forked from nicehash/sgminer
-
Notifications
You must be signed in to change notification settings - Fork 143
/
findnonce.c
236 lines (193 loc) · 7.84 KB
/
findnonce.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/*
* Copyright 2011-2013 Con Kolivas
* Copyright 2011 Nils Schneider
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include "findnonce.h"
#include "algorithm/scrypt.h"
const uint32_t SHA256_K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#define rotate(x,y) ((x<<y) | (x>>(sizeof(x)*8-y)))
#define rotr(x,y) ((x>>y) | (x<<(sizeof(x)*8-y)))
#define R(a, b, c, d, e, f, g, h, w, k) \
h = h + (rotate(e, 26) ^ rotate(e, 21) ^ rotate(e, 7)) + (g ^ (e & (f ^ g))) + k + w; \
d = d + h; \
h = h + (rotate(a, 30) ^ rotate(a, 19) ^ rotate(a, 10)) + ((a & b) | (c & (a | b)))
void precalc_hash(dev_blk_ctx *blk, uint32_t *state, uint32_t *data)
{
cl_uint A, B, C, D, E, F, G, H;
A = state[0];
B = state[1];
C = state[2];
D = state[3];
E = state[4];
F = state[5];
G = state[6];
H = state[7];
R(A, B, C, D, E, F, G, H, data[0], SHA256_K[0]);
R(H, A, B, C, D, E, F, G, data[1], SHA256_K[1]);
R(G, H, A, B, C, D, E, F, data[2], SHA256_K[2]);
blk->cty_a = A;
blk->cty_b = B;
blk->cty_c = C;
blk->cty_d = D;
blk->D1A = D + 0xb956c25b;
blk->cty_e = E;
blk->cty_f = F;
blk->cty_g = G;
blk->cty_h = H;
blk->ctx_a = state[0];
blk->ctx_b = state[1];
blk->ctx_c = state[2];
blk->ctx_d = state[3];
blk->ctx_e = state[4];
blk->ctx_f = state[5];
blk->ctx_g = state[6];
blk->ctx_h = state[7];
blk->merkle = data[0];
blk->ntime = data[1];
blk->nbits = data[2];
blk->W16 = blk->fW0 = data[0] + (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3));
blk->W17 = blk->fW1 = data[1] + (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) + 0x01100000;
blk->PreVal4 = blk->fcty_e = blk->ctx_e + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + 0xe9b5dba5;
blk->T1 = blk->fcty_e2 = (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
blk->PreVal4_2 = blk->PreVal4 + blk->T1;
blk->PreVal0 = blk->PreVal4 + blk->ctx_a;
blk->PreW31 = 0x00000280 + (rotr(blk->W16, 7) ^ rotr(blk->W16, 18) ^ (blk->W16 >> 3));
blk->PreW32 = blk->W16 + (rotr(blk->W17, 7) ^ rotr(blk->W17, 18) ^ (blk->W17 >> 3));
blk->PreW18 = data[2] + (rotr(blk->W16, 17) ^ rotr(blk->W16, 19) ^ (blk->W16 >> 10));
blk->PreW19 = 0x11002000 + (rotr(blk->W17, 17) ^ rotr(blk->W17, 19) ^ (blk->W17 >> 10));
blk->W2 = data[2];
blk->W2A = blk->W2 + (rotr(blk->W16, 19) ^ rotr(blk->W16, 17) ^ (blk->W16 >> 10));
blk->W17_2 = 0x11002000 + (rotr(blk->W17, 19) ^ rotr(blk->W17, 17) ^ (blk->W17 >> 10));
blk->fW2 = data[2] + (rotr(blk->fW0, 17) ^ rotr(blk->fW0, 19) ^ (blk->fW0 >> 10));
blk->fW3 = 0x11002000 + (rotr(blk->fW1, 17) ^ rotr(blk->fW1, 19) ^ (blk->fW1 >> 10));
blk->fW15 = 0x00000280 + (rotr(blk->fW0, 7) ^ rotr(blk->fW0, 18) ^ (blk->fW0 >> 3));
blk->fW01r = blk->fW0 + (rotr(blk->fW1, 7) ^ rotr(blk->fW1, 18) ^ (blk->fW1 >> 3));
blk->PreVal4addT1 = blk->PreVal4 + blk->T1;
blk->T1substate0 = blk->ctx_a - blk->T1;
blk->C1addK5 = blk->cty_c + SHA256_K[5];
blk->B1addK6 = blk->cty_b + SHA256_K[6];
blk->PreVal0addK7 = blk->PreVal0 + SHA256_K[7];
blk->W16addK16 = blk->W16 + SHA256_K[16];
blk->W17addK17 = blk->W17 + SHA256_K[17];
blk->zeroA = blk->ctx_a + 0x98c7e2a2;
blk->zeroB = blk->ctx_a + 0xfc08884d;
blk->oneA = blk->ctx_b + 0x90bb1e3c;
blk->twoA = blk->ctx_c + 0x50c6645b;
blk->threeA = blk->ctx_d + 0x3ac42e24;
blk->fourA = blk->ctx_e + SHA256_K[4];
blk->fiveA = blk->ctx_f + SHA256_K[5];
blk->sixA = blk->ctx_g + SHA256_K[6];
blk->sevenA = blk->ctx_h + SHA256_K[7];
}
#if 0 // not used any more
#define P(t) (W[(t)&0xF] = W[(t-16)&0xF] + (rotate(W[(t-15)&0xF], 25) ^ rotate(W[(t-15)&0xF], 14) ^ (W[(t-15)&0xF] >> 3)) + W[(t-7)&0xF] + (rotate(W[(t-2)&0xF], 15) ^ rotate(W[(t-2)&0xF], 13) ^ (W[(t-2)&0xF] >> 10)))
#define IR(u) \
R(A, B, C, D, E, F, G, H, W[u+0], SHA256_K[u+0]); \
R(H, A, B, C, D, E, F, G, W[u+1], SHA256_K[u+1]); \
R(G, H, A, B, C, D, E, F, W[u+2], SHA256_K[u+2]); \
R(F, G, H, A, B, C, D, E, W[u+3], SHA256_K[u+3]); \
R(E, F, G, H, A, B, C, D, W[u+4], SHA256_K[u+4]); \
R(D, E, F, G, H, A, B, C, W[u+5], SHA256_K[u+5]); \
R(C, D, E, F, G, H, A, B, W[u+6], SHA256_K[u+6]); \
R(B, C, D, E, F, G, H, A, W[u+7], SHA256_K[u+7])
#define FR(u) \
R(A, B, C, D, E, F, G, H, P(u+0), SHA256_K[u+0]); \
R(H, A, B, C, D, E, F, G, P(u+1), SHA256_K[u+1]); \
R(G, H, A, B, C, D, E, F, P(u+2), SHA256_K[u+2]); \
R(F, G, H, A, B, C, D, E, P(u+3), SHA256_K[u+3]); \
R(E, F, G, H, A, B, C, D, P(u+4), SHA256_K[u+4]); \
R(D, E, F, G, H, A, B, C, P(u+5), SHA256_K[u+5]); \
R(C, D, E, F, G, H, A, B, P(u+6), SHA256_K[u+6]); \
R(B, C, D, E, F, G, H, A, P(u+7), SHA256_K[u+7])
#define PIR(u) \
R(F, G, H, A, B, C, D, E, W[u+3], SHA256_K[u+3]); \
R(E, F, G, H, A, B, C, D, W[u+4], SHA256_K[u+4]); \
R(D, E, F, G, H, A, B, C, W[u+5], SHA256_K[u+5]); \
R(C, D, E, F, G, H, A, B, W[u+6], SHA256_K[u+6]); \
R(B, C, D, E, F, G, H, A, W[u+7], SHA256_K[u+7])
#define PFR(u) \
R(A, B, C, D, E, F, G, H, P(u+0), SHA256_K[u+0]); \
R(H, A, B, C, D, E, F, G, P(u+1), SHA256_K[u+1]); \
R(G, H, A, B, C, D, E, F, P(u+2), SHA256_K[u+2]); \
R(F, G, H, A, B, C, D, E, P(u+3), SHA256_K[u+3]); \
R(E, F, G, H, A, B, C, D, P(u+4), SHA256_K[u+4]); \
R(D, E, F, G, H, A, B, C, P(u+5), SHA256_K[u+5])
#endif
struct pc_data {
struct thr_info *thr;
struct work *work;
uint32_t res[MAXBUFFERS];
pthread_t pth;
int found;
};
static void *postcalc_hash(void *userdata)
{
struct pc_data *pcd = (struct pc_data *)userdata;
struct thr_info *thr = pcd->thr;
unsigned int entry = 0;
int found = thr->cgpu->algorithm.found_idx;
pthread_detach(pthread_self());
/* To prevent corrupt values in FOUND from trying to read beyond the
* end of the res[] array */
if (unlikely(pcd->res[found] & ~found)) {
applog(LOG_WARNING, "%s%d: invalid nonce count - HW error",
thr->cgpu->drv->name, thr->cgpu->device_id);
hw_errors++;
thr->cgpu->hw_errors++;
pcd->res[found] &= found;
}
for (entry = 0; entry < pcd->res[found]; entry++) {
uint32_t nonce = pcd->res[entry];
if (found == 0x0F)
nonce = swab32(nonce);
applog(LOG_DEBUG, "[THR%d] OCL NONCE %08x (%lu) found in slot %d (found = %d)", thr->id, nonce, nonce, entry, found);
submit_nonce(thr, pcd->work, nonce);
}
discard_work(pcd->work);
free(pcd);
return NULL;
}
void postcalc_hash_async(struct thr_info *thr, struct work *work, uint32_t *res)
{
struct pc_data *pcd = (struct pc_data *)malloc(sizeof(struct pc_data));
int buffersize;
if (unlikely(!pcd)) {
applog(LOG_ERR, "Failed to malloc pc_data in postcalc_hash_async");
return;
}
pcd->thr = thr;
pcd->work = copy_work(work);
buffersize = BUFFERSIZE;
memcpy(&pcd->res, res, buffersize);
if (pthread_create(&pcd->pth, NULL, postcalc_hash, (void *)pcd)) {
applog(LOG_ERR, "Failed to create postcalc_hash thread");
discard_work(pcd->work);
free(pcd);
}
}