Given an integer array arr
, return the length of a maximum size turbulent subarray of arr
.
A subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
More formally, a subarray [arr[i], arr[i + 1], ..., arr[j]]
of arr
is said to be turbulent if and only if:
- For
i <= k < j
:arr[k] > arr[k + 1]
whenk
is odd, andarr[k] < arr[k + 1]
whenk
is even.
- Or, for
i <= k < j
:arr[k] > arr[k + 1]
whenk
is even, andarr[k] < arr[k + 1]
whenk
is odd.
Input: arr = [9,4,2,10,7,8,8,1,9] Output: 5 Explanation: arr[1] > arr[2] < arr[3] > arr[4] < arr[5]
Input: arr = [4,8,12,16] Output: 2
Input: arr = [100] Output: 1
1 <= arr.length <= 4 * 104
0 <= arr[i] <= 109
impl Solution {
pub fn max_turbulence_size(arr: Vec<i32>) -> i32 {
let mut count0 = 1;
let mut count1 = 1;
let mut ret = 1;
for k in 0..arr.len() - 1 {
if (k % 2 == 1 && arr[k] > arr[k + 1]) || (k % 2 == 0 && arr[k] < arr[k + 1]) {
count0 += 1;
} else {
ret = ret.max(count0);
count0 = 1;
}
if (k % 2 == 0 && arr[k] > arr[k + 1]) || (k % 2 == 1 && arr[k] < arr[k + 1]) {
count1 += 1;
} else {
ret = ret.max(count1);
count1 = 1;
}
}
ret.max(count0).max(count1)
}
}