-
Notifications
You must be signed in to change notification settings - Fork 7
/
hicodet.py
315 lines (268 loc) · 9.51 KB
/
hicodet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"""
HICODet dataset under PyTorch framework
Fred Zhang <frederic.zhang@anu.edu.au>
The Australian National University
Australian Centre for Robotic Vision
"""
import os
import json
import numpy as np
from typing import Optional, List, Callable, Tuple
from pocket.data import ImageDataset, DataSubset
class HICODetSubset(DataSubset):
def __init__(self, *args) -> None:
super().__init__(*args)
def filename(self, idx: int) -> str:
"""Override: return the image file name in the subset"""
return self._filenames[self._idx[self.pool[idx]]]
def image_size(self, idx: int) -> Tuple[int, int]:
"""Override: return the size (width, height) of an image in the subset"""
return self._image_sizes[self._idx[self.pool[idx]]]
@property
def anno_interaction(self) -> List[int]:
"""Override: Number of annotated box pairs for each interaction class"""
num_anno = [0 for _ in range(self.num_interation_cls)]
intra_idx = [self._idx[i] for i in self.pool]
for idx in intra_idx:
for hoi in self._anno[idx]['hoi']:
num_anno[hoi] += 1
return num_anno
@property
def anno_object(self) -> List[int]:
"""Override: Number of annotated box pairs for each object class"""
num_anno = [0 for _ in range(self.num_object_cls)]
anno_interaction = self.anno_interaction
for corr in self._class_corr:
num_anno[corr[1]] += anno_interaction[corr[0]]
return num_anno
@property
def anno_action(self) -> List[int]:
"""Override: Number of annotated box pairs for each action class"""
num_anno = [0 for _ in range(self.num_action_cls)]
anno_interaction = self.anno_interaction
for corr in self._class_corr:
num_anno[corr[2]] += anno_interaction[corr[0]]
return num_anno
class HICODet(ImageDataset):
"""
Arguments:
root(str): Root directory where images are downloaded to
anno_file(str): Path to json annotation file
transform(callable, optional): A function/transform that takes in an PIL image
and returns a transformed version
target_transform(callable, optional): A function/transform that takes in the
target and transforms it
transforms (callable, optional): A function/transform that takes input sample
and its target as entry and returns a transformed version.
"""
def __init__(self, root: str, anno_file: str,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None) -> None:
super(HICODet, self).__init__(root, transform, target_transform, transforms)
with open(anno_file, 'r') as f:
anno = json.load(f)
self.num_object_cls = 80
self.num_interation_cls = 600
self.num_action_cls = 117
self._anno_file = anno_file
# Load annotations
self._load_annotation_and_metadata(anno)
def __len__(self) -> int:
"""Return the number of images"""
return len(self._idx)
def __getitem__(self, i: int) -> tuple:
"""
Arguments:
i(int): Index to an image
Returns:
tuple[image, target]: By default, the tuple consists of a PIL image and a
dict with the following keys:
"boxes_h": list[list[4]]
"boxes_o": list[list[4]]
"hoi":: list[N]
"verb": list[N]
"object": list[N]
"""
intra_idx = self._idx[i]
return self._transforms(
self.load_image(os.path.join(self._root, self._filenames[intra_idx])),
self._anno[intra_idx]
)
def __repr__(self) -> str:
"""Return the executable string representation"""
reprstr = self.__class__.__name__ + '(root=' + repr(self._root)
reprstr += ', anno_file='
reprstr += repr(self._anno_file)
reprstr += ')'
# Ignore the optional arguments
return reprstr
def __str__(self) -> str:
"""Return the readable string representation"""
reprstr = 'Dataset: ' + self.__class__.__name__ + '\n'
reprstr += '\tNumber of images: {}\n'.format(self.__len__())
reprstr += '\tImage directory: {}\n'.format(self._root)
reprstr += '\tAnnotation file: {}\n'.format(self._root)
return reprstr
@property
def annotations(self) -> List[dict]:
return self._anno
@property
def class_corr(self) -> List[Tuple[int, int, int]]:
"""
Class correspondence matrix in zero-based index
[
[hoi_idx, obj_idx, verb_idx],
...
]
Returns:
list[list[3]]
"""
return self._class_corr.copy()
@property
def object_n_verb_to_interaction(self) -> List[list]:
"""
The interaction classes corresponding to an object-verb pair
HICODet.object_n_verb_to_interaction[obj_idx][verb_idx] gives interaction class
index if the pair is valid, None otherwise
Returns:
list[list[117]]
"""
lut = np.full([self.num_object_cls, self.num_action_cls], None)
for i, j, k in self._class_corr:
lut[j, k] = i
return lut.tolist()
@property
def object_to_interaction(self) -> List[list]:
"""
The interaction classes that involve each object type
Returns:
list[list]
"""
obj_to_int = [[] for _ in range(self.num_object_cls)]
for corr in self._class_corr:
obj_to_int[corr[1]].append(corr[0])
return obj_to_int
@property
def object_to_verb(self) -> List[list]:
"""
The valid verbs for each object type
Returns:
list[list]
"""
obj_to_verb = [[] for _ in range(self.num_object_cls)]
for corr in self._class_corr:
obj_to_verb[corr[1]].append(corr[2])
return obj_to_verb
@property
def anno_interaction(self) -> List[int]:
"""
Number of annotated box pairs for each interaction class
Returns:
list[600]
"""
return self._num_anno.copy()
@property
def anno_object(self) -> List[int]:
"""
Number of annotated box pairs for each object class
Returns:
list[80]
"""
num_anno = [0 for _ in range(self.num_object_cls)]
for corr in self._class_corr:
num_anno[corr[1]] += self._num_anno[corr[0]]
return num_anno
@property
def anno_action(self) -> List[int]:
"""
Number of annotated box pairs for each action class
Returns:
list[117]
"""
num_anno = [0 for _ in range(self.num_action_cls)]
for corr in self._class_corr:
num_anno[corr[2]] += self._num_anno[corr[0]]
return num_anno
@property
def objects(self) -> List[str]:
"""
Object names
Returns:
list[str]
"""
return self._objects.copy()
@property
def verbs(self) -> List[str]:
"""
Verb (action) names
Returns:
list[str]
"""
return self._verbs.copy()
@property
def interactions(self) -> List[str]:
"""
Combination of verbs and objects
Returns:
list[str]
"""
return [self._verbs[j] + ' ' + self.objects[i]
for _, i, j in self._class_corr]
@property
def rare(self) -> List[int]:
"""
List of rare class indices
Returns:
list[int]
"""
return self._rare
@property
def non_rare(self) -> List [int]:
"""
List of non-rare class indices
Returns:
list[int]
"""
return self._non_rare
def split(self, ratio: float) -> Tuple[HICODetSubset, HICODetSubset]:
"""
Split the dataset according to given ratio
Arguments:
ratio(float): The percentage of training set between 0 and 1
Returns:
train(Dataset)
val(Dataset)
"""
perm = np.random.permutation(len(self._idx))
n = int(len(perm) * ratio)
return HICODetSubset(self, perm[:n]), HICODetSubset(self, perm[n:])
def filename(self, idx: int) -> str:
"""Return the image file name given the index"""
return self._filenames[self._idx[idx]]
def image_size(self, idx: int) -> Tuple[int, int]:
"""Return the size (width, height) of an image"""
return self._image_sizes[self._idx[idx]]
def _load_annotation_and_metadata(self, f: dict) -> None:
"""
Arguments:
f(dict): Dictionary loaded from {anno_file}.json
"""
idx = list(range(len(f['filenames'])))
for empty_idx in f['empty']:
idx.remove(empty_idx)
num_anno = [0 for _ in range(self.num_interation_cls)]
for anno in f['annotation']:
for hoi in anno['hoi']:
num_anno[hoi] += 1
self._idx = idx
self._num_anno = num_anno
self._anno = f['annotation']
self._filenames = f['filenames']
self._image_sizes = f['size']
self._class_corr = f['correspondence']
self._empty_idx = f['empty']
self._objects = f['objects']
self._verbs = f['verbs']
self._rare = f['rare']
self._non_rare = f['non_rare']