欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
题目链接:https://leetcode-cn.com/problems/longest-increasing-subsequence/
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1: 输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2: 输入:nums = [0,1,0,3,2,3] 输出:4
示例 3: 输入:nums = [7,7,7,7,7,7,7] 输出:1 提示:
- 1 <= nums.length <= 2500
- -10^4 <= nums[i] <= 104
最长上升子序列是动规的经典题目,这里dp[i]是可以根据dp[j] (j < i)推导出来的,那么依然用动规五部曲来分析详细一波:
- dp[i]的定义
dp[i]表示i之前包括i的最长上升子序列。
- 状态转移方程
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。
- dp[i]的初始化
每一个i,对应的dp[i](即最长上升子序列)起始大小至少都是是1.
- 确定遍历顺序
dp[i] 是有0到i-1各个位置的最长升序子序列 推导而来,那么遍历i一定是从前向后遍历。
j其实就是0到i-1,遍历i的循环里外层,遍历j则在内层,代码如下:
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
- 举例推导dp数组
输入:[0,1,0,3,2],dp数组的变化如下:
如果代码写出来,但一直AC不了,那么就把dp数组打印出来,看看对不对!
以上五部分析完毕,C++代码如下:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
vector<int> dp(nums.size(), 1);
int result = 0;
for (int i = 1; i < nums.size(); i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > result) result = dp[i]; // 取长的子序列
}
return result;
}
};
杨老师的这个专栏很不错,他本身也是Oracle 首席工程师,对Java有极其深刻的理解,讲的内容很硬核,适合使用Java语言的录友们用来进阶!作为面试突击手册非常合适, 所以推荐给大家!现在下单输入口令:javahexin,可以省40元那[机智]
本题最关键的是要想到dp[i]由哪些状态可以推出来,并取最大值,那么很自然就能想到递推公式:dp[i] = max(dp[i], dp[j] + 1);
子序列问题是动态规划的一个重要系列,本题算是入门题目,好戏刚刚开始!
Java:
Python:
Go: