forked from bakerb845/fem25
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dgamma.f
250 lines (250 loc) · 10.6 KB
/
dgamma.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
DOUBLE PRECISION FUNCTION DGAMMA(X)
C----------------------------------------------------------------------
C
C This routine calculates the GAMMA function for a real argument X.
C Computation is based on an algorithm outlined in reference 1.
C The program uses rational functions that approximate the GAMMA
C function to at least 20 significant decimal digits. Coefficients
C for the approximation over the interval (1,2) are unpublished.
C Those for the approximation for X .GE. 12 are from reference 2.
C The accuracy achieved depends on the arithmetic system, the
C compiler, the intrinsic functions, and proper selection of the
C machine-dependent constants.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta - radix for the floating-point representation
C maxexp - the smallest positive power of beta that overflows
C XBIG - the largest argument for which GAMMA(X) is representable
C in the machine, i.e., the solution to the equation
C GAMMA(XBIG) = beta**maxexp
C XINF - the largest machine representable floating-point number;
C approximately beta**maxexp
C EPS - the smallest positive floating-point number such that
C 1.0+EPS .GT. 1.0
C XMININ - the smallest positive floating-point number such that
C 1/XMININ is machine representable
C
C Approximate values for some important machines are:
C
C beta maxexp XBIG
C
C CRAY-1 (S.P.) 2 8191 966.961
C Cyber 180/855
C under NOS (S.P.) 2 1070 177.803
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 2 128 35.040
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 2 1024 171.624
C IBM 3033 (D.P.) 16 63 57.574
C VAX D-Format (D.P.) 2 127 34.844
C VAX G-Format (D.P.) 2 1023 171.489
C
C XINF EPS XMININ
C
C CRAY-1 (S.P.) 5.45E+2465 7.11E-15 1.84E-2466
C Cyber 180/855
C under NOS (S.P.) 1.26E+322 3.55E-15 3.14E-294
C IEEE (IBM/XT,
C SUN, etc.) (S.P.) 3.40E+38 1.19E-7 1.18E-38
C IEEE (IBM/XT,
C SUN, etc.) (D.P.) 1.79D+308 2.22D-16 2.23D-308
C IBM 3033 (D.P.) 7.23D+75 2.22D-16 1.39D-76
C VAX D-Format (D.P.) 1.70D+38 1.39D-17 5.88D-39
C VAX G-Format (D.P.) 8.98D+307 1.11D-16 1.12D-308
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C The program returns the value XINF for singularities or
C when overflow would occur. The computation is believed
C to be free of underflow and overflow.
C
C
C Intrinsic functions required are:
C
C INT, DBLE, EXP, LOG, REAL, SIN
C
C
C References: "An Overview of Software Development for Special
C Functions", W. J. Cody, Lecture Notes in Mathematics,
C 506, Numerical Analysis Dundee, 1975, G. A. Watson
C (ed.), Springer Verlag, Berlin, 1976.
C
C Computer Approximations, Hart, Et. Al., Wiley and
C sons, New York, 1968.
C
C Latest modification: October 12, 1989
C
C Authors: W. J. Cody and L. Stoltz
C Applied Mathematics Division
C Argonne National Laboratory
C Argonne, IL 60439
C
C----------------------------------------------------------------------
INTEGER I,N
LOGICAL PARITY
CS REAL
DOUBLE PRECISION
1 C,CONV,EPS,FACT,HALF,ONE,P,PI,Q,RES,SQRTPI,SUM,TWELVE,
2 TWO,X,XBIG,XDEN,XINF,XMININ,XNUM,Y,Y1,YSQ,Z,ZERO
DIMENSION C(7),P(8),Q(8)
C----------------------------------------------------------------------
C Mathematical constants
C----------------------------------------------------------------------
CS DATA ONE,HALF,TWELVE,TWO,ZERO/1.0E0,0.5E0,12.0E0,2.0E0,0.0E0/,
CS 1 SQRTPI/0.9189385332046727417803297E0/,
CS 2 PI/3.1415926535897932384626434E0/
DATA ONE,HALF,TWELVE,TWO,ZERO/1.0D0,0.5D0,12.0D0,2.0D0,0.0D0/,
1 SQRTPI/0.9189385332046727417803297D0/,
2 PI/3.1415926535897932384626434D0/
C----------------------------------------------------------------------
C Machine dependent parameters
C----------------------------------------------------------------------
CS DATA XBIG,XMININ,EPS/35.040E0,1.18E-38,1.19E-7/,
CS 1 XINF/3.4E38/
DATA XBIG,XMININ,EPS/171.624D0,2.23D-308,2.22D-16/,
1 XINF/1.79D308/
C----------------------------------------------------------------------
C Numerator and denominator coefficients for rational minimax
C approximation over (1,2).
C----------------------------------------------------------------------
CS DATA P/-1.71618513886549492533811E+0,2.47656508055759199108314E+1,
CS 1 -3.79804256470945635097577E+2,6.29331155312818442661052E+2,
CS 2 8.66966202790413211295064E+2,-3.14512729688483675254357E+4,
CS 3 -3.61444134186911729807069E+4,6.64561438202405440627855E+4/
CS DATA Q/-3.08402300119738975254353E+1,3.15350626979604161529144E+2,
CS 1 -1.01515636749021914166146E+3,-3.10777167157231109440444E+3,
CS 2 2.25381184209801510330112E+4,4.75584627752788110767815E+3,
CS 3 -1.34659959864969306392456E+5,-1.15132259675553483497211E+5/
DATA P/-1.71618513886549492533811D+0,2.47656508055759199108314D+1,
1 -3.79804256470945635097577D+2,6.29331155312818442661052D+2,
2 8.66966202790413211295064D+2,-3.14512729688483675254357D+4,
3 -3.61444134186911729807069D+4,6.64561438202405440627855D+4/
DATA Q/-3.08402300119738975254353D+1,3.15350626979604161529144D+2,
1 -1.01515636749021914166146D+3,-3.10777167157231109440444D+3,
2 2.25381184209801510330112D+4,4.75584627752788110767815D+3,
3 -1.34659959864969306392456D+5,-1.15132259675553483497211D+5/
C----------------------------------------------------------------------
C Coefficients for minimax approximation over (12, INF).
C----------------------------------------------------------------------
CS DATA C/-1.910444077728E-03,8.4171387781295E-04,
CS 1 -5.952379913043012E-04,7.93650793500350248E-04,
CS 2 -2.777777777777681622553E-03,8.333333333333333331554247E-02,
CS 3 5.7083835261E-03/
DATA C/-1.910444077728D-03,8.4171387781295D-04,
1 -5.952379913043012D-04,7.93650793500350248D-04,
2 -2.777777777777681622553D-03,8.333333333333333331554247D-02,
3 5.7083835261D-03/
C----------------------------------------------------------------------
C Statement functions for conversion between integer and float
C----------------------------------------------------------------------
CS CONV(I) = REAL(I)
CONV(I) = DBLE(I)
PARITY = .FALSE.
FACT = ONE
N = 0
Y = X
IF (Y .LE. ZERO) THEN
C----------------------------------------------------------------------
C Argument is negative
C----------------------------------------------------------------------
Y = -X
Y1 = AINT(Y)
RES = Y - Y1
IF (RES .NE. ZERO) THEN
IF (Y1 .NE. AINT(Y1*HALF)*TWO) PARITY = .TRUE.
FACT = -PI / SIN(PI*RES)
Y = Y + ONE
ELSE
RES = XINF
GO TO 900
END IF
END IF
C----------------------------------------------------------------------
C Argument is positive
C----------------------------------------------------------------------
IF (Y .LT. EPS) THEN
C----------------------------------------------------------------------
C Argument .LT. EPS
C----------------------------------------------------------------------
IF (Y .GE. XMININ) THEN
RES = ONE / Y
ELSE
RES = XINF
GO TO 900
END IF
ELSE IF (Y .LT. TWELVE) THEN
Y1 = Y
IF (Y .LT. ONE) THEN
C----------------------------------------------------------------------
C 0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
Z = Y
Y = Y + ONE
ELSE
C----------------------------------------------------------------------
C 1.0 .LT. argument .LT. 12.0, reduce argument if necessary
C----------------------------------------------------------------------
N = INT(Y) - 1
Y = Y - CONV(N)
Z = Y - ONE
END IF
C----------------------------------------------------------------------
C Evaluate approximation for 1.0 .LT. argument .LT. 2.0
C----------------------------------------------------------------------
XNUM = ZERO
XDEN = ONE
DO 260 I = 1, 8
XNUM = (XNUM + P(I)) * Z
XDEN = XDEN * Z + Q(I)
260 CONTINUE
RES = XNUM / XDEN + ONE
IF (Y1 .LT. Y) THEN
C----------------------------------------------------------------------
C Adjust result for case 0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
RES = RES / Y1
ELSE IF (Y1 .GT. Y) THEN
C----------------------------------------------------------------------
C Adjust result for case 2.0 .LT. argument .LT. 12.0
C----------------------------------------------------------------------
DO 290 I = 1, N
RES = RES * Y
Y = Y + ONE
290 CONTINUE
END IF
ELSE
C----------------------------------------------------------------------
C Evaluate for argument .GE. 12.0,
C----------------------------------------------------------------------
IF (Y .LE. XBIG) THEN
YSQ = Y * Y
SUM = C(7)
DO 350 I = 1, 6
SUM = SUM / YSQ + C(I)
350 CONTINUE
SUM = SUM/Y - Y + SQRTPI
SUM = SUM + (Y-HALF)*LOG(Y)
RES = EXP(SUM)
ELSE
RES = XINF
GO TO 900
END IF
END IF
C----------------------------------------------------------------------
C Final adjustments and return
C----------------------------------------------------------------------
IF (PARITY) RES = -RES
IF (FACT .NE. ONE) RES = FACT / RES
CS900 GAMMA = RES
900 DGAMMA = RES
RETURN
C ---------- Last line of GAMMA ----------
END