-
Notifications
You must be signed in to change notification settings - Fork 8
/
vocoder.py
161 lines (136 loc) · 6.35 KB
/
vocoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import os
from ossaudiodev import SNDCTL_SEQ_RESETSAMPLES
from trainer import Trainer, TrainerArgs
from TTS.tts.configs.shared_configs import BaseAudioConfig
from TTS.utils.audio import AudioProcessor
from TTS.vocoder.configs import HifiganConfig
from TTS.vocoder.datasets.preprocess import load_wav_data
from TTS.vocoder.models.gan import GAN
from utils import str2bool
def formatter_indictts(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs-22k", cols[0] + ".wav")
text = cols[1].strip()
speaker_name = cols[2].strip()
#items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
items.append(wav_file)
return items
def get_arg_parser():
parser = argparse.ArgumentParser(description='Training and evaluation script for vocoder model ')
# dataset parameters
parser.add_argument('--dataset_name', default='indictts', choices=['ljspeech', 'indictts', 'googletts'])
parser.add_argument('--language', default='ta', choices=['en', 'ta', 'te', 'kn', 'ml', 'hi', 'mr', 'bn', 'gu', 'or', 'as', 'raj', 'mni' 'all'])
parser.add_argument('--dataset_path', default='../../datasets/{}/{}', type=str)
parser.add_argument('--speaker', default='all') # eg. all, female, male
parser.add_argument('--eval_split_size', default=10, type=int)
# model parameters
parser.add_argument('--model', default='hifigan', choices=['hifigan'])
parser.add_argument('--seq_len', default=8192, type=int)
parser.add_argument('--pad_short', default=2000, type=int)
parser.add_argument('--use_noise_augment', default=True, type=str2bool)
# training parameters
parser.add_argument('--epochs', default=1000, type=int)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--batch_size_eval', default=8, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--num_workers_eval', default=8, type=int)
parser.add_argument('--lr_gen', default=0.0001, type=float)
parser.add_argument('--lr_disc', default=0.0001, type=float)
parser.add_argument('--mixed_precision', default=False, type=str2bool)
# training - logging parameters
parser.add_argument('--run_description', default='None', type=str)
parser.add_argument('--output_path', default='output_vocoder', type=str)
parser.add_argument('--test_delay_epochs', default=0, type=int)
parser.add_argument('--print_step', default=100, type=int)
parser.add_argument('--plot_step', default=100, type=int)
parser.add_argument('--save_step', default=10000, type=int)
parser.add_argument('--save_n_checkpoints', default=1, type=int)
parser.add_argument('--save_best_after', default=10000, type=int)
parser.add_argument('--target_loss', default='loss_1')
parser.add_argument('--print_eval', default=False, type=str2bool)
parser.add_argument('--run_eval', default=True, type=str2bool)
# distributed training parameters
parser.add_argument('--port', default=54321, type=int)
parser.add_argument('--continue_path', default="", type=str)
parser.add_argument('--restore_path', default="", type=str)
parser.add_argument('--group_id', default="", type=str)
parser.add_argument('--use_ddp', default=True, type=bool)
parser.add_argument('--rank', default=0, type=int)
#parser.add_argument('--gpus', default='0', type=str)
return parser
def main(args):
config = HifiganConfig(
audio=BaseAudioConfig(
trim_db=60.0,
mel_fmin=0.0,
mel_fmax=8000,
log_func="np.log",
spec_gain=1.0,
signal_norm=False,
),
batch_size=args.batch_size,
eval_batch_size=args.batch_size_eval,
num_loader_workers=args.num_workers,
num_eval_loader_workers=args.num_workers_eval,
run_eval=args.run_eval,
test_delay_epochs=args.test_delay_epochs,
save_step=args.save_step,
save_best_after=args.save_best_after,
save_n_checkpoints=args.save_n_checkpoints,
target_loss=args.target_loss,
epochs=args.epochs,
seq_len=args.seq_len,
pad_short=args.pad_short,
use_noise_augment=args.use_noise_augment,
eval_split_size=args.eval_split_size,
print_step=args.print_step,
plot_step=args.plot_step,
print_eval=args.print_eval,
mixed_precision=args.mixed_precision,
lr_gen=args.lr_gen,
lr_disc=args.lr_disc,
data_path=args.dataset_path.format(args.language),
#output_path=f'{args.output_path}/{args.language}_{args.model}',
output_path=args.output_path,
distributed_url=f'tcp://localhost:{args.port}',
dashboard_logger='wandb',
project_name='vocoder',
run_name=f'{args.language}_{args.model}_{args.speaker}',
run_description=args.run_description,
wandb_entity='gokulkarthik'
)
ap = AudioProcessor(**config.audio.to_dict())
if args.speaker == 'all':
meta_file_train="metadata_train.csv"
meta_file_val="metadata_test.csv"
else:
meta_file_train=f"metadata_train_{args.speaker}.csv"
meta_file_val=f"metadata_test_{args.speaker}.csv"
train_samples = formatter_indictts(config.data_path, meta_file_train)
eval_samples = formatter_indictts(config.data_path, meta_file_val)
model = GAN(config, ap)
trainer = Trainer(
TrainerArgs(continue_path=args.continue_path, restore_path=args.restore_path, use_ddp=args.use_ddp, rank=args.rank, group_id=args.group_id),
config,
config.output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples
)
trainer.fit()
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
parser = get_arg_parser()
args = parser.parse_args()
args.dataset_path = args.dataset_path.format(args.dataset_name, args.language)
if args.dataset_name == 'googletts':
args.dataset_path += '/processed'
#args.dataset_path += '/wavs-22k'
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
main(args)