forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
130 lines (108 loc) · 4.72 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.vocab_size = envs.get_global_env("hyper_parameters.vocab_size")
self.embed_size = envs.get_global_env("hyper_parameters.embed_size")
def input_data(self, is_infer=False, **kwargs):
sparse_input_ids = [
fluid.data(
name="field_" + str(i),
shape=[-1, 1],
dtype="int64",
lod_level=1) for i in range(0, 23)
]
label_ctr = fluid.data(name="ctr", shape=[-1, 1], dtype="int64")
label_cvr = fluid.data(name="cvr", shape=[-1, 1], dtype="int64")
inputs = sparse_input_ids + [label_ctr] + [label_cvr]
if is_infer:
return inputs
else:
return inputs
def net(self, inputs, is_infer=False):
emb = []
# input feature data
for data in inputs[0:-2]:
feat_emb = fluid.embedding(
input=data,
size=[self.vocab_size, self.embed_size],
param_attr=fluid.ParamAttr(
name='dis_emb',
learning_rate=5,
initializer=fluid.initializer.Xavier(
fan_in=self.embed_size, fan_out=self.embed_size)),
is_sparse=True)
field_emb = fluid.layers.sequence_pool(
input=feat_emb, pool_type='sum')
emb.append(field_emb)
concat_emb = fluid.layers.concat(emb, axis=1)
# ctr
active = 'relu'
ctr_fc1 = self._fc('ctr_fc1', concat_emb, 200, active)
ctr_fc2 = self._fc('ctr_fc2', ctr_fc1, 80, active)
ctr_out = self._fc('ctr_out', ctr_fc2, 2, 'softmax')
# cvr
cvr_fc1 = self._fc('cvr_fc1', concat_emb, 200, active)
cvr_fc2 = self._fc('cvr_fc2', cvr_fc1, 80, active)
cvr_out = self._fc('cvr_out', cvr_fc2, 2, 'softmax')
ctr_clk = inputs[-2]
ctcvr_buy = inputs[-1]
ctr_prop_one = fluid.layers.slice(
ctr_out, axes=[1], starts=[1], ends=[2])
cvr_prop_one = fluid.layers.slice(
cvr_out, axes=[1], starts=[1], ends=[2])
ctcvr_prop_one = fluid.layers.elementwise_mul(ctr_prop_one,
cvr_prop_one)
ctcvr_prop = fluid.layers.concat(
input=[1 - ctcvr_prop_one, ctcvr_prop_one], axis=1)
auc_ctr, batch_auc_ctr, auc_states_ctr = fluid.layers.auc(
input=ctr_out, label=ctr_clk)
auc_ctcvr, batch_auc_ctcvr, auc_states_ctcvr = fluid.layers.auc(
input=ctcvr_prop, label=ctcvr_buy)
if is_infer:
self._infer_results["AUC_ctr"] = auc_ctr
self._infer_results["AUC_ctcvr"] = auc_ctcvr
return
loss_ctr = fluid.layers.cross_entropy(input=ctr_out, label=ctr_clk)
loss_ctcvr = fluid.layers.cross_entropy(
input=ctcvr_prop, label=ctcvr_buy)
cost = loss_ctr + loss_ctcvr
avg_cost = fluid.layers.mean(cost)
self._cost = avg_cost
self._metrics["AUC_ctr"] = auc_ctr
self._metrics["BATCH_AUC_ctr"] = batch_auc_ctr
self._metrics["AUC_ctcvr"] = auc_ctcvr
self._metrics["BATCH_AUC_ctcvr"] = batch_auc_ctcvr
def _fc(self, tag, data, out_dim, active='prelu'):
init_stddev = 1.0
scales = 1.0 / np.sqrt(data.shape[1])
p_attr = fluid.param_attr.ParamAttr(
name='%s_weight' % tag,
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=init_stddev * scales))
b_attr = fluid.ParamAttr(
name='%s_bias' % tag, initializer=fluid.initializer.Constant(0.1))
out = fluid.layers.fc(input=data,
size=out_dim,
act=active,
param_attr=p_attr,
bias_attr=b_attr,
name=tag)
return out