-
Notifications
You must be signed in to change notification settings - Fork 26
/
EAResNet.py
310 lines (241 loc) · 12.1 KB
/
EAResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""Copyright (c) Facebook, Inc. and its affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
Portions of the source code are from the OLTR project which
notice below and in LICENSE in the root directory of
this source tree.
Copyright (c) 2019, Zhongqi Miao
All rights reserved.
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class NormedLinear(nn.Module):
def __init__(self, in_features, out_features):
super(NormedLinear, self).__init__()
self.weight = nn.Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
def forward(self, x):
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
return out
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_experts, dropout=None, num_classes=1000, use_norm=False, reduce_dimension=False, layer3_output_dim=None, layer4_output_dim=None, share_layer3=False, top_choices_num=5, pos_weight=20, share_expert_help_pred_fc=True, force_all=False, s=30):
self.inplanes = 64
self.num_experts = num_experts
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.inplanes = self.next_inplanes
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.inplanes = self.next_inplanes
self.share_layer3 = share_layer3
if layer3_output_dim is None:
if reduce_dimension:
layer3_output_dim = 192
else:
layer3_output_dim = 256
if layer4_output_dim is None:
if reduce_dimension:
layer4_output_dim = 384
else:
layer4_output_dim = 512
if self.share_layer3:
self.layer3 = self._make_layer(block, layer3_output_dim, layers[2], stride=2)
else:
self.layer3s = nn.ModuleList([self._make_layer(block, layer3_output_dim, layers[2], stride=2) for _ in range(num_experts)])
self.inplanes = self.next_inplanes
self.layer4s = nn.ModuleList([self._make_layer(block, layer4_output_dim, layers[3], stride=2) for _ in range(num_experts)])
self.inplanes = self.next_inplanes
self.avgpool = nn.AvgPool2d(7, stride=1)
self.use_dropout = True if dropout else False
if self.use_dropout:
print('Using dropout.')
self.dropout = nn.Dropout(p=dropout)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
if use_norm:
self.linears = nn.ModuleList([NormedLinear(layer4_output_dim * block.expansion, num_classes) for _ in range(num_experts)])
else:
s = 1
self.linears = nn.ModuleList([nn.Linear(layer4_output_dim * block.expansion, num_classes) for _ in range(num_experts)])
self.num_classes = num_classes
self.top_choices_num = top_choices_num
self.share_expert_help_pred_fc = share_expert_help_pred_fc
self.layer4_feat = True
expert_hidden_fc_output_dim = 16
self.expert_help_pred_hidden_fcs = nn.ModuleList([nn.Linear((layer4_output_dim if self.layer4_feat else layer3_output_dim) * block.expansion, expert_hidden_fc_output_dim) for _ in range(self.num_experts - 1)])
if self.share_expert_help_pred_fc:
self.expert_help_pred_fc = nn.Linear(expert_hidden_fc_output_dim + self.top_choices_num, 1)
else:
self.expert_help_pred_fcs = nn.ModuleList([nn.Linear(expert_hidden_fc_output_dim + self.top_choices_num, 1) for _ in range(self.num_experts - 1)])
self.pos_weight = pos_weight
self.s = s
self.force_all = force_all # For calulating FLOPs
if not force_all:
for name, param in self.named_parameters():
if "expert_help_pred" in name:
param.requires_grad_(True)
else:
param.requires_grad_(False)
def _hook_before_iter(self):
assert self.training, "_hook_before_iter should be called at training time only, after train() is called"
count = 0
for module in self.modules():
if isinstance(module, nn.BatchNorm2d):
if module.weight.requires_grad == False:
module.eval()
count += 1
if count > 0:
print("Warning: detected at least one frozen BN, set them to eval state. Count:", count)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.next_inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.next_inplanes, planes))
return nn.Sequential(*layers)
def _separate_part(self, x, ind):
if not self.share_layer3:
x = (self.layer3s[ind])(x)
if not self.layer4_feat:
self.feat = x
x = (self.layer4s[ind])(x)
if self.layer4_feat:
self.feat = x
x = self.avgpool(x)
x = x.view(x.size(0), -1)
if self.use_dropout:
x = self.dropout(x)
x = (self.linears[ind])(x)
x = x * self.s # This hyperparam s is originally in the loss function, but we moved it here to prevent using s multiple times in distillation.
return x
def pred_expert_help(self, input_part, i):
feature, logits = input_part
feature = F.adaptive_avg_pool2d(feature, (1, 1)).flatten(1)
feature = feature / feature.norm(dim=1, keepdim=True)
feature = self.relu((self.expert_help_pred_hidden_fcs[i])(feature))
topk, _ = torch.topk(logits, k=self.top_choices_num, dim=1)
confidence_input = torch.cat((topk, feature), dim=1)
if self.share_expert_help_pred_fc:
expert_help_pred = self.expert_help_pred_fc(confidence_input)
else:
expert_help_pred = (self.expert_help_pred_fcs[i])(confidence_input)
return expert_help_pred
def forward(self, x, target=None):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
shared_part = self.layer2(x)
if self.share_layer3:
shared_part = self.layer3(shared_part)
if target is not None: # training time
output = shared_part.new_zeros((shared_part.size(0), self.num_classes))
expert_help_preds = output.new_zeros((output.size(0), self.num_experts - 1), dtype=torch.float)
# first column: correctness of the first model, second: correctness of expert of the first and second, etc.
correctness = output.new_zeros((output.size(0), self.num_experts), dtype=torch.uint8)
loss = output.new_zeros((1,))
for i in range(self.num_experts):
output += self._separate_part(shared_part, i)
correctness[:, i] = output.argmax(dim=1) == target # Or: just helpful, predict 1
if i != self.num_experts - 1:
expert_help_preds[:, i] = self.pred_expert_help((self.feat, output / (i+1)), i).view((-1,))
for i in range(self.num_experts - 1):
# import ipdb; ipdb.set_trace()
expert_help_target = (~correctness[:, i]) & correctness[:, i+1:].any(dim=1)
expert_help_pred = expert_help_preds[:, i]
print("Helps ({}):".format(i+1), expert_help_target.sum().item() / expert_help_target.size(0))
print("Prediction ({}):".format(i+1), (torch.sigmoid(expert_help_pred) > 0.5).sum().item() / expert_help_target.size(0), (torch.sigmoid(expert_help_pred) > 0.3).sum().item() / expert_help_target.size(0))
loss += F.binary_cross_entropy_with_logits(expert_help_pred, expert_help_target.float(), pos_weight=expert_help_pred.new_tensor([self.pos_weight]))
# output with all experts
return output / self.num_experts, loss / (self.num_experts - 1)
else: # test time
expert_next = shared_part.new_ones((shared_part.size(0),), dtype=torch.uint8)
num_experts_for_each_sample = shared_part.new_ones((shared_part.size(0), 1), dtype=torch.long)
output = self._separate_part(shared_part, 0)
for i in range(1, self.num_experts):
expert_help_pred = self.pred_expert_help((self.feat, output[expert_next] / i), i-1).view((-1,))
if not self.force_all: # For evaluating FLOPs
expert_next[expert_next.clone()] = (torch.sigmoid(expert_help_pred) > 0.5).type(torch.uint8)
print("expert ({}):".format(i), expert_next.sum().item() / expert_next.size(0))
if not expert_next.any():
break
output[expert_next] += self._separate_part(shared_part[expert_next], i)
num_experts_for_each_sample[expert_next] += 1
return output / num_experts_for_each_sample.float(), num_experts_for_each_sample
return output