-
Notifications
You must be signed in to change notification settings - Fork 18
/
eigen3-hdf5.hpp
537 lines (468 loc) · 16.9 KB
/
eigen3-hdf5.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
#ifndef _EIGEN3_HDF5_HPP
#define _EIGEN3_HDF5_HPP
#include <cassert>
#include <complex>
#include <cstddef>
#include <stdexcept>
#include <string>
#include <vector>
#include <H5Cpp.h>
#include <H5public.h>
#include <Eigen/Dense>
#if H5_VERSION_LE(1,10,0)
#define Eigen3Hdf5_H5Location H5::H5Location
#define Eigen3Hdf5_H5CommonFG H5::CommonFG
#else
#define Eigen3Hdf5_H5Location H5::H5Object
#define Eigen3Hdf5_H5CommonFG H5::H5Location
#endif
namespace EigenHDF5
{
template <typename T>
struct DatatypeSpecialization;
// floating-point types
template <>
struct DatatypeSpecialization<float>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_FLOAT;
}
};
template <>
struct DatatypeSpecialization<double>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_DOUBLE;
}
};
template <>
struct DatatypeSpecialization<long double>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_LDOUBLE;
}
};
// integer types
template <>
struct DatatypeSpecialization<short>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_SHORT;
}
};
template <>
struct DatatypeSpecialization<unsigned short>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_USHORT;
}
};
template <>
struct DatatypeSpecialization<int>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_INT;
}
};
template <>
struct DatatypeSpecialization<unsigned int>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_UINT;
}
};
template <>
struct DatatypeSpecialization<long>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_LONG;
}
};
template <>
struct DatatypeSpecialization<unsigned long>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_ULONG;
}
};
template <>
struct DatatypeSpecialization<long long>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_LLONG;
}
};
template <>
struct DatatypeSpecialization<unsigned long long>
{
static inline const H5::DataType * get (void)
{
return &H5::PredType::NATIVE_ULLONG;
}
};
// complex types
//
// inspired by http://www.mail-archive.com/hdf-forum@hdfgroup.org/msg00759.html
template <typename T>
class ComplexH5Type : public H5::CompType
{
public:
ComplexH5Type (void)
: CompType(sizeof(std::complex<T>))
{
const H5::DataType * const datatype = DatatypeSpecialization<T>::get();
assert(datatype->getSize() == sizeof(T));
// If we call the members "r" and "i", h5py interprets the
// structure correctly as complex numbers.
this->insertMember(std::string("r"), 0, *datatype);
this->insertMember(std::string("i"), sizeof(T), *datatype);
this->pack();
}
static const ComplexH5Type<T> * get_singleton (void)
{
// NOTE: constructing this could be a race condition
static ComplexH5Type<T> singleton;
return &singleton;
}
};
template <typename T>
struct DatatypeSpecialization<std::complex<T> >
{
static inline const H5::DataType * get (void)
{
return ComplexH5Type<T>::get_singleton();
}
};
// string types, to be used mainly for attributes
template <>
struct DatatypeSpecialization<const char *>
{
static inline const H5::DataType * get (void)
{
static const H5::StrType strtype(0, H5T_VARIABLE);
return &strtype;
}
};
template <>
struct DatatypeSpecialization<char *>
{
static inline const H5::DataType * get (void)
{
static const H5::StrType strtype(0, H5T_VARIABLE);
return &strtype;
}
};
// XXX: for some unknown reason the following two functions segfault if
// H5T_VARIABLE is used. The passed strings should still be null-terminated,
// so this is a bit worrisome.
template <std::size_t N>
struct DatatypeSpecialization<const char [N]>
{
static inline const H5::DataType * get (void)
{
static const H5::StrType strtype(0, N);
return &strtype;
}
};
template <std::size_t N>
struct DatatypeSpecialization<char [N]>
{
static inline const H5::DataType * get (void)
{
static const H5::StrType strtype(0, N);
return &strtype;
}
};
namespace internal
{
template <typename Derived>
H5::DataSpace create_dataspace (const Eigen::EigenBase<Derived> &mat)
{
const std::size_t dimensions_size = 2;
const hsize_t dimensions[dimensions_size] = {
static_cast<hsize_t>(mat.rows()),
static_cast<hsize_t>(mat.cols())
};
return H5::DataSpace(dimensions_size, dimensions);
}
template <typename Derived>
bool write_rowmat(const Eigen::EigenBase<Derived> &mat,
const H5::DataType * const datatype,
H5::DataSet *dataset,
const H5::DataSpace* dspace)
{
if (mat.derived().innerStride() != 1)
{
// inner stride != 1 is an edge case this function does not (yet) handle. (I think it
// could by using the inner stride as the first element of mstride below. But I do
// not have a test case to try it out, so just return false for now.)
return false;
}
assert(mat.rows() >= 0);
assert(mat.cols() >= 0);
assert(mat.derived().outerStride() >= 0);
hsize_t rows = hsize_t(mat.rows());
hsize_t cols = hsize_t(mat.cols());
hsize_t stride = hsize_t(mat.derived().outerStride());
// slab params for the file data
hsize_t fstride[2] = { 1, cols };
// slab params for the memory data
hsize_t mstride[2] = { 1, stride };
// slab params for both file and memory data
hsize_t count[2] = { 1, 1 };
hsize_t block[2] = { rows, cols };
hsize_t start[2] = { 0, 0 };
// memory dataspace
hsize_t mdim[2] = { rows, stride };
H5::DataSpace mspace(2, mdim);
dspace->selectHyperslab(H5S_SELECT_SET, count, start, fstride, block);
mspace.selectHyperslab(H5S_SELECT_SET, count, start, mstride, block);
dataset->write(mat.derived().data(), *datatype, mspace, *dspace);
return true;
}
template <typename Derived>
bool write_colmat(const Eigen::EigenBase<Derived> &mat,
const H5::DataType * const datatype,
H5::DataSet *dataset,
const H5::DataSpace* dspace)
{
if (mat.derived().innerStride() != 1)
{
// inner stride != 1 is an edge case this function does not (yet) handle. (I think it
// could by using the inner stride as the first element of mstride below. But I do
// not have a test case to try it out, so just return false for now.)
return false;
}
assert(mat.rows() >= 0);
assert(mat.cols() >= 0);
assert(mat.derived().outerStride() >= 0);
hsize_t rows = hsize_t(mat.rows());
hsize_t cols = hsize_t(mat.cols());
hsize_t stride = hsize_t(mat.derived().outerStride());
// slab params for the file data
hsize_t fstride[2] = { 1, cols };
hsize_t fcount[2] = { 1, 1 };
hsize_t fblock[2] = { 1, cols };
// slab params for the memory data
hsize_t mstride[2] = { stride, 1 };
hsize_t mcount[2] = { 1, 1 };
hsize_t mblock[2] = { cols, 1 };
// memory dataspace
hsize_t mdim[2] = { cols, stride };
H5::DataSpace mspace(2, mdim);
// transpose the column major data in memory to the row major data in the file by
// writing one row slab at a time.
for (hsize_t i = 0; i < rows; i++)
{
hsize_t fstart[2] = { i, 0 };
hsize_t mstart[2] = { 0, i };
dspace->selectHyperslab(H5S_SELECT_SET, fcount, fstart, fstride, fblock);
mspace.selectHyperslab(H5S_SELECT_SET, mcount, mstart, mstride, mblock);
dataset->write(mat.derived().data(), *datatype, mspace, *dspace);
}
return true;
}
}
template <typename T>
void save_scalar_attribute (const Eigen3Hdf5_H5Location &h5obj, const std::string &name, const T &value)
{
const H5::DataType * const datatype = DatatypeSpecialization<T>::get();
H5::DataSpace dataspace(H5S_SCALAR);
H5::Attribute att = h5obj.createAttribute(name, *datatype, dataspace);
att.write(*datatype, &value);
}
template <>
inline void save_scalar_attribute (const Eigen3Hdf5_H5Location &h5obj, const std::string &name, const std::string &value)
{
save_scalar_attribute(h5obj, name, value.c_str());
}
// see http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html
template <typename Derived>
void save (Eigen3Hdf5_H5CommonFG &h5group, const std::string &name, const Eigen::EigenBase<Derived> &mat, const H5::DSetCreatPropList &plist=H5::DSetCreatPropList::DEFAULT)
{
typedef typename Derived::Scalar Scalar;
const H5::DataType * const datatype = DatatypeSpecialization<Scalar>::get();
const H5::DataSpace dataspace = internal::create_dataspace(mat);
H5::DataSet dataset = h5group.createDataSet(name, *datatype, dataspace, plist);
bool written = false; // flag will be true when the data has been written
if (mat.derived().Flags & Eigen::RowMajor)
{
written = internal::write_rowmat(mat, datatype, &dataset, &dataspace);
}
else
{
written = internal::write_colmat(mat, datatype, &dataset, &dataspace);
}
if (!written)
{
// data has not yet been written, so there is nothing else to try but copy the input
// matrix to a row major matrix and write it.
const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> row_major_mat(mat);
dataset.write(row_major_mat.data(), *datatype);
}
}
template <typename Derived>
void save_attribute (const Eigen3Hdf5_H5Location &h5obj, const std::string &name, const Eigen::EigenBase<Derived> &mat)
{
typedef typename Derived::Scalar Scalar;
const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> row_major_mat(mat);
const H5::DataSpace dataspace = internal::create_dataspace(mat);
const H5::DataType * const datatype = DatatypeSpecialization<Scalar>::get();
H5::Attribute dataset = h5obj.createAttribute(name, *datatype, dataspace);
dataset.write(*datatype, row_major_mat.data());
}
namespace internal
{
// H5::Attribute and H5::DataSet both have similar API's, and although they
// share a common base class, the relevant methods are not virtual. Worst
// of all, they take their arguments in different orders!
template <typename Scalar>
inline void read_data (const H5::DataSet &dataset, Scalar *data, const H5::DataType &datatype)
{
dataset.read(data, datatype);
}
template <typename Scalar>
inline void read_data (const H5::Attribute &dataset, Scalar *data, const H5::DataType &datatype)
{
dataset.read(datatype, data);
}
// read a column major attribute; I do not know if there is an hdf routine to read an
// attribute hyperslab, so I take the lazy way out: just read the conventional hdf
// row major data and let eigen copy it into mat.
template <typename Derived>
bool read_colmat(const Eigen::DenseBase<Derived> &mat,
const H5::DataType * const datatype,
const H5::Attribute &dataset)
{
typename Derived::Index rows = mat.rows();
typename Derived::Index cols = mat.cols();
typename Eigen::Matrix<typename Derived::Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> temp(rows, cols);
internal::read_data(dataset, temp.data(), *datatype);
const_cast<Eigen::DenseBase<Derived> &>(mat) = temp;
return true;
}
template <typename Derived>
bool read_colmat(const Eigen::DenseBase<Derived> &mat,
const H5::DataType * const datatype,
const H5::DataSet &dataset)
{
if (mat.derived().innerStride() != 1)
{
// inner stride != 1 is an edge case this function does not (yet) handle. (I think it
// could by using the inner stride as the first element of mstride below. But I do
// not have a test case to try it out, so just return false for now.)
return false;
}
assert(mat.rows() >= 0);
assert(mat.cols() >= 0);
assert(mat.derived().outerStride() >= 0);
hsize_t rows = hsize_t(mat.rows());
hsize_t cols = hsize_t(mat.cols());
hsize_t stride = hsize_t(mat.derived().outerStride());
if (stride != rows)
{
// this function does not (yet) read into a mat that has a different stride than the
// dataset.
return false;
}
// slab params for the file data
hsize_t fstride[2] = { 1, cols };
hsize_t fcount[2] = { 1, 1 };
hsize_t fblock[2] = { 1, cols };
// file dataspace
hsize_t fdim[2] = { rows, cols };
H5::DataSpace fspace(2, fdim);
// slab params for the memory data
hsize_t mstride[2] = { stride, 1 };
hsize_t mcount[2] = { 1, 1 };
hsize_t mblock[2] = { cols, 1 };
// memory dataspace
hsize_t mdim[2] = { cols, stride };
H5::DataSpace mspace(2, mdim);
// transpose the column major data in memory to the row major data in the file by
// writing one row slab at a time.
for (hsize_t i = 0; i < rows; i++)
{
hsize_t fstart[2] = { i, 0 };
hsize_t mstart[2] = { 0, i };
fspace.selectHyperslab(H5S_SELECT_SET, fcount, fstart, fstride, fblock);
mspace.selectHyperslab(H5S_SELECT_SET, mcount, mstart, mstride, mblock);
dataset.read(const_cast<Eigen::DenseBase<Derived> &>(mat).derived().data(), *datatype, mspace, fspace);
}
return true;
}
template <typename Derived, typename DataSet>
void _load (const DataSet &dataset, const Eigen::DenseBase<Derived> &mat)
{
typedef typename Derived::Scalar Scalar;
const H5::DataSpace dataspace = dataset.getSpace();
const std::size_t ndims = dataspace.getSimpleExtentNdims();
assert(ndims > 0);
const std::size_t dimensions_size = 2;
hsize_t dimensions[dimensions_size];
dimensions[1] = 1; // in case it's 1D
if (ndims > dimensions_size) {
throw std::runtime_error("HDF5 array has too many dimensions.");
}
dataspace.getSimpleExtentDims(dimensions);
const hsize_t rows = dimensions[0], cols = dimensions[1];
const H5::DataType * const datatype = DatatypeSpecialization<Scalar>::get();
Eigen::DenseBase<Derived> &mat_ = const_cast<Eigen::DenseBase<Derived> &>(mat);
mat_.derived().resize(rows, cols);
bool written = false;
bool isRowMajor = mat.Flags & Eigen::RowMajor;
if (isRowMajor || dimensions[0] == 1 || dimensions[1] == 1)
{
// mat is already row major
typename Derived::Index istride = mat_.derived().outerStride();
assert(istride >= 0);
hsize_t stride = istride >= 0 ? istride : 0;
if (stride == cols || (stride == rows && cols == 1))
{
// mat has natural stride, so read directly into its data block
read_data(dataset, mat_.derived().data(), *datatype);
written = true;
}
}
else
{
// colmajor flag is 0 so the assert needs to check that mat is not rowmajor.
assert(!(mat.Flags & Eigen::RowMajor));
written = read_colmat(mat_, datatype, dataset);
}
if (!written)
{
// dataset has not been loaded directly into mat_, so as a last resort read it into a
// temp and copy it to mat_. (Should only need to do this when the mat_ to be loaded
// into has an unnatural stride.)
Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> temp(rows, cols);
internal::read_data(dataset, temp.data(), *datatype);
mat_ = temp;
written = true;
}
}
}
template <typename Derived>
void load (const Eigen3Hdf5_H5CommonFG &h5group, const std::string &name, const Eigen::DenseBase<Derived> &mat)
{
const H5::DataSet dataset = h5group.openDataSet(name);
internal::_load(dataset, mat);
}
template <typename Derived>
void load_attribute (const Eigen3Hdf5_H5Location &h5obj, const std::string &name, const Eigen::DenseBase<Derived> &mat)
{
const H5::Attribute dataset = h5obj.openAttribute(name);
internal::_load(dataset, mat);
}
} // namespace EigenHDF5
#endif