-
Notifications
You must be signed in to change notification settings - Fork 9
/
loss.py
67 lines (46 loc) · 1.95 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import util
from ipdb import set_trace as debug
def sample_rademacher_like(y):
return torch.randint(low=0, high=2, size=y.shape).to(y) * 2 - 1
def sample_gaussian_like(y):
return torch.randn_like(y)
def sample_e(opt, x):
return {
'gaussian': sample_gaussian_like,
'rademacher': sample_rademacher_like,
}.get(opt.noise_type)(x)
def compute_div_gz(opt, dyn, ts, xs, policy, return_zs=False):
zs = policy(xs,ts)
g_ts = dyn.g(ts)
g_ts = g_ts[:,None,None,None] if util.is_image_dataset(opt) else g_ts[:,None]
gzs = g_ts*zs
e = sample_e(opt, xs)
e_dzdx = torch.autograd.grad(gzs, xs, e, create_graph=True)[0]
div_gz = e_dzdx * e
# approx_div_gz = e_dzdx_e.view(y.shape[0], -1).sum(dim=1)
return [div_gz, zs] if return_zs else div_gz
def compute_sb_nll_alternate_train(opt, dyn, ts, xs, zs_impt, policy_opt, return_z=False):
""" Implementation of Eq (18,19) in our main paper.
"""
assert opt.train_method == 'alternate'
assert xs.requires_grad
assert not zs_impt.requires_grad
batch_x = opt.train_bs_x
batch_t = opt.train_bs_t
with torch.enable_grad():
div_gz, zs = compute_div_gz(opt, dyn, ts, xs, policy_opt, return_zs=True)
loss = zs*(0.5*zs + zs_impt) + div_gz
loss = torch.sum(loss * dyn.dt) / batch_x / batch_t # sum over x_dim and T, mean over batch
return loss, zs if return_z else loss
def compute_sb_nll_joint_train(opt, batch_x, dyn, ts, xs_f, zs_f, x_term_f, policy_b):
""" Implementation of Eq (16) in our main paper.
"""
assert opt.train_method == 'joint'
assert policy_b.direction == 'backward'
assert xs_f.requires_grad and zs_f.requires_grad and x_term_f.requires_grad
div_gz_b, zs_b = compute_div_gz(opt, dyn, ts, xs_f, policy_b, return_zs=True)
loss = 0.5*(zs_f + zs_b)**2 + div_gz_b
loss = torch.sum(loss*dyn.dt) / batch_x
loss = loss - dyn.q.log_prob(x_term_f).mean()
return loss