-
Notifications
You must be signed in to change notification settings - Fork 17.7k
/
rand.go
547 lines (480 loc) · 16.8 KB
/
rand.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rand implements pseudo-random number generators suitable for tasks
// such as simulation, but it should not be used for security-sensitive work.
//
// Random numbers are generated by a [Source], usually wrapped in a [Rand].
// Both types should be used by a single goroutine at a time: sharing among
// multiple goroutines requires some kind of synchronization.
//
// Top-level functions, such as [Float64] and [Int],
// are safe for concurrent use by multiple goroutines.
//
// This package's outputs might be easily predictable regardless of how it's
// seeded. For random numbers suitable for security-sensitive work, see the
// crypto/rand package.
package rand
import (
"internal/godebug"
"sync"
"sync/atomic"
_ "unsafe" // for go:linkname
)
// A Source represents a source of uniformly-distributed
// pseudo-random int64 values in the range [0, 1<<63).
//
// A Source is not safe for concurrent use by multiple goroutines.
type Source interface {
Int63() int64
Seed(seed int64)
}
// A Source64 is a Source that can also generate
// uniformly-distributed pseudo-random uint64 values in
// the range [0, 1<<64) directly.
// If a Rand r's underlying Source s implements Source64,
// then r.Uint64 returns the result of one call to s.Uint64
// instead of making two calls to s.Int63.
type Source64 interface {
Source
Uint64() uint64
}
// NewSource returns a new pseudo-random Source seeded with the given value.
// Unlike the default Source used by top-level functions, this source is not
// safe for concurrent use by multiple goroutines.
// The returned Source implements Source64.
func NewSource(seed int64) Source {
return newSource(seed)
}
func newSource(seed int64) *rngSource {
var rng rngSource
rng.Seed(seed)
return &rng
}
// A Rand is a source of random numbers.
type Rand struct {
src Source
s64 Source64 // non-nil if src is source64
// readVal contains remainder of 63-bit integer used for bytes
// generation during most recent Read call.
// It is saved so next Read call can start where the previous
// one finished.
readVal int64
// readPos indicates the number of low-order bytes of readVal
// that are still valid.
readPos int8
}
// New returns a new Rand that uses random values from src
// to generate other random values.
func New(src Source) *Rand {
s64, _ := src.(Source64)
return &Rand{src: src, s64: s64}
}
// Seed uses the provided seed value to initialize the generator to a deterministic state.
// Seed should not be called concurrently with any other Rand method.
func (r *Rand) Seed(seed int64) {
if lk, ok := r.src.(*lockedSource); ok {
lk.seedPos(seed, &r.readPos)
return
}
r.src.Seed(seed)
r.readPos = 0
}
// Int63 returns a non-negative pseudo-random 63-bit integer as an int64.
func (r *Rand) Int63() int64 { return r.src.Int63() }
// Uint32 returns a pseudo-random 32-bit value as a uint32.
func (r *Rand) Uint32() uint32 { return uint32(r.Int63() >> 31) }
// Uint64 returns a pseudo-random 64-bit value as a uint64.
func (r *Rand) Uint64() uint64 {
if r.s64 != nil {
return r.s64.Uint64()
}
return uint64(r.Int63())>>31 | uint64(r.Int63())<<32
}
// Int31 returns a non-negative pseudo-random 31-bit integer as an int32.
func (r *Rand) Int31() int32 { return int32(r.Int63() >> 32) }
// Int returns a non-negative pseudo-random int.
func (r *Rand) Int() int {
u := uint(r.Int63())
return int(u << 1 >> 1) // clear sign bit if int == int32
}
// Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func (r *Rand) Int63n(n int64) int64 {
if n <= 0 {
panic("invalid argument to Int63n")
}
if n&(n-1) == 0 { // n is power of two, can mask
return r.Int63() & (n - 1)
}
max := int64((1 << 63) - 1 - (1<<63)%uint64(n))
v := r.Int63()
for v > max {
v = r.Int63()
}
return v % n
}
// Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func (r *Rand) Int31n(n int32) int32 {
if n <= 0 {
panic("invalid argument to Int31n")
}
if n&(n-1) == 0 { // n is power of two, can mask
return r.Int31() & (n - 1)
}
max := int32((1 << 31) - 1 - (1<<31)%uint32(n))
v := r.Int31()
for v > max {
v = r.Int31()
}
return v % n
}
// int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).
// n must be > 0, but int31n does not check this; the caller must ensure it.
// int31n exists because Int31n is inefficient, but Go 1 compatibility
// requires that the stream of values produced by math/rand remain unchanged.
// int31n can thus only be used internally, by newly introduced APIs.
//
// For implementation details, see:
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction
// https://lemire.me/blog/2016/06/30/fast-random-shuffling
func (r *Rand) int31n(n int32) int32 {
v := r.Uint32()
prod := uint64(v) * uint64(n)
low := uint32(prod)
if low < uint32(n) {
thresh := uint32(-n) % uint32(n)
for low < thresh {
v = r.Uint32()
prod = uint64(v) * uint64(n)
low = uint32(prod)
}
}
return int32(prod >> 32)
}
// Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func (r *Rand) Intn(n int) int {
if n <= 0 {
panic("invalid argument to Intn")
}
if n <= 1<<31-1 {
return int(r.Int31n(int32(n)))
}
return int(r.Int63n(int64(n)))
}
// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0).
func (r *Rand) Float64() float64 {
// A clearer, simpler implementation would be:
// return float64(r.Int63n(1<<53)) / (1<<53)
// However, Go 1 shipped with
// return float64(r.Int63()) / (1 << 63)
// and we want to preserve that value stream.
//
// There is one bug in the value stream: r.Int63() may be so close
// to 1<<63 that the division rounds up to 1.0, and we've guaranteed
// that the result is always less than 1.0.
//
// We tried to fix this by mapping 1.0 back to 0.0, but since float64
// values near 0 are much denser than near 1, mapping 1 to 0 caused
// a theoretically significant overshoot in the probability of returning 0.
// Instead of that, if we round up to 1, just try again.
// Getting 1 only happens 1/2⁵³ of the time, so most clients
// will not observe it anyway.
again:
f := float64(r.Int63()) / (1 << 63)
if f == 1 {
goto again // resample; this branch is taken O(never)
}
return f
}
// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0).
func (r *Rand) Float32() float32 {
// Same rationale as in Float64: we want to preserve the Go 1 value
// stream except we want to fix it not to return 1.0
// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).
again:
f := float32(r.Float64())
if f == 1 {
goto again // resample; this branch is taken O(very rarely)
}
return f
}
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
// in the half-open interval [0,n).
func (r *Rand) Perm(n int) []int {
m := make([]int, n)
// In the following loop, the iteration when i=0 always swaps m[0] with m[0].
// A change to remove this useless iteration is to assign 1 to i in the init
// statement. But Perm also effects r. Making this change will affect
// the final state of r. So this change can't be made for compatibility
// reasons for Go 1.
for i := 0; i < n; i++ {
j := r.Intn(i + 1)
m[i] = m[j]
m[j] = i
}
return m
}
// Shuffle pseudo-randomizes the order of elements.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func (r *Rand) Shuffle(n int, swap func(i, j int)) {
if n < 0 {
panic("invalid argument to Shuffle")
}
// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
// Shuffle really ought not be called with n that doesn't fit in 32 bits.
// Not only will it take a very long time, but with 2³¹! possible permutations,
// there's no way that any PRNG can have a big enough internal state to
// generate even a minuscule percentage of the possible permutations.
// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
i := n - 1
for ; i > 1<<31-1-1; i-- {
j := int(r.Int63n(int64(i + 1)))
swap(i, j)
}
for ; i > 0; i-- {
j := int(r.int31n(int32(i + 1)))
swap(i, j)
}
}
// Read generates len(p) random bytes and writes them into p. It
// always returns len(p) and a nil error.
// Read should not be called concurrently with any other Rand method.
func (r *Rand) Read(p []byte) (n int, err error) {
switch src := r.src.(type) {
case *lockedSource:
return src.read(p, &r.readVal, &r.readPos)
case *fastSource:
return src.read(p, &r.readVal, &r.readPos)
}
return read(p, r.src, &r.readVal, &r.readPos)
}
func read(p []byte, src Source, readVal *int64, readPos *int8) (n int, err error) {
pos := *readPos
val := *readVal
rng, _ := src.(*rngSource)
for n = 0; n < len(p); n++ {
if pos == 0 {
if rng != nil {
val = rng.Int63()
} else {
val = src.Int63()
}
pos = 7
}
p[n] = byte(val)
val >>= 8
pos--
}
*readPos = pos
*readVal = val
return
}
/*
* Top-level convenience functions
*/
// globalRandGenerator is the source of random numbers for the top-level
// convenience functions. When possible it uses the runtime fastrand64
// function to avoid locking. This is not possible if the user called Seed,
// either explicitly or implicitly via GODEBUG=randautoseed=0.
var globalRandGenerator atomic.Pointer[Rand]
var randautoseed = godebug.New("randautoseed")
// globalRand returns the generator to use for the top-level convenience
// functions.
func globalRand() *Rand {
if r := globalRandGenerator.Load(); r != nil {
return r
}
// This is the first call. Initialize based on GODEBUG.
var r *Rand
if randautoseed.Value() == "0" {
randautoseed.IncNonDefault()
r = New(new(lockedSource))
r.Seed(1)
} else {
r = &Rand{
src: &fastSource{},
s64: &fastSource{},
}
}
if !globalRandGenerator.CompareAndSwap(nil, r) {
// Two different goroutines called some top-level
// function at the same time. While the results in
// that case are unpredictable, if we just use r here,
// and we are using a seed, we will most likely return
// the same value for both calls. That doesn't seem ideal.
// Just use the first one to get in.
return globalRandGenerator.Load()
}
return r
}
//go:linkname fastrand64
func fastrand64() uint64
// fastSource is an implementation of Source64 that uses the runtime
// fastrand functions.
type fastSource struct {
// The mutex is used to avoid race conditions in Read.
mu sync.Mutex
}
func (*fastSource) Int63() int64 {
return int64(fastrand64() & rngMask)
}
func (*fastSource) Seed(int64) {
panic("internal error: call to fastSource.Seed")
}
func (*fastSource) Uint64() uint64 {
return fastrand64()
}
func (fs *fastSource) read(p []byte, readVal *int64, readPos *int8) (n int, err error) {
fs.mu.Lock()
n, err = read(p, fs, readVal, readPos)
fs.mu.Unlock()
return
}
// Seed uses the provided seed value to initialize the default Source to a
// deterministic state. Seed values that have the same remainder when
// divided by 2³¹-1 generate the same pseudo-random sequence.
// Seed, unlike the Rand.Seed method, is safe for concurrent use.
//
// If Seed is not called, the generator is seeded randomly at program startup.
//
// Prior to Go 1.20, the generator was seeded like Seed(1) at program startup.
// To force the old behavior, call Seed(1) at program startup.
// Alternately, set GODEBUG=randautoseed=0 in the environment
// before making any calls to functions in this package.
//
// Deprecated: As of Go 1.20 there is no reason to call Seed with
// a random value. Programs that call Seed with a known value to get
// a specific sequence of results should use New(NewSource(seed)) to
// obtain a local random generator.
func Seed(seed int64) {
orig := globalRandGenerator.Load()
// If we are already using a lockedSource, we can just re-seed it.
if orig != nil {
if _, ok := orig.src.(*lockedSource); ok {
orig.Seed(seed)
return
}
}
// Otherwise either
// 1) orig == nil, which is the normal case when Seed is the first
// top-level function to be called, or
// 2) orig is already a fastSource, in which case we need to change
// to a lockedSource.
// Either way we do the same thing.
r := New(new(lockedSource))
r.Seed(seed)
if !globalRandGenerator.CompareAndSwap(orig, r) {
// Something changed underfoot. Retry to be safe.
Seed(seed)
}
}
// Int63 returns a non-negative pseudo-random 63-bit integer as an int64
// from the default Source.
func Int63() int64 { return globalRand().Int63() }
// Uint32 returns a pseudo-random 32-bit value as a uint32
// from the default Source.
func Uint32() uint32 { return globalRand().Uint32() }
// Uint64 returns a pseudo-random 64-bit value as a uint64
// from the default Source.
func Uint64() uint64 { return globalRand().Uint64() }
// Int31 returns a non-negative pseudo-random 31-bit integer as an int32
// from the default Source.
func Int31() int32 { return globalRand().Int31() }
// Int returns a non-negative pseudo-random int from the default Source.
func Int() int { return globalRand().Int() }
// Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func Int63n(n int64) int64 { return globalRand().Int63n(n) }
// Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func Int31n(n int32) int32 { return globalRand().Int31n(n) }
// Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func Intn(n int) int { return globalRand().Intn(n) }
// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0)
// from the default Source.
func Float64() float64 { return globalRand().Float64() }
// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0)
// from the default Source.
func Float32() float32 { return globalRand().Float32() }
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
// in the half-open interval [0,n) from the default Source.
func Perm(n int) []int { return globalRand().Perm(n) }
// Shuffle pseudo-randomizes the order of elements using the default Source.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func Shuffle(n int, swap func(i, j int)) { globalRand().Shuffle(n, swap) }
// Read generates len(p) random bytes from the default Source and
// writes them into p. It always returns len(p) and a nil error.
// Read, unlike the Rand.Read method, is safe for concurrent use.
//
// Deprecated: For almost all use cases, crypto/rand.Read is more appropriate.
func Read(p []byte) (n int, err error) { return globalRand().Read(p) }
// NormFloat64 returns a normally distributed float64 in the range
// [-math.MaxFloat64, +math.MaxFloat64] with
// standard normal distribution (mean = 0, stddev = 1)
// from the default Source.
// To produce a different normal distribution, callers can
// adjust the output using:
//
// sample = NormFloat64() * desiredStdDev + desiredMean
func NormFloat64() float64 { return globalRand().NormFloat64() }
// ExpFloat64 returns an exponentially distributed float64 in the range
// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
// To produce a distribution with a different rate parameter,
// callers can adjust the output using:
//
// sample = ExpFloat64() / desiredRateParameter
func ExpFloat64() float64 { return globalRand().ExpFloat64() }
type lockedSource struct {
lk sync.Mutex
s *rngSource
}
func (r *lockedSource) Int63() (n int64) {
r.lk.Lock()
n = r.s.Int63()
r.lk.Unlock()
return
}
func (r *lockedSource) Uint64() (n uint64) {
r.lk.Lock()
n = r.s.Uint64()
r.lk.Unlock()
return
}
func (r *lockedSource) Seed(seed int64) {
r.lk.Lock()
r.seed(seed)
r.lk.Unlock()
}
// seedPos implements Seed for a lockedSource without a race condition.
func (r *lockedSource) seedPos(seed int64, readPos *int8) {
r.lk.Lock()
r.seed(seed)
*readPos = 0
r.lk.Unlock()
}
// seed seeds the underlying source.
// The caller must have locked r.lk.
func (r *lockedSource) seed(seed int64) {
if r.s == nil {
r.s = newSource(seed)
} else {
r.s.Seed(seed)
}
}
// read implements Read for a lockedSource without a race condition.
func (r *lockedSource) read(p []byte, readVal *int64, readPos *int8) (n int, err error) {
r.lk.Lock()
n, err = read(p, r.s, readVal, readPos)
r.lk.Unlock()
return
}