forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
129 lines (111 loc) · 5.27 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.feature_size = envs.get_global_env(
"hyper_parameters.feature_size")
self.expert_num = envs.get_global_env("hyper_parameters.expert_num")
self.gate_num = envs.get_global_env("hyper_parameters.gate_num")
self.expert_size = envs.get_global_env("hyper_parameters.expert_size")
self.tower_size = envs.get_global_env("hyper_parameters.tower_size")
def input_data(self, is_infer=False, **kwargs):
inputs = fluid.data(
name="input", shape=[-1, self.feature_size], dtype="float32")
label_income = fluid.data(
name="label_income", shape=[-1, 2], dtype="float32", lod_level=0)
label_marital = fluid.data(
name="label_marital", shape=[-1, 2], dtype="float32", lod_level=0)
if is_infer:
return [inputs, label_income, label_marital]
else:
return [inputs, label_income, label_marital]
def net(self, inputs, is_infer=False):
input_data = inputs[0]
label_income = inputs[1]
label_marital = inputs[2]
# f_{i}(x) = activation(W_{i} * x + b), where activation is ReLU according to the paper
expert_outputs = []
for i in range(0, self.expert_num):
expert_output = fluid.layers.fc(
input=input_data,
size=self.expert_size,
act='relu',
bias_attr=fluid.ParamAttr(learning_rate=1.0),
name='expert_' + str(i))
expert_outputs.append(expert_output)
expert_concat = fluid.layers.concat(expert_outputs, axis=1)
expert_concat = fluid.layers.reshape(
expert_concat, [-1, self.expert_num, self.expert_size])
# g^{k}(x) = activation(W_{gk} * x + b), where activation is softmax according to the paper
output_layers = []
for i in range(0, self.gate_num):
cur_gate = fluid.layers.fc(
input=input_data,
size=self.expert_num,
act='softmax',
bias_attr=fluid.ParamAttr(learning_rate=1.0),
name='gate_' + str(i))
# f^{k}(x) = sum_{i=1}^{n}(g^{k}(x)_{i} * f_{i}(x))
cur_gate_expert = fluid.layers.elementwise_mul(
expert_concat, cur_gate, axis=0)
cur_gate_expert = fluid.layers.reduce_sum(cur_gate_expert, dim=1)
# Build tower layer
cur_tower = fluid.layers.fc(input=cur_gate_expert,
size=self.tower_size,
act='relu',
name='task_layer_' + str(i))
out = fluid.layers.fc(input=cur_tower,
size=2,
act='softmax',
name='out_' + str(i))
output_layers.append(out)
pred_income = fluid.layers.clip(
output_layers[0], min=1e-15, max=1.0 - 1e-15)
pred_marital = fluid.layers.clip(
output_layers[1], min=1e-15, max=1.0 - 1e-15)
label_income_1 = fluid.layers.slice(
label_income, axes=[1], starts=[1], ends=[2])
label_marital_1 = fluid.layers.slice(
label_marital, axes=[1], starts=[1], ends=[2])
auc_income, batch_auc_1, auc_states_1 = fluid.layers.auc(
input=pred_income,
label=fluid.layers.cast(
x=label_income_1, dtype='int64'))
auc_marital, batch_auc_2, auc_states_2 = fluid.layers.auc(
input=pred_marital,
label=fluid.layers.cast(
x=label_marital_1, dtype='int64'))
if is_infer:
self._infer_results["AUC_income"] = auc_income
self._infer_results["AUC_marital"] = auc_marital
return
cost_income = fluid.layers.cross_entropy(
input=pred_income, label=label_income, soft_label=True)
cost_marital = fluid.layers.cross_entropy(
input=pred_marital, label=label_marital, soft_label=True)
avg_cost_income = fluid.layers.mean(x=cost_income)
avg_cost_marital = fluid.layers.mean(x=cost_marital)
cost = avg_cost_income + avg_cost_marital
self._cost = cost
self._metrics["AUC_income"] = auc_income
self._metrics["BATCH_AUC_income"] = batch_auc_1
self._metrics["AUC_marital"] = auc_marital
self._metrics["BATCH_AUC_marital"] = batch_auc_2
def infer_net(self):
pass