-
Notifications
You must be signed in to change notification settings - Fork 265
/
svm_classifier.py
59 lines (48 loc) · 1.84 KB
/
svm_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import ee
from ee_plugin import Map
# Input imagery is a cloud-free Landsat 8 composite.
l8 = ee.ImageCollection('LANDSAT/LC08/C01/T1')
image = ee.Algorithms.Landsat.simpleComposite(**{
'collection': l8.filterDate('2018-01-01', '2018-12-31'),
'asFloat': True
})
# Use these bands for prediction.
bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10', 'B11']
# Manually created polygons.
forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443)
forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735)
nonForest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486)
nonForest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986)
# Make a FeatureCollection from the hand-made geometries.
polygons = ee.FeatureCollection([
ee.Feature(nonForest1, {'class': 0}),
ee.Feature(nonForest2, {'class': 0}),
ee.Feature(forest1, {'class': 1}),
ee.Feature(forest2, {'class': 1}),
])
# Get the values for all pixels in each polygon in the training.
training = image.sampleRegions(**{
# Get the sample from the polygons FeatureCollection.
'collection': polygons,
# Keep this list of properties from the polygons.
'properties': ['class'],
# Set the scale to get Landsat pixels in the polygons.
'scale': 30
})
# Create an SVM classifier with custom parameters.
classifier = ee.Classifier.libsvm(**{
'kernelType': 'RBF',
'gamma': 0.5,
'cost': 10
})
# Train the classifier.
trained = classifier.train(training, 'class', bands)
# Classify the image.
classified = image.classify(trained)
# Display the classification result and the input image.
Map.setCenter(-62.836, -9.2399, 9)
Map.addLayer(image, {'bands': ['B4', 'B3', 'B2'], 'max': 0.5, 'gamma': 2})
Map.addLayer(polygons, {}, 'training polygons')
Map.addLayer(classified,
{'min': 0, 'max': 1, 'palette': ['red', 'green']},
'deforestation')