-
Notifications
You must be signed in to change notification settings - Fork 18
/
run.sh
50 lines (41 loc) · 2.23 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Step 1: generate transaction sequence
python gen_seq.py --bizdate=bert4eth_exp
# Step 2: generate pre-train data (do masking)
python gen_pretrain_data.py --bizdate=bert4eth_exp \
--max_seq_length=100 \
--dupe_factor=10 \
--masked_lm_prob=0.8
# Step 3: pre-train the BERT4ETH model
CUDA_VISIBLE_DEVICES=3 python run_pretrain.py --bizdate=bert4eth_exp \
--max_seq_length=100 \
--checkpointDir=bert4eth_exp \
--epoch=5 \
--batch_size=256 \
--learning_rate=1e-4 \
--num_train_steps=1000000 \
--save_checkpoints_steps=8000 \
--neg_strategy=zip \
--neg_sample_num=5000 \
--neg_share=True
# Step 4: output representations
CUDA_VISIBLE_DEVICES=3 python output_embed.py --bizdate=bert4eth_exp \
--init_checkpoint=bert4eth_exp/model_104000 \
--max_seq_length=100 \
--neg_sample_num=5000 \
--neg_strategy=zip \
--neg_share=True
# Phishing detection on the account representation with random forest
python run_phishing_detection.py --init_checkpoint=bert4eth_exp/model_104000
# Phishing detection on the account representation with DNN (better than random forest)
CUDA_VISIBLE_DEVICES=3 python run_phishing_detection_dnn.py --init_checkpoint=bert4eth_exp/model_104000
# Generate finetune data for phishing account detection
python gen_finetune_phisher_data.py --bizdate=bert4eth_exp \
--max_seq_length=100
# Fine-tune the pre-trained model for phishing account detection
CUDA_VISIBLE_DEVICES=3 python run_finetune_phisher.py --init_checkpoint=bert4eth_exp/model_104000 \
--bizdate=bert4eth_exp \
--max_seq_length=100 \
--checkpointDir=tmp
# De-anonymization
python run_dean_ENS.py --metric=euclidean \
--init_checkpoint=bert4eth_exp/model_104000