-
Notifications
You must be signed in to change notification settings - Fork 3
/
prediction_network.py
578 lines (473 loc) · 25 KB
/
prediction_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# !/usr/bin/env python
#
# Copyright 2020 Siyuan Wang.
#
import torch
import time
import math
import random
import numpy as np
import torch.nn as nn
from utils import get_latest_weight_file, save_model_loss_info, save_loss_pic, load_dict
from config import Config
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from predition_loss import ReconstructionLoss, BoneLoss, VelocityLoss, ContactLoss, SmoothLoss, KeyframeLoss
from transformer.Models import Transformer
class Prediction(nn.Module):
def __init__(self, hparams):
super(Prediction, self).__init__()
self.hparams = hparams
self.state_fc1 = nn.Linear(hparams.state_encoder_input_size, hparams.encoder_hidden_size)
self.state_fc2 = nn.Linear(hparams.encoder_hidden_size, hparams.encoder_output_size)
self.derivative_fc1 = nn.Linear(hparams.derivative_encoder_input_size, hparams.encoder_hidden_size)
self.derivative_fc2 = nn.Linear(hparams.encoder_hidden_size, hparams.encoder_output_size)
self.target_fc1 = nn.Linear(hparams.target_encoder_input_size, hparams.encoder_hidden_size)
self.target_fc2 = nn.Linear(hparams.encoder_hidden_size, hparams.encoder_output_size)
self.root_converter = nn.Linear(3, hparams.root_transformer_model_size)
self.root_transformer = Transformer(
d_word_vec=hparams.root_transformer_model_size, device=hparams.device,
n_position=hparams.trajectory_size, d_k=32, d_v=32,
d_model=hparams.root_transformer_model_size, d_inner=hparams.root_transformer_model_size,
n_layers=hparams.root_transformer_layer,
n_head=8, batch_size=hparams.batch_size, dropout=0.1,
out_dim=hparams.root_transformer_output_size).to(hparams.device)
self.vel_converter = nn.Linear(hparams.vel_factor_dim, hparams.vel_transformer_model_size)
self.vel_transformer = Transformer(
d_word_vec=hparams.vel_transformer_model_size, device=hparams.device,
n_position=hparams.velocity_control_size, d_k=32, d_v=32,
d_model=hparams.vel_transformer_model_size, d_inner=hparams.vel_transformer_model_size,
n_layers=hparams.vel_transformer_layer,
n_head=8, batch_size=hparams.batch_size, dropout=0.1,
out_dim=hparams.vel_transformer_output_size).to(hparams.device)
self.time_fc1 = nn.Linear(hparams.time_encoder_input_size, hparams.time_encoder_output_size)
self.lstm1 = nn.LSTM(hparams.lstm1_input_size, hparams.lstm1_output_size, batch_first=True)
self.lstm2 = nn.LSTM(hparams.lstm2_input_size, hparams.lstm2_output_size, batch_first=True)
self.state_de_fc1 = nn.Linear(hparams.state_decoder_input_size, hparams.decoder_hidden1_size)
self.state_de_fc2 = nn.Linear(hparams.decoder_hidden1_size, hparams.decoder_hidden2_size)
self.state_de_fc3 = nn.Linear(hparams.decoder_hidden2_size, hparams.state_decoder_output_size)
self.root_de_fc1 = nn.Linear(hparams.root_decoder_input_size, hparams.decoder_hidden1_size)
self.root_de_fc2 = nn.Linear(hparams.decoder_hidden1_size, hparams.decoder_hidden2_size)
self.root_de_fc3 = nn.Linear(hparams.decoder_hidden2_size, hparams.root_decoder_output_size)
self.prelu = nn.PReLU()
self.model_dir = hparams.model_dir
def init_hidden(self, batch_size, device):
self.lstm1_h = torch.zeros(1, batch_size, self.hparams.lstm1_output_size).to(device)
self.lstm1_c = torch.zeros(1, batch_size, self.hparams.lstm1_output_size).to(device)
self.lstm2_h = torch.zeros(1, batch_size, self.hparams.lstm2_output_size).to(device)
self.lstm2_c = torch.zeros(1, batch_size, self.hparams.lstm2_output_size).to(device)
def state_encoder(self, x):
out = self.prelu(self.state_fc1(x))
out = self.prelu(self.state_fc2(out))
return out
def derivative_encoder(self, x):
out = self.prelu(self.derivative_fc1(x))
out = self.prelu(self.derivative_fc2(out))
return out
def target_encoder(self, x):
out = self.prelu(self.target_fc1(x))
out = self.prelu(self.target_fc2(out))
return out
def trajectory_encoder(self, x):
out = self.prelu(self.trajectory_fc1(x))
out = self.prelu(self.trajectory_fc2(out))
return out
def time_encoder(self, x):
out = self.prelu(self.time_fc1(x))
return out
def state_decoder(self, z):
out = self.prelu(self.state_de_fc1(z))
out = self.prelu(self.state_de_fc2(out))
out = self.state_de_fc3(out)
return out
def root_decoder(self, z):
out = self.prelu(self.root_de_fc1(z))
out = self.prelu(self.root_de_fc2(out))
out = self.root_de_fc3(out)
return out
def concatenate_output(self, z_in1, z_in2):
z0, z1 = z_in1.split([self.hparams.state_de_out_part1,
self.hparams.state_de_out_part2], dim=-1)
z3, z4 = z_in2.split([self.hparams.root_de_out_part1,
self.hparams.root_de_out_part2], dim=-1)
z = torch.cat((z0, z3, z1, z4), dim=-1)
return z
def root_transformer_encoder(self, true_trajectory, x4):
src_seq = self.root_converter(true_trajectory)
trg_seq = self.root_converter(x4)
out = self.root_transformer(src_seq, trg_seq)
return out
def vel_transformer_encoder(self, x5):
x = self.vel_converter(x5)
out = self.vel_transformer(x, x)
return out
def forward(self, x1, x2, x3, x4, x5, t, noise, true_trajectory):
x1 = self.state_encoder(x1) # [batch_size, seq_len, encoder_output_size] [60, *, 256]
x2 = self.derivative_encoder(x2) # [batch_size, seq_len, encoder_output_size]
x3 = self.target_encoder(x3) # [batch_size, seq_len, encoder_output_size]
x4 = self.root_transformer_encoder(true_trajectory, x4)
x5 = self.vel_transformer_encoder(x5)
t = self.time_encoder(t)
x12 = torch.cat([x1, x2, x4, x5], dim=-1)
x12 = x12 + noise
x12, (self.lstm1_h, self.lstm1_c) = self.lstm1(x12, (self.lstm1_h, self.lstm1_c))
x = torch.cat([x12, x3], dim=-1) + t
x, (self.lstm2_h, self.lstm2_c) = self.lstm2(x, (self.lstm2_h, self.lstm2_c))
z1 = self.state_decoder(x)
z2 = self.root_decoder(x)
z = self.concatenate_output(z1, z2) # , z3)
return z
class DanceDataset(Dataset):
def __init__(self, train_x):
self.train_data = train_x
def __len__(self):
return self.train_data.shape[0]
def __getitem__(self, item):
return torch.tensor(self.train_data[item], dtype=torch.float32)
def get_train_data(data, config):
state_input_size = config.state_encoder_input_size
derivative_input_size = config.derivative_encoder_input_size
target_input_size = config.target_encoder_input_size
label_size = config.label_size
vel_factor_size = config.vel_factor_dim
state_derivative_input = data[:, :, :state_input_size + derivative_input_size]
target_input = data[:, -1, :target_input_size]
target_input = np.expand_dims(target_input, 1).repeat(data.shape[1], axis=1)
train_x = np.concatenate((state_derivative_input, target_input), axis=-1)
vel_factor_seq = data[:, :, state_input_size + derivative_input_size:
state_input_size + derivative_input_size + vel_factor_size]
train_y = data[:, :, 0:label_size]
train_x_y = np.concatenate((train_x, vel_factor_seq, train_y), axis=-1)
return train_x_y
def divide_data(data, window, win_step):
divided_data = []
for i, unit in enumerate(data):
frame_num = len(unit)
index = 0
for start_frame in range(0, frame_num - window + 1, win_step):
end_frame = start_frame + window - 1
index += 1
divided_data.append(unit[start_frame:end_frame + 1])
return np.array(divided_data)
def get_random_root_pos_factor(time_factor):
random_factor = np.zeros(time_factor.shape)
seq_len = time_factor.shape[0]
delta = 1 / seq_len
random_scale = delta
last_value = 0.0
for i in range(seq_len):
if i == 0:
random_factor[i] = random.uniform(0.0, delta + random_scale)
elif i == seq_len - 1:
random_factor[i] = 1.0
else:
min_value = max(delta * (i + 1) - random_scale, last_value)
max_value = min(delta * (i + 1) + random_scale, delta * (i + 2))
random_factor[i] = random.uniform(min_value, max_value)
last_value = random_factor[i]
return random_factor
def get_time_label(win):
time_label = []
for i in range(1, win):
time_label.append(i / (win - 1))
return np.array(time_label)
def get_teacher_forcing_ratio(it, config):
if config.sampling_type == "teacher_forcing":
return 1.0
elif config.sampling_type == "schedule":
if config.schedule_sampling_decay == "exp":
scheduled_ratio = config.ss_exp_k ** it
elif config.schedule_sampling_decay == "sigmoid":
if it / config.ss_sigmoid_k > 700000:
scheduled_ratio = 0.0
else:
scheduled_ratio = config.ss_sigmoid_k / \
(config.ss_sigmoid_k + math.exp(it / config.ss_sigmoid_k))
else:
scheduled_ratio = config.ss_linear_k - config.ss_linear_c * it
scheduled_ratio = max(config.schedule_sampling_limit, scheduled_ratio)
return scheduled_ratio
else:
return 0.0
def test_schedule_sample(config):
max_it = 150000
ratio_list = []
for i in range(1, max_it): # [1, max_it - 1]
ratio = get_teacher_forcing_ratio(i, config)
ratio_list.append(ratio)
x = np.arange(1, max_it, 1)
plt.plot(x, ratio_list, color='green')
plt.show()
def train_one_iteration(model, rec_criterion, bone_criterion, vel_criterion, contact_criterion,
smooth_criterion, key_criterion, log_out, train_x, train_y, _noise, time_label,
vel_factor_seq, _mean, _std, optimizer, loss_dict, sample_ratio, config):
device = config.device
_train_x1 = train_x[..., :config.state_encoder_input_size].to(device)
_train_x2 = train_x[..., config.state_encoder_input_size:
config.state_encoder_input_size + config.derivative_encoder_input_size].to(device)
_train_x3 = train_x[..., -config.target_encoder_input_size:].to(device)
_train_y = train_y.to(device)
_trajectory = _train_x1[..., config.pos_dim:config.pos_dim + config.root_pos_dim]
_trajectory = torch.cat([_trajectory, _train_y[:, -1:, config.pos_dim:config.pos_dim + config.root_pos_dim]], dim=1)
true_trajectory = _trajectory.clone()
_vel_factor = vel_factor_seq.to(device)
now_batch_size = _train_y.shape[0]
root_positions = train_y[:, :, config.pos_dim:config.pos_dim + config.root_pos_dim]
time_label = time_label[np.newaxis, :, np.newaxis]
time_label = time_label.repeat(now_batch_size, axis=0)
_time_label = torch.tensor(time_label, dtype=torch.float32)
position_code = torch.cat((root_positions, _time_label), dim=-1)
_position_code = position_code.to(device)
model.init_hidden(now_batch_size, config.device)
seq_len = _train_y.shape[1]
predict_seq = torch.zeros(_train_y.shape).to(config.device)
use_ground_truth = True
ran = random.random()
if ran > sample_ratio:
use_ground_truth = False
for i in range(seq_len):
if i == 0 or use_ground_truth:
x1 = _train_x1[:, i:i + 1].clone()
x2 = _train_x2[:, i:i + 1].clone()
else:
x1 = predict_seq[:, i - 1:i, :config.state_encoder_input_size].clone()
x2 = predict_seq[:, i - 1:i, config.state_encoder_input_size:].clone()
_trajectory[:, i:i + 1, :] = predict_seq[:, i - 1:i,
config.pos_dim:config.pos_dim + config.root_pos_dim].clone()
x4 = torch.zeros([now_batch_size, config.trajectory_size, 3]).to(device)
x5 = torch.zeros([now_batch_size, config.velocity_control_size, config.vel_factor_dim]).to(device)
true_x4 = torch.zeros([now_batch_size, config.trajectory_size, 3]).to(device)
k = int(config.trajectory_size / 2)
temp = 0
for j in range(i - k, i + k + 1):
if j < 0:
true_x4[:, temp:temp + 1, :] = true_trajectory[:, :1, :]
x4[:, temp:temp + 1, :] = _trajectory[:, :1, :]
x5[:, temp:temp + 1, :] = _vel_factor[:, :1, :]
elif j > seq_len:
true_x4[:, temp:temp + 1, :] = true_trajectory[:, -1:, :]
x4[:, temp:temp + 1, :] = _trajectory[:, -1:, :]
x5[:, temp:temp + 1, :] = _vel_factor[:, -1:, :]
else:
true_x4[:, temp:temp + 1, :] = true_trajectory[:, j:j + 1, :]
x4[:, temp:temp + 1, :] = _trajectory[:, j:j + 1, :]
x5[:, temp:temp + 1, :] = _vel_factor[:, j:j + 1, :]
temp += 1
x3 = _train_x3[:, i:i + 1]
pos_code = _position_code[:, i:i + 1]
noise = _noise[i:i + 1]
pre_frame = model.forward(x1, x2, x3, x4, x5, pos_code, noise, true_x4)
predict_seq[:, i:i + 1, :] = pre_frame
optimizer.zero_grad()
rec_loss = rec_criterion(predict_seq, _train_y)
bone_loss = bone_criterion(predict_seq, _train_x1, _train_x2)
vel_cons_loss = vel_criterion(predict_seq, _train_x1, _train_x2, _vel_factor)
contact_loss = contact_criterion(predict_seq, _train_x1, _train_x2)
key_loss = key_criterion(predict_seq, _train_x1, _train_y)
smooth_loss = smooth_criterion(predict_seq, _train_x1, _train_y)
total_loss = rec_loss + bone_loss + vel_cons_loss + smooth_loss + key_loss + contact_loss * 2
total_loss.backward()
optimizer.step()
if log_out:
loss_dict["rec_loss"].append(rec_loss.item())
loss_dict["bone_loss"].append(bone_loss.item())
loss_dict["vel_cons_loss"].append(vel_cons_loss.item())
loss_dict["contact_loss"].append(contact_loss.item())
loss_dict["smooth_loss"].append(smooth_loss.item())
loss_dict["key_loss"].append(key_loss.item())
loss_dict["total_loss"].append(total_loss.item())
print("rec_loss:", rec_loss.detach().cpu().numpy(),
"bone_loss:", bone_loss.detach().cpu().numpy(),
"vel_cons_loss:", vel_cons_loss.detach().cpu().numpy(),
"contact_loss:", contact_loss.detach().cpu().numpy(),
"smooth_loss:", smooth_loss.detach().cpu().numpy(),
"key_loss:", key_loss.detach().cpu().numpy(),
"total_loss:", total_loss.detach().cpu().numpy())
def train_prediction(data_set, raw_data_info, parents, gt_bone_length, mean, std):
config = Config()
start_time = time.asctime(time.localtime(time.time()))
print("start_time:", start_time)
start = time.time()
device = config.device
print("train on", device, torch.cuda.is_available())
_mean = torch.tensor(mean, dtype=torch.float32).to(device)
_std = torch.tensor(std, dtype=torch.float32).to(device)
_gt_bone_length = torch.tensor(gt_bone_length, dtype=torch.float32).to(device)
model = Prediction(config).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate,
betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
rec_criterion = ReconstructionLoss(config).to(device)
bone_criterion = BoneLoss(_gt_bone_length, parents, _mean, _std, config).to(device)
vel_criterion = VelocityLoss(_mean, _std, config).to(device)
contact_criterion = ContactLoss(_mean, _std, config).to(device)
smooth_criterion = SmoothLoss(config).to(device)
key_criterion = KeyframeLoss(config).to(device)
model.train()
train_x_dim = config.state_encoder_input_size + config.derivative_encoder_input_size + \
config.target_encoder_input_size
train_y_dim = config.label_size
loss_dict = {"iteration": [], "rec_loss": [], "bone_loss": [], "vel_cons_loss": [], "smooth_loss": [],
"contact_loss": [],
"key_loss": [], "total_loss": []}
latest_info_file, latest_it = get_latest_weight_file(config.model_dir)
print("lateset_file:", latest_info_file)
if latest_info_file is not None:
checkpoint = torch.load(latest_info_file)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
loss_dict = load_dict(config.model_dir + 'loss_%07d' % latest_it)
print("Read the information of iteration %d successfully. \nContinue training..." % latest_it)
p_min = config.p_min
epoch = 0
it = 0
min_loss = 135.0
iteration_num = np.ones(config.p_max + 1) * -1
loss_pic_freq = config.loss_pic_freq
while True: # epoch
epoch += 1
p_max = config.p_min + epoch - 1
if p_max > config.p_max:
break
if epoch > 5 and epoch % 5 == 0:
p_min += 4
print("epoch:", epoch, p_min, p_max)
for win in range(p_min, p_max + 1):
if iteration_num[win] != -1 and it + iteration_num[win] < latest_it:
it += int(iteration_num[win])
continue
item = raw_data_info[win]
win_step, noise = item[0], item[1]
train_data = divide_data(data_set, win, win_step)
train_x_y = get_train_data(train_data, config)
print("train data shape:", train_data.shape, "train_x_y:", train_x_y.shape, " iteration:", it)
train_loader = DataLoader(DanceDataset(train_x_y), batch_size=config.batch_size)
iteration_num[win] = len(train_loader)
if it + iteration_num[win] < latest_it:
del train_loader
it += int(iteration_num[win])
continue
_noise = torch.tensor(noise, dtype=torch.float32).to(config.device)
time_label = get_time_label(win)
for i, _data in enumerate(train_loader): # batch
it = it + 1
sample_ratio = get_teacher_forcing_ratio(it, config)
if it <= latest_it:
continue
if it > config.max_iteration:
break
log_out = False
if it % config.log_freq == 0 or it == latest_it + 1:
print("Iteration: %08d/%08d, transition length: %d" % (it, config.max_iteration, _data.shape[1]))
log_out = True
loss_dict["iteration"].append(it)
train_x = _data[:, :-1, :train_x_dim]
vel_factor_seq = _data[..., train_x_dim:train_x_dim + config.vel_factor_dim]
train_y = _data[:, 1:, -train_y_dim:]
train_one_iteration(model, rec_criterion, bone_criterion, vel_criterion, contact_criterion,
smooth_criterion, key_criterion, log_out, train_x, train_y, _noise, time_label,
vel_factor_seq, _mean, _std, optimizer, loss_dict, sample_ratio, config)
del train_x
del vel_factor_seq
del train_y
cur_loss = loss_dict["total_loss"][len(loss_dict["total_loss"]) - 1]
if cur_loss < min_loss:
min_loss = cur_loss
save_model_loss_info(it, model, optimizer, loss_dict, config, min_loss)
elif it % config.save_freq == 0:
save_model_loss_info(it, model, optimizer, loss_dict, config, cur_loss)
if it % loss_pic_freq == 0:
save_loss_pic(it, loss_dict, config)
del _noise
del time_label
del train_loader
save_model_loss_info(it, model, optimizer, loss_dict, config, 0.0)
save_loss_pic(it, loss_dict, config)
end_time = time.asctime(time.localtime(time.time()))
print("\n------------------------------end------------------------------")
print("iteration:", it)
print("start_time:", start_time, "end_time:", end_time)
end = time.time()
print('Running time: %f Minutes = %f Hours' % ((end - start) / 60, (end - start) / 60 / 60))
def test_one_interval(model, data, target, time_factor, vel_factor, config):
now_batch_size = data.shape[0]
seq_len = data.shape[1]
model.init_hidden(now_batch_size, config.device)
init_data = data[:, :1]
noise = torch.tensor(np.zeros([now_batch_size, 1, config.lstm1_input_size]), dtype=torch.float32).to(config.device)
x3 = target.unsqueeze(dim=1)
trajectory = time_factor.clone()
true_trajectory = time_factor.clone()
time_label = get_time_label(time_factor.shape[1])
time_label = time_label[np.newaxis, :, np.newaxis].repeat(now_batch_size, axis=0)
time_label = torch.tensor(time_label, dtype=torch.float32).to(config.device)
time_factor = time_factor[:, 1:]
time_factor = torch.cat((time_factor, time_label), dim=-1)
pred_seq = np.zeros((now_batch_size, seq_len, config.label_size))
for time_step in range(seq_len):
x1 = init_data[..., :config.state_encoder_input_size]
x2 = init_data[..., config.state_encoder_input_size:]
t = time_factor[:, time_step:time_step + 1, :]
if time_step != 0:
trajectory[:, time_step:time_step + 1, :] = init_data[...,
config.pos_dim:config.pos_dim + config.root_pos_dim]
x4 = torch.zeros([now_batch_size, config.trajectory_size, 3]).to(config.device)
x5 = torch.zeros([now_batch_size, config.velocity_control_size, config.vel_factor_dim]).to(config.device)
true_x4 = torch.zeros([now_batch_size, config.trajectory_size, 3]).to(config.device)
k = int(config.trajectory_size / 2)
temp = 0
for j in range(time_step - k, time_step + k + 1):
if j < 0:
true_x4[:, temp:temp + 1, :] = true_trajectory[:, :1, :]
x4[:, temp:temp + 1, :] = trajectory[:, :1, :]
x5[:, temp:temp + 1, :] = vel_factor[:, :1, :]
elif j >= trajectory.shape[1]:
true_x4[:, temp:temp + 1, :] = true_trajectory[:, -1:, :]
x4[:, temp:temp + 1, :] = trajectory[:, -1:, :]
x5[:, temp:temp + 1, :] = vel_factor[:, -1:, :]
else:
true_x4[:, temp:temp + 1, :] = true_trajectory[:, j:j + 1, :]
x4[:, temp:temp + 1, :] = trajectory[:, j:j + 1, :]
x5[:, temp:temp + 1, :] = vel_factor[:, j:j + 1, :]
temp += 1
init_data = model.forward(x1, x2, x3, x4, x5, t, noise, true_x4)
pred_seq[:, time_step:time_step + 1] = init_data.cpu().detach().numpy()
return pred_seq
def test_prediction(mask, time_factor, vel_factor, test_data, target, model_path):
config = Config()
device = config.device
model = Prediction(config).to(device)
latest_info_file, latest_it = get_latest_weight_file(model_path)
if latest_info_file:
print("Load latest file", latest_info_file)
checkpoint = torch.load(latest_info_file)
model.load_state_dict(checkpoint['model'])
else:
print("Error: No model parameters file in", model_path)
exit(-1)
model.eval()
batch_size = test_data.shape[0]
seq_len = len(mask)
last = 0
seq_index = 0
last_frame = []
test_data = test_data[..., :-config.vel_factor_dim]
predict_seq = np.zeros((batch_size, seq_len, config.label_size))
for i in range(1, len(mask)):
if mask[i] == 1:
_time_in = torch.tensor(time_factor[:, last:i + 1], dtype=torch.float32).to(device)
_vel_factor = torch.tensor(vel_factor[:, last:i + 1], dtype=torch.float32).to(device)
data_in = test_data[:, last:i]
if last != 0:
data_in[:, 0, config.target_encoder_input_size:] = last_frame[:, config.target_encoder_input_size:]
predict_seq[:, last, :] = data_in[:, 0]
_data_in = torch.tensor(data_in, dtype=torch.float32).to(device)
_target = torch.tensor(target[:, seq_index], dtype=torch.float32).to(device)
pred_seq = test_one_interval(model, _data_in, _target, _time_in, _vel_factor, config)
predict_seq[:, i + 1 - pred_seq.shape[1]:i] = pred_seq[:, :-1]
last_frame = pred_seq[:, -1]
last = i
seq_index += 1
last_pos = test_data[:, -1]
last_pos[config.target_encoder_input_size:] = last_frame[config.target_encoder_input_size:]
predict_seq[:, -1] = last_pos
return predict_seq