$RiiD^b&`eV$ItFkLFyqPF57HG&-m)uOQq*M@xzl3+2T~sc2rp{Q2}!f%6&`9Z z;y6GW&%?<6#{w|i4eODBhrttdCF$zi?pQn&^qr1dU9see(CwLz1$-qSLF%2ZFQIEf z58@x~P;3g8LkS-Xp!+J{r4BSVNDNCUneKj(#$eQxz1@%FX6G6-si;r5&j4N$wW%Br z_$9gsT`A@OUHJ)`PPUCM(G|K<446q*E?g&cC4MH z3)%!q`nD3c4NCNHi`Le+%iwo-RNyS|NnJ;2^yk{3ulEPfiNH+qBSME}KQ6E|`W&b4S7;h%7efSE*-8pj44 zbQ9WC%mvzX4NWVXHWgi=O~rtjwCOld;GX9Zx?Zy0&1kN4hcMFMb&yp;Qyd&xdZpPu`5z%PsFE zrDk)iv1ik!L*-^^d}wgEHoA#9><9K=%`Y|$Rcb?14lVPLfTU*VkU$H3$?g%cLjqqS*_m)R0V|iT*&zYC5bldu*s$yG zpth0ji*ZQcm5C1t81KesJRv~3MIP+4zWl!(6V+^!wvW)Am;Wyy7+kkmUjDz(z(ikO z>9!rt$5>WbkN>38mFSv&+kwdoI~+i=lJ({P=~fds%0|JaLG(#%B8~;vrRmqK2ToK? zVK|+pEbFiT50l_<@j5NGqjCzxq4r8@pc6qWFgoZXsFuKTFrbF6-4V1MNi!(AUQo`Y zxHl6`RMy5DLMTFUGC=9I#V2Y9Cj)MfW+R_2DIb`};(q2#I^XJp+;ED8N%zE?BbxKW0QvbQECrdYfgmO1BRs z$x(o1b|^OK=1`DiZA)4iB~u^O+;_%d+1tGn180vmSagAN0BOwvViVBMYm+31IRUU4 zT}2=xq!!-XT|S9mywjcl5M7bm6a$*6r$i?JE(B&g4|@?^u{MeO~v87j`I&BIVj_QsBGxE0oo|C_)Hb?NAu+wMTz5cHjPb*p1(6QRR1 z@A{7h^H1$5l+iVzr|=3p6q_#PP{Oqj%D z-F>kO09?i1Kn$+&yZdJZc%B*H$*yd8c42q_3L_^Kaa1dDRe;1Lut@QS0qI&j`7ZxC zZKp7WJN@T_d#WBtw9|iy(Mh)(*4UolnZl+fRE(U(t^m@stIriD6igwOCauo@O9P5T znH>9Wzoe#nBMrk*t%{o0o?5mlZhAcBmY}7~XB=vSvTfHt8s$mb^}pSUs&&`@IJ&}c zq^S7+7AvrrU4ITHUdgMw{^JZKeRZ0PP1*I2rgc|#{qF}R2}=Xq*9Pe+Dh;q>CwBdJ zZVh(*?`?;cx$7^f$rq|*nY#^RW%rTTu74RrVAuaE_{XJdw(Cz9!mSYt9QOWPY8x36 z8oU0lNxbVHwuY0x@&Bkl4H2zOQf+{LA~0Ob*=qwlZs4P@vvm6m-@;fKxBq{DuIcv~ znBcJOe-fGwY6DESuVBX6E!a9N1(G2s={|3k_6-2LXid^7fLZ4Rf|lqMz#M9?qzyWe zw;32Kqr5Fa*Y3z$7fu2E68t1LCSa}9vJugbI0c~e`Wg+ubz|2005=)?*~#kzM9Zp{ zemamQ{S?;9;eBT9G=P}BP^q?D{g$?2OBk4uy3cST;5@s~TfYjhGwAF6@ia_PCE*tH z&?n(kz=41?QBj0--}Fj!O_;d4*$%~)xbmT-Jrz(Ph}?J^rvj>0T+&%;&eL{o1W!R!lwr4ekMIiT)%7Z_hzvF_z3Pi8jO)u zQK(O%Vdn}pvD8nvyMRR^Evg(N*o{6yb&6R)b^fO>+8I=*=nB;-2F#>7uK;FTbzVtV zOm(uW$yc4%iT&cP#&VZ;7|RKy^o=KOER?)}Er?S~Qb$Lh9Udtd2CLLnrKj?#?jc!Ah%0Ip&aA_mv^;{|^f;Q8kPp6tqoXBUna>{XIn@*S?^ zMFX}bRq=9gU7II9MsVYo@!{S`Z2L!RMW?cN-H=mn4p4R9f${1v{wc28m>VfqoqTh= z>R_Vd&c~eusRqUK^{8H}`HHJa=QRQ8?lhX{?d*p}hxc zRSeEhEx+8U=Zl4A!M{1;6q@68Cl84A!f>;uJ)~$#w5!#Jo&0FwSia&^4>d~yy{h9B z8@OK`FI4ii;kw^knFwY%R;U*+w2$wG4Tp~w>W3QZS(WO3J=M4M;Q43L^!Mb}u`gY$ zyI^DP{G!ts&Ns>+*jQoM*^>*J5g9nREV=qu-LWE4TZnHx z#5|Sq(=(vUk1h&!&n_CZ;1tJ=pMWm=|5^)r?K!5kd~Nf_-~`cWv0U_<%HuI}SyLf? z{$EnuR$0X@=5WlZ=mhWgKYM4)2vC~2SHQrP9Djp#eCtUc4yE*o0L1bLTPuJ@K9gwd zvZJwh0lB?rL9MUD|LbpQdCME)V`H^?Gv633)SI`B*P2eFb%K1a2jP2h)Z%?K^>olF zj94Yfyd}DK5aL*G@LWtzxg)1^jde;foV$u4lZbP9>-bjAaVQGs=8)GQX2buG6B)Gw zO3ND#JR@%wDxO-1F+KdDn1}dN&g6~OnZ&T#Snf^H6g3e9=0-l|3Aa${yQ_`KBFETJ~_@ z8QF7cT=Wv+(@ADa!L9HE$+IV|Q;p%-za{6{v)1vgJmXLlp3U>)HZiZ@Z#kVsgEsHZ zP0KlsLPpLl3q_Y9mMv78h*@d(4??UQE0nV%5pvhJs^JkK}A`vd%V!aW^DqT**4Vm2n)3!Z@oRal{TN zE!#NojBGnSJ{uF_+=|Gyf_X7dCI5cgI_((#y(KyS-e(=(%0CVzDgW-b14_$34m>OW z;xlF;{+$xlR`PT8R3y(ulcxp9!SK0xk zw_pIYvS;V0zESf``Q({8=4>^%f z*a4+w5(l12 zjI3H|+0_iOtS`E;U|rl}$--HiZ5~4m3!hES!jr7yTUp4VBxT_mJD{{I-biVaVQGM+C*J%vV%&?GY&o@&sId9%m}m0Y!HE5~Hf#{wp-ah%g`ix9hs&DMZR1;R;*um(ipY74kA4Gn0XiXB8j*FSl1n1J#Z zbJb!8dPhYSj2cMl5}EFG-7?0?SnS{^x~6|!mx%={u0bNfi)$n3qEVErEuN5*i2y`*@ZxZ$l)7PCZ68QOTMalQn~mzBIB4eGr$8uG?m@{Jk`!EC{(p;=gy!|)hF7a zWm-zf=#Zs+FUHDlDVb%&E8%TLd&2!E0P?`W02<32_c#CgYS@q)>Nxc0Tk z`{^?B?HaciDkoTI`wNwFp^>YNn7cZ_9S67gTL`X#!ix3nZTZdOZckVINqQrFBf5d)Liv!Kg& z(1nYkPDs^>Ch4U&rG&^Tf^0%dRAgY)R!|`iA$M2P6??0TUD@82;^rwZOZAV!2laL#M)u5;B01C{Y1M&a55?z?EtG(H(VDN`}-7IgTCHJ zrkQQF5skf(qQBylx$eLf0SThsl(E(wxD;KH;Z9QD187wd(EinlRm z>|^L6oG~GlVA3X^B;lM#+gF`MR~SVxU?!vZzkmWail3z`W)#^~0;A~LiOy}J|AJ_y zsB{c3gW(n4m=I6(Q3IA>p&Dw>$d1z`MRy3eVR9J z=Zj8?bNvtgItU_wBx>v1MyC`inBbYKMfE(5mu~-e0O>g<1p8(}v&dIlPjZA48VEa& zfWi-?+WuKE`6v&_XK2GiLe&`l)kJ$W}xkr(d`P+0OVldri5$B+5 zLVu>u4#j2>eJEDyi#apSmy%%knGzwUFwT$of*&@{dZy%@YaNtBs5WxV zl9S_=4k&Fxe+BC;cLenqYV|=O)2aGMiP@i6V#p!(Q^LluB7{vM)?St+YMCZQs8Tz{Pl?aA{T;3#D?Ar}VOcW-*!RTZtZ<|^rc&7NN!e&_P z;{hb^zUM&X?@I zhpq{2^{4GnY(nKjiMG`=S4r8wwn9-QF@>!r5FOZRj=r?EZESTUgJo~Gi79q&s}m}z z3HM(BF4j_;BF^me570x{X(6I8R7ZT)gza?OAX;>VjS~Z!N+yYodm0#U8}|%dF&oFO z64=NZM&iIk#o&*4;Qd zw{`or;6T8w?GQ5$1W0;vQB+Ln0*uwUDOJB77q^rq+!KHmYe%(JL`Kv*v%QjC&uBvD z2E;Ofm0bide8V>Nr{qOfWk6HE`Bt{aSH2N(i6%^)Mj6%O8ss>m(=f$9fA7&N;||% z^(*NaQokR?Se>ii=SOQwMII*Hp94~?@>LcLQ@sgRp$Kn;gg|aS1`rt)ujmTJD+Wxj zcze$kigy8BF~!TSCSUPhig&|M_O+NXunE-eo(yW&2i<|v{flV%5pyb6$HtraaNCQDB}vZm89F{jC~tuh2yK-)6a1MFHK$VZUMRh*KY-62TD8MqzZULS=Wy#;6uC zuj6~PRxc7P|IbPR=aBsCp`qF_|8lH+%&Fv$6e{B=6igk%W?^1H7rt{8{4GtwnGh3o zpFfRBcz)2=yJz~Egn$O7LHOP00#kVgPbp~G8(_^%y^L|pCpf?<+e(h_3Ah#&l*L3k zJJ88yiG=NZ19ae4)>c8eFM7%NQ|{tj2nxt?3C<6Gb0 z;!xC=-DshTS((KUs&+tWUv}fbWuOz2aV$mh>||c|Tvc%)el6D8h*=qTC7=2cD5n%Ogxoh*3-QMuJo3ZON)XwazexRi8}GsxMi` zx3Y>uNy@6fw*yMcDh@m&tDfJ+@Q2uTdVB}LLR%Bb&L3N;5W~)YPtMN&wvKOQCx?=h zor`zayp_}yJvs1<>|Ct5X(8s#7mo$2asn!J#B&#z*ad(lUbs&&Z5rp|CN; zltpS2!5sajWYXuYbBkfppCxC~qt@}QOyW?IGU?lPKxvu8fu~`Ty{)n}B*SiZ3mM)n z<|b$DOq`qiZ^lDCU7&7!PE~GlCtelZvTgUdL2mL_?GQ6_laijH+~nz?Z|Awm)z;in z3pE$c0^MUXlR?&oqCZV^yZ`X)>B;kx5rE zceLCrm8%Qz)5wkBLvAEu8*|8v`531z~BTa`v zX)K_7PNB$;@nXbAnHmsIOl0f1X5lbIdbm&rrAKo0@oE*hR%)=I?i?zka~*PBs?`oR zaz{($3h!H?n7NL@kOFB|j_1mUsx=hErEa5~CptU-U#AAWFg`p55}};+xyBH0{Z;g( zhU_p;Mt`mRAPvA%<2_u$l+kZ7M%PVUx@s*i#aOoVsTcna`5|;o{|-4B6!RT&F-6j% zy!wh*>pfWOL`>L+KJQJ_W|2unW^y{-SCS?|o!nJz=uf@&p-pMcRijkBMd)no#gRHR z_u&ki#7^J~8;dT&@|xY+pPP6)fbnw^chVKxzGGLDzkPRwbBuk0tA;uxoo?Y}IhCk@ z?_eA6l4w^;862k)o2898=NR943%<~~F(=Bqh4;}GD*Z)3q}`K}`caZ1<-^s6)+oKa z^a|~~jMz9Ch1A^_^qtO!12tNhdunUjQr8bR<%zvH)P+-3ZUref`#k=Kr14(_bV{*< z^;vYXsbIkf+6{S_wN-YomW9N{L^!TRpBM2&PUTx!rt-~Brjo6S;ZLl1TEp-kabil| z_VBO6iiITplth`i%eIDMata(wykQ9Q*WOkMxaGQZKTUM#V!*u?Q%!gnXbqa$1bB)9 z?(Lg58)XbvwnNMexFtP90r!VM-_8T>n6o>Y=EB>Dz&keR*3|nQma~}3pg3R#M}pOG z5^@4%a<9L1+6Ld}T*@qPF4BZi1Vy!dE<+SvXa+%Hsy=dsU4^N~TPef6@n21RF4-iI z{Yrm|Ao~wR$SNw-{m8uWQ*pyva5cT1;UM&D2nD6yk|Z2TL&DNefKi@$tQIN+YuTNn z)bR4(JMQ%s4vkkTPBULYWU7SQ0{338m!9OyO=mRpSPx16ge+^W|HV~=*9YZW7i1|L)PN@iVpR(j ze22Z_Y+O*H@15t$%^bv(sF*ABw`&PpdL z%u}h{8hvbi&#kY-8>>hw3^Hm*)i8S}jl_e^xvY@_8WP89LxL7FGeElGOMIH*vP26qz3;5S+}j>6JaXVn0Jq z;$3rv$av#^fTiDJsr)I7Wi`g}0sUX0t3qY}oAz1A%;wjQx*Kx}3GCE8O`+~9X>nG{ zLxWf2-zYjiF6lgn+9*)I-988HriZf>)?{Sk9vkC|+-IurFI5j;+61LJEXHDJX_(vFUZYFg* zcvmQT%k}Sv4Lx`rQoCfXxJfMJ$gon1I7kY>^1=KaEh8I^^fhYo7g>V4SuYHeuFqZ3 z%)z7~^<5hsb*e=?20tj>oZC9EeSsW?65hE+ZPdvfDb&ksOT{;H?rRm~qhdv0msz98 z+-{p@Q?)-4&o_9h&?&;;(QQ>rMi@M%8l}Y}QbuWr?KBeC#B->PBKA8BAiB9qms{P+ z=An+ArrX3}|$TP|_L?G$n1az*N!^&qGQ&qD^h86^c~6CN_x_?`dtAnO^bU zAX2I_;t;_V+Z^QjQi*r<>a~M@Y|UOc4&o2-`kSsf^|Tf^C~ruz+-((oRcR=C@-9Xe zj2PlMJyBI9+MLD>bHpr_6=?R;RqW0^^eW7rTT_xHN)!AMA;>lGmXyPR%93sm8WYu( zt*WjmJR$UB9p?uaHT3~h!dtZUXV6vA)^iw~EPnH*l(dLYCJQLi@~L8O^QhAyIr9CQ zx3`&jXnENeZG*c&W6TALrzed%n@5I}e`tei=|3>9n_0V(B}uZ77tzX5ktUHP(e6pn zdD16R^ed+ZsaTri->FBNG>PutsUP3aH3&maUtW_`p?uz+V5wQqk#y;$_FW1_=VGjk z!RT^yRn}Ao!D!-dffyVj0rhvI{p`RZ$ly$$Jho{mYwOtrYs+5+Bwoo^fpra*egI5G zo>2(6y$9856A57{d>IJDcZx5kE4EY2t`hGQ>k!SANQjD$`~Xq$>7N)x zeYw$cQoN$v^#PtQ4)A1GHats-JW^H@8`97AmcMGrR?&jZ?&*;{y;z4IBQL%p8bcoQe}S_eu?4|u(YoGOy0NY7%VUO2@L zPE3uC;g5wJAQH>f!}xQ7|L1tUg1_+A)^L8PFnpMv0`Od5SVz9`JB@BP{H{^kZ+c^pj4>6m4alJ}^n8$IvT0LJXREre{Rlj-&)nOFu zT*@h(m!r&OqqMx$#uH-*_XMQhTf)Z;_gF}=tzUO41{ z;zj&D%c-`!<&=rQyTe6ijIt5c;WDFi5556Df@y*x32@zdJ>&t&b8>?Wn+-zNS(mHR+m@}3KQE&_pxgeU%BDyn#uaD(v zad@YSdN#P-7#ur}Q;*fbTK&+bmbZdhG6c{vk1ZLn2d5-av(*_JIBWBE&~r(BWY`#< z?#SWK7Q<5nOCo#NsSlQ&<_LoU1+b~q9IXIYZ?iCjRaAs~y>Gs^8ZtSW50+;zfqY|( zB;JJW9e_ zsTKHYoWrydWQOXLVF@1x3MB_ca!+_GhSBP9-a$d#O1@AmlA>j3FQbu(0Kr`^inZIs|o#zF>p4O)VFuCc9%X<%x+_} zk>C$X?&JM@YCex{@@w~HWZ@3tr{S@$8U_2ruG(gAZn=T#z^ylt_w!Z2!Z*}jHw|9CXCJJBEnP&m6lukMrR&`> z+8-LHpV3+PsngHLXXED~`uWft{M<)BpPY-I&(P1?dhqiO`q?uNKQE-8@6yk|&`%R( zQr+Y9vjCq>aF^20QTq7}`gwwWen>xeEXI#VKTpxmGxT%s68zjxKl@OT*}a;6zD+;h zr=Rzpgr9rp=Zt0eSw}zbrk@Yc&(BZB&#&mmS&ko7X4g)8h-ZE&)n1Tvw(hT^wXrDf1sbo=;xZ1__=|8ZeE3- z0{wi6e!faSpIeQe&(qJ_*Wl-!^s_&QpKIu6!CL$*rJpAK9H*bh=;yoibHf?V* zJ`+DT(a-W1;OA8Oxt)GqOFvK1&olJ%)3fmNH2r-1Z2UY#KdaW^XD$7-=;vHsEI${cJr4KRfB?N&0z;es0=`pFI80*DPK7+NDch>vHL9 zUhKmW?0X@sPPI$LtXUOImr7;2RK&}rB3~}mlVSCHTzY%MrMEj=I#$At*NuCNRgKA( z@M3IiayJgkn%^PADB5vdq23{F&hA3Pjt11tu_&D_@ zIaMpnvHT}+En&8YYvW{;QI&MKh9d(^7s7R$_iO(BJE42t(7F~T2(|KH%%I8|P`Vso kV7;~53xnHCZ!W}9`pS5b^zmVEDF}uk^wH3-QBKKL7v# literal 0 HcmV?d00001 diff --git a/doc-page/.doctrees/api/flair.data.doctree b/master/.doctrees/api/flair.data.doctree similarity index 86% rename from doc-page/.doctrees/api/flair.data.doctree rename to master/.doctrees/api/flair.data.doctree index 4a0aef0a95323f82aea55c354a7480de1b7b1577..ee47128756859333285b78426d24d7f6b92f7e2b 100644 GIT binary patch delta 14646 zcmbuGd0dp$8pk=yunfq6Aj;;FYsxai>b_-$p{ZBPH5CP~;)=^f%?&k`Zh`sU@laa8 z)s#vSd)3EXlPnFFPuC^I>%w)xt+dqWqG{(Hq&WP?GyMPi@;lFVp7))ZV@v&WmiQM9 zBDT0`6K71G(P3QV_^2dnd~A|6CcZ<``1UceDYo{ul%)9a(Qz?xW22H&tjXi!ZPBq- zeHl4T>n_tWEK&L%KG;NF61Gs%+I33O%vmWj^ls({Sem`w9*qAC%OF>j|7g8^z%3I} z`gX`8tn|_gS22e3JJ|H*ZLcuWO9^;%gun#cpoQ6HBLc2TsTO8)*FB@>;N(%-+ITPR zhdx8~S7S$!S_O12E(dp>Cx}eucj%&fcG_0k!@bU}JyEnMt;tXyEi<7Muh!4@0a7c+ z`w|PyXrjMZx`Q{>$dElagx+N6F``+_ZK_*5c=#1>97;yVq>r2Et>E%g$1o>w6Q{nz z@pA2_G>e`(bF1PgarTE;N2Tcv^f%|aD>(bSgIHX|f)M@mLKWw=c%d^mk7bRp^1^q6 z_1qP%%HhteoQ=fkh3}T)Iz37&%5v53XCGFaTz~%>)=Ai!v9xA|@6Wk{MUjtU6jVxX ze@uC1SXyiSH=Ff<4S}Yb&PIQVnvPYt+lW4?Qr6QyF1(3JR+ZeOUoA>zHP4a0Z38C4 z)wnr3GjO-B5ml4^#(sBa(iE0y>A*G0}8#(eZ=C*)dYNdvKJJM+;O9Dn2lM?d-f zYE-3GSoK3^zf}UV>m061CF;uyewd{qLrPm+%t2+f!lpO9ikhhz6}B(S)0KYTbSn*& zgo-$Q(T|{@#^0ZaL}`nD^wN7i^hU__jEW$oQ%fq}LSVFvidXdgPx}!q=&7ex_@I$b zYFa}VmkEvS#D%yRf7`o~tEh=mVS}ZN%&%z@BHaiwRyL?Klk%Ez2VZZ3+DK$Ih$#(8 zJ-Fga^qTzu#eO6K7epIKBIbz--VY+V%CW|Tl0<|FAwfMLv>CaK%T}zgG$&@5+=3`e z7W8XHh9T_8!g@{&XiLg)mTcm26!8<abaUJDiMCa+MHC2I73#Kw>KpmW&X`!q7Mp z$ZOn@kl&FcA)RP>*Evk+S_`U&z#ZitT5~Jm_?iP@?2Dl0#PMvBov)C7zCXqwVUO&e0o+ARzuNTe^KOhAe+V){+$Y;dJ1EklZ} zqEB=B{8Dhee1a5P zVeH@NQ`efC->PBs5t?>m1odxK_hsLRgcU|Cp*kkdhFBa7VqA24kJf|5%jp3n+0!!V zB&WC_xmn0^sd5HUt7VDQ40BsM9pRj*+c`AdDN|zAdg=iuKcdCTQg|qrVqO3_a_C3{ zNbUoyGq_ejUqc2a3hbNdJZ0*4E25a^^s2+O*(ryg*^{h-_1owxO8SC;+L11;;IoI` zP+Yb;KvS?ZA!$DFbpGz}38+p}4i^SX1TS!w~ z#Qi(8q~!r!v9|@ z^eL675~_iWcuE-+2QSh#_OYy^hux)m@owfxgX}xl07MK7!;ngtdSMOYtOv48o?kc5 z+*qp8K_8ge2{iJt7kj=023io!(WcPk*Z32MHF#js+xx|56!wu*ZlSqOa4nH^S{SzXyIbXz!> zi+Zwup$Ut7v0%vV%_dVN|LyuP?9F2p4rZf%>n(Du?|d$<}4R>a<^N8~ahtHPt*kgnkq<8=(Pma^9 z%&5Li1}(+iCJxM`70las>FXoTO_y)}7iF?!%;n;UL$7Q$2y>pFKW1U@P-7!aO3f|) zfE~qjp98mX9ScH;L5kgwX9ySB`PDhuw4SA5;wb-p1f+k;a*^V2n6-r!pvCjHvrU+G zwVhzHcJ{LQW+j8|zGbHnNe~83NSq0hzGJzV){=x}9*A2`>LS4Z9P5u1M?!HKi$jVd zVCWsz#$5?v(F2D0wu=$M2zaN0HC1ow(%)DCBAyPMIP#1Ih=Nq^3+}(O<0{znjI}2o z6B;Ly3BjqMqea>$q?aW)vs5VRy=ErgsJfawoBJb@01}+zRrk=# zALg`%{AC>V+YCdSww%vb%P2I9&qZ8v4ktfpe6ZTKGjjMHL_7?dkThTTW-X6(0^kLs zKjwLAjw16o=F^&LPhN0uJvU<(8QEzsim-j$M^tLO3*;5>e(DY$x)~KMqo%9CFk=h% zz}y6X5v~`>Nmutu{L_OkwBN~JRiDJZ+|8$B+RbnU^Y`;S%u{vsk$i=@L>5xcH@wI> z%)yg#xE(&hha-;SD4z8H@O^cUtfRBuJteO{W!&FC!&_qebjk%jNv%Bh%e*i0Sg`qj uJXY;`-*PlfNLm1t+~#X7s8F?neU<#5Ci_5BzK6Zk@#SL|7yB=!(mw!eZFZ>u delta 15000 zcmbuFd3;UR7RR%PwABDt>0REpM6f@ zJ3&Y11#KBjEN@Q8o@mSHJhfxy=me`Zc2w-BY)f`RR_9Tf@@G_BY^N^PI9r^pOI9aq ze1bJQE>53MPSW~^X_>z9`hGsZT??rGi)Yrv(H$mbj>*=Oz3(DmdZzC!gmkIFs&Dmg z>4B1O)mk($=}EyC-EraiJK?`#Lo1^$VMON*v1oRyyWZy6N+urnp?^wz#~6V~yyhf& z>amvBFa?m|y4^Y#7i!g3*nIWdowk#wJ#-?j5VsVo)-AzX`#xbmqM&(0jA)%Fs&cL- zwe>*(duZP!L}?|dJ8{u^MQI<{#z{-PLuxq$pUX2XZ#vTb08CfJiPd`?JVCcEW%MhLvnV}?BFFtihO+x-@ zj42JAR(#4`*DC!GyH;Ji>8yq*sUzN^kxB!i|9EA(+V;8ECu4D% z*FCd#>x!Q~<<@Eyn^HXvi`BjEHOIzkIkmxh@o(R%a@IbWg+=N)wWEnCKgf-^xw&cQ z?a`W6+gLo>PJFl9$U(%sF-if$8JVpN8ek@Z&KgvBldH2W*@B!$moU0D*{7zZSsOAOsm3BC zFaR#K!%Grjv80jc(we*o3p$WjRB??vlIPLl9B4RhB{z}z>I_kFq#1vDZ-sGPNhVrS zMH2B56Hbwtur-Ags@*ib2N{hi#0zAP+8?~o%a}#Bql4dkn=Hm8?D4I}20WnM~mHC=|AB?j_Mzd80C7qj2yt^*$7^9kZi^Vi`(UL7}uI; zJp6K)L?IRcvetdnA-?Mb>5X7HlQHrXiBN%`oFP^;F!3BYpqi)s1rm#?zvUK*g*}(a zZWXxh8g9x+pbf6xB+U?024rv;X28g}_OS6bDZ}{22tH6lR-uD;KO~XdE8op{ns9Ry zr|l$Jc>O|JZ|^~$LF7R=B#G;G65~q`OoT zMy1d>2os9qxwIqLd(c`FN!85NZU1i@(5a%GslaO5;roL@@K&}ISMr`A4jF`a;L zl|cnbU5PYKtVr=-o?=Czto8XkS6xTnqv=>(1{x%K3R+xr3H25Er6fRnuv$*VWvl51 z^*MLc8j8A$a?}GP|2M2Sn7@(s$L0oXpHi1=wX>Tk<{|(l>oi2&fp+Ym`B-rxW*7B? z-Mi^&mAb!-W;cxb-T}H9o$+;t=v7tHt|N3TT9O2sLHmXlp(QOpN!3eSSn)j_f|ewK zL6BZaQJ3e&km+`odO+V29xf{ibAFs+HbTm?7i>0&b$9>fT;}X zp2w6?Q$BOPAh7)Uthj2YUB#HLG&H{_8;H!q_8R8$N zVy)<22y4Xxw1X|13v(3Pgfs(4NQldtMz&^0u>)4T+m4}IRK^C0@FeDMd99}Qz$-=)e#eP?v*$Pz(C8Dzx2YuXw=O0ql^At`mdUDC}xQ;)~L4 z@_o!0@EOWpaVdou#ztc7CSNEapa;Yb#Nkz9wJnZ@jwapoYvsqt*C zi>CRnGt^npAohBL-E=8T#x(W=c9oDngW0jcqUmfF>b$oamc#a`Ho{%?f0X2T146-W&-=KteMM>((69kh%maNE-@gn_gsh*Ygrf4IG;Yb`X3wFmy8V? zACaMD7Izc3?JQ9|_Y(8YPv#Gil_?-RM3fSKzX9tMf9J@n}E-F?()zkBsLHR zP2j7sY>@0gbnyN+_!*a_mQUqD=o(03Qy4s*4{B8Z8WN4?mr zV-GIjkB~-cCvx`i0NC|0U*d9@m+DX%lhfh}_N!9vg>ZyppL#+_*ut+N&ol6cQK=AvbuD eKPqQ!!0Q43r@JYCmgBQ+H?h*rOY&3P&-@>}BHi5p diff --git a/doc-page/.doctrees/api/flair.datasets.doctree b/master/.doctrees/api/flair.datasets.doctree similarity index 95% rename from doc-page/.doctrees/api/flair.datasets.doctree rename to master/.doctrees/api/flair.datasets.doctree index fac01bf29f7732a8eb0809570892bb247d9d6e04..2c8e74fdc868733c2dee603a86fbd0b6ac9cf98a 100644 GIT binary patch delta 62 zcmdlXu|r}*G^3$eer8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k RK}wprp|PpK<{rj1TmWMr61xBZ delta 62 zcmdlXu|r}*G^1fzc51$HylIJkVzQ-?kwKC{QmSF9Wr}H1B9KZlGcd6*GBY+awn#BC QGPg8JH8b1X!?=bE0B3O$ga7~l diff --git a/doc-page/.doctrees/api/flair.doctree b/master/.doctrees/api/flair.doctree similarity index 91% rename from doc-page/.doctrees/api/flair.doctree rename to master/.doctrees/api/flair.doctree index 978010796e5365a008cece05c962eccc381eb78c..0617b6c69025c991386ebd396cf7ba7f780796bc 100644 GIT binary patch delta 580 zcmaFV&Umk#k)?rk>gA0ru8f9e`I$vIMV86>X-0_#=B9}TCgzrjX%;4?sfHGYsfp%k z#%3mFNk%ED1}SOghQ_7_o2wX|nMl_*`J$fMl^Fa)IjR5T`yy0CexKi~s-t delta 576 zcmccD&iJUEk)?rk>h+B*u8f9d*{S))@unsEiOH5mMg~a+NvVdZmMNx5i9jmJ%)rFL z$jsQx*doQm$lTH>)y!;j6{9l~>Dne~sZHL%#JgFMrGkSj-J3t~2yv08Gg6$BjVzs$ z4=C|&J|?@BY4U6x4UUxjWZik delta 62 zcmZ20zE*rgJfmS*c51$HylIJkVzQ-?kwKC{QmSF9Wr}H1B9KZlGcd6*GBY+awn#BC QGPg8JH8a~hfl-zV0AZ04n>Xvg__2&d5)8-{(B%oadZ*+idC6xSLPn zwhdrn;2?+ZJ);^TPi-xwj}i>dpIwv_|UbnpX|HD1Jk}F)oudM=HTjYzxLYu9=J3fb?pa-Akw*^Jj)vLv!Hg^#e` zm=J>})yBRhtMl_2sblY!{b6N9)Mh_TwU3?KGJque2`)9R+FHwge_0783p!qpk5TT? zp|&0$OLo8I?_;7f`{@AN%5QjkU$UYyyZs%%YA&YMEwx$>S?cznvD=(Q>YT{u7>>=0E z+?m=}-8h0v^8j0y+kqr=lWMgG-^ui(d84-d$b;TUT>I+MLeKnAxQ&n2BjD__pXM_p zFO~_f{Ge*3N^cAw^Q`{tr3IBLF_rW`Tk_(U3p1Du!6S7yYC~m_nTRlFoBebQgsKcH z;G{&hRAZ{co9549RxkKc4wXv@^?)`AGwc8yi&d zNC3@Geb$Rg!cisPeLw?+ZiLa0H&$~(A4Ig$ve~IT$r3qN52jy@hIZ508<>{j zX$NTBH&!?0`o0Ycw~VuJ#QG7dkcKwak4$XB*Mi`sY&~-XeIVM&HJ`B!ZF$Y3 z3a?or(Z2X|7Jri1RkOko-m-@AR`x;B(iZc8G9sm;11OeiGNQxj2r#L#r9dJRAGw-> zquz#vTQJ+F`ryfgVyZB&mSwtBaaKSPc3Zs(b$-P%92uruNK3Rtw5d23GPwme8R#?n zsOCW^qZ8iD=B_FZVXjggcw`0@vqDu|6#-J2<-XorRFJ9nmwz-}`wSq!|i z(b7Qi_HL8iG8+?a-3Cw_* zVG5y`!Jui}Nk5!8-XLF8=c>cUHMoEKpjH^h4MoPV47fOg%c@p!YCyB_Hs;Yn$Gu0| zqA2-@< z?lF>D8L(wBx1p*TYGmblP9($DbHAHLfyW!TJwCjw{5eF&yc`2eZ#N{l?I$Ki{HC#kB;h#`1eqkF^HU8`}se~I77FS>K60!5dEDPm~p50?HCo%!Trdy zQ*`He(H+@J8WvH0XMfT=$F0t;`w2k#jYLv&phN$2{8~g&>dv(yCr zT^NzD*iQ&U@=YZa(+cga!YU-Ie&lJ0Ad`RG;;f`+S8WiS4;837-0tEyNWK>?R7a95 zGcl~SB0x-}a2wMw4IQtoBOFHbF?}rDtt%Yz;g-}u_&?09VcR}J9ddG&m_%r`w}k_- zLiY$;UN7ekAkfdNAk<7;xNx(-uoJVGb|SQe#6dz%O95ClZ(fwXKhXh#f)1n z9bp@NQfOcabN`yqsMC{sv^`dako8zG0gns5YQrwy_@~UtRGtG6THW{wo6w-OG z5U#i<_?e-X4DJ3agsJ4@Y4(+Z)nbC`+ISkfjubxI;s6%h3+Z_qTwZejS;#M;ypG>lb(KP4Z;)39MFR`(|TL^V6)Pt;{qGTqH zWfq3CRwM||5c}0K)1b)axneMcy(7+a&$WZ--S@>tW{9?RfFGVOHo#meaVDlMxwC@m zam9zC#Y}aS!Swi8Y~t-|$*1DKu(JT5vx_=rnDv2`YedFF(S}e;*NUhMN6x?{L%>F{ zt{G;@gd+IExlN)bdg(anE0M))LA&UY^dgaiUyg`<&2cnfemE+&V?8zvj2LE~5Z}P8 z4|~T-y@-Ef$x3SESdwAmWwDv)e$R$}UK^U;5bI-9;{u1@Z;L6I=}iLJsZ5f;w$v;5NvbCo zSe&O)Po-mlI9J+`g+Wr7W7A`5u!Jf{>Sq~@vDGo8iqz9gaswbCL>g!=W`lOg%^)>Y zqPuG=&zIj^H8Qd*TpEc`HqgP}i{5af6Qls7yF-CblG4xHi6b?0EUjT+Cuu3e^mf12MZX&gEnk&5jEkOzfEqf4so8RvZ4;#+aEXVUnv>${Pkf7p7oc8Vy4*!R@S$a?}c>Q40qL0IzWSTY4Ho- zl{iBB0a5MGc}GzsSehx>SQ7n{>RLh5Z-qkkXz3VcedIC$G*ja+!ge7LijWM)CrJ$B z%`YTdYK_@rDM#OTN2&_v-;~09pm&%dT{9Y>dXDU|$KR|q0o)`*SCm3O2A-VuB7uGIMj)ZV_iQW%_@FYOh)OxPMZL3o(@y z+6-QXJ=di|9|_rWQ(A&ei17#qir)SO2yov+ItfS$p>y-i52a@4G#j%DL(v9c`YyRC zd|0Ya!@Qm`4?!30;TPg-zecm^aOz!veY@qsP!* zUEtOp`2)ma%!OWKM~S@NM`_=?Xs)!w$@DAoC1ePJw!w8sp(Mb`>vBtU9VNF`s*>?f zWr^&2Ci9NBQ&!xO7x<{Csej9d&=uuj=PI#w;6e%xDQ}hUNkCghDSZhSzyv~LAd)ZY zDpsHir`pI+#uLi2w&Q)TDGikne{cDnZl$1$4k&t36wX6~T2**5OhIko8Fi|s0FGrS zoqUwlkW8f-s;u&r3B)=_;T;OLyV3)xzF-phi_&{pvBE>jVdX2%{cxXR z2a|37Y880xxDtr;-CnzY{j`jE*8$JJJQT*+K@~0WPL*ea9N;Yb9Oy@wU4J6wXi$Zqu7JBbaznb&p zhC;9Axcz988{IE%DY2*tlDjcKn0H5!&2a8R!bDXi|GdTdL-HeKqF_tz8D4NoonQX) z6%1k2>5OmbHnym!*8q*Q(UA24YW`O<+8sz*tEv??XzBrvqchzC(DFi^=Q-(>fm?#r zL#PeJvRw6n^cre6tNYQJQ@2%tYpC`$BZNMLg8RXv#_G#0FpqB+$HI|ns+j`nL!v^Z zI5;(04feRy;B>VLB#l*@2b@eQguEa z=CaxXW-U`^v7RRvhKt=kQZJf9CKOqNou8;tn7tFHpNTMflX}z_!C9MCJC-2O6pzES zUMH=182633@3|8nBW}}osi;>_%aLE%t1d93-FWiZ5mmN*UP>3EV^opkol?_a&jB^f z7v159)ZN%9>V*;y)YxHjp}bzAcJj;$az?dd?s_>8E~{N2^f$E{HZ+iX zS@jcrbdEFE)g7ji3)Xw;yPoSTN;w=ZJy7eIX-V;f0{g+TKh-Gu`x*zCS_PN2PvwFu ze;dDXRSEJKEfs?w(_M=s(dk+%NawWEqT6p|5&BVWn6GJvP2rMlftm!D1GM&-WR=sS zFkfOOGfspAvbUxtldhc^E1A!0^I%~$t&ZSvx!Z7eV(CKItHpTf}NH ziuC(d+io6e`5OAp!lm!D1KwmyztDbX-HOuF=phe#+;tQBV1B*2?zHOwz>yEr7kz;hbi Y>2&`cLPLLd&ueoL9T_(MsTGO;1HSj;X8-^I delta 23169 zcmbuHc~lj3|HqrTv(H>Wa7mKYOvDYa2nbQqG&6%-Qd0v|a9`3i^>M>8O*648e9B5R zGnZVu!N=usAu~18P&0jU!?LGxd$csIqxk#IToCSc`kmtk|M48|`M$pI&-UHsJ9F_? ztDEJmHuU6T#}CUM)hgq$S6XHbNQ{e%=^xWSJ2pFU;A8!>*nj=wV;)V2i*FU*Dq-NG zagQg)Wyi<6XLD^G_utI5F*M8lqWFyl(cfrM%D_e?6PQ>jd=t9ftLb+p?M_cMJ$?C6{OO{3D=W-`rL_L>JS=1Kl- z;|dA!cZCizU_+o1?*4O7BU*^7IAtxxME98?9Vu3(jvC_LIU=1P!JRs4rJcK<7_+E0 z!7&l5UU2uFmEaFcb{W-@F5+CI`&_|cimOdx>qW5y(_E~ntMwwqef#}4Xw7@NMlCVi z^%e^pv<>3C?1^v>EgVD%Rm7^EuHm0(u1#A4U5i#b-7}UgvZD`MK9fLqN32Sg?(uzu zd(HZrG!G1LCwz8ECMAODJkj;`X34#2%UZ7BvbX;t-9`W2MzD|tm4WvJx{VS}ycgQ< zs|iG?yWiJaZB!2a=2KeM_H>mU40Nsi_BhdbthGDr&@vlIfk*xph|t3C4fm4c$^5;J zYjz@>0$uQHUzh)BKld+Z48aTPjyTtb0CX?-b-Rzc+-s5U!V4>iVRfy)?(aVJzwtim za<7f00z+>|@bFbVz?FDKcYknBNr@?_?{TwkozqdMkOj$gTDDg1ddGME)%4AsOM6-PY6X} zHtq$B2XIad@5p^u-%eM%EbcI2h_}$l(6>_VKM~Bv$&m69r@`=#IH$D|!jxrP1W`zJ zmbn_j2FtmbWPdd+=7QnIUgostS98M^S9FwbEDbkTK#XNCWcav1n$LPc*fCCq9eX$t zTHWMEV8%YK7iS|-+RsfV6p|;X{@-$?4jX8TBivvzlnGyM2Ms#G{Z5R!^~d&7bAoQ$n6a=Yxjn0A>2TEKHqy}+~@1A-9`@IF`_2sux@`*Lh#oL*@OS^w% z$Qmyv1l&|S5d+5XZ;SA+5BO@MtYymIukx2DLxV{LM)kwON&G7h-oHJju1>IXl_o&U zXx<-}xcDAKA=NOzFixDG&rhVxOqNmQ@A84**IvxPhVS#eIBt+l1^~+d0Z)9u=MmFj zBADG^XHtf zasN*pOpqOI2-ApnS2##>)Kh6goh2Br-Z zH4&K}?dTj}BNEw&GOk8WWMn4_DUPt#6nzQ8%dq!HITfYJjyZ;}zyu*0f1T~192`Ii zL*wnY9G6K&Wj3Doj-w9YMAqziEZq6nA;bD|Sp>F$bYjK|$9uY+dFgJ)Yb5_y??k~j ziX8(wsrg*xBJ;O9j#Mb!E=c^CKCY#8pDCItgb^Jv77BGC2>Xb_zd1V#M#;ikqzq>k zAVdG;q$SQc=ocnD1PN1gC#DAr>utsLY#?M3-8&8$e^x!3xS6o%apBMVZ;LE>W(sz0 zUff!kO%yW&u8bE%*f~{D@s}P#0BOcb5UOJ~^%P2M9e${{&^7e_?KX?X;``&z6NDYM z=v$M7mx!^fKsT5w$U05jn1Wq`hNW)`2W+)npDWxZYO~0|$WB}{UwFT64fH|YNf|tA*ei$P0qWCBj*vvf^FBK3h={yM>cPQDfnUvqB`CGF@MK@*hT! zW2c1-Vr0i6<1Zx5+X=!Lc_!wa5*eW*f6qS8iv6KYViIKuzT~Lb4d)*a5AojD2!Q<%ifc;6 zxs<4xRA5vQcODVf6YNDssL#WOC#v1l@JJGmGanGrfC01c^bg`vO37`wB1)7^0qe9o z^t;Ihxo576+c-OWy4?`35gcSXqXK>6FE(;l+tI9+q!7p}7sIV%2L9|U*V4xxEb1eL z63$(%Zm?XFzOoe`;FLm%!RQW*8i>37rKMC|usuXlV0xx3K(pHH!9aQ^qYq|0B=zFF zubFrf#}Oh0leJd%B;&>~=`vxQ#L`Am14^7(yM8#Sv9#URsMniFzfuk;BhEM#h>4PeaYD3Q z-(eTfUz*F26jxQDx5mhOsNxFR$^jVNT4pB&Hlu9&HnL3BW|99$mEDAj1hWPpql+xV zv`lvPYEGc|LYmy%&s!z3xgdrp(8EW@?;AnLRLlK^)8*Q*rKb>pFhd^h6JCscL+(x# zHwa8L#=a>xpRR33@KK#N+fz)O4ZtnyE7K0|(?_-&A1>Tc|8&=9XPF*RJ)imgK7wA#vS%5cC0<+yf^2*Yg;DscoE$NO;moc|3dL!6`Pid} z(wDHjH9Z#((|0L>7@eV+fMQ)DE}qqYgH$K(BQnP zK*$v3mYpHlQ<; zmTXmOL7OegDQfXCz!4wokXiRBF+r>WCCqc}>}rWZyLQILC1m5$9!dgP&UNl#aXY4YLl^V6e5Q@uf;!eWJ6?QJ|LRf@k0J3OgzFPAY3UxN||Fye;cVDwB^5uPEWv zd@A^p4O2TesgZc;y7DM-4DDu7nspUh;_(|wkj>B@g7JSVAF*?DzVfo(()M-W(j8?q zLc|y?5wm2YCrCkYTWl(Tl z6<|s;RfmyH)IbP1uXe!Ijn%=#%CLCIc%<`TR$6xj)q)RWR1LSqstqW)#vGI8Y8t|x zq+VxlP%H{iFJfkbx>&b~8+K~1{)du@cl(%L?2ypiK^@eL5W?z4>zFrI&7t_-)B;=H zQk|Z&p1cWaMlBm#S0v3*DKm*fx3Gx)&@@TET?WCY4YQ%zj3RyD7G$a^TsZGXa z85-?qtD+WUyp^eSu$^G%4bVu}f@A-u1wp_Z?L}-mLHj|t=fXqf@AYuZ6s;L$Laijc z2xT)h1>5IpaD#w zS{KSh!3YC!>>dpTpU2j*L-Zz?`;8Vr^uR!Tq*QyFG8!>SsaW=%M!F+uHQw;O)|J@v za4bBb)$;k43ovIyp>$fiL74=YB=$`DgeGEPnKp)U_QVL|VWe1jaU}eL#iB?AnK|>M+EA72q$u8^=ISM`Z{~N z$NM>~r7J92Cp}3tslcdCtlL~~^f+NEwg}sDbQzBi)YFKikd2JMW??VOkXhC*h$<;< zy6z9`Zf+JXoT9VJ@IsrF(FEH~(`OKanGGf%hrXu&K?hEk+@?<>W@tLB-K%TR_^R%NoyDT;Dl5})+L!t#wo*rarEjOY5Lrk2sNRFq z$C%2bVlf(<9?{uq$i|Pej_Ti&#WDWpl-ovDQSA6puZ@k*>h;LoGs1DnZiFcNP2WTg zZQh@(SgnsYJbG0h>bw83lJA#4^eAfbA>+rYYJPFK^|7S~pyZCe9j15X{fY{Vr%BY# zMmWS|7>PL8VH}gaKGy`XosCGGuN!-7Mn3CjbSA~=uD0R;V-j0;EiVS{#vQ(<>C zAZC1LyjBx&NwDOUA;R|q^$2twH%RCHRjF;U;)~hg|BN3Dwv@36`p+kgS%mQ$Km619 GR{lR#;;`rd diff --git a/doc-page/.doctrees/api/flair.nn.doctree b/master/.doctrees/api/flair.nn.doctree similarity index 73% rename from doc-page/.doctrees/api/flair.nn.doctree rename to master/.doctrees/api/flair.nn.doctree index c2a93c16a50f2e0e9d104e8cc0ff960b4d001721..9d197f1d8fea6abfd29adb08faa34e85bea9c439 100644 GIT binary patch delta 5803 zcmbVQZBSHY6z05l7h%1d3%jg1gaYgEF;IfQ@}VNsgd~PxW@~A&%94O6SUHo8viKus z8fF@M-Cl;KsTrLbD~x=@GcpO9sO6A`HPe(8)@0U9ex;7eq;~Jc57y<+p8dHq=Xsy! zInO!oy?5(zb?BIC@|y#ZpP4El$Gx_G-RgBkD`(Wr^kx_2d$aQjioA7&dHKGa!W^Hs zpf1;)=Uy?h)|XvdSCEsNpDq3HHw(XvA4o2hKbg8FKn0I+rA0P*UwYZMj<-3T@*6cv zAp$notON-Lm%m~vX)?|fu_A;yNb8rxQm$LNRa%7t`k_alV$1k2ha-oV3CJlsN zDGwws3?gszVu@?JIeaY5&`f?N&B`0nC(5Rb#z+!GE?--0lMAw+HV1h+l>Z0KQytIF zvxJe#5YbVrDJA^V`G>}K%?ML(WhXIAvb(y55F%OTsW*+KA-0}`IC*~AV#uXJf(w4S)vVBd4EmX$HrgB0aWlP(RStK6C(!cL}HHb&f^WcyjM=wyK z+tOCd{rgmTYp}~jpdsolp}oG#L$yaDu!o(nYViK(C35=aUs~~%7RLQ zeFivc;Ij!ca+g^YZYzWj2=?m;kBF*A!HEY;U?3zFaX45ClL#YY0HX$cn6O{<;#%BU z3H9uLqn+rff(im5)G&uF;ddW@dk&Id%y>qVGbdMnDZ)3BCKg_*$A;g&Ki3NkF>&UiVzKM5x%||7Dk8PW!>H~ z(e(yQz^Znr3f16Ri3q#vDJSQhGH<_mfYQ_DDY)%m^#`DBK%h@!s?HTq-_yDNss(^7M-B`*R ziF4q_===4K3;2L zJrl$C-H0gKH?S)5$wyve<1NJMO{_bXO6bL{%n@=eJFx#PR!Z1wnBBpq$MP-eo$n$- z`@?}9AF(0Iv}nbZc)E+tClq5%H~X2AXRU6o*d>_-_k7N32qx&7%Y}b0ixPfSi4{Ng zvPrn7m%R@m#&mwcq6pf8PcUO@KeJO-oJKSk-~Ec6Q@G6)+_K|?>;#cnuFxP8FzH*i zixPF6)F{FeC)kEWLa;T2Ofh0nCW~LsF$+Ijy#zZiuqMhDG02>?X;95qnH>XHSPfZ| z4ucxZW)|YMdxVXc&8rd`lyZLYY=-UM$08zLS>X#Lry1{s5j^?abkQ2AM2cTbN{YB? wh0LDQ$`r~Px}(Tte8?0#RmF<$sY)k=klOfwqEaJ(n%D}$QySJyS2C6V0m>%sGXMYp delta 5818 zcmbtYZA_b06yCXS%g1Q3Kxt5*Y%sC4qI2OpYxoQSk{D{tw;imD2CLnQ2=0{ex0Xipm+qwlx_k%mdOtjvbYhNjI;Mtg39O?)*N zGIR2?4B3Y4e0xq-o-wP*U|^kaovge}9?#E~-Rsrt2gN`z)%TN4A@&1}>Fu_CP0Xcw zN?HYCvqp{3ai7qy5fykn;p{!_IiUZjrA2x=bU~{@oQbIkM%xi9KWa{pr`Gl15SV*? zoWC4X(#J{^S{kcLeKiPGx`mZy)++scy_9}09SvX2|S*0A7SRnV6f8l3;Z^a-s2WP6Sm>k%;jPfa~lE&&Fhn=mT zla?}a4uO{aw5JxcJOng5WqmUQkxn105V@>5h7G@9R-hoZF-KdfCV-ynj%|pbFk9D| zCs0I8tbO=9)iNT{?AX^gF!`}{ndJ6i75j5^APGlEcF#t!m}!^a2#Ib-GtI4+aNRaB z_iQXCzCsUe9)XSQ-Mi^XKUmKE=Md_QSOaT3A3Es(y)yyqOHFqT!ENoz9i!D9P|S5Y zV9`tQgkL(YehkbA!+fA$W12 z^CI7}LOYt<@pg!#9~8lUZrKm@fe6mELK2oB7w|QRu=0q*@DO5!bCJ_XzXb4}qp$-h zU?;bCLsclU@jUrB)cP%PD%eEx;a;#KDV1>f9cWBMQlewS5X9R?pa!uueUs)zFkOUV zKc79%eSYCnxE-}}ZhZ24*sWN40rBE>{0Mr?rWANauAG32m}TcJ&iDm#5iOE!U8#Iz z3PuqV>8YinHi%kof{M@Hgc(Ga{7~v<;51^AXiqE2<(50pKNA7KPP==E-+j<(64FTs7j#B8##Jotv9pwJ4{e8KaaC5h1(#M}MZ1sTA~*5JYsz z#ZQA?VhAOK)NTj$sf=k7tRQ>Rhv5jcpe7O#J$COE?asFy@B8=rJLmg3=iG!qzYu8p zj&76^=?=ml2UYOJZpqr0G%()l9BLkL!E*{((S*3`Z@{X84FVHNZ%I9$sz)i|GcFdrKg) z^VzMyxYei4-AKx&1@0D`btq{aiT}|9Q}P@upK0F>w$d?u?ym#o{H@J`3CFkuh6Lq2 zPrS8DxtBmBB}|<3z!xL#id2IKdVMi7Vg?rYMiN`S3O@$BD8d*{ zs4vTdo3$9EvgJCP4~@4?7$&m3u8mQcjvqBoD#;Pa+m_CV7C!o4xYoG&YaI zmAzYwu(;&S%H(=#4w(s&Y$29Dip^!CDkGfvx{jSzrGnL2^#TC--n0Wd<&3xgq>;lf zXR>w53x0_^v5}z%{!SRI7lb|j!JfYEzW%_VKiqw*Cp0o@(eF~e$uepH*RE}frs_5S E09@z1wEzGB delta 3155 zcmbtVUr1AN6z*Nrkdq_fKbnyNwJhb@(E<+}PcglF25yN`jm(`Oq-) zmyf;_5yWtfgRBR2A`-!h{t%La%)Qhe3Mwc>5W4q{HC(=Uyf63Ze7|$P?>pal9;26I zG#!;q%ae3BRey6J7&3dU!$zOqZZa_(!v*Vu_JEc1@juSSSQv(4NXu$UU`rl8FR zF)AzBe;G;WTF8%#3^wW064IWpRR%)-y0EV=NX90$(5ZNX2UWmSg$iG;1oh#8%KeW7 z3Eiu*QCO!2Qui4a3|n0$J74Pe*W@9LtF1AASLh~IJPQ(ICIOT+$ z=+Z$TmbMjQlw2L(z`2qko{8hI7;8bC7k=Rw@J#$Jrx?a2KVvQAnb5;38B(EyHWv|M~4*%n^UV{FO8!g@xJ5xvmS zNr=2nVgxUgA0x#r|M0OH$4jet@mJQkJ$dQhc!A@k4W>3Ryg)W*$ML}uA=ZC=`9IbL zfgj{em<7n@1XwZBpRnIB-WL#rH2?E6i7n?f2E*2xLO)$AKO}w~u_J-VVAvbJ5sU;v Y-rIxMAI)j0Va$XH-I-KgN}ZGZ1jB~ z)t1J=#*l-tOf9gccR3{dn~-zD9uk5vWDQ{tA)AUGtt>Q>K4I!7}#Rqx$*-@W(Ud*8jcUOhbYADy2qVgJIle$#R5XQr%bwce=O zekUBMHY)8oyB>7j+1dKW&V!waaI|He_8aY1#qNYl(4ykFwQ9?*cTRM|HPk$CYyMQ! zf7rJxf!nCZ-JKz4g)@AjGvSPeLxCIAY~@k7ex_!*t*M}K%C5T)Sga?tM&sqj?K6Z$ zYMVEAIBqMN7BC4q&ZXgKIY!-C7OsdeJ{B&oxplj9tUYaoV^$Ef-060JnbORbxmBNL zF~^01L8VUTv`OX z3nH|_ck8ndiEzttE&_I|G{Lx0a_cGRZS91cx)Ga-J9kVdE(w=I#w%UKn*d$c(37(7 zf~`Tjm5|YuG4zS89WKgC!nLfuRj)S!F12F0I78vCdvCfvfbbqFZDCW{a(G+mCIP?f zH?4|&s1!FTZ8>}xykbjaLpa2GbRzi%m0!z+E26T3C$SX3O^N*8O&e`reJc$D`#i-~V!8EZ(ka zg{kKJAzCDm<@#)?F_R)2suWyvWGP!Nt2mpW-e|QdJi07JiUjpipGkT?lugfxa3w@& z5+q^cg{x_J#!>dSty0mMcOD>;yc`E9Ioj`%1;T*rDe7Da)paz|qL4iknWgds<7 zga*mR>}{!-EpOCo^9m^=1vCmfVb9o@IqZZabo_LMTW5;6>(PdA7;s%gw zYH-?W)p0or5=TPeJWFVDf_K1o0vcGYSv!D#5Rsor;*a3PTwt{gntjh?e2B2$amKy% zOP4GmZHe~Zj>Pi2!UYNU+)^)D(=ZlRB`7iOlv*}3RP})DhgA~N7c110Q?dMAm)lzk zigy*^!Ti6-ME^L(Vtw}@Ty6hcH1V#d-sJCY2-7sVcY_99lSJoNMTF414p0iop*Mn- zs?2%Y=|&G?=dB@(pY_(#ugAT03|>s+i$};9-=NCiD@_@=sc2%&u@-W83r#db4)4Ad z597)ECG1s7ZQrhzf`*jGl2w~+v|xSa(4bx|Va?h#pPKks)9a6nS{v=%DpfQFG zfP24NZCf?8!M4dSZ7-c}w5tA8>6Tipdk?)`RMA2S+gs&sp!WfQn<>M(QGyc}aJ8iOnd;J0je z({;Y&+I9DJZM)=FVKUqq7oL7%P15KBv(^@W48~=~oo%<6do35|TQ4GdDuQ#A#2{S_ ztkcP^D}lSHFINI%f&$oT#QvOjw+1{z3k<^)5r>nmL1c-%;{ej95|~C;MF}itgJheY zG#xM^CMHyX7cHD+&PI=j$JXNUg^);vkOnTTQUzD%&;!H(&Y=|~*$M8vo*pW!?~6NU z7zvVH)!hQ~SjkoBR?&~3>v?i#Idk|(Qs4oka_08_*YfiZzq@NSOWD?0Qdr|caAM2f zSMb4kWw=8~<;2#~M9PjZ)-@#(`9>AthZ{`IL?8=+p+u;Jc__|!Aw~SzcoJLyl2n>-e$RPNV(%ab zfc>{Z0PkxAM#Kl!v-kk*u^^dttL7p|D0emCauOP@#YD&`ZkySTMJp%<#`k~e;5J0C z<@A1ToL;!J-nCixeo9?7dOyZ5lSzsQ;r);||9*ky2w%2qfm^0n1MO@%dGIIba~2BD zd!ECRf~C^+gMzV9*y1DF-yhZfPK#Z5>n~ZdL=Rs$PjxK?1T4I@Xlf!rxPUQ>T@e>od1}Z&tn+h(pWhfj=?9bRk^50*^dKQ zL+r7#c!c(jdom*`dxk4t&Ai_d+p$ObA#qQxp;uvs**=8o2#^fFf?99%UQWN_`H=?| zqcYv7ro`yv26^--7R0^SAdASe+_he*Mo@q{ocAee&EqqU+`Cq2cB!|~39EJ#VG4@e{${D*1&lRALMdJyex+Ny0S1>_@kVSGTjtkkc<5>3-e*ZKSDl9R6mj(X?B^JY4?kj4nUZ z`hB|lYoy`gV6f^YoKz=Y;M0?nFFGkp_$QiFJpyWxohKgg>&es$94mJdfUHMJBf;eQwm@DB%LeL|r3-je!VXf@yJr8;B z%RTN=7w5d!fTlw!ui@&f_bmJQb^4jA_a!OyYL^I4o~RUw%M1)7 zpD?jI;polB=sggl$F7X%tvY|RbSFwf=3|qPR|u14mXZ*(C{$FZlplqiIpbMt`K9g4K zkK<{jhojCqk0lm`Fx4nj@gzySKO!)?xm=^;&9@QyZHdgEhF`0&# z=rY^r{V40f&oUk$IT-bq_&#gI*ZUPf>5(20?fMG3nzlV!wChU+ntLlFB`LyMsU&d* z64v@9@F^J9`b7@v3mMkhy>s&D{@rm{>!*3B=wU5M!LG2@V}RAO-Cp55=lxf7L>TJ@ z%VF&3`Vq3ubRn#>SW8%8A+=2nQB629ezPN`j>fc0F%{Q%n}AnB^~R1_xK#-iJd{6x z5*>OG0p+WIG&X69YdWC~n$+G!LqsnG6w{hAq|J7rYww{1#zQJ@VEp6t4d#ke;xX0L zEc(_)SH;lPkS}7k$p8|%RA2Kl;t%g~6%=diF>(rf{l~;-OmX2;qx`zLHqpuR%ErOT@Q0-pjgfO?adL29LI3lE*hP>sgwdELkNcO{Keb@%offgEN^n z#8iz-#T&da>Q-tEE8;w>td5HA%GldA>a$7!U0By>o?W)~bWc-kQ|pc1>+p+(Lx)Pw zKm1Om4w^klsJRW{u0G}^SwKUn0L}Z7?*O?vL(VA6A|^hHqKy2v-IvqAf+zU6yI%q_?cxPdLl+K6E_)LoSc6#*PSA;3w$_&I+{srI_bd`UagZe_c%KLUq9^H2^c9nmUhl=hhOA2HIiTjHKv zAlG9us{Kf66wSvGCcH$Q#)Zh{n(#p+dJoZ%+!xUky*C-BP}GY*04RNW@wcLD?_NBK z5li$cUVLh<_hQo4l%U)b(K{vKD;~wBUGC!Y624`E${DOh;H_vp0W>M1MfrOIQ2ONW zDRdnSf7#5U&6syL&5P%J1>G1)6FFb;L`**4zuTEJQ4BBqJ6gvD{k!o3P$U2DYMNJ1 zIbWgvq)zE6=gTAJAHuLap#KD2v4B3iGDXa}M|Zxt+?{L-l2*K#v;rlOkU&EBMfpxB z&j$AGfL@jye2Rm^5?kQx?q@Xq=SR`Mp!Gup5TPlO66g&S$(L^Ag$MpV2l0MQkCj3=#0y++<~QhgTHUO^G*{1F~pTf=v=BAJt9`G|zhygjPM2e5K@QJqlSU z8b%ifbw{PH?fc>Z!Z$3sh0?jmjl@6_y${CoO1E96M6aZY_j&@O8_l(v*a(Z&bzg3G z-orj7ZtdSJ#3f8;^uzIy! zF!IlN{~jHY*Ze$wv1^vsq?^Jh3DJRNxrf>=ZeH^*qakB;9lI#!k=Ohx0p)w;)V$`` zv_X^Fs_2gS%Yb5(wCvLN|B0^BU&=oyfS0~A9=0%}0Az;L9lg1~Rq{QaW z(2mp@x_p5y^~7dbTIDFQ$yD?<ZO`hpKV*SwjZZN7knJ4dH*Gvr&tI{nN-bUM5K$u4rXy^ z->t|#;`kOM9b2G(VB!3+l5gWsrL@Cb>b31Y<6z|1YzVK)?61@(3=MPH5Hxc>67SE( z^M^q?B&U_+&T4I>Z0^Lz)_7~thj>MAZV{$M1b;b=bIlQY;aU;=erxFW^Qvz9Nt5BeVfIPBVK=xM;Kvp^_$K*4nA#2o;d?w~Go9`FOv z$U?1U8vv+$kq3M)bs85^i-lq?4i4;)y^(x9&uscp@fm4o*^`*T-@uN((u9`I8oMj{7DGy?(a< z)F=`7E}B{bgoaSZr(yId%x&R33>2ej)bHI zgJN>Rga2om7x&-=-MT$^@kC5M--G{B&O{Xto))vo!J($n@hzV&05$U9KS}fI$%7X< zP%4%_JouZzCGNo=rYq*bv#Y`$yqUICWg>EcKvZN1b^1kBCfTJMM`ApW#(1(T6P^Po z-PlHzeYVUIFVG;Zl87vH-G&V+tKyiyS(wv$Bo$7^W`Ty$ zWkF3)shb5W9^k^f{HOAeZx04iw(+KTTIrhwQ`v?jiT6eVqwiYSs}m~T+*Ihd<<8|D zImnobHqwz9NO1kbK&zmu{y{V~TCCKfjoZ_5eDtlN-o6X51BWc`+$GC4-j|1r?yO51 zb~)?!0amZhIxE|F93A10|0RBTbj`{(=mLg{)e;KPfvWy3YP+~)8()fs6t-INe)@kM z{W${4g*~-w<8QS=lgg^7cl0cv7-cQHY~y)!?cD`tJY;1X#J^t3HZI8P=&I&{YJz+b zvrYP*M3SmDeu;LZ&Cul;y40&SCZt8?L46zq}Q$QvH zsXe~%d+ivPGckUW+vcF%#<=f=dEqyO6bqm0-xp6h&2ceC4tJreNpWhC!>IzzyCR2@ zC*CAs%6+4OxFdG~UO{){&K%U!BZq@>M-V#PxkI`mcjO_XyCaf@UGB&R!0Oc@TM)7VKD#6`JslP?WUu_n=dnsrf`x+TP={9nWV%zc(5e1Mqmk2f zie^DXs{hT@Xc1eb{HBO5>1&D;zB{6KN}NzU64Io2%6XaoFA&t!IN^Vb#uGqwvsdhl=g$L5pZxs_ zx(YYDSHub5Q~+ueCwv3VtEV`j zP=8XV^bsckQDK5CNK<<1 zzGqKrbykr~FE)$i09$)CKwlWY{Ug!H=}u9G-~I%3iYI_Iv+#cVXKBcEzx{K@DHQeF zp9U1u;y3v1&!B7XejSNZA;0}%GbH4@e=4GRitjES35n{#cYmIsruy#RkH!-~lZLw} zkG~5jee(FH=sFl4Cw%vB(Y(0tF6h>s;}=iF|>dAK(Dp2Z`K798ZRtewzMRdh{cXn0ScQ@0Pa{MB31VlwTNvB_Kj(>NI=bji( zc4fkI06G5cud7VL?G$Ep2>`S~=tKzt2I)3%$Ew^l0 z;PV@92PagK&EHM@rq&~=lrnY`G>k4Us+m=H6R(U12;aEayNNE=L}7MkAf*6aJhSv2 zg{c%kQpIx#jJ~zGGzE2TR8pSEP0pDdluQKysVF5kIU5a<&0pY6o=iF#w`Whi#POus zL%fu$+>ujyn{i6Uz0hOmYBH7DUg#0lJUN4Peml83=>S zVhG}kLzl*19HP&-SV5zu9^Ab2W`P5)~&Q{W}YiIj1!0L5p z%Zg$iKu7Fe$5z83qH9(ZLl>0Fr+uhUqL7nYsqNwx#jFKh39~C->g&HK<|+cpb$)75 z%tmd{q~$KUop=GD7-cQHDCP!q?R`7Jc*u%kh=08l#atxr14NAYZSsFeDyc4JKd}g= z9bHz@rCt|v_;~b2Tr2ua!>LBS;ovBfMk!K-rDmhqu34>;7dgFn#$Tdq$-_#{7mU>2 zha)V-E-fijs*4v*@nZ4mvMBsuI)$^&i#hGM6-UtCA7fvuZr1FQ@Wv$d(FiRqzjV9( zQfqn}TGSi(+JaTDmhR*(!yU4m=>lUR`Fne>{Pm7<5vFrV6cHW`*TRsybvJMu^~{el z=wLDoQFrpxur~s7Iwg7!Wf|ZoB1&Jd&GJ<$hv6D(|O!_~UQld8b7! zjQi=oMpu)ssO`YMSfF{=4otGedxkLOfsujK0sa%<72JXSEC=-k-GS}Lmp^vyKM?Q0 z{xJ_3eFr9K*tG-u6Ts?q2gY_>r~|yZOOwQlm{N;Ztig65B|4>718&L&qZ9-R=EE*L z37pe6bPHV&_(Du6Tfb=TuqX(;jyjDC>BWLs_{8FkG$i*1^s|3%Hcp}FF7Y6sm{z_a zv3MK0_P$FbVd9BJxl2qf2)xJ)Ipr1iMkG(kD~d;Af7L@?@gzazJZ9N9>D5g~;|ZWi z|EwsBe+y9hWN{5$2gBk-Uhy897tbpSx^?Fj#S<}kqx*wT&o{_DiVN6o2X6ybm9w2<= z!f%oK_$0_T;|Zj>x8^N@oV@o90>gbzS^CMe6Y1cILZ1ZrMCqYDzpFRn~5zp4}>4L2AQg-#81m*g5 zgfmsfId1|qOLc;k4})w)8;Yn<-a^P3X7^OYOYptd4}*xV3P63q7x^&AK_JF0#38z3 z7J^+Bwh)rQSsw-w*%_cJayA*LW}hx`Ta4!`Vm#TE3C{sko=nBji`TTQCNi&ig(ugi z7%&}1zjY@i9gr+LDbKX)l?AReu|Rp%iOJVhuGXWF?V@3H`A|J1b;+NI2M8ZtY}=(X zW1xj555*Hpw`rzA6G;^BK?0)}nyl-_oNqF^AIKd?n1hh1%p?_|WV~xlAaYzxl3DCK z8Tm?Wk%)n%wLmmXzb)tVA>*8kak2NIt7+?`#l?QNK=ZD+SSr~DQ#bItBVZ?5exg?>a!i4o85SapW`9Z`ixScW`dB-d48u>Ssn&tacj&K?d zkCOZ*2ZK_->>0lF!5c>3R*AKD$*m(fJA)Is;)6W~4_IpOt7uY%<0>G-MdBtTnb2<< zaK9jXMjBAJ^YRdoZ3Vp4DFHp{uEx?6>leeJ%Gc^B#6Zs{2Y9oQ>*fvr!MJaD_CkA% zF)Q6k}KX3!gPQs zzyReTa)(On%$!!B264`B7`>M+*^DZr~TmoR&|5Rk*} zeS@9=+?WYO$^Qw?LpkmP*mSpPq4R$qiAEOME$PUp`%p?6yy6nzxzT%qI*kj_#cEmj z{NHD3NbZp7`M=K@r%==vdm2zo%iiFNJ%g^jCx_mJUOfLNeX-R1-^Hc3*=vOn#aXWE zk|p;lCHS9;9tn9;yz#svL7u0soW)w0_WK&pq>vWn@OJ^FPY(YST?fPAMEdVrG_UBj z!f1+&q=_Rzbc&h-kd*#=GH0T+lB4t=t>heUTBQFzPyniUtuUI55P~GXG^N7Qe?kFD ztw>h<=ga>+$laT@`ia(~khP*=bfHik zB6XF2Cmvw&-$Cl4|3K4yOV%feoh03aV@mf)s(Am82&AX`E=@t5?nmV8=`FZFT=p=}>e25X&4KI{A>vi9Z>= z#I+$Dj(RG4-#O!&A&Sj~ww>EuxebaB+71yej92@Vx`S|*ze93m;aHV#g zkLDqEtl5$i5#eI7co{snd->8OOI|sL7iZ_}I(@_w$Ne{ENln_p*;blwv`g*``*qr?2c*HE2brbXTyM1ItlH+1FqWe7f~!)m z?K88MuXb+F9SZWw2P2`)8BU?f-)WMeXsn_V_(KAbCxJiK#z{(1QQh?qfYPV#`X#z9 ziUiW30Yp`%z!DOu)4H$(5=cb?`zCiLWl7rmxa0u3n%1dST(YM? z^RD6&$rf)nVafv}1Bpi52Y3ae5%=VvzL3QwyY}xvG-AK}&dgnT$mr1sNyDya#3sP% zH5$R95A=SyNo>z~Zvf~pB}%22mu$)gqturO=0itb1HjQXQj5PYbbZO&qLGD)OPV*; zNrJy3>Py~AoyLXqV! zD?sU!#m}MZU|5_eF!^(uR|-iJ1tvO0^SrN(-g|N;N=rE^FrlTK6Y~-UCXW_?8Wotl zndX(bZPT<0D=-lnP^y(a3QSgCjwQtkOxDm9OCqu>Q*w?wsOMW?lKp;p*J@HLOw!&j z@9Gd$g!Jv2Zpea&wKn0%my7q_d(-s+qFjecTbeC8)-{;la(G+mrue8=pFWLps1&y< zZ8?1SL>xgM5uKD>+7|FZ6@>hvg6&$5IO6@dDJFH&am1Tf$h z;=^>sECjnMY#}6pvrrY8N}ww8ml>#LmzjJ##`8~NJlT~APg!Onk(_XD3fHp?=p;)s zxDT)hUdI;LM^8ntfZkR>kf(+rrC(mR0wW z$Dk8BVH{>#w(nEQARG!BfmQ1qSrU$kHg*+%wu#+K!!?z5tA)HxIf8X8TqW+*+`8R4 z7LNFKKxq-bgOkV`m3H9P{3#?t@U~aI+6hu*?yT{HmfJ)MaE_8vK0t2dcWj=f^2?{)z$vr5HIT=M zQ3rYjj@?+*vf1h6HT!-W9{o8KUTU9lK{X`2+P=IyRJEtuvw*kewAHGE zYG~22tvTEo1^FvBO{()~xW=u6MrFHRX;jgw6OOinnaKl_zKiQk$%kdT)oQfL4o;h` z*)334f9j6Ags-50Lb54Tmdn5WP1gA84J!buH^5)I`n7Gj0u&JJAU@ z&=m&p;nLAswCe<|3YM>IS*PPaA)=Sk`hw)tXCa6+cg_tux3Ak0u4&rMGKgYhRaUqp z(jEGedYKkSc%?Wz7PtMW=6v8Z>Qjx@?DkH01+`=dpk*1y?}9x6*fE0plQ-W`U1eC_%ML{AV9g+s8|tc$KzBl zUvHo?BOzL!YBw>&8ekW=0qD>5z*$I7qvFkktzq%ixSVMv z$jscdUBwcf2MUgD2N>jv3R;~i+jEv%DIU%zrS;= zJspm4b%ON^QFQB77mFh(2Ucs=hI)eFTneNhS^@McVBj2KQs3eF#9i`E*=<0ZiT|K8 z+ubU=KTJ3Iwf8hxvrprPACA)PV7|#Zvj=B==Q>yi_8hkCCY)Wof+G_va%U(yDk%0B zZelKu>N12wu8*RM&ZD%=-F5}M-0`rn$kpVm8V`1JRTR}b;vDxrhLQyD6ZGSGyr$*- zfPOr-3_spZKR&)3Kc1o=pBTcAPt%XrtiX@^=*QGBe(a_nJ4WzhFa5Z06hAEbL7&$4 z=+oOCeYnq~5Bquap#zUTgy7MEn;sp=$xa;d=!hwg4jb_3FanR>#q;Q0Jyw+L-H0+P zj|#dxD){m!nCelmm3fmMZ6Dg(K46+MCL0kvLfwCM%$PPnqtsMYvdfoUIp zX>|XckoPxtUJVt6;tVJ|h`NtO$p?(Jd*b%W_%>TtE8Tjf)~?bzo~0#))3{-PB3;d; HW9t6{H-ey; literal 0 HcmV?d00001 diff --git a/doc-page/.doctrees/api/flair.trainers.doctree b/master/.doctrees/api/flair.trainers.doctree similarity index 72% rename from doc-page/.doctrees/api/flair.trainers.doctree rename to master/.doctrees/api/flair.trainers.doctree index 0ea4544a7e69d81ce56e77281a21e3157c7de4b5..0d38471b8135bd04979fff53a2c5faa0016251fa 100644 GIT binary patch delta 2140 zcmdmghi(2HHkJm~sSF!g!Wj+C@-vHaiY$}$(~J@g%uN#wOw274(=1F(Qw=Q)Qxnb8 zjLl5Ul8jPP4N}s~4UJ6=Huo?-U?N@HWCt^;$@h88Hos*NVqpxJENG_AmYY~yl3E0m zk=g9c>B&rStzut1>*=+2*h;g!jnFex#RdjvMPPVb;o4b4imC%h;FVJBl z+eo9$7s@*1(T!X(O@T}!H}lW!mqR!1)ov*=V`8)azP*l&6(zgy!q*?VgN`WQ5{$#f6NT)7LdH zdTiGUVC>*zOh76nK$1G!`JxzG$p}y+lTBk8dnqx&bGktpBir`u1je-@SR7bV$~cRR zavAPG&*}DcjGWtdRWjx>V;HZ!y{VS*61lG54h-3~WE8S+x5aK3YG%}A!s4uHt&F*> zq$ee~$)3}_I~fJHZ|`RGWWi#5^aMs9RL6T delta 2128 zcmbP#hi(5IHkJm~sf-(0!Wj+AvQzVo<4sHS6O%2Cj0}xbuq-&de(aC%B3l?z}#-K@@>KrNg$+`uJ>8U_rsm<=3 z-ppj0$j5tx3_k#EHJ|)Xig&W5B=6=B{-r!*+3q_zR+@csz9Q@9W|?rN$>;MmP`#xj ze}X)>feqfAuV~6mmb-i=*K12pw$c5G>7-h{Y!))jTx+PgxzD%;i$881fwm(S$XkdX5XD_;gEG#=jKk-+tPSF^&n-$J+}%8JWol z$mxs=88xQ|R5E%@mycy+-7X!#*v!e8gq);6N_4jWh-7RfBS;bEZwH#+ONj}d+x-(5 zH;Z6%TudqBEHa8>u;aD^J-?qB(^T#48MTa;D0A@L2F4UJ%2Ifsc}@qKAhP{O6Qd>* zHWya4GUl?9o|=%%*Y9K$+&;UT(US$6`L+`neaQ`1P@*!K?m3N-cf0Bo#%YuUgUNQF YFMhMi)gu#RrL!O2pey5?KWlEFVZJ7KWq{iX`}_VL_uReh z)$T7>ySwCTD~{H?mv_%@2OHVC$#PwOrik$RpdF4@V)LS%o zDAjqKaUwd$a10$ik&gG$(`L^@cmf~qHBAF4c9!s(K3Xjf$c?5O&<$qwH|fC=e9T9Awv}?NH@{(S z$EDtd*3qh)~JbGH)V*66Zp+f8EN(9hbevHigOemG2^U8tuqRuSK^v3fJY?^)v}X; zU{{#{8kJz+XJ)tJDx-wYW1NqvrW>lVuNq47+6{8_||pVA^7= zU9FkrE|7IEv^BFgzrFXuW_W-ofQ@jNaeYxJCsRKE8@6ga3# zy~wbtQm%Q)lh%(&RZ4Wk3~#!uK92ABF_F-eTDv)WjL*7y6fwU%wq>eo_j5>WOCbOA zH%$N0*p>~v>aV{s?GW3NPdDH4=E)uJf}@^=|L!NW>XzU5k}pT*JiAQ!-1if;RF_}T z2}XT|wg>c3{@A5b7|6^3`w%s;(Y(cb1l;a9$w>!=j~0><^ISk{%fWL z=dw>mfG3^ZVG--i5CsmxMvQ_6#O_ttYuMUx;Ke>41Bm<7U4U2+0(#;g?5nZR8`Dvz zK7r}1d8$lWo`%GpNstGuao?RsDkiT#BnrY|9VY88xHo$x0?r~z(gkS5#^yf(K5S+r zW`>p2rwa)%s5o+AI)ouMy_Lx%vnQ*1625UFD=VOvAWy*_6?ty4aN0R}DT#2G)z=~5_k zPM-wp#T(i1ybf2P2)1hxxQoi?;cX-#P8?Ye78gjgd*HUMidDsskIXJktSN!Mn6)n_ zHBNY!LIpB7f^BJ#-THAUc#5DcFxVaEYrMGd8boR!!NHXkRWK3hN<5QL5ApcxaMJ@P z>;LRd?36VZ??WDPF~qa5-O`^U9ON0yF~v_mglsf<<6ba`!ykbUQ6UfC4=WL5A-iIr zS~0>8!3W4jNf(v&?$TEa> z7Hc94#7i0yh7OL`lH;V?J5&WaOyufF4x-?L#B-9`-4<<)Uh&?4`MVEssi^(N! zZ1N=HA*O^A7gro9lbwhoZsKYr`AMsi?>m>Oft^Mz$Hs=P-CPp-~ZZ5g0 z!t9eq+_6m7v6Q&88AZff)Gs0pDs;D{Bp$JnYz_2VHhBjeUHBu1oIx^`>I+%@2ay?f zb&rvCt|hMQd>ru-errjm6LOSh>?z(VAU&Pb6vsVxcVT(#@<`A~W5r%%CNCFp6f;R(3s_!enX8MSJPd>!M>7k}(X2%o zZ+M$Bb+U&sLs{3lBUIZ(Jp9_f#%Zn?MXO3Jj!Z|xFDJh{ap|CiyIIU=8p;P`Uv?ipC zO0p(flSdV$B&DV$6mqt)@>`M>+=iv2l0mkppsTq-0xdjZd-r;Q^I9r z$kc;(rCib=&Xr>1>DE11%5if3@^&S2VTH970=H9YmR|5cuNNLBwCynb+>Y$$FQ!)d3=NJYwCeI)5EE z>R-ncbk!y+z5dR0`c}T3zqer{@hNIvwdp?0QAR@f^>-#Af}>tN4jTO4--uLsM^B~O zK8m8p>*DC2?_beI;qI-ay=t*)(U$4=mlQ4oCiiALy4VoDp+ByroxaQfoO(^@1-1dl$wgFunb>7m<(P#*uwe&hm> z$nGMLtsEl$xj5g@>wMywA(`+0qXXIdUOF%R=LWKK6@Z;Ou0+rgCuZ_jyPg15iK*9` zNKn1KAN2FQ=%pKRIKP$ooOJuD*!t_R6Uh+L(vsdsJt3`hA(LcbHECdG?l_nt&IH4Q zfwbtUUdxQ<6XBvF60oW2IY&S=7?26;iP=5?_G!jUV_yy;CXpTkXAFIXz1#wAnkEv` z+UihTx^G4NxHvunc0pe%|4M}Kk$rS)jwjexBO#ov9to$k%Jrhe1E~;9{51<%P(v{F zy6h{kF-rr4P?n!Bo*xHG0jBw`Tk<2ZB4a!(!`SgZpEW)Pfh;Ejjv}1!p|oHD_96&j znUm!Y(mf!*dE!bcehgLwS9-dTLPKK|B z8f2ikLh_?98;EQ%MVwKz)Iu$ikik0MfFL%14TOpFYvJBtoY{Ho+-5L|&2PeJ9kbhd z-b19!SaJVGNJko!CnWl+38%{&o^XB)tB`9%o|wm>3Dkmm?lY)HQ%iTiJw%QA!%kR; zpbF{p5LNFxcEfgLbrg%Vy>KH4=Y5{o)eNU}stt3Y721)S@|eV$gyRT|$6TGIO$Dsx zID~r6+01?n8gS7S2np$9OM3Z7u%Oq}ZRa3Tj5r0Y>KjS+890mVB%6@z9OU2(R(Bo- zh}z%aH$-(ZX}dx&i+?-eqBg>_f5Ipv!B!tm`peAUEpo0v1hN7>kZ5H`c(e;%P+b~A zuEA?aqdoM<$odPfE4RshC3im#C3lrY4P#XgK^(2w5?G&4)_nFWX~3w58DzGI*O4*k z!B_O;8{+%4mq}{87;Gd9Fhws1mx^I#k{U=mj`X-#D$pHK1huhxpzN6#Vr0h#lCy{o zS5!$r6Vj+M_RUZdB$@^hbAZp|QLkCCLka5pL@Dbg`K5cwff!t1S*(2#F|qb^d9^+H z2+;@NFy*W=ml(t=lZd<=_k7gt4RLQKF=G~J8DhDR&0)WAlaDZ%7YiR)nqI93m2{hJ tkO3>T6D`sepq~iKck^per8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k RK}wprp|PpK<_1P*E&yaW5>5aB delta 62 zcmX>sepq~iKcit;c51$HylIJkVzQ-?kwKC{QmSF9Wr}H1B9KZlGcd6*GBY+awn#BC QGPg8JH8b1X!05~c0BDI47XSbN diff --git a/doc-page/.doctrees/contributing/index.doctree b/master/.doctrees/contributing/index.doctree similarity index 95% rename from doc-page/.doctrees/contributing/index.doctree rename to master/.doctrees/contributing/index.doctree index 9fee7618b70b5b5265ea6a28125b3f730b0db096..00c2fd51ed15d94e7c5f9a90e46985c115166993 100644 GIT binary patch delta 62 zcmeAX?-Ab+&S+?spIMYsWSOj=W|U}PZklLdVs4q3W?^EQYG`4YnrNP8Y-VDXWR#L> RkdkI@Xl!b*xr32~3jj-O5wQRO delta 62 zcmeAX?-Ab+&S+ScotkePZ(5?Cm~3feWRPT#lxmo2nPQrh2&9tC3`{JH%#6*9EmBO3 Q%q@*l&CE7;FtTs~08hOUdH?_b diff --git a/doc-page/.doctrees/contributing/local_development.doctree b/master/.doctrees/contributing/local_development.doctree similarity index 98% rename from doc-page/.doctrees/contributing/local_development.doctree rename to master/.doctrees/contributing/local_development.doctree index 17451bffe5c21075296b5f3faac99d76089fcf7d..e79bc75a2e2d3afb6720ee955fbafaba266fcf85 100644 GIT binary patch delta 62 zcmdnvu*YFTETf@Wer8clk!7-eno**GxoM(-iMeHBnuUpJs-cBpYNC0Xv6+ckl2J;k RK}wprp|PpK=03)CasYT*6Djb!0G~e-v;Y7A diff --git a/doc-page/.doctrees/environment.pickle b/master/.doctrees/environment.pickle similarity index 65% rename from doc-page/.doctrees/environment.pickle rename to master/.doctrees/environment.pickle index 034a79604c33cb077abd952f4ac444f621206290..aab09d9ab59ec6fa3a655dc463a754cf0fd1e5db 100644 GIT binary patch delta 1075962 zcmbq+cYKsZ*Y>l$_s!On4ZR2i=^zk#htNADKtd;>Nbib*1OnWIfk+7`prW)O2c@GF z1tfqdh(c6E1Zg5&;G3Cycaz=hAK!cO{+?I3+1=}$nYm7xGv(g&&OQ14mv`mz*^2Ci zOXck)b(eOopd6htenRTFrE_Ad*G?ZkZq&GXgR7;zo{~_fR!Tz6I`vZ0>ej54TD@-d z)Ra1DHEP$aJ?QlzsR={U>Qt{$D`9DVe|6wTLM=%-l^-l`h{URpG%rNY+pPRWqE-(O zWeM5p-5&o}m(N&UAyYmkWpwKDO#eR#!!_Nz)~;WpI{lxoa>DBg3ClB8gHpz)4jDdf zd1k$86GmsS{|^ZM|JGKpXq_$o&%dfRBz^Gs<(ZoFHz#DgIf1KCl{PF{YzozEaQc`u z{?Cojn)zj@sVLSH@9cP3!6p1% z&to!9cymJfxZx?Is`0N1DHfOTn=W3cQMZC{-{h1#*tgdYXlxU980#AJL7b{%#t0Jq zYeJ{S(ZVuICDJi=p;?;gA?rs>v5^GzbhYrHepO+op}eFbv82y(lY&umEP_;T7ZUYO zy@lZnNtr-LbAm9|;vnyjlWJwlGh<0?+^ksI#u{Y2Wp-)7T918SN8+BpW6_DN5Y?o; zK=NnJ*N~}Y7Fvb-`np1YgUx0wRBwF7sNoYRp@quz-9l7jr=%9Se`-N_A;E06mB3S=S&|>K z&>`G2JA~~zdtO)T{<378Wp){1r{2r4SWgO;(&E=xW9Z0HZOrNk=_6CeEYI|hX@|xt zvT?)|lh|=|umxMa1R>8@`}Ifz7%~XUGsD%YUbm7k!5GE)P}mMen?O$rBOBEdG7L^m zn-3e67P1;Tg~1kw@IYT%c%zZ6NY8F-5G~xP=aM*xWqwnKkWs&!aNiuo`bbEme{R=B zu`!kxa!R6Sa-0(XNK%Seiz>+3Sd_QGefX1;KTTcQk3YHi(3{rpSxY|SPk-^xc9!15 zpG^F-Pn&-G|_HeBDB$NMd78P%sD?V!Z zhv~b-Co6w?>nHK)Zw_OKb#oXg|7`V8@#!xAZ2V{9lb(Ne{gC+d5C81wQ}Ic~Kg*in z;V3%#H0wQ;bdUIWn}1bvLwvIHuO3r+`B$%t;$7m?1O9Ywt@z~S->ldldZB)!kvX)m6ENz+!wfpoDj&+U}lmnUy^M-hZOOJveNV?mR~By3zOP4qhDbr%D$4&X;4sMrtG2i z9{MRW*&+avu0oTR&4dvhtV}mq1q$_Rm#XE2jUATJFEfi~UuNwepOg{;N7bg^U{)Rw z_I*-kt}zq#sDoRm+15t3w`yciEMGFhAr}f-uy!{U)_1X!{L77W!iQa>==WUmB_kw7 zKaJ`rS?4`btuT z&cm7u<9d`5&U7EZahLTiD~#wHD>U!!k;Dn{-R&e<(^jXYDl$(aHl>~5?WI#?q^FM> zK4z%!S@+Vy*`DIB$0xOAp9v3o3>C)qPA#HCr4c%zptoI`*`KMUr@u^18CNx9%JR$< zuIIL%Myez8Ura{hmVE`*9@ZbxedC0UUG2gTy`xCt)+Dvith?9WFMr8|#(mpqm}jHE z%A6}mQj&y&$todtfLe&@Usf{K|1YI^+rI16grl-H3jN1ZdN!nzS_rcTIwX^e{I>M6 zlwnM?q#Ny?7DA(b7D16bT=;6h6v>PtUyIcZOryy#Z^TIc@45YAgcSqRX|tIkU!+** z*xi!}9S7A>F%KK)eP$|5_PC@$yoJnM0_^{x)lkZI=44rm;wj(e)EX2g)J&}`yq6lw zxtwrwaJ(=!%|;rZ%PfO+OXc-P^nexm^Wt%MpFgjCrt6sJo4w^9qA94V`o3OKe9YAkDqR%$y#M$&PWeA zbb6Xa*fp||M0`9meWrzemOwu%MG_j%FbY49=tz7!r>n`KC(|uLvym0ZfnNOgRrq&u zGpFl>nImI}**o1$e;LnF3);+333EnNlr0%?SJ*bHl-@LO{DhPV!v|NRnVE2MRJ8DP z)KIBKo;PUp49Wj}#zNK`E7M$P=1pkZ}H}_eq8e>7qH_&3QRdsq~730y1evlBmH={cAUZDG3|)Yl%vb5 z4-@=w2fz5LL~wVL7pn7K9hmHgn}7IFN#K?pRp%W&cHR&6@i&+JLn55K>i^qYr>kNI zhjnLcUcK{yk=c9U8CF*Yr58G0GUe63oEsRJUjhW$ef0pAkV3)T7&5z$)Rt%bbCA5a z9m1{ZBL9V_cV-|-npbf5O@D8u-9PI8+Zzw+q7Ad)ZfT*xzZT)$tRCd=(cNq$_kE{U zC|F7pfxA(8Yagw|I5Xyu@^YV?los!VozLGw>zezd94V++T9tR|Wi#6JQ%YNQWl5GM zTmC=E|JeV1{-s1F4k&ylm7ElN2R@NYHu?WGMI|}o|JNoO$u9q2l{$&v1R%>G$;VUF zA}LMGwG)&iad4wl=xLX@CB-@bAWHJPNCUFPEg6C20V(hcGr%^Fe8Ra!4qKm?n~^A{R;d<`Se6=mr&A zNZv)*B~ZKEgzS6Tq&AYd5m<7(qogkulTb_x+5Ur73EMkMwuxkejP8=Xe$#xTr)0nX zuiD;{5B+~V*hg|%&Lcl;85sP+loZML;ukg#7%cH)rKd?+AV;$$**bZlF=)_oGU~g^XLFG?Xot zJoD4gxD-o6Q39b7{FZH6Ch3S^B}-B{mQy(NL{5CI8&(DLa>>4uLb+l73`tGN<{Tn1 z73+atH%UI#h!k48U2@OQmUX)%7yN&nw@31;|F4twNgnwBI_;3;vH!1ceJx4#lkn*Y z$q7F-&wU$Y>AR;Sr~F?Sa#nI$DN1X4QPST3uj_u6boT#M@~fn@|F5wpe-B;SfHAr=0?a+METp+Ezaeju5Tj79ZGmMzB%2~Q8wq2k=##Z<-sD6eo?$37MV0pjdS*Op^9FbEGHAj&1p@1KQ%Rz#CHsO z;=Se4lYwgSQAhgRav4Zji*zDF2%FWxRf{we6OP8tm9`+SYD$&lmw2ff?nX%$D9E}I zt%J5~`ONKu6JF_AspJ~TiIq-AXc!{I2)S|6!x+O0!T{B^pd_tTLH%;l1JaO&{`x}h zgVq(Li!p&Fpqh$MU<(X+P1;f+xdvOROLt(V5CJ$dX?C`%humu=b&xMxNk_rVI#Qa9 z6dfO~_Vs$wRV7i|42p)*4ou^&O-rEhReO#F7PgY+g{l}oR^fxiZKadYDste=4$}5a z#YX!1Z$_HDLwa+uGzy8- zfvk1p7$7QJx}PDPC(>II`scw_($`eD&Tc^p964sPJX!CC_tr~?%ZiU^vyD=~ngL{d zB9$q^G2`LuZPGtvlqH|!N!Mc)r_ix*b(b_9s~j<}Tj+$#Uq}~5X!Y*>Qh{mM_ONsU zRzr^8?ufKJI)of@=2*$JKJ8wI*N#c;SYJXojPbc#Lvl5(&G74S>F5YeUVBn{3r(YY zXK6Sxe=m(!hKzRSGI}4(`AIqlY0oVP111z$1xtRRDHNr9x!@$F zzh{$dBx8@X3#_^!Eh7)nn0r|LZRz*a!pN_8Q682_0xD??rquy8jd1yav=S1bGnx6H z)J*QZCb6w}EcKG<|Juy#FL3XXbeObwgEv2wcE^eWD(V9nNjRpBlU&PgE89axXoqV- zCXvM;h6!l<<01^nL9OgE#?mQVXA)tDtgw*<%Egh}dMRCW-dY z^1=2lvTntwPe-V`>@XW4M{n7b5-H4t5Gq7L4nEMRpkg1{Dhy!@wI1%ti6e1Wl_TKv zKp8E+hEdlCwNqrzF;-h#gpwrenxup)Lu3Pawlh>FWq&pqE~{U%o{!tTP%9jKLgyC! z)SpO_NcC~D0Z=JJc1=~hIRhrkQcBhwCXIBOQpy0mrpXr4QH5(WWha^0Y@aRrj{P}n zt}KuJS>tV4KNd`u%$I%5{_MU;_JsX=$1K@q*78S7WewP$uP>KvDp?Pl&XwsPHAnV+ zF{kE(1?yx@FurF_rKr{<kK4eQJNeo#sJIcWO0ygfI<&;D@6;SAD zp$QD_!+2QuwX8pem?1iw#oF-9<03J&Cq-iZa7rZR#_vR8_RbfHx%+$BwUSW7MdFTY zdcj*i%PNOBXu=CEFR#ijF;-msT{ait^a2gzLX>228;c5_T$AZbHn0t%b4(=nvPH3? zmE&RXiiwVO12hIk6D{`fnxu9(ibU)|G{6d2@6NO~yS8#>aR%lYD=-+wX>>z7Hd zWUCSV62vDIU!A>GK2?`3^)KjUb|iB?P((pviCl?cX(%@QD3w3Ka54bnBun(F=CD;M zr`7+Wk%f1#MkD9^_+2l@1VttUXg|-z1i*lXDl+T%LOnUt$CU~5Y;szUDyHV`D0u=) zHex;UjU^baLP<)X8OH?-jd>|8|Kvg?>6jo_lZCzHsSsOA{&lEJ<{4-8O7cpKWc{kh zF*#v~BqJ=SDsO|~QxFEI!g-j13LuzCd!15CwpP*%BG+ol=??WZ>RM#o*H&szwdLC| zEDeG7kR^g@88oafKNea`;Jw);QQoCwBHB%p8K6!xIZqhAYANRlLsn}!PZ$QYmGgwb z+Fs5RhV&%4fSD!poNM+Rxt5F>C|3jJ$B|G%^Tw?1E9Vo>u><6o0(ejeP$7#kWrrXF zF-?#=N&PW$9jqHHKUpk!iGweO$(u3bdoc=Se4&znO6rEOyC4iug>Obsv-K2tB2#n0 zjFPDd+h)oemPkW#Xb$bo$#2W|Mo@F^0=b!~DJ&|Pnxc@e7t3#BbRGMzI*BA7k}Jvd zT*}hKZ24!QQIanMG+ZtBG6&Xsog5P-gF=7`nS=6OMb$KtE4gwDIe1plgY5rPTa|1- zLA&|&59Do7Zov;t{q_gcSQmdr`+`Txo}0oWCGU%!AIbAsU%d4xDpCgeLKFv7+~+7) z9Mt;Y=ki!SX(Z)#%59LAN3)HPz{$1Vw@a?YxQ9Y@19JQ`$H{x-W7vG@&oAXqunho8 zJP37)T-l*t$;&g-$U2TPjeyQ>v6^te(H>Z*5O)$_0f7-$2INy(^@@()zmo%kGsbe1UY((Z2}Rcu6L!-b7v zvVqE$Vdhx0;M$V-Zqq_chFhT~2_qD#kgin>4lR!Iwc1iqii(Uc?Oh5?A{>+iRMI+3 z94SOt;#Hv5LIVgovaO23Ow7B?`=#5uk@zjL{;;%^BCO2CTYa>WVi+be1w{cBwVw7H zbgr)8xoS)e1&sAU4S8Sk;6LK3XcyVi069q4BHEFI`Q<9W(# z4)aNdzfhbCN&+hBKNO4DX3sd4QUSZ~DZbW{g0+dkU1Hoczj>~x%)0d9OH|^=tAh-m z9Fr)G+40I{JV3=<~o(U;%W3Mc^3Iow326$AIBcqSS;@1=WmS}eF%{5&cqMt6sC4ksBB7hWhS_+hjL>HD5>O z9E!=Sx&KOdn|g=zIZ8D-a8Hp6t0pR2(ij%r3DssOW0)W6Fk6Yqu!E9-N)piFE1;{9 zY+kA~l6_|tz2U`M%2_BIXNADo&P+2H-c_<_7T)BY3zTPAljkl{Vlr&rWR9P?SUDEu zAen~w8o z$}b`q(8v2l13G>PWkA#i^db~mO}>*TmGJDaauR0HLSab9BT8{O0Mfr!&c|301?){a zR?5*4<0g3s#=L?Egd!M72bIdd z+D6T*D#@*`GQh_gRR@friO>nOXJ+eFtRNKL_-ZB%}%c@Ye7R04Wmk~`3Dyq1tm3vKvGBpml zt(MA0X3G=`pfl065e9B+O%*q~D|J$Xz3ECrj+2~v(L_ULowb-rRy&0j)^t#fkI>NM z&Zd z4mAi&D6l_3KE5CZ$h3>N09lB+Jt4#FZC_RMQ`)vD7?FWdiCRS)%4v<2K#^?!o$ zR6%G$q1EvAQ`Ja}9fZP=i%(VM$+l5y7g_S3YA%_)SoJsfUQj=Q=*R%Hh3r3CmX>7c zCRFl3qOPR!r|o2Y6-gcFB2^C!oqzG6)vDF_ZK<@!E#&m*(t5b7Rr4b4G^3jPxK?I0 z_i+xZn)|qKZEEi0%DL1>&^~T~-yv#_wg~x>swfHjvo%^tcjV zw)(2QI#RW(awj!EIXI-NdLzPG3)>M8N3Rp>rv3}#_U4RJw}+^{>JxO+QaC%Rq^T=2 zcJv;u#w2JQdddj(Sd6n{KPL3YMsj(C+CuK`l2rui?A9aN2o!4>CT*a<>j(7OGKr>m z-`t<6?uEr93C-wP&tK+<{%-g@(cjg2SM+!C1){&(^PZY7N=0Rma8>2L>e|05EC)6eq(^s7e1NN$uLPG>! zt$TS`&8t+=M^PanAS4PpA5%}m*akxYswQe*b3nX`j7iJX!rhbVu!NYmG5b3;-`_gn z94at`3L#X8KPz5xUOg0(6&C`|7@lb$i3W||!+I}8^ssMTR@Y*D`r;~zPsPR2TTOmd z|BfLQU8or-^6B!Q>b4R1^yVFrPr`i^pD2DR9Q_AHC7?gkJ}6sPgF5BRz;`#$Y@nQm4;pFsG$lPz!>1{Ynriqo<)3C6 z9=1ER)_lOi_Jj5s9=8APsNrFId1uWGOt@yUA*+`rJ3^42&`&c2gK3$d=|}dD(WnXK zQ7W7ptmziPKTRB=;qh+yXbomc#DoA9vIxVdfQCl+BSV9^0Rkw(z6dj)m`R#z%r!}; zX)rS%iaJ`X^Z2G~P-`p{p+AY8MO_U)_M0~+qL=Z$t!co#Owai!FB2lfzv=da1sc@F z!@Ne2yhx*f>sgxDB3RX+m7>#G{65C%u=~SW5RU)pYRwExZXHA*6v03YYc%oXio*~C zch_lVVzQ0^pq#v@Ls!T<=#(0M_80nZ)S%X=iUW$p7FhSO=2&QHg*&Rxw`p)k`}}?B zSG@f+y6T>_Q^V^k-rb_(`V&OQwfhUvagEq3Izt&iR-pNpWy~79p ze5)CZiFQGBIFql*4fTOLs%Yck(D$0!D7D$vk=(yDaZUn~X_7<>bEMigG3wJfX-l%ClvYJPb!ln6QKj7wnyGQs)2&*5LqblJ7Llou5FwOP z4s9xiQ$ZM@x;DpDR|5zZvhQeF@rDGr=F?WiJuT1Yo;TDkVENp;AIs#FMl{krN9n)UspNw{&LfKY)wDwQa z@`CcCSz63ww757UG?}CQ1rw+xXSA)!-4)d1t$SCyC)DF{@@`(H<#W^X*(i_4@PXpz zU?N{YIU|^Jw6`!`og%a$rnQ+Gn7K|XV7yxpflvgkc>JN)hgy34p_mcg`c&H-*-TMM zCPF2ifjGEL^mFaJT=a9-cZ+^5XOHOT9`Dm0V191*VJ)AxZu?4`%luo?F)c4Q zFFK)ZhVVT=oBc}!S61~r3QpXj*5D7VZud`Gc5z3z|9Vj%`Y-P_l>cIzvVg+BgNdem zM;HCE1$z9c{R=gKY#U|54Xu&TlUi-Tdn=;Dns{4#j-_dB?xP$QSCb3j$F)-a(e_1I z1na8A$J$*H{8IC0+KMbO8}kz7m$-%$+94hn-StZQnS>-yl$0e|65T6Rwv6v7g-of= zjEjleED0SN+kf@qL$Ae%8vknsk89q>a%u8QLKshsH+H`+oNW{gzbm#^} z7?|yD9k0y36Qje#I<6drwuv>6b+Nhu80v7CCGk2FNqVf!gxE5=NWtx$aynjV&8wut z1h)_&{u;=$$~x3)Y4x_c_K^I#F4Ai0OBOZa8R#>?l@wEfWkb)m=^tAvKZRNcG5)(ZSr0^)cPp}?k@(kdwp~~ai2aw z#}oI~$vU36I|u1_;(l_ljwkLFhUs`f`*W0z2eg7QIv&vGjMedgc3`{?wSG!9=|E03 z3ap?0JCzQ9NF3rff~U{arD4)2j(+!Zx@9f-ZCzL)g#*`^uQM{&+B6eo6+wJL@s;G& zP^$`NEz)6ExROZXr#cmBw4U3TpMO;p$E z-o!-dAPi8gpJ5zq0DS&uz zN0PPrMQ~+DxR>Q>w%jFp+3|Z&d@3$UB?j#;ztEx9;(6>}a+=15LO!iMqzhY+=c+e4 zF7m10w(Oe