-
Notifications
You must be signed in to change notification settings - Fork 3
/
rev_main.py
269 lines (238 loc) · 10.6 KB
/
rev_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import argparse
import time
import math
from functools import reduce
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable, grad
from tqdm import tqdm
import data
import reversible
parser = argparse.ArgumentParser(description='PyTorch PennTreeBank RNN/LSTM Language Model')
parser.add_argument('--data', type=str, default='./data/penn',
help='location of the data corpus')
parser.add_argument('--log', type=str, default='./log.txt')
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)')
parser.add_argument('--emsize', type=int, default=200,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=200,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=2,
help='number of layers')
parser.add_argument('--lr', type=float, default=0.01,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=40,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=20, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=35,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.2,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--save', type=str, default='model.pt',
help='path to save the final model')
args = parser.parse_args()
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
###############################################################################
# Load data
###############################################################################
corpus = data.Corpus(args.data)
def batchify(data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
if args.cuda:
data = data.cuda()
return data
eval_batch_size = 10
train_data = batchify(corpus.train, args.batch_size)
val_data = batchify(corpus.valid, eval_batch_size)
test_data = batchify(corpus.test, eval_batch_size)
###############################################################################
# Build the model
###############################################################################
ntokens = len(corpus.dictionary)
model = reversible.RevRNNModel(ntokens, args.emsize, args.nhid, args.tied)
if args.cuda:
model.cuda()
criterion = nn.CrossEntropyLoss()
reg_criterion = nn.L1Loss()
###############################################################################
# Training code
###############################################################################
def repackage_hidden(h):
"""Wraps hidden states in new Variables, to detach them from their history."""
if type(h) == Variable:
return Variable(h.data)
else:
return tuple(repackage_hidden(v) for v in h)
def attach(h):
if type(h) == Variable:
h.requires_grad=True
return h
else:
return tuple(attach(v) for v in h)
def detach(h):
if type(h) == Variable:
h.volatile=True
h.requires_grad=False
return h
else:
return tuple(attach(v) for v in h)
def flatten(input_list):
output = ()
for item in input_list:
output += flatten(item) if type(item) == list or type(item) == tuple else (item,)
return output
def group(input_list):
return tuple(zip(*[iter(L)]*2))
def get_batch(source, i, evaluation=False):
#seq_len = min(args.bptt, len(source) - 1 - i)
seq_len = 1
data = Variable(source[i], volatile=evaluation)
target = Variable(source[i+1].view(-1))
return data, target
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, evaluation=True)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).data
hidden = repackage_hidden(hidden)
return total_loss[0] / len(data_source)
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0
total_loss_error = 0
start_time = time.time()
ntokens = len(corpus.dictionary)
cell_states = model.init_hidden(args.batch_size)
#optimizer = optim.Adam(model.parameters(), lr = lr)
with open(args.log, 'w') as f:
f.write("")
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
cell_states = repackage_hidden(cell_states)
#cell_states = model.init_hidden(args.batch_size)
state_grad = model.init_hidden(args.batch_size)
#optimizer.zero_grad()
model.zero_grad()
forward_loss = 0
backward_loss = 0
for j in range(0, args.bptt):
data, targets = get_batch(train_data, i+j)
output, cell_states = model(data, cell_states)
#import pdb; pdb.set_trace()
loss = criterion(output.view(-1, ntokens), targets)/args.bptt
forward_loss += loss.data
del output, data, targets
cell_states = repackage_hidden(cell_states)
new_cell_states = repackage_hidden(cell_states)
cell_states = repackage_hidden(cell_states)
for j in range(args.bptt-1, -1, -1):
data, targets = get_batch(train_data, i+j)
output, old_cell_states = model.reconstruct(data, new_cell_states)
old_cell_states = attach(repackage_hidden(old_cell_states))
output, new_cell_states_recon = model(data, old_cell_states)
loss = criterion(output.view(-1, ntokens), targets)/args.bptt
backward_loss += loss.data
#import pdb; pdb.set_trace()
#reg_loss = reduce((lambda x,y: x+y),(5*torch.mean(torch.pow(p, 2)) for p in model.parameters() if p.ndimension() == 2))
#loss += reg_loss + reduce((lambda x,y: x+y),(torch.mean(torch.pow((x-y),2)) for x,y in zip(flatten(new_cell_states_recon), flatten(detach(new_cell_states)))))
state_grad = grad((loss,)+flatten(new_cell_states_recon), flatten(old_cell_states), (None,)+flatten(state_grad), only_inputs=False)
del loss, data, targets
new_cell_states = repackage_hidden(old_cell_states)
state_grad = repackage_hidden(state_grad)
del old_cell_states
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
# print(i, forward_loss, backward_loss)
total_loss_error = (forward_loss - backward_loss)**2
parameter_norm = 0
# print(total_loss_error)
# import pdb; pdb.set_trace()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
for p in model.parameters():
#import pdb; pdb.set_trace()
#print(p, p.grad)
if p.ndimension() == 2:
parameter_norm += torch.mean(torch.pow(p, 2))
p.data.add_(-lr, p.grad.data)
#optimizer.step()
total_loss += backward_loss
#cur_loss = total_loss[0] / args.log_interval
#print(parameter_norm.data.max(), total_loss_error.max(), math.exp(cur_loss))
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss[0] / args.log_interval
elapsed = time.time() - start_time
string = '| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '\
'loss {:5.2f} | ppl {:8.2f} | norm {} | error {} |'.format(
epoch, batch, len(train_data) // args.bptt, lr,
elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss), parameter_norm.data.max(), total_loss_error.max())
print(string)
with open(args.log, 'a') as f:
f.write(string+'\n')
total_loss = 0
start_time = time.time()
#print(parameter_norm.data.max(), total_loss_error.max())
# Loop over epochs.
lr = args.lr
best_val_loss = None
# At any point you can hit Ctrl + C to break out of training early.
try:
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train()
val_loss = evaluate(val_data)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
val_loss, math.exp(val_loss)))
print('-' * 89)
# Save the model if the validation loss is the best we've seen so far.
if not best_val_loss or val_loss < best_val_loss:
with open(args.save, 'wb') as f:
torch.save(model, f)
best_val_loss = val_loss
else:
# Anneal the learning rate if no improvement has been seen in the validation dataset.
lr /= 4.0
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
# Load the best saved model.
with open(args.save, 'rb') as f:
model = torch.load(f)
# Run on test data.
test_loss = evaluate(test_data)
print('=' * 89)
print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print('=' * 89)