-
Notifications
You must be signed in to change notification settings - Fork 4
/
single1_train.py
executable file
·317 lines (249 loc) · 13.3 KB
/
single1_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from __future__ import print_function
#This is to train the network by running: python single1_train.py <experiment_name> <obj_id>
#e.g.: python single1_train.py subdiv_29_softmax_edge 29
#Prerequisite before training:
#cfg file: <experiment_name>.cfg under the path: path_workspace/cfg/<experiment_name>.cfg
#Rendered foreground imgs to train the AE(Generated by render_training.py) under the path: path_workspace/tmp_datasets/<name_fg_data>.npz
#Random background imgs under the path: path_workspace/tmp_datasets/prepared_bg_imgs.npy
#Rendered imgs under reference rotations R_c(Generated by render_codebook.py) under the path: path_embedding_data (Actually optional, but used in this program for visualization)
import os
import numpy as np
import tensorflow as tf
import configparser
import argparse
import signal
import shutil
import cv2
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import progressbar
import utils as u
from utils import lazy_property
from dataset import Dataset
from network import build_dataset,build_decoder,build_encoder,VectorQuantizerEMA
################################################################################
path_workspace = './ws/'
path_embedding_data = './embedding20s/'
name_fg_data='prepared_training_data_{:02d}_subdiv'
tau=0.07
lambda_reconst=250.
d_ema=0.9995
# Set hyper-parameters.
batch_size = 64
image_size = 128
embedding_dim = 128
learning_rate = 2e-4
num_training_updates = 30000
normalize_images=False #Default false for T-LESS CAD meshes, and True for texture meshes as LINEMOD meshes
if path_workspace == None:
print('Please define a workspace path:\n')
exit(-1)
gentle_stop = np.array((1,), dtype=np.bool)
gentle_stop[0] = False
def on_ctrl_c(signal, frame):
gentle_stop[0] = True
signal.signal(signal.SIGINT, on_ctrl_c)
parser = argparse.ArgumentParser()
parser.add_argument("experiment_name")
parser.add_argument("obj_id")
arguments = parser.parse_args()
full_name = arguments.experiment_name.split('/')
obj_id=arguments.obj_id
experiment_name = full_name.pop()
experiment_group = full_name.pop() if len(full_name) > 0 else ''
cfg_file_path = u.get_config_file_path(path_workspace, experiment_name, experiment_group)
list_models=[int(obj_id)]
log_dir = u.get_log_dir(path_workspace, experiment_name, experiment_group)
ckpt_dir = os.path.join(log_dir, 'checkpoints')
checkpoint_file = u.get_checkpoint_basefilename(ckpt_dir)
train_fig_dir = os.path.join(log_dir, 'train_figures')
dataset_path = u.get_dataset_path(path_workspace)
print('dataset_path',dataset_path)
if not os.path.exists(cfg_file_path):
print('Could not find config file:\n')
print('{}\n'.format(cfg_file_path))
exit(-1)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
if not os.path.exists(train_fig_dir):
os.makedirs(train_fig_dir)
if not os.path.exists(dataset_path):
os.makedirs(dataset_path)
args = configparser.ConfigParser()
args.read(cfg_file_path)
shutil.copyfile(cfg_file_path, os.path.join(log_dir,experiment_name+'.cfg'))
tf.reset_default_graph()
# The higher this value, the higher the capacity in the information bottleneck.
dataset = build_dataset(dataset_path,name_fg_data,path_embedding_data+'{:02d}',list_models,args)
dataset.load_training_images()
dataset.load_bg_images()
dataset.load_codebook_rotation(path_codebook_rotation=path_embedding_data+'{:02d}/rot_infos.npz'.format(list_models[0]))
dataset.load_embedding_images()
dataset.compute_knn_rot_embedding_indices(knn=1, use_probability=False)
num_embeddings = dataset.embedding_size
# Build modules.
with tf.variable_scope('subdiv_f18_softmax_edge'):
ci=dataset.inshape[-1]
co=dataset.outshape[-1]
print('ci/co: ',ci, co)
#################Normalize images###########################
bgr_y=tf.placeholder(tf.uint8, shape=(image_size, image_size, 3))
_normalized_bgr_y= tf.reshape(tf.image.per_image_standardization(bgr_y),[image_size,image_size,3])
min_normalized_bgry=tf.reduce_min(_normalized_bgr_y)
max_normalized_bgry=tf.reduce_max(_normalized_bgr_y)
normalized_bgr_y=(_normalized_bgr_y-min_normalized_bgry)/(max_normalized_bgry-min_normalized_bgry)
############################################################
x = tf.placeholder(tf.float32, shape=(None, image_size, image_size, ci))
pose_label= tf.placeholder(tf.int32, shape=(None, 1))
y_gt_ae = tf.placeholder(tf.float32, shape=(None, image_size, image_size, co))
ppixel_edge_w_ae =tf.placeholder(dtype=tf.float32, shape=(None, image_size, image_size, 1))
gprior_decay = tf.placeholder(tf.float32, shape=None)
gprior_temperature=tf.placeholder(tf.float32,shape=None)
gprior_lambda_reconst_cost = tf.placeholder(tf.float32, shape=None)
print('xshape', x.shape)
with tf.variable_scope('encoder'):
encoder = build_encoder(args)
z = encoder(x)
decoder_input = z
pose_embeds = VectorQuantizerEMA(embedding_dim=embedding_dim, num_embeddings=num_embeddings)
# For training
with tf.variable_scope('embedding_lookup'):
pose_train_retr = pose_embeds(z, decay=gprior_decay, temperature=gprior_temperature,encoding_1nn_indices=pose_label, encodings=None, is_training=True)
total_loss=0.
with tf.variable_scope('decoder'):
decoder = build_decoder(args)
# Decoder for ae
y_recon_ae = decoder(decoder_input)
recon_error_ae=0.
if co in [3, 4]:
if co == 4:
reconst_target_bgr = tf.slice(y_gt_ae, [0, 0, 0, 0], [-1, -1, -1, 3])
else:
reconst_target_bgr = y_gt_ae
bootstrap_ratio=4
y_gt_flat = tf.contrib.layers.flatten(reconst_target_bgr)
print(reconst_target_bgr.shape)
print(y_recon_ae['x_bgr'].shape)
y_reconae_flat = tf.contrib.layers.flatten(y_recon_ae['x_bgr'])
l2_ae = tf.losses.mean_squared_error(
y_reconae_flat,
y_gt_flat,
reduction=tf.losses.Reduction.NONE
)
l2_val_ae, _ = tf.nn.top_k(l2_ae, k=l2_ae.shape[1] // bootstrap_ratio) #py2 to py3
recon_error_ae_bgr = tf.reduce_mean(l2_val_ae)
weight_bgr_loss=1.
recon_error_ae += recon_error_ae_bgr * weight_bgr_loss
tf.summary.scalar('recons_loss_ae_bgr', recon_error_ae_bgr)
if co in [1, 4]:
if co == 4:
reconst_target_edge = tf.slice(y_gt_ae, [0, 0, 0, 3], [-1, -1, -1, 1])
else:
reconst_target_edge = y_gt_ae
x_flat = tf.contrib.layers.flatten(y_recon_ae['x_edge'])
reconstruction_label_flat = tf.contrib.layers.flatten(reconst_target_edge)
loss_weight_flat = tf.contrib.layers.flatten(ppixel_edge_w_ae)
loss_ce_ori = tf.nn.sigmoid_cross_entropy_with_logits(labels=reconstruction_label_flat, logits=x_flat,name='loss_cross_entropy')
loss_ce_combined = tf.multiply(loss_weight_flat, loss_ce_ori)
recon_error_ae_edge = tf.reduce_mean(loss_ce_combined)
weight_edge_loss=1
recon_error_ae += recon_error_ae_edge * weight_edge_loss
tf.summary.scalar('recons_loss_ae_edge', recon_error_ae_edge)
total_loss += recon_error_ae * 1.
total_loss+=(pose_train_retr["loss"])/gprior_lambda_reconst_cost
pose_cosine_loss = tf.reduce_mean((tf.nn.l2_normalize(tf.stop_gradient(pose_train_retr["quantize_1nn"]), dim=1) - tf.nn.l2_normalize(tf.stop_gradient(z), dim=1)) ** 2)
tf.summary.histogram('pose z', z)
tf.summary.scalar('recons_loss_ae', recon_error_ae)
tf.summary.scalar('pose_ce_loss', pose_train_retr["loss"])
tf.summary.scalar('pose_cosine_err',pose_cosine_loss)
tf.summary.scalar('temperature',gprior_temperature)
tf.summary.scalar('decay',d_ema)
tf.summary.scalar('lambda_reconst_cost', gprior_lambda_reconst_cost)
mean, var = tf.nn.moments(pose_embeds.embeddings, 1)
tf.summary.histogram('pose codebook mean', mean)
tf.summary.histogram('pose codebook var', var)
tf.summary.histogram('pose codebook', pose_embeds.embeddings)
# For evaluation, make sure is_training=False!
with tf.variable_scope('validation'):
pose_train_retr_eval = pose_embeds(z,encoding_1nn_indices=None, encodings=None, is_training=False)
decoder_input_center = pose_train_retr_eval['quantize_1nn']
x_recon_eval_ae = decoder(decoder_input)
# Create optimizer and TF session.
global_step = tf.Variable(0, dtype=tf.int64, trainable=False, name='global_step')
optim = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op_vq = tf.contrib.training.create_train_op(total_loss, optim, global_step=global_step)
saver = tf.train.Saver(save_relative_paths=True, max_to_keep=50)
merged_summary = tf.summary.merge_all()
# Train.
train_res_recon_error = []
train_res_perplexity = []
widgets = ['Training: ', progressbar.Percentage(),
' ', progressbar.Bar(),
' ', progressbar.Counter(), ' / %s' % num_training_updates,
' ', progressbar.ETA(), ' ']
bar = progressbar.ProgressBar(maxval=num_training_updates, widgets=widgets)
gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.9)
config = tf.ConfigProto(gpu_options=gpu_options)
use_clean = False
with tf.Session(config=config) as sess:
if normalize_images:
widgets2 = ['Normalization: ', progressbar.Percentage(),
' ', progressbar.Bar(),
' ', progressbar.Counter(), ' / %s' % dataset.train_y.shape[0],
' ', progressbar.ETA(), ' ']
bar2 = progressbar.ProgressBar(maxval=dataset.train_y.shape[0], widgets=widgets2)
bar2.start()
# print(dataset.train_y.shape[0],'start normalization')
for ii in range(0, dataset.train_y.shape[0]):
bar2.update(ii)
# tf_normalized_bgry=tf.image.per_image_standardization(dataset.train_y[ii])
normalized_bgry = sess.run(normalized_bgr_y, feed_dict={bgr_y: dataset.train_y[ii]})
normalized_bgrx = sess.run(normalized_bgr_y, feed_dict={bgr_y: dataset.train_x[ii]})
dataset.train_y[ii, :, :, :] = (normalized_bgry.copy() * 255.).astype(np.uint8)
dataset.train_x[ii, :, :, :] = (normalized_bgrx.copy() * 255.).astype(np.uint8)
bar2.finish()
sess.run(tf.global_variables_initializer())
summary_writer = tf.summary.FileWriter(ckpt_dir, sess.graph)
bar.start()
for i in range(0,num_training_updates):
bar.update(i)
this_x, this_y, this_ppixel_weight, this_obj_label, this_pose_label, this_pose_img = dataset.batch(batch_size, batchx_clean=use_clean,stack_codebook=False)
this_x = this_x.astype(np.float32)
this_y = this_y.astype(np.float32)
feed_dict = {x: this_x, pose_label: this_pose_label, y_gt_ae: this_y, ppixel_edge_w_ae:this_ppixel_weight,
gprior_decay: d_ema, gprior_lambda_reconst_cost: lambda_reconst,gprior_temperature: tau}
results = sess.run([merged_summary, train_op_vq, global_step], feed_dict=feed_dict)
gs = results[-1]
if i % 10 == 0:
summary_writer.add_summary(results[0], gs)
if (i + 1) % 1000 == 0 or i == 0:
# sess.run([assign_embedding])
if (i + 1)%10000==0 or i==0:
saver.save(sess, checkpoint_file, global_step=i)
valid_originals, valid_y_gtae, valid_y_gtref, = this_x, this_y, this_pose_img
valid_originals = valid_originals.astype(np.float32)
valid_reconstructions_ae,valid_reconstructions_eae = \
sess.run([x_recon_eval_ae['x_bgr'],x_recon_eval_ae['x_edge_vis']],feed_dict={x:valid_originals})
def convert_batch_to_image_grid(image_batch):
if image_batch.ndim == 3:
image_batch = np.expand_dims(image_batch[0:32,:,:], -1).reshape((4, 8, image_size, image_size, 1))
reshaped = (image_batch[0:32,:,:,:].reshape(4, 8, image_size, image_size, -1)
.transpose(0, 2, 1, 3, 4)
.reshape(4 * image_size, 8 * image_size, -1))
return reshaped
cv2.imwrite(os.path.join(train_fig_dir, '{:05d}_validation_ae_ori_bgr.png'.format(i)),
(convert_batch_to_image_grid(valid_originals[:, :, :, 0:3]) * 255.).astype(np.uint8))
cv2.imwrite(os.path.join(train_fig_dir, '{:05d}_validation_ae_rec_bgr.png'.format(i)),
(convert_batch_to_image_grid(valid_reconstructions_ae[:, :, :, 0:3]) * 255.).astype(np.uint8))
cv2.imwrite(os.path.join(train_fig_dir, '{:05d}_validation_ae_rgt_bgr.png'.format(i)),
(convert_batch_to_image_grid(valid_y_gtae[:, :, :, 0:3]) * 255.).astype(np.uint8))
cv2.imwrite(os.path.join(train_fig_dir, '{:05d}_validation_ae_refgt_bgr.png'.format(i)),
(convert_batch_to_image_grid(valid_y_gtref[:, :, :, 0:3])).astype(np.uint8))
cv2.imwrite(os.path.join(train_fig_dir, '{:05d}_validation_ae_ori_edge.png'.format(i)),
(convert_batch_to_image_grid(valid_originals[:, :, :, -1]) * 255.).astype(np.uint8))
cv2.imwrite(os.path.join(train_fig_dir, '{:05d}_validation_ae_rec_edge.png'.format(i)),
(convert_batch_to_image_grid(valid_reconstructions_eae) * 255.).astype(np.uint8))
cv2.imwrite(os.path.join(train_fig_dir, '{:05d}_validation_ae_rgt_edge.png'.format(i)),
(convert_batch_to_image_grid(valid_y_gtae[:, :, :, -1]) * 255.).astype(np.uint8))
if gentle_stop[0]:
break
bar.finish()