-
Notifications
You must be signed in to change notification settings - Fork 159
/
segmentation_and_tracking_quality.py
383 lines (329 loc) · 15.6 KB
/
segmentation_and_tracking_quality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# coding=utf-8
# Copyright 2023 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Numpy Implementation of the Segmentation and Tracking Quality (STQ) metric.
This implementation is designed to work stand-alone. Please feel free to copy
this file and the corresponding unit-test to your project.
"""
import collections
from typing import Mapping, MutableMapping, Optional, Sequence, Text, Any
import warnings
import numpy as np
_EPSILON = 1e-15
def _check_weights(unique_weight_list: Sequence[float]):
if not set(unique_weight_list).issubset({0.5, 1.0}):
warnings.warn(
'Potential performance degration as the code is not optimized'
' when weights has too many different elements.'
)
def _update_dict_stats(
stat_dict: MutableMapping[int, np.ndarray],
id_array: np.ndarray,
weights: Optional[np.ndarray] = None,
):
"""Updates a given dict with corresponding counts."""
if weights is None:
unique_weight_list = [1.0]
else:
unique_weight_list = np.unique(weights).tolist()
_check_weights(unique_weight_list)
# Iterate through the unique weight values, and weighted-average the counts.
# Example usage: lower the weights in the region covered by multiple camera in
# panoramic video panoptic segmentation (PVPS).
for weight in unique_weight_list:
if weights is None:
ids, counts = np.unique(id_array, return_counts=True)
else:
ids, counts = np.unique(id_array[weights == weight], return_counts=True)
for idx, count in zip(ids, counts.astype(np.float32)):
if idx in stat_dict:
stat_dict[idx] += count * weight
else:
stat_dict[idx] = count * weight
class STQuality(object):
"""Metric class for the Segmentation and Tracking Quality (STQ).
Please see the following paper for more details about the metric:
"STEP: Segmenting and Tracking Every Pixel", Weber et al., arXiv:2102.11859,
2021.
The metric computes the geometric mean of two terms.
- Association Quality: This term measures the quality of the track ID
assignment for `thing` classes. It is formulated as a weighted IoU
measure.
- Segmentation Quality: This term measures the semantic segmentation quality.
The standard class IoU measure is used for this.
Example usage:
stq_obj = segmentation_tracking_quality.STQuality(num_classes, things_list,
ignore_label, label_bit_shift, offset)
stq_obj.update_state(y_true_1, y_pred_1)
stq_obj.update_state(y_true_2, y_pred_2)
...
result = stq_obj.result()
"""
def __init__(self, num_classes: int, things_list: Sequence[int],
ignore_label: int, label_bit_shift: int, offset: int):
"""Initialization of the STQ metric.
Args:
num_classes: Number of classes in the dataset as an integer.
things_list: A sequence of class ids that belong to `things`.
ignore_label: The class id to be ignored in evaluation as an integer or
integer tensor.
label_bit_shift: The number of bits the class label is shifted as an
integer -> (class_label << bits) + trackingID
offset: The maximum number of unique labels as an integer or integer
tensor.
"""
self._num_classes = num_classes
self._ignore_label = ignore_label
self._things_list = things_list
self._label_bit_shift = label_bit_shift
self._bit_mask = (2**label_bit_shift) - 1
if ignore_label >= num_classes:
self._confusion_matrix_size = num_classes + 1
self._include_indices = np.arange(self._num_classes)
else:
self._confusion_matrix_size = num_classes
self._include_indices = np.array(
[i for i in range(num_classes) if i != self._ignore_label])
self._iou_confusion_matrix_per_sequence = collections.OrderedDict()
self._predictions = collections.OrderedDict()
self._ground_truth = collections.OrderedDict()
self._intersections = collections.OrderedDict()
self._sequence_length = collections.OrderedDict()
self._offset = offset
lower_bound = num_classes << self._label_bit_shift
if offset < lower_bound:
raise ValueError('The provided offset %d is too small. No guarantess '
'about the correctness of the results can be made. '
'Please choose an offset that is higher than num_classes'
' * max_instances_per_category = %d' % lower_bound)
def get_semantic(self, y: np.ndarray) -> np.ndarray:
"""Returns the semantic class from a panoptic label map."""
return y >> self._label_bit_shift
def _get_or_update_confusion_matrix(
self,
y_true: np.ndarray,
y_pred: np.ndarray,
weights: Optional[np.ndarray] = None,
confusion_matrix: Optional[np.ndarray] = None):
"""Updates or creates the confusion matrix."""
if confusion_matrix is None:
confusion_matrix = np.zeros(
(self._confusion_matrix_size, self._confusion_matrix_size),
dtype=np.float64)
if weights is None:
unique_weight_list = [1.0]
else:
weights = np.reshape(weights, [-1])
unique_weight_list = np.unique(weights).tolist()
_check_weights(unique_weight_list)
idxs = (np.reshape(y_true, [-1]) << self._label_bit_shift) + np.reshape(
y_pred, [-1])
for weight in unique_weight_list:
idxs_masked = idxs if weights is None else idxs[weights == weight]
unique_idxs, counts = np.unique(idxs_masked, return_counts=True)
confusion_matrix[self.get_semantic(unique_idxs), unique_idxs &
self._bit_mask] += counts.astype(np.float64) * weight
return confusion_matrix
def update_state(self,
y_true: np.ndarray,
y_pred: np.ndarray,
sequence_id=0,
weights: Optional[np.ndarray] = None):
"""Accumulates the segmentation and tracking quality statistics.
IMPORTANT: When encoding the parameters y_true and y_pred, please be aware
that the `+` operator binds higher than the label shift `<<` operator.
Args:
y_true: The ground-truth panoptic label map for a particular video frame
(defined as (semantic_map << label_bit_shift) + instance_map).
y_pred: The predicted panoptic label map for a particular video frame
(defined as (semantic_map << label_bit_shift) + instance_map).
sequence_id: The optional ID of the sequence the frames belong to. When no
sequence is given, all frames are considered to belong to the same
sequence (default: 0).
weights: The optional weights for each pixel with the same shape of
`y_true`. Defaults to using the same weight for every pixel.
"""
y_true = y_true.astype(np.int64)
y_pred = y_pred.astype(np.int64)
if weights is not None:
weights = weights.reshape(y_true.shape)
semantic_label = self.get_semantic(y_true)
semantic_prediction = self.get_semantic(y_pred)
# Check if the ignore value is outside the range [0, num_classes]. If yes,
# map `_ignore_label` to `_num_classes`, so it can be used to create the
# confusion matrix.
if self._ignore_label > self._num_classes:
semantic_label = np.where(semantic_label != self._ignore_label,
semantic_label, self._num_classes)
semantic_prediction = np.where(semantic_prediction != self._ignore_label,
semantic_prediction, self._num_classes)
if sequence_id in self._iou_confusion_matrix_per_sequence:
self._iou_confusion_matrix_per_sequence[
sequence_id] = self._get_or_update_confusion_matrix(
semantic_label, semantic_prediction, weights,
self._iou_confusion_matrix_per_sequence[sequence_id])
self._sequence_length[sequence_id] += 1
else:
self._iou_confusion_matrix_per_sequence[
sequence_id] = self._get_or_update_confusion_matrix(
semantic_label, semantic_prediction, weights, None)
self._predictions[sequence_id] = {}
self._ground_truth[sequence_id] = {}
self._intersections[sequence_id] = {}
self._sequence_length[sequence_id] = 1
instance_label = y_true & self._bit_mask # 0xFFFF == 2 ^ 16 - 1
label_mask = np.zeros_like(semantic_label, dtype=bool)
prediction_mask = np.zeros_like(semantic_prediction, dtype=bool)
for things_class_id in self._things_list:
label_mask = np.logical_or(label_mask, semantic_label == things_class_id)
prediction_mask = np.logical_or(prediction_mask,
semantic_prediction == things_class_id)
# Select the `crowd` region of the current class. This region is encoded
# instance id `0`.
is_crowd = np.logical_and(instance_label == 0, label_mask)
# Select the non-crowd region of the corresponding class as the `crowd`
# region is ignored for the tracking term.
label_mask = np.logical_and(label_mask, np.logical_not(is_crowd))
# Do not punish id assignment for regions that are annotated as `crowd` in
# the ground-truth.
prediction_mask = np.logical_and(prediction_mask, np.logical_not(is_crowd))
seq_preds = self._predictions[sequence_id]
seq_gts = self._ground_truth[sequence_id]
seq_intersects = self._intersections[sequence_id]
# Compute and update areas of ground-truth, predictions and intersections.
_update_dict_stats(
seq_preds, y_pred[prediction_mask],
weights[prediction_mask] if weights is not None else None)
_update_dict_stats(seq_gts, y_true[label_mask],
weights[label_mask] if weights is not None else None)
non_crowd_intersection = np.logical_and(label_mask, prediction_mask)
intersection_ids = (y_true[non_crowd_intersection] * self._offset +
y_pred[non_crowd_intersection])
_update_dict_stats(
seq_intersects, intersection_ids,
weights[non_crowd_intersection] if weights is not None else None)
def merge_state(self, metrics: Sequence['STQuality']):
"""Merges the results of multiple STQuality metrics.
This can be used to distribute metric computation for multiple sequences on
multiple instances, by computing metrics on each sequence separately, and
then merging the metrics with this function.
Note that only metrics with unique sequences are supported. Passing in
metrics with common instances is not supported.
Args:
metrics: A sequence of STQuality objects with unique sequences.
Raises:
ValueError: If a sequence is re-used between different metrics, or is
already in this metric.
"""
# pylint: disable=protected-access
for metric in metrics:
for sequence in metric._ground_truth.keys():
if sequence in self._ground_truth:
raise ValueError('Tried to merge metrics with duplicate sequences.')
self._ground_truth[sequence] = metric._ground_truth[sequence]
self._predictions[sequence] = metric._predictions[sequence]
self._intersections[sequence] = metric._intersections[sequence]
self._iou_confusion_matrix_per_sequence[sequence] = (
metric._iou_confusion_matrix_per_sequence[sequence])
self._sequence_length[sequence] = metric._sequence_length[sequence]
# pylint: enable=protected-access
def result(self) -> Mapping[Text, Any]:
"""Computes the segmentation and tracking quality.
Returns:
A dictionary containing:
- 'STQ': The total STQ score.
- 'AQ': The total association quality (AQ) score.
- 'IoU': The total mean IoU.
- 'STQ_per_seq': A list of the STQ score per sequence.
- 'AQ_per_seq': A list of the AQ score per sequence.
- 'IoU_per_seq': A list of mean IoU per sequence.
- 'Id_per_seq': A list of string-type sequence Ids to map list index to
sequence.
- 'Length_per_seq': A list of the length of each sequence.
"""
# Compute association quality (AQ)
num_tubes_per_seq = [0] * len(self._ground_truth)
aq_per_seq = [0] * len(self._ground_truth)
iou_per_seq = [0] * len(self._ground_truth)
id_per_seq = [''] * len(self._ground_truth)
for index, sequence_id in enumerate(self._ground_truth):
outer_sum = 0.0
predictions = self._predictions[sequence_id]
ground_truth = self._ground_truth[sequence_id]
intersections = self._intersections[sequence_id]
num_tubes_per_seq[index] = len(ground_truth)
id_per_seq[index] = sequence_id
for gt_id, gt_size in ground_truth.items():
inner_sum = 0.0
for pr_id, pr_size in predictions.items():
tpa_key = self._offset * gt_id + pr_id
if tpa_key in intersections:
tpa = intersections[tpa_key]
fpa = pr_size - tpa
fna = gt_size - tpa
inner_sum += tpa * (tpa / (tpa + fpa + fna))
outer_sum += 1.0 / gt_size * inner_sum
aq_per_seq[index] = outer_sum
aq_mean = np.sum(aq_per_seq) / np.maximum(
np.sum(num_tubes_per_seq), _EPSILON)
aq_per_seq = aq_per_seq / np.maximum(num_tubes_per_seq, _EPSILON)
# Compute IoU scores.
# The rows correspond to ground-truth and the columns to predictions.
# Remove fp from confusion matrix for the void/ignore class.
total_confusion = np.zeros(
(self._confusion_matrix_size, self._confusion_matrix_size),
dtype=np.float64)
for index, confusion in enumerate(
self._iou_confusion_matrix_per_sequence.values()):
removal_matrix = np.zeros_like(confusion)
removal_matrix[self._include_indices, :] = 1.0
confusion *= removal_matrix
total_confusion += confusion
# `intersections` corresponds to true positives.
intersections = confusion.diagonal()
fps = confusion.sum(axis=0) - intersections
fns = confusion.sum(axis=1) - intersections
unions = intersections + fps + fns
num_classes = np.count_nonzero(unions)
ious = (intersections.astype(np.double) /
np.maximum(unions, 1e-15).astype(np.double))
iou_per_seq[index] = np.sum(ious) / num_classes
# `intersections` corresponds to true positives.
intersections = total_confusion.diagonal()
fps = total_confusion.sum(axis=0) - intersections
fns = total_confusion.sum(axis=1) - intersections
unions = intersections + fps + fns
num_classes = np.count_nonzero(unions)
ious = (intersections.astype(np.double) /
np.maximum(unions, _EPSILON).astype(np.double))
iou_mean = np.sum(ious) / num_classes
st_quality = np.sqrt(aq_mean * iou_mean)
st_quality_per_seq = np.sqrt(aq_per_seq * iou_per_seq)
return {
'STQ': st_quality,
'AQ': aq_mean,
'IoU': float(iou_mean),
'STQ_per_seq': st_quality_per_seq,
'AQ_per_seq': aq_per_seq,
'IoU_per_seq': iou_per_seq,
'ID_per_seq': id_per_seq,
'Length_per_seq': list(self._sequence_length.values()),
}
def reset_states(self):
"""Resets all states that accumulated data."""
self._iou_confusion_matrix_per_sequence = collections.OrderedDict()
self._predictions = collections.OrderedDict()
self._ground_truth = collections.OrderedDict()
self._intersections = collections.OrderedDict()
self._sequence_length = collections.OrderedDict()