forked from gzr2017/ImageProcessing100Wen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
answer_61.py
58 lines (44 loc) · 1.49 KB
/
answer_61.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Connect 4
def connect_4(img):
# get shape
H, W, C = img.shape
# prepare temporary image
tmp = np.zeros((H, W), dtype=np.int)
# binarize
tmp[img[..., 0] > 0] = 1
# prepare out image
out = np.zeros((H, W, 3), dtype=np.uint8)
# each pixel
for y in range(H):
for x in range(W):
if tmp[y, x] < 1:
continue
S = 0
S += (tmp[y,min(x+1,W-1)] - tmp[y,min(x+1,W-1)] * tmp[max(y-1,0),min(x+1,W-1)] * tmp[max(y-1,0),x])
S += (tmp[max(y-1,0),x] - tmp[max(y-1,0),x] * tmp[max(y-1,0),max(x-1,0)] * tmp[y,max(x-1,0)])
S += (tmp[y,max(x-1,0)] - tmp[y,max(x-1,0)] * tmp[min(y+1,H-1),max(x-1,0)] * tmp[min(y+1,H-1),x])
S += (tmp[min(y+1,H-1),x] - tmp[min(y+1,H-1),x] * tmp[min(y+1,H-1),min(x+1,W-1)] * tmp[y,min(x+1,W-1)])
if S == 0:
out[y,x] = [0, 0, 255]
elif S == 1:
out[y,x] = [0, 255, 0]
elif S == 2:
out[y,x] = [255, 0, 0]
elif S == 3:
out[y,x] = [255, 255, 0]
elif S == 4:
out[y,x] = [255, 0, 255]
out = out.astype(np.uint8)
return out
# Read image
img = cv2.imread("renketsu.png").astype(np.float32)
# connect 4
out = connect_4(img)
# Save result
cv2.imwrite("out.png", out)
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.destroyAllWindows()