-
Notifications
You must be signed in to change notification settings - Fork 3
/
shaderlib.sh
431 lines (371 loc) · 9.86 KB
/
shaderlib.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*
* Copyright 2011-2022 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE
*/
#ifndef __SHADERLIB_SH__
#define __SHADERLIB_SH__
vec4 encodeRE8(float _r)
{
float exponent = ceil(log2(_r) );
return vec4(_r / exp2(exponent)
, 0.0
, 0.0
, (exponent + 128.0) / 255.0
);
}
float decodeRE8(vec4 _re8)
{
float exponent = _re8.w * 255.0 - 128.0;
return _re8.x * exp2(exponent);
}
vec4 encodeRGBE8(vec3 _rgb)
{
vec4 rgbe8;
float maxComponent = max(max(_rgb.x, _rgb.y), _rgb.z);
float exponent = ceil(log2(maxComponent) );
rgbe8.xyz = _rgb / exp2(exponent);
rgbe8.w = (exponent + 128.0) / 255.0;
return rgbe8;
}
vec3 decodeRGBE8(vec4 _rgbe8)
{
float exponent = _rgbe8.w * 255.0 - 128.0;
vec3 rgb = _rgbe8.xyz * exp2(exponent);
return rgb;
}
vec3 encodeNormalUint(vec3 _normal)
{
return _normal * 0.5 + 0.5;
}
vec3 decodeNormalUint(vec3 _encodedNormal)
{
return _encodedNormal * 2.0 - 1.0;
}
vec2 encodeNormalSphereMap(vec3 _normal)
{
return normalize(_normal.xy) * sqrt(_normal.z * 0.5 + 0.5);
}
vec3 decodeNormalSphereMap(vec2 _encodedNormal)
{
float zz = dot(_encodedNormal, _encodedNormal) * 2.0 - 1.0;
return vec3(normalize(_encodedNormal.xy) * sqrt(1.0 - zz*zz), zz);
}
vec2 octahedronWrap(vec2 _val)
{
// Reference(s):
// - Octahedron normal vector encoding
// https://web.archive.org/web/20191027010600/https://knarkowicz.wordpress.com/2014/04/16/octahedron-normal-vector-encoding/comment-page-1/
return (1.0 - abs(_val.yx) )
* mix(vec2_splat(-1.0), vec2_splat(1.0), vec2(greaterThanEqual(_val.xy, vec2_splat(0.0) ) ) );
}
vec2 encodeNormalOctahedron(vec3 _normal)
{
_normal /= abs(_normal.x) + abs(_normal.y) + abs(_normal.z);
_normal.xy = _normal.z >= 0.0 ? _normal.xy : octahedronWrap(_normal.xy);
_normal.xy = _normal.xy * 0.5 + 0.5;
return _normal.xy;
}
vec3 decodeNormalOctahedron(vec2 _encodedNormal)
{
_encodedNormal = _encodedNormal * 2.0 - 1.0;
vec3 normal;
normal.z = 1.0 - abs(_encodedNormal.x) - abs(_encodedNormal.y);
normal.xy = normal.z >= 0.0 ? _encodedNormal.xy : octahedronWrap(_encodedNormal.xy);
return normalize(normal);
}
vec3 convertRGB2XYZ(vec3 _rgb)
{
// Reference(s):
// - RGB/XYZ Matrices
// https://web.archive.org/web/20191027010220/http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
vec3 xyz;
xyz.x = dot(vec3(0.4124564, 0.3575761, 0.1804375), _rgb);
xyz.y = dot(vec3(0.2126729, 0.7151522, 0.0721750), _rgb);
xyz.z = dot(vec3(0.0193339, 0.1191920, 0.9503041), _rgb);
return xyz;
}
vec3 convertXYZ2RGB(vec3 _xyz)
{
vec3 rgb;
rgb.x = dot(vec3( 3.2404542, -1.5371385, -0.4985314), _xyz);
rgb.y = dot(vec3(-0.9692660, 1.8760108, 0.0415560), _xyz);
rgb.z = dot(vec3( 0.0556434, -0.2040259, 1.0572252), _xyz);
return rgb;
}
vec3 convertXYZ2Yxy(vec3 _xyz)
{
// Reference(s):
// - XYZ to xyY
// https://web.archive.org/web/20191027010144/http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_xyY.html
float inv = 1.0/dot(_xyz, vec3(1.0, 1.0, 1.0) );
return vec3(_xyz.y, _xyz.x*inv, _xyz.y*inv);
}
vec3 convertYxy2XYZ(vec3 _Yxy)
{
// Reference(s):
// - xyY to XYZ
// https://web.archive.org/web/20191027010036/http://www.brucelindbloom.com/index.html?Eqn_xyY_to_XYZ.html
vec3 xyz;
xyz.x = _Yxy.x*_Yxy.y/_Yxy.z;
xyz.y = _Yxy.x;
xyz.z = _Yxy.x*(1.0 - _Yxy.y - _Yxy.z)/_Yxy.z;
return xyz;
}
vec3 convertRGB2Yxy(vec3 _rgb)
{
return convertXYZ2Yxy(convertRGB2XYZ(_rgb) );
}
vec3 convertYxy2RGB(vec3 _Yxy)
{
return convertXYZ2RGB(convertYxy2XYZ(_Yxy) );
}
vec3 convertRGB2Yuv(vec3 _rgb)
{
vec3 yuv;
yuv.x = dot(_rgb, vec3(0.299, 0.587, 0.114) );
yuv.y = (_rgb.x - yuv.x)*0.713 + 0.5;
yuv.z = (_rgb.z - yuv.x)*0.564 + 0.5;
return yuv;
}
vec3 convertYuv2RGB(vec3 _yuv)
{
vec3 rgb;
rgb.x = _yuv.x + 1.403*(_yuv.y-0.5);
rgb.y = _yuv.x - 0.344*(_yuv.y-0.5) - 0.714*(_yuv.z-0.5);
rgb.z = _yuv.x + 1.773*(_yuv.z-0.5);
return rgb;
}
vec3 convertRGB2YIQ(vec3 _rgb)
{
vec3 yiq;
yiq.x = dot(vec3(0.299, 0.587, 0.114 ), _rgb);
yiq.y = dot(vec3(0.595716, -0.274453, -0.321263), _rgb);
yiq.z = dot(vec3(0.211456, -0.522591, 0.311135), _rgb);
return yiq;
}
vec3 convertYIQ2RGB(vec3 _yiq)
{
vec3 rgb;
rgb.x = dot(vec3(1.0, 0.9563, 0.6210), _yiq);
rgb.y = dot(vec3(1.0, -0.2721, -0.6474), _yiq);
rgb.z = dot(vec3(1.0, -1.1070, 1.7046), _yiq);
return rgb;
}
vec3 toLinear(vec3 _rgb)
{
return pow(abs(_rgb), vec3_splat(2.2) );
}
vec4 toLinear(vec4 _rgba)
{
return vec4(toLinear(_rgba.xyz), _rgba.w);
}
vec3 toLinearAccurate(vec3 _rgb)
{
vec3 lo = _rgb / 12.92;
vec3 hi = pow( (_rgb + 0.055) / 1.055, vec3_splat(2.4) );
vec3 rgb = mix(hi, lo, vec3(lessThanEqual(_rgb, vec3_splat(0.04045) ) ) );
return rgb;
}
vec4 toLinearAccurate(vec4 _rgba)
{
return vec4(toLinearAccurate(_rgba.xyz), _rgba.w);
}
float toGamma(float _r)
{
return pow(abs(_r), 1.0/2.2);
}
vec3 toGamma(vec3 _rgb)
{
return pow(abs(_rgb), vec3_splat(1.0/2.2) );
}
vec4 toGamma(vec4 _rgba)
{
return vec4(toGamma(_rgba.xyz), _rgba.w);
}
vec3 toGammaAccurate(vec3 _rgb)
{
vec3 lo = _rgb * 12.92;
vec3 hi = pow(abs(_rgb), vec3_splat(1.0/2.4) ) * 1.055 - 0.055;
vec3 rgb = mix(hi, lo, vec3(lessThanEqual(_rgb, vec3_splat(0.0031308) ) ) );
return rgb;
}
vec4 toGammaAccurate(vec4 _rgba)
{
return vec4(toGammaAccurate(_rgba.xyz), _rgba.w);
}
vec3 toReinhard(vec3 _rgb)
{
return toGamma(_rgb/(_rgb+vec3_splat(1.0) ) );
}
vec4 toReinhard(vec4 _rgba)
{
return vec4(toReinhard(_rgba.xyz), _rgba.w);
}
vec3 toFilmic(vec3 _rgb)
{
_rgb = max(vec3_splat(0.0), _rgb - 0.004);
_rgb = (_rgb*(6.2*_rgb + 0.5) ) / (_rgb*(6.2*_rgb + 1.7) + 0.06);
return _rgb;
}
vec4 toFilmic(vec4 _rgba)
{
return vec4(toFilmic(_rgba.xyz), _rgba.w);
}
vec3 toAcesFilmic(vec3 _rgb)
{
// Reference(s):
// - ACES Filmic Tone Mapping Curve
// https://web.archive.org/web/20191027010704/https://knarkowicz.wordpress.com/2016/01/06/aces-filmic-tone-mapping-curve/
float aa = 2.51f;
float bb = 0.03f;
float cc = 2.43f;
float dd = 0.59f;
float ee = 0.14f;
return saturate( (_rgb*(aa*_rgb + bb) )/(_rgb*(cc*_rgb + dd) + ee) );
}
vec4 toAcesFilmic(vec4 _rgba)
{
return vec4(toAcesFilmic(_rgba.xyz), _rgba.w);
}
vec3 luma(vec3 _rgb)
{
float yy = dot(vec3(0.2126729, 0.7151522, 0.0721750), _rgb);
return vec3_splat(yy);
}
vec4 luma(vec4 _rgba)
{
return vec4(luma(_rgba.xyz), _rgba.w);
}
vec3 conSatBri(vec3 _rgb, vec3 _csb)
{
vec3 rgb = _rgb * _csb.z;
rgb = mix(luma(rgb), rgb, _csb.y);
rgb = mix(vec3_splat(0.5), rgb, _csb.x);
return rgb;
}
vec4 conSatBri(vec4 _rgba, vec3 _csb)
{
return vec4(conSatBri(_rgba.xyz, _csb), _rgba.w);
}
vec3 posterize(vec3 _rgb, float _numColors)
{
return floor(_rgb*_numColors) / _numColors;
}
vec4 posterize(vec4 _rgba, float _numColors)
{
return vec4(posterize(_rgba.xyz, _numColors), _rgba.w);
}
vec3 sepia(vec3 _rgb)
{
vec3 color;
color.x = dot(_rgb, vec3(0.393, 0.769, 0.189) );
color.y = dot(_rgb, vec3(0.349, 0.686, 0.168) );
color.z = dot(_rgb, vec3(0.272, 0.534, 0.131) );
return color;
}
vec4 sepia(vec4 _rgba)
{
return vec4(sepia(_rgba.xyz), _rgba.w);
}
vec3 blendOverlay(vec3 _base, vec3 _blend)
{
vec3 lt = 2.0 * _base * _blend;
vec3 gte = 1.0 - 2.0 * (1.0 - _base) * (1.0 - _blend);
return mix(lt, gte, step(vec3_splat(0.5), _base) );
}
vec4 blendOverlay(vec4 _base, vec4 _blend)
{
return vec4(blendOverlay(_base.xyz, _blend.xyz), _base.w);
}
vec3 adjustHue(vec3 _rgb, float _hue)
{
vec3 yiq = convertRGB2YIQ(_rgb);
float angle = _hue + atan2(yiq.z, yiq.y);
float len = length(yiq.yz);
return convertYIQ2RGB(vec3(yiq.x, len*cos(angle), len*sin(angle) ) );
}
vec4 packFloatToRgba(float _value)
{
const vec4 shift = vec4(256 * 256 * 256, 256 * 256, 256, 1.0);
const vec4 mask = vec4(0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0);
vec4 comp = fract(_value * shift);
comp -= comp.xxyz * mask;
return comp;
}
float unpackRgbaToFloat(vec4 _rgba)
{
const vec4 shift = vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1.0);
return dot(_rgba, shift);
}
vec2 packHalfFloat(float _value)
{
const vec2 shift = vec2(256, 1.0);
const vec2 mask = vec2(0, 1.0 / 256.0);
vec2 comp = fract(_value * shift);
comp -= comp.xx * mask;
return comp;
}
float unpackHalfFloat(vec2 _rg)
{
const vec2 shift = vec2(1.0 / 256.0, 1.0);
return dot(_rg, shift);
}
float random(vec2 _uv)
{
return fract(sin(dot(_uv.xy, vec2(12.9898, 78.233) ) ) * 43758.5453);
}
vec3 fixCubeLookup(vec3 _v, float _lod, float _topLevelCubeSize)
{
// Reference(s):
// - Seamless cube-map filtering
// https://web.archive.org/web/20190411181934/http://the-witness.net/news/2012/02/seamless-cube-map-filtering/
float ax = abs(_v.x);
float ay = abs(_v.y);
float az = abs(_v.z);
float vmax = max(max(ax, ay), az);
float scale = 1.0 - exp2(_lod) / _topLevelCubeSize;
if (ax != vmax) { _v.x *= scale; }
if (ay != vmax) { _v.y *= scale; }
if (az != vmax) { _v.z *= scale; }
return _v;
}
vec2 texture2DBc5(sampler2D _sampler, vec2 _uv)
{
#if BGFX_SHADER_LANGUAGE_HLSL && BGFX_SHADER_LANGUAGE_HLSL <= 300
return texture2D(_sampler, _uv).yx;
#else
return texture2D(_sampler, _uv).xy;
#endif
}
mat3 cofactor(mat4 _m)
{
// Reference:
// Cofactor of matrix. Use to transform normals. The code assumes the last column of _m is [0,0,0,1].
// https://www.shadertoy.com/view/3s33zj
// https://github.com/graphitemaster/normals_revisited
return mat3(
_m[1][1]*_m[2][2]-_m[1][2]*_m[2][1],
_m[1][2]*_m[2][0]-_m[1][0]*_m[2][2],
_m[1][0]*_m[2][1]-_m[1][1]*_m[2][0],
_m[0][2]*_m[2][1]-_m[0][1]*_m[2][2],
_m[0][0]*_m[2][2]-_m[0][2]*_m[2][0],
_m[0][1]*_m[2][0]-_m[0][0]*_m[2][1],
_m[0][1]*_m[1][2]-_m[0][2]*_m[1][1],
_m[0][2]*_m[1][0]-_m[0][0]*_m[1][2],
_m[0][0]*_m[1][1]-_m[0][1]*_m[1][0]
);
}
float toClipSpaceDepth(float _depthTextureZ)
{
#if BGFX_SHADER_LANGUAGE_GLSL
return _depthTextureZ * 2.0 - 1.0;
#else
return _depthTextureZ;
#endif // BGFX_SHADER_LANGUAGE_GLSL
}
vec3 clipToWorld(mat4 _invViewProj, vec3 _clipPos)
{
vec4 wpos = mul(_invViewProj, vec4(_clipPos, 1.0) );
return wpos.xyz / wpos.w;
}
#endif // __SHADERLIB_SH__