-
-
Notifications
You must be signed in to change notification settings - Fork 21.4k
/
aabb.h
491 lines (420 loc) · 14.9 KB
/
aabb.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/**************************************************************************/
/* aabb.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef AABB_H
#define AABB_H
#include "core/math/plane.h"
#include "core/math/vector3.h"
/**
* AABB (Axis Aligned Bounding Box)
* This is implemented by a point (position) and the box size.
*/
class Variant;
struct _NO_DISCARD_ AABB {
Vector3 position;
Vector3 size;
real_t get_volume() const;
_FORCE_INLINE_ bool has_volume() const {
return size.x > 0.0f && size.y > 0.0f && size.z > 0.0f;
}
_FORCE_INLINE_ bool has_surface() const {
return size.x > 0.0f || size.y > 0.0f || size.z > 0.0f;
}
const Vector3 &get_position() const { return position; }
void set_position(const Vector3 &p_pos) { position = p_pos; }
const Vector3 &get_size() const { return size; }
void set_size(const Vector3 &p_size) { size = p_size; }
bool operator==(const AABB &p_rval) const;
bool operator!=(const AABB &p_rval) const;
bool is_equal_approx(const AABB &p_aabb) const;
bool is_finite() const;
_FORCE_INLINE_ bool intersects(const AABB &p_aabb) const; /// Both AABBs overlap
_FORCE_INLINE_ bool intersects_inclusive(const AABB &p_aabb) const; /// Both AABBs (or their faces) overlap
_FORCE_INLINE_ bool encloses(const AABB &p_aabb) const; /// p_aabb is completely inside this
AABB merge(const AABB &p_with) const;
void merge_with(const AABB &p_aabb); ///merge with another AABB
AABB intersection(const AABB &p_aabb) const; ///get box where two intersect, empty if no intersection occurs
bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const;
bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const;
_FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const;
_FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const;
_FORCE_INLINE_ bool inside_convex_shape(const Plane *p_planes, int p_plane_count) const;
bool intersects_plane(const Plane &p_plane) const;
_FORCE_INLINE_ bool has_point(const Vector3 &p_point) const;
_FORCE_INLINE_ Vector3 get_support(const Vector3 &p_normal) const;
Vector3 get_longest_axis() const;
int get_longest_axis_index() const;
_FORCE_INLINE_ real_t get_longest_axis_size() const;
Vector3 get_shortest_axis() const;
int get_shortest_axis_index() const;
_FORCE_INLINE_ real_t get_shortest_axis_size() const;
AABB grow(real_t p_by) const;
_FORCE_INLINE_ void grow_by(real_t p_amount);
void get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const;
_FORCE_INLINE_ Vector3 get_endpoint(int p_point) const;
AABB expand(const Vector3 &p_vector) const;
_FORCE_INLINE_ void project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const;
_FORCE_INLINE_ void expand_to(const Vector3 &p_vector); /** expand to contain a point if necessary */
_FORCE_INLINE_ AABB abs() const {
return AABB(Vector3(position.x + MIN(size.x, (real_t)0), position.y + MIN(size.y, (real_t)0), position.z + MIN(size.z, (real_t)0)), size.abs());
}
Variant intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to) const;
Variant intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const;
_FORCE_INLINE_ void quantize(real_t p_unit);
_FORCE_INLINE_ AABB quantized(real_t p_unit) const;
_FORCE_INLINE_ void set_end(const Vector3 &p_end) {
size = p_end - position;
}
_FORCE_INLINE_ Vector3 get_end() const {
return position + size;
}
_FORCE_INLINE_ Vector3 get_center() const {
return position + (size * 0.5f);
}
operator String() const;
_FORCE_INLINE_ AABB() {}
inline AABB(const Vector3 &p_pos, const Vector3 &p_size) :
position(p_pos),
size(p_size) {
}
};
inline bool AABB::intersects(const AABB &p_aabb) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
if (position.x >= (p_aabb.position.x + p_aabb.size.x)) {
return false;
}
if ((position.x + size.x) <= p_aabb.position.x) {
return false;
}
if (position.y >= (p_aabb.position.y + p_aabb.size.y)) {
return false;
}
if ((position.y + size.y) <= p_aabb.position.y) {
return false;
}
if (position.z >= (p_aabb.position.z + p_aabb.size.z)) {
return false;
}
if ((position.z + size.z) <= p_aabb.position.z) {
return false;
}
return true;
}
inline bool AABB::intersects_inclusive(const AABB &p_aabb) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
if (position.x > (p_aabb.position.x + p_aabb.size.x)) {
return false;
}
if ((position.x + size.x) < p_aabb.position.x) {
return false;
}
if (position.y > (p_aabb.position.y + p_aabb.size.y)) {
return false;
}
if ((position.y + size.y) < p_aabb.position.y) {
return false;
}
if (position.z > (p_aabb.position.z + p_aabb.size.z)) {
return false;
}
if ((position.z + size.z) < p_aabb.position.z) {
return false;
}
return true;
}
inline bool AABB::encloses(const AABB &p_aabb) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
Vector3 src_min = position;
Vector3 src_max = position + size;
Vector3 dst_min = p_aabb.position;
Vector3 dst_max = p_aabb.position + p_aabb.size;
return (
(src_min.x <= dst_min.x) &&
(src_max.x > dst_max.x) &&
(src_min.y <= dst_min.y) &&
(src_max.y > dst_max.y) &&
(src_min.z <= dst_min.z) &&
(src_max.z > dst_max.z));
}
Vector3 AABB::get_support(const Vector3 &p_normal) const {
Vector3 half_extents = size * 0.5f;
Vector3 ofs = position + half_extents;
return Vector3(
(p_normal.x > 0) ? half_extents.x : -half_extents.x,
(p_normal.y > 0) ? half_extents.y : -half_extents.y,
(p_normal.z > 0) ? half_extents.z : -half_extents.z) +
ofs;
}
Vector3 AABB::get_endpoint(int p_point) const {
switch (p_point) {
case 0:
return Vector3(position.x, position.y, position.z);
case 1:
return Vector3(position.x, position.y, position.z + size.z);
case 2:
return Vector3(position.x, position.y + size.y, position.z);
case 3:
return Vector3(position.x, position.y + size.y, position.z + size.z);
case 4:
return Vector3(position.x + size.x, position.y, position.z);
case 5:
return Vector3(position.x + size.x, position.y, position.z + size.z);
case 6:
return Vector3(position.x + size.x, position.y + size.y, position.z);
case 7:
return Vector3(position.x + size.x, position.y + size.y, position.z + size.z);
}
ERR_FAIL_V(Vector3());
}
bool AABB::intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
Vector3 half_extents = size * 0.5f;
Vector3 ofs = position + half_extents;
for (int i = 0; i < p_plane_count; i++) {
const Plane &p = p_planes[i];
Vector3 point(
(p.normal.x > 0) ? -half_extents.x : half_extents.x,
(p.normal.y > 0) ? -half_extents.y : half_extents.y,
(p.normal.z > 0) ? -half_extents.z : half_extents.z);
point += ofs;
if (p.is_point_over(point)) {
return false;
}
}
// Make sure all points in the shape aren't fully separated from the AABB on
// each axis.
int bad_point_counts_positive[3] = { 0 };
int bad_point_counts_negative[3] = { 0 };
for (int k = 0; k < 3; k++) {
for (int i = 0; i < p_point_count; i++) {
if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) {
bad_point_counts_positive[k]++;
}
if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) {
bad_point_counts_negative[k]++;
}
}
if (bad_point_counts_negative[k] == p_point_count) {
return false;
}
if (bad_point_counts_positive[k] == p_point_count) {
return false;
}
}
return true;
}
bool AABB::inside_convex_shape(const Plane *p_planes, int p_plane_count) const {
Vector3 half_extents = size * 0.5f;
Vector3 ofs = position + half_extents;
for (int i = 0; i < p_plane_count; i++) {
const Plane &p = p_planes[i];
Vector3 point(
(p.normal.x < 0) ? -half_extents.x : half_extents.x,
(p.normal.y < 0) ? -half_extents.y : half_extents.y,
(p.normal.z < 0) ? -half_extents.z : half_extents.z);
point += ofs;
if (p.is_point_over(point)) {
return false;
}
}
return true;
}
bool AABB::has_point(const Vector3 &p_point) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
if (p_point.x < position.x) {
return false;
}
if (p_point.y < position.y) {
return false;
}
if (p_point.z < position.z) {
return false;
}
if (p_point.x > position.x + size.x) {
return false;
}
if (p_point.y > position.y + size.y) {
return false;
}
if (p_point.z > position.z + size.z) {
return false;
}
return true;
}
inline void AABB::expand_to(const Vector3 &p_vector) {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
Vector3 begin = position;
Vector3 end = position + size;
if (p_vector.x < begin.x) {
begin.x = p_vector.x;
}
if (p_vector.y < begin.y) {
begin.y = p_vector.y;
}
if (p_vector.z < begin.z) {
begin.z = p_vector.z;
}
if (p_vector.x > end.x) {
end.x = p_vector.x;
}
if (p_vector.y > end.y) {
end.y = p_vector.y;
}
if (p_vector.z > end.z) {
end.z = p_vector.z;
}
position = begin;
size = end - begin;
}
void AABB::project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const {
Vector3 half_extents(size.x * 0.5f, size.y * 0.5f, size.z * 0.5f);
Vector3 center(position.x + half_extents.x, position.y + half_extents.y, position.z + half_extents.z);
real_t length = p_plane.normal.abs().dot(half_extents);
real_t distance = p_plane.distance_to(center);
r_min = distance - length;
r_max = distance + length;
}
inline real_t AABB::get_longest_axis_size() const {
real_t max_size = size.x;
if (size.y > max_size) {
max_size = size.y;
}
if (size.z > max_size) {
max_size = size.z;
}
return max_size;
}
inline real_t AABB::get_shortest_axis_size() const {
real_t max_size = size.x;
if (size.y < max_size) {
max_size = size.y;
}
if (size.z < max_size) {
max_size = size.z;
}
return max_size;
}
bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
real_t divx = 1.0f / p_dir.x;
real_t divy = 1.0f / p_dir.y;
real_t divz = 1.0f / p_dir.z;
Vector3 upbound = position + size;
real_t tmin, tmax, tymin, tymax, tzmin, tzmax;
if (p_dir.x >= 0) {
tmin = (position.x - p_from.x) * divx;
tmax = (upbound.x - p_from.x) * divx;
} else {
tmin = (upbound.x - p_from.x) * divx;
tmax = (position.x - p_from.x) * divx;
}
if (p_dir.y >= 0) {
tymin = (position.y - p_from.y) * divy;
tymax = (upbound.y - p_from.y) * divy;
} else {
tymin = (upbound.y - p_from.y) * divy;
tymax = (position.y - p_from.y) * divy;
}
if ((tmin > tymax) || (tymin > tmax)) {
return false;
}
if (tymin > tmin) {
tmin = tymin;
}
if (tymax < tmax) {
tmax = tymax;
}
if (p_dir.z >= 0) {
tzmin = (position.z - p_from.z) * divz;
tzmax = (upbound.z - p_from.z) * divz;
} else {
tzmin = (upbound.z - p_from.z) * divz;
tzmax = (position.z - p_from.z) * divz;
}
if ((tmin > tzmax) || (tzmin > tmax)) {
return false;
}
if (tzmin > tmin) {
tmin = tzmin;
}
if (tzmax < tmax) {
tmax = tzmax;
}
return ((tmin < t1) && (tmax > t0));
}
void AABB::grow_by(real_t p_amount) {
position.x -= p_amount;
position.y -= p_amount;
position.z -= p_amount;
size.x += 2.0f * p_amount;
size.y += 2.0f * p_amount;
size.z += 2.0f * p_amount;
}
void AABB::quantize(real_t p_unit) {
size += position;
position.x -= Math::fposmodp(position.x, p_unit);
position.y -= Math::fposmodp(position.y, p_unit);
position.z -= Math::fposmodp(position.z, p_unit);
size.x -= Math::fposmodp(size.x, p_unit);
size.y -= Math::fposmodp(size.y, p_unit);
size.z -= Math::fposmodp(size.z, p_unit);
size.x += p_unit;
size.y += p_unit;
size.z += p_unit;
size -= position;
}
AABB AABB::quantized(real_t p_unit) const {
AABB ret = *this;
ret.quantize(p_unit);
return ret;
}
#endif // AABB_H