diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 71e7a727f1943..82b19fc4f3bae 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -19,6 +19,7 @@ struct Stats { std::vector values; + std::vector counts; int ncall = 0; }; @@ -121,12 +122,10 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * auto & e = m_stats[wname]; ++e.ncall; - // NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger - // using the following line, we can correct for that if needed by replacing the line above with: - //if (idx == t->src[0]->ne[0] - 1) ++e.ncall; if (e.values.empty()) { e.values.resize(src1->ne[0]*n_as, 0); + e.counts.resize(src1->ne[0]*n_as, 0); } else if (e.values.size() != (size_t)src1->ne[0]*n_as) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as); @@ -153,6 +152,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[e_start + j] += x[j]*x[j]; + e.counts[e_start + j]++; } } } @@ -170,6 +170,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * auto& e = m_stats[wname]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); + e.counts.resize(src1->ne[0], 0); } else if (e.values.size() != (size_t)src1->ne[0]) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]); @@ -183,6 +184,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * const float * x = data + row * src1->ne[0]; for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[j] += x[j]*x[j]; + e.counts[j]++; } } if (e.ncall > m_last_call) { @@ -222,7 +224,13 @@ void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) co out.write((const char *) &p.second.ncall, sizeof(p.second.ncall)); int nval = p.second.values.size(); out.write((const char *) &nval, sizeof(nval)); - if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float)); + if (nval > 0) { + std::vector tmp(nval); + for (int i = 0; i < nval; i++) { + tmp[i] = (p.second.values[i] / static_cast(p.second.counts[i])) * static_cast(p.second.ncall); + } + out.write((const char*)tmp.data(), nval*sizeof(float)); + } } // Write the number of call the matrix was computed with @@ -270,14 +278,28 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma imatrix_data = {}; return false; } - e.values.resize(nval); - in.read((char*)e.values.data(), nval*sizeof(float)); + + // When re-called from load_imatrix() with add set, this will already be created. + if (e.values.empty()) { + e.values.resize(nval, 0); + e.counts.resize(nval, 0); + } + + std::vector tmp(nval); + in.read((char*)tmp.data(), nval*sizeof(float)); if (in.fail()) { printf("%s: failed reading data for entry %d\n",__func__,i); imatrix_data = {}; return false; } - e.ncall = ncall; + + // Recreate the state as expected by save_imatrix(), and corerct for weighted sum. + for (int i = 0; i < nval; i++) { + e.values[i] += tmp[i]; + e.counts[i] += ncall; + } + e.ncall += ncall; + } return true; }