This page walks through the steps required to generate COCO panoptic segmentation data for DeepLab2. DeepLab2 uses sharded TFRecords for efficient processing of the data.
Before running any Deeplab2 scripts, the users should (1) access the COCO dataset website to download the dataset, including 2017 Train images, 2017 Val images, 2017 Test images, and 2017 Panoptic Train/Val annotations, and (2) unzip the downloaded files.
After finishing above steps, the expected directory structure should be as follows:
.(COCO_ROOT)
+-- train2017
| |
| +-- *.jpg
|
|-- val2017
| |
| +-- *.jpg
|
|-- test2017
| |
| +-- *.jpg
|
+-- annotations
|
+-- panoptic_{train|val}2017.json
+-- panoptic_{train|val}2017
Use the following commandline to generate COCO TFRecords:
# For generating data for panoptic segmentation task
python deeplab2/data/build_coco_data.py \
--coco_root=${COCO_ROOT} \
--output_dir=${OUTPUT_DIR}
Commandline above will output three sharded tfrecord files:
{train|val|test}@1000.tfrecord
. In the tfrecords, for train
and val
set,
it contains the RGB image pixels as well as corresponding annotations. For
test
set, it contains RGB images only. These files will be used as the input
for the model training and evaluation.
Note that we map the class ID to continuous IDs. Specifically, we map the original label ID, which ranges from 1 to 200, to the contiguous ones ranging from 1 to 133.
The Example proto contains the following fields:
image/encoded
: encoded image content.image/filename
: image filename.image/format
: image file format.image/height
: image height.image/width
: image width.image/channels
: image channels.image/segmentation/class/encoded
: encoded segmentation content.image/segmentation/class/format
: segmentation encoding format.
For panoptic segmentation, the encoded segmentation map will be the raw bytes of an int32 panoptic map, where each pixel is assigned to a panoptic ID, which is computed by:
panoptic ID = semantic ID * label divisor + instance ID
where semantic ID will be:
- ignore label (0) for pixels not belonging to any segment
- for segments associated with
iscrowd
label:- (default): ignore label (0)
- (if set
--treat_crowd_as_ignore=false
while runningbuild_coco_data.py
):category_id
category_id
for other segments
The instance ID will be 0 for pixels belonging to
stuff
classthing
class withiscrowd
label- pixels with ignore label
and [1, label divisor)
otherwise.