Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

"Missing importance matrix" despite imatrix being provided #6552

Closed
schmorp opened this issue Apr 8, 2024 · 1 comment
Closed

"Missing importance matrix" despite imatrix being provided #6552

schmorp opened this issue Apr 8, 2024 · 1 comment

Comments

@schmorp
Copy link

schmorp commented Apr 8, 2024

I have generated an imatrix.dat for the Q8_0 quant here:

https://huggingface.co/mradermacher/BiscuitRP-8x7B-GGUF

The imatrix generation was uneventful and succeeded in generating this:

https://huggingface.co/mradermacher/BiscuitRP-8x7B-i1-GGUF/blob/main/imatrix.dat

But using it fails with:

Missing importance matrix for tensor blk.0.ffn_gate.0.weight in a very low-bit quantization

Full log:

load_imatrix: loaded 256 importance matrix entries from BiscuitRP-8x7B-i1-GGUF/imatrix.dat
prepare_imatrix: have 256 importance matrix entries
main: build = 2627 (855f544)
main: built with gcc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
main: quantizing './BiscuitRP-8x7B.gguf' to './BiscuitRP-8x7B-i1-GGUF/BiscuitRP-8x7B.i1-IQ2_M.gguf.backup1~' as IQ2_M
llama_model_loader: loaded meta data with 23 key-value pairs and 995 tensors from ./BiscuitRP-8x7B.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = .
llama_model_loader: - kv 2: llama.context_length u32 = 32768
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 9: llama.expert_count u32 = 8
llama_model_loader: - kv 10: llama.expert_used_count u32 = 2
llama_model_loader: - kv 11: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: llama.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: general.file_type u32 = 1
llama_model_loader: - kv 14: tokenizer.ggml.model str = llama
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<...
llama_model_loader: - kv 16: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 20: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type f16: 930 tensors
================================ Have weights data with 256 entries
llama_model_quantize_internal: meta size = 779648 bytes
[ 1/ 995] token_embd.weight - [ 4096, 32000, 1, 1], type = f16,
====== llama_model_quantize_internal: did not find weights for token_embd.weight
converting to iq3_s .. size = 250.00 MiB -> 53.71 MiB
[ 2/ 995] blk.0.ffn_gate.0.weight - [ 4096, 14336, 1, 1], type = f16,
====== llama_model_quantize_internal: did not find weights for blk.0.ffn_gate.0.weight

============================================================
Missing importance matrix for tensor blk.0.ffn_gate.0.weight in a very low-bit quantization
The result will be garbage, so bailing out

llama_model_quantize: failed to quantize: Missing importance matrix for tensor blk.0.ffn_gate.0.weight in a very low-bit quantization
main: failed to quantize model from './BiscuitRP-8x7B.gguf'

@slaren
Copy link
Collaborator

slaren commented Apr 8, 2024

You need to convert MoE models again to quantize them with an imatrix. See #6387 for more details.

@slaren slaren closed this as not planned Won't fix, can't repro, duplicate, stale Apr 8, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants