forked from phishman3579/java-algorithms-implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinarySearch.java
66 lines (58 loc) · 2.5 KB
/
BinarySearch.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
package com.jwetherell.algorithms.search;
/**
* In computer science, binary search, also known as half-interval search or logarithmic search, is a search algorithm that finds the position of a target value within a sorted array. Binary search
* compares the target value to the middle element of the array; if they are unequal, the half in which the target cannot lie is eliminated and the search continues on the remaining half until it is
* successful or the remaining half is empty.
* <p>
* Worst-case performance O(log n)<br>
* Best-case performance O(1)<br>
* Average performance O(log n)<br>
* Worst-case space complexity O(1)<br>
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Binary_search_algorithm">Binary Search (Wikipedia)</a>
* <br>
* @author Justin Wetherell <phishman3579@gmail.com>
*/
public class BinarySearch {
private static final int SWITCH_TO_BRUTE_FORCE = 200;
private static int[] sorted = null;
// Assuming the array is sorted
public static final int find(int value, int[] array, boolean optimize) {
BinarySearch.sorted = array;
try {
return recursiveFind(value, 0, BinarySearch.sorted.length - 1, optimize);
} finally {
BinarySearch.sorted = null;
}
}
private static int recursiveFind(int value, int start, int end, boolean optimize) {
if (start == end) {
int lastValue = sorted[start]; // start==end
if (value == lastValue)
return start; // start==end
return Integer.MAX_VALUE;
}
final int low = start;
final int high = end + 1; // zero indexed, so add one.
final int middle = low + ((high - low) / 2);
final int middleValue = sorted[middle];
if (value == middleValue)
return middle;
if (value > middleValue) {
if (optimize && (end - middle) <= SWITCH_TO_BRUTE_FORCE)
return linearSearch(value, middle + 1, end);
return recursiveFind(value, middle + 1, end, optimize);
}
if (optimize && (end - middle) <= SWITCH_TO_BRUTE_FORCE)
return linearSearch(value, start, middle - 1);
return recursiveFind(value, start, middle - 1, optimize);
}
private static final int linearSearch(int value, int start, int end) {
for (int i = start; i <= end; i++) {
int iValue = sorted[i];
if (value == iValue)
return i;
}
return Integer.MAX_VALUE;
}
}