-
Notifications
You must be signed in to change notification settings - Fork 42
/
model.py
241 lines (186 loc) · 10 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from __future__ import division
import time
import random
import numpy as np
import tensorflow as tf
from backgammon.game import Game
from backgammon.agents.human_agent import HumanAgent
from backgammon.agents.random_agent import RandomAgent
from backgammon.agents.td_gammon_agent import TDAgent
# helper to initialize a weight and bias variable
def weight_bias(shape):
W = tf.Variable(tf.truncated_normal(shape, stddev=0.1), name='weight')
b = tf.Variable(tf.constant(0.1, shape=shape[-1:]), name='bias')
return W, b
# helper to create a dense, fully-connected layer
def dense_layer(x, shape, activation, name):
with tf.variable_scope(name):
W, b = weight_bias(shape)
return activation(tf.matmul(x, W) + b, name='activation')
class Model(object):
def __init__(self, sess, model_path, summary_path, checkpoint_path, restore=False):
self.model_path = model_path
self.summary_path = summary_path
self.checkpoint_path = checkpoint_path
# setup our session
self.sess = sess
self.global_step = tf.Variable(0, trainable=False, name='global_step')
# lambda decay
lamda = tf.maximum(0.7, tf.train.exponential_decay(0.9, self.global_step, \
30000, 0.96, staircase=True), name='lambda')
# learning rate decay
alpha = tf.maximum(0.01, tf.train.exponential_decay(0.1, self.global_step, \
40000, 0.96, staircase=True), name='alpha')
tf.scalar_summary('lambda', lamda)
tf.scalar_summary('alpha', alpha)
# describe network size
layer_size_input = 294
layer_size_hidden = 50
layer_size_output = 1
# placeholders for input and target output
self.x = tf.placeholder('float', [1, layer_size_input], name='x')
self.V_next = tf.placeholder('float', [1, layer_size_output], name='V_next')
# build network arch. (just 2 layers with sigmoid activation)
prev_y = dense_layer(self.x, [layer_size_input, layer_size_hidden], tf.sigmoid, name='layer1')
self.V = dense_layer(prev_y, [layer_size_hidden, layer_size_output], tf.sigmoid, name='layer2')
# watch the individual value predictions over time
tf.scalar_summary('V_next', tf.reduce_sum(self.V_next))
tf.scalar_summary('V', tf.reduce_sum(self.V))
# delta = V_next - V
delta_op = tf.reduce_sum(self.V_next - self.V, name='delta')
# mean squared error of the difference between the next state and the current state
loss_op = tf.reduce_mean(tf.square(self.V_next - self.V), name='loss')
# check if the model predicts the correct state
accuracy_op = tf.reduce_sum(tf.cast(tf.equal(tf.round(self.V_next), tf.round(self.V)), dtype='float'), name='accuracy')
# track the number of steps and average loss for the current game
with tf.variable_scope('game'):
game_step = tf.Variable(tf.constant(0.0), name='game_step', trainable=False)
game_step_op = game_step.assign_add(1.0)
loss_sum = tf.Variable(tf.constant(0.0), name='loss_sum', trainable=False)
delta_sum = tf.Variable(tf.constant(0.0), name='delta_sum', trainable=False)
accuracy_sum = tf.Variable(tf.constant(0.0), name='accuracy_sum', trainable=False)
loss_avg_ema = tf.train.ExponentialMovingAverage(decay=0.999)
delta_avg_ema = tf.train.ExponentialMovingAverage(decay=0.999)
accuracy_avg_ema = tf.train.ExponentialMovingAverage(decay=0.999)
loss_sum_op = loss_sum.assign_add(loss_op)
delta_sum_op = delta_sum.assign_add(delta_op)
accuracy_sum_op = accuracy_sum.assign_add(accuracy_op)
loss_avg_op = loss_sum / tf.maximum(game_step, 1.0)
delta_avg_op = delta_sum / tf.maximum(game_step, 1.0)
accuracy_avg_op = accuracy_sum / tf.maximum(game_step, 1.0)
loss_avg_ema_op = loss_avg_ema.apply([loss_avg_op])
delta_avg_ema_op = delta_avg_ema.apply([delta_avg_op])
accuracy_avg_ema_op = accuracy_avg_ema.apply([accuracy_avg_op])
tf.scalar_summary('game/loss_avg', loss_avg_op)
tf.scalar_summary('game/delta_avg', delta_avg_op)
tf.scalar_summary('game/accuracy_avg', accuracy_avg_op)
tf.scalar_summary('game/loss_avg_ema', loss_avg_ema.average(loss_avg_op))
tf.scalar_summary('game/delta_avg_ema', delta_avg_ema.average(delta_avg_op))
tf.scalar_summary('game/accuracy_avg_ema', accuracy_avg_ema.average(accuracy_avg_op))
# reset per-game monitoring variables
game_step_reset_op = game_step.assign(0.0)
loss_sum_reset_op = loss_sum.assign(0.0)
self.reset_op = tf.group(*[loss_sum_reset_op, game_step_reset_op])
# increment global step: we keep this as a variable so it's saved with checkpoints
global_step_op = self.global_step.assign_add(1)
# get gradients of output V wrt trainable variables (weights and biases)
tvars = tf.trainable_variables()
grads = tf.gradients(self.V, tvars)
# watch the weight and gradient distributions
for grad, var in zip(grads, tvars):
tf.histogram_summary(var.name, var)
tf.histogram_summary(var.name + '/gradients/grad', grad)
# for each variable, define operations to update the var with delta,
# taking into account the gradient as part of the eligibility trace
apply_gradients = []
with tf.variable_scope('apply_gradients'):
for grad, var in zip(grads, tvars):
with tf.variable_scope('trace'):
# e-> = lambda * e-> + <grad of output w.r.t weights>
trace = tf.Variable(tf.zeros(grad.get_shape()), trainable=False, name='trace')
trace_op = trace.assign((lamda * trace) + grad)
tf.histogram_summary(var.name + '/traces', trace)
# grad with trace = alpha * delta * e
grad_trace = alpha * delta_op * trace_op
tf.histogram_summary(var.name + '/gradients/trace', grad_trace)
grad_apply = var.assign_add(grad_trace)
apply_gradients.append(grad_apply)
# as part of training we want to update our step and other monitoring variables
with tf.control_dependencies([
global_step_op,
game_step_op,
loss_sum_op,
delta_sum_op,
accuracy_sum_op,
loss_avg_ema_op,
delta_avg_ema_op,
accuracy_avg_ema_op
]):
# define single operation to apply all gradient updates
self.train_op = tf.group(*apply_gradients, name='train')
# merge summaries for TensorBoard
self.summaries_op = tf.merge_all_summaries()
# create a saver for periodic checkpoints
self.saver = tf.train.Saver(max_to_keep=1)
# run variable initializers
self.sess.run(tf.initialize_all_variables())
# after training a model, we can restore checkpoints here
if restore:
self.restore()
def restore(self):
latest_checkpoint_path = tf.train.latest_checkpoint(self.checkpoint_path)
if latest_checkpoint_path:
print('Restoring checkpoint: {0}'.format(latest_checkpoint_path))
self.saver.restore(self.sess, latest_checkpoint_path)
def get_output(self, x):
return self.sess.run(self.V, feed_dict={ self.x: x })
def play(self):
game = Game.new()
game.play([TDAgent(Game.TOKENS[0], self), HumanAgent(Game.TOKENS[1])], draw=True)
def test(self, episodes=100, draw=False):
players = [TDAgent(Game.TOKENS[0], self), RandomAgent(Game.TOKENS[1])]
winners = [0, 0]
for episode in range(episodes):
game = Game.new()
winner = game.play(players, draw=draw)
winners[winner] += 1
winners_total = sum(winners)
print("[Episode %d] %s (%s) vs %s (%s) %d:%d of %d games (%.2f%%)" % (episode, \
players[0].name, players[0].player, \
players[1].name, players[1].player, \
winners[0], winners[1], winners_total, \
(winners[0] / winners_total) * 100.0))
def train(self):
tf.train.write_graph(self.sess.graph_def, self.model_path, 'td_gammon.pb', as_text=False)
summary_writer = tf.train.SummaryWriter('{0}{1}'.format(self.summary_path, int(time.time()), self.sess.graph_def))
# the agent plays against itself, making the best move for each player
players = [TDAgent(Game.TOKENS[0], self), TDAgent(Game.TOKENS[1], self)]
validation_interval = 1000
episodes = 5000
for episode in range(episodes):
if episode != 0 and episode % validation_interval == 0:
self.test(episodes=100)
game = Game.new()
player_num = random.randint(0, 1)
x = game.extract_features(players[player_num].player)
game_step = 0
while not game.is_over():
game.next_step(players[player_num], player_num)
player_num = (player_num + 1) % 2
x_next = game.extract_features(players[player_num].player)
V_next = self.get_output(x_next)
self.sess.run(self.train_op, feed_dict={ self.x: x, self.V_next: V_next })
x = x_next
game_step += 1
winner = game.winner()
_, global_step, summaries, _ = self.sess.run([
self.train_op,
self.global_step,
self.summaries_op,
self.reset_op
], feed_dict={ self.x: x, self.V_next: np.array([[winner]], dtype='float') })
summary_writer.add_summary(summaries, global_step=global_step)
print("Game %d/%d (Winner: %s) in %d turns" % (episode, episodes, players[winner].player, game_step))
self.saver.save(self.sess, self.checkpoint_path + 'checkpoint', global_step=global_step)
summary_writer.close()
self.test(episodes=1000)