Firmware and research tools for Nordic Semiconductor nRF24LU1+ based USB dongles and breakout boards.
For information on the MouseJack vulnerabilities, please visit mousejack.com.
- SDCC
- GNU Binutils
- Python
- PyUSB
- platformio
Install dependencies on Ubuntu:
sudo apt-get install sdcc binutils python python-pip
sudo pip install -U pip
sudo pip install -U -I pyusb
sudo pip install -U platformio
The following hardware has been tested and is known to work.
- CrazyRadio PA USB dongle
- SparkFun nRF24LU1+ breakout board
make
nRF24LU1+ chips come with a factory programmed bootloader occupying the topmost 2KB of flash memory. The CrazyRadio firmware and RFStorm research firmware support USB commands to enter the Nordic bootloader.
Dongles and breakout boards can be programmed over USB if they are running one of the following firmwares:
- Nordic Semiconductor Bootloader
- CrazyRadio Firmware
- RFStorm Research Firmware
To flash the firmware over USB:
make install
If your dongle or breakout board is bricked, you can alternatively program it over SPI using a Teensy.
This has only been tested with a Teensy 3.1/3.2, but is likely to work with other Arduino variants as well.
platformio run --project-dir teensy-flasher --target upload
Teensy | CrazyRadio PA | Sparkfun nRF24LU1+ Breakout |
---|---|---|
GND | 9 | GND |
8 | 3 | RESET |
9 | 2 | PROG |
10 | 10 | P0.3 |
11 | 6 | P0.1 |
12 | 8 | P0.2 |
13 | 4 | P0.0 |
3.3V | 5 | VIN |
sudo make spi_install
Pseudo-promiscuous mode device discovery tool, which sweeps a list of channels and prints out decoded Enhanced Shockburst packets.
usage: ./nrf24-scanner.py [-h] [-c N [N ...]] [-v] [-l] [-p PREFIX] [-d DWELL]
optional arguments:
-h, --help show this help message and exit
-c N [N ...], --channels N [N ...] RF channels
-v, --verbose Enable verbose output
-l, --lna Enable the LNA (for CrazyRadio PA dongles)
-p PREFIX, --prefix PREFIX Promiscuous mode address prefix
-d DWELL, --dwell DWELL Dwell time per channel, in milliseconds
Scan for devices on channels 1-5
./nrf24-scanner.py -c {1..5}
Scan for devices with an address starting in 0xA9 on all channels
./nrf24-scanner.py -p A9
Device following sniffer, which follows a specific nRF24 device as it hops, and prints out decoded Enhanced Shockburst packets from the device.
usage: ./nrf24-sniffer.py [-h] [-c N [N ...]] [-v] [-l] -a ADDRESS [-t TIMEOUT] [-k ACK_TIMEOUT] [-r RETRIES]
optional arguments:
-h, --help show this help message and exit
-c N [N ...], --channels N [N ...] RF channels
-v, --verbose Enable verbose output
-l, --lna Enable the LNA (for CrazyRadio PA dongles)
-a ADDRESS, --address ADDRESS Address to sniff, following as it changes channels
-t TIMEOUT, --timeout TIMEOUT Channel timeout, in milliseconds
-k ACK_TIMEOUT, --ack_timeout ACK_TIMEOUT ACK timeout in microseconds, accepts [250,4000], step 250
-r RETRIES, --retries RETRIES Auto retry limit, accepts [0,15]
Sniff packets from address 61:49:66:82:03 on all channels
./nrf24-sniffer.py -a 61:49:66:82:03
Star network mapper, which attempts to discover the active addresses in a star network by changing the last byte in the given address, and pinging each of 256 possible addresses on each channel in the channel list.
usage: ./nrf24-network-mapper.py [-h] [-c N [N ...]] [-v] [-l] -a ADDRESS [-p PASSES] [-k ACK_TIMEOUT] [-r RETRIES]
optional arguments:
-h, --help show this help message and exit
-c N [N ...], --channels N [N ...] RF channels
-v, --verbose Enable verbose output
-l, --lna Enable the LNA (for CrazyRadio PA dongles)
-a ADDRESS, --address ADDRESS Known address
-p PASSES, --passes PASSES Number of passes (default 2)
-k ACK_TIMEOUT, --ack_timeout ACK_TIMEOUT ACK timeout in microseconds, accepts [250,4000], step 250
-r RETRIES, --retries RETRIES Auto retry limit, accepts [0,15]
Map the star network that address 61:49:66:82:03 belongs to
./nrf24-network-mapper.py -a 61:49:66:82:03