-
Notifications
You must be signed in to change notification settings - Fork 10.1k
/
speculative.cpp
457 lines (337 loc) · 15.4 KB
/
speculative.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#include "build-info.h"
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
struct seq_draft {
bool active = false;
bool drafting = false;
bool skip = false;
int i_batch_dft = 0;
std::vector<int> i_batch_tgt;
std::vector<llama_token> tokens;
struct llama_sampling_context * ctx_sampling;
};
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
if (params.model_draft.empty()) {
fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
return 1;
}
// max number of parallel drafting sequences (i.e. tree branches)
const int n_seq_dft = params.n_parallel;
// TODO: make this configurable
const float p_accept = 0.80f;
const float p_split = 0.10f;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("speculative", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// init llama.cpp
llama_backend_init(params.numa);
llama_model * model_tgt = NULL;
llama_model * model_dft = NULL;
llama_context * ctx_tgt = NULL;
llama_context * ctx_dft = NULL;
// load the target model
params.logits_all = true;
std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
// load the draft model
params.model = params.model_draft;
params.n_gpu_layers = params.n_gpu_layers_draft;
std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
{
const int n_vocab_tgt = llama_n_vocab(model_tgt);
const int n_vocab_dft = llama_n_vocab(model_dft);
const int vocab_diff = n_vocab_tgt > n_vocab_dft
? n_vocab_tgt - n_vocab_dft
: n_vocab_dft - n_vocab_tgt;
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return 1;
}
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
const char * token_text_dft = llama_token_get_text(model_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
llama_token_to_piece(ctx_tgt, i).c_str(),
llama_token_to_piece(ctx_dft, i).c_str());
return 1;
}
}
}
// tokenize the prompt
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
const int max_context_size = llama_n_ctx(ctx_tgt);
const int max_tokens_list_size = max_context_size - 4;
if ((int) inp.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
for (auto id : inp) {
fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
}
fflush(stderr);
const int n_input = inp.size();
const auto t_enc_start = ggml_time_us();
// eval the prompt with both models
llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
const auto t_enc_end = ggml_time_us();
// the 2 models should have the same vocab
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
// how many tokens to draft each time
int n_draft = params.n_draft;
int n_predict = 0;
int n_drafted = 0;
int n_accept = 0;
int n_past_tgt = inp.size();
int n_past_dft = inp.size();
// used to determine end of generation
bool has_eos = false;
// target model sampling context
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
// draft sequence data
std::vector<seq_draft> drafts(n_seq_dft);
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
}
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
const auto t_dec_start = ggml_time_us();
// sample from the last token of the prompt
drafts[0].i_batch_tgt.resize(1);
drafts[0].i_batch_tgt[0] = 0;
while (true) {
// print current draft sequences
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;
}
const auto & tokens = drafts[s].tokens;
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
}
int i_dft = 0;
int s_keep = 0;
while (true) {
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
// sample from the target model
llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
llama_sampling_accept(ctx_sampling, ctx_tgt, id, true);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
printf("%s", token_str.c_str());
fflush(stdout);
if (id == llama_token_eos(model_tgt)) {
has_eos = true;
}
++n_predict;
// check if the target token matches any of the drafts
{
bool matches = false;
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;
}
if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
s_keep = s;
matches = true;
} else {
drafts[s].active = false;
}
}
if (matches) {
++n_accept;
++n_past_tgt;
++n_past_dft;
++i_dft;
continue;
}
}
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
// TODO: simplify
{
LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
llama_kv_cache_seq_keep(ctx_dft, s_keep);
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
llama_kv_cache_seq_keep(ctx_dft, 0);
llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
llama_kv_cache_seq_keep(ctx_tgt, s_keep);
llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
llama_kv_cache_seq_keep(ctx_tgt, 0);
}
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].active = false;
drafts[s].tokens.clear();
drafts[s].i_batch_tgt.clear();
}
// note: will be erased after the speculation phase
drafts[0].tokens.push_back(id);
drafts[0].i_batch_tgt.push_back(0);
llama_batch_clear(batch_dft);
llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
// LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
llama_decode (ctx_dft, batch_dft);
++n_past_dft;
break;
}
if (n_predict > params.n_predict || has_eos) {
break;
}
llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
int n_seq_cur = 1;
int n_past_cur = n_past_dft;
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].active = false;
drafts[s].drafting = false;
}
drafts[0].active = true;
drafts[0].drafting = true;
drafts[0].i_batch_dft = 0;
llama_batch_clear(batch_tgt);
llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
// sample n_draft tokens from the draft model using tree-based sampling
for (int i = 0; i < n_draft; ++i) {
batch_dft.n_tokens = 0;
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].skip = false;
}
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].drafting || drafts[s].skip) {
continue;
}
llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
const auto & cur_p = drafts[s].ctx_sampling->cur;
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
}
if (cur_p[0].p < p_accept) {
LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
drafts[s].drafting = false;
continue;
}
std::vector<int> sa(1, s);
// attempt to split the branch if the probability is high enough
for (int f = 1; f < 8; ++f) {
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
// all previous tokens from this branch are now also part of the new branch
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
if (batch_tgt.seq_id[t][p] == s) {
batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
batch_tgt.n_seq_id[t]++;
break;
}
}
}
// copy the draft state
drafts[n_seq_cur].active = true;
drafts[n_seq_cur].drafting = true;
drafts[n_seq_cur].skip = true;
drafts[n_seq_cur].tokens = drafts[s].tokens;
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
sa.push_back(n_seq_cur);
n_seq_cur++;
} else {
break;
}
}
// add drafted token for each sequence
for (int is = 0; is < (int) sa.size(); ++is) {
const llama_token id = cur_p[is].id;
const int s = sa[is];
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
drafts[s].tokens.push_back(id);
// add unique drafted tokens to the target batch
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
// add the token to the batch for batched decoding with the draft model
drafts[s].i_batch_dft = batch_dft.n_tokens;
llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
if (batch_tgt.n_tokens > n_draft) {
drafts[s].drafting = false;
}
}
}
// no sequence is drafting anymore
if (batch_dft.n_tokens == 0) {
break;
}
// evaluate the drafted tokens on the draft model
llama_decode(ctx_dft, batch_dft);
++n_past_cur;
++n_drafted;
if (batch_tgt.n_tokens > n_draft) {
break;
}
}
// evaluate the target model on the drafted tokens
{
llama_kv_cache_seq_keep(ctx_tgt, 0);
for (int s = 1; s < n_seq_dft; ++s) {
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
}
// LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
llama_decode(ctx_tgt, batch_tgt);
++n_past_tgt;
}
// the first token is always proposed by the traget model before the speculation loop so we erase it here
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;
}
drafts[s].tokens.erase(drafts[s].tokens.begin());
}
}
auto t_dec_end = ggml_time_us();
LOG_TEE("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ndraft:\n");
llama_print_timings(ctx_dft);
LOG_TEE("\ntarget:\n");
llama_print_timings(ctx_tgt);
llama_sampling_free(ctx_sampling);
for (int s = 0; s < n_seq_dft; ++s) {
llama_sampling_free(drafts[s].ctx_sampling);
}
llama_batch_free(batch_dft);
llama_free(ctx_tgt);
llama_free_model(model_tgt);
llama_free(ctx_dft);
llama_free_model(model_dft);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}