-
Notifications
You must be signed in to change notification settings - Fork 159
/
moat.py
527 lines (452 loc) · 20.2 KB
/
moat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# coding=utf-8
# Copyright 2023 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MOAT: This file contains the implementation of MOAT [1].
[1] MOAT: Alternating Mobile Convolution and Attention
Brings Strong Vision Models,
arXiv: 2210.01820.
Chenglin Yang, Siyuan Qiao, Qihang Yu, Xiaoding Yuan,
Yukun Zhu, Alan Yuille, Hartwig Adam, Liang-Chieh Chen.
"""
import copy
import re
from typing import Optional, Any
from absl import logging
import tensorflow as tf
from deeplab2.model.layers.moat_blocks import MBConvBlock
from deeplab2.model.layers.moat_blocks import MOATBlock
from deeplab2.utils.hparam_configs import Config
from deeplab2.utils.hparam_configs import create_config_from_dict
# This handles the invalid name scope of tf.keras.sequential
# used in stem layers.
_STEM_LAYER_NAME_SCOPE = 'moat/stem/'
# This is for loading the exponential moving average of variables
# in the checkpoint.
_EMA_VARIABLE_NAME_POSTFIX = '/ExponentialMovingAverage'
# The position embedding size at stride 16 and 32.
# The input size changes, but the number of learnable parameters of position
# embedding does not change. The position embeddings are interpolated for
# different input sizes.
_STRIDE_16_POSITION_EMBEDDING_SIZE = 14
_STRIDE_32_POSITION_EMBEDDING_SIZE = 7
class MOAT(tf.keras.Model):
"""MOAT backbone."""
def _retrieve_config(self, config):
"""Retrieves the config of MOAT.
Args:
config: A dictionary containing the following keys.
-stem_size: A list of integers, the list length is the number of stem
layers, the list element is the output channels of the stem layer.
-block_type: A list of strings, the list length is the stage number.
The list element is the block type for a stage. The supported block
types are 'mbconv' and 'moat'.
-num_blocks: A list of integers, the list length is the stage number.
The list element is the number of blocks in a stage.
-hidden_size: A list of integers, the list length is the stage number.
The list element is the output channels of the blocks in a stage.
-stage_stride: A list of intergers, the stride of first block in
each stage.
-expansion_rate: An integer, expansion rate of MBConv.
-se_ratio: An integer, expansion ratio of SE in MBConv block.
-head_size: An integer, feature channels per head in Attention.
-window_size: A list of list of integers, specifying the window size for
each stage. The length should be the number of stages. For example:
[None, None, [14, 16], [7, 8]] means the last two stages uses
14 by 16 and 7 by 8 windows, respectively.
-position_embedding_size: A list of integers, specifying the position
embedding sizes for all stages. If the feature maps have larger sizes,
the position embeddings will be interpolated to match them.
-use_checkpointing_for_attention: A boolean, specifying whether to use
checkpointing for attention.
-global_attention_at_end_of_moat_stage: A boolean, specifying whether
to use global attention for the last block if the stage consists of
moat blocks.
-relative_position_embedding_type: A string, type of relative position
embedding in Attention. Currently, only '2d_multi_head' is supported.
If None, no relative position embedding will be used.
-ln_epsilon: A float, epsilon for layer normalization in Attention.
-pool_size: An integer, kernel size for pooling in shortcut branch in
MBConv block and MOAT block.
-survival_prob: A float, 1 - drop_path_rate.
-kernel_initializer: Initializer for the kernel weights matrix.
-bias_initializer: Initializer for the bias vector.
-name: A string, model name.
-build_classification_head_with_class_num: An integer, number of
classes. If None, no classification head will be built.
Returns:
A Config class: hparams_config.Config.
Raises:
ValueError: If the lengths of block_type, num_blocks and hidden_size are
not the same.
ValueError: If the element of block_type is not one of ['mbconv', 'moat'].
"""
required_keys = ['stem_size', 'block_type', 'num_blocks', 'hidden_size']
optional_keys = {
'stage_stride': [2, 2, 2, 2],
'expansion_rate': 4,
'se_ratio': 0.25,
'head_size': 32,
'window_size': [None, None, [14, 14], [7, 7]],
'position_embedding_size': [
None, None,
_STRIDE_16_POSITION_EMBEDDING_SIZE,
_STRIDE_32_POSITION_EMBEDDING_SIZE],
'use_checkpointing_for_attention': False,
'global_attention_at_end_of_moat_stage': False,
'relative_position_embedding_type': '2d_multi_head',
'ln_epsilon': 1e-5,
'pool_size': 2,
'survival_prob': None,
'kernel_initializer': tf.random_normal_initializer(stddev=0.02),
'bias_initializer': tf.zeros_initializer,
'build_classification_head_with_class_num': None,
}
config = create_config_from_dict(config, required_keys, optional_keys)
stage_number = len(config.block_type)
if (len(config.num_blocks) != stage_number or
len(config.hidden_size) != stage_number):
raise ValueError('The lengths of block_type, num_blocks and hidden_size ',
'should be the same.')
return config
def _local_config(self, config, idx, exclude_regex=None):
"""Gets stage-wise config from backbone-wise config."""
config = copy.deepcopy(config)
for key in config.__dict__:
if isinstance(config[key], (list, tuple)):
if exclude_regex is None or not re.search(exclude_regex, key):
config[key] = config[key][idx]
return config
def __init__(self, **config):
super().__init__(name='moat')
self._config = self._retrieve_config(config)
def _build_stem(self):
stem_layers = []
for i in range(len(self._config.stem_size)):
conv_layer = tf.keras.layers.Conv2D(
filters=self._config.stem_size[i],
kernel_size=3,
strides=2 if i == 0 else 1,
padding='same',
kernel_initializer=self._config.kernel_initializer,
bias_initializer=self._config.bias_initializer,
use_bias=True,
name='conv_{}'.format(i))
stem_layers.append(conv_layer)
if i < len(self._config.stem_size) - 1:
stem_layers.append(self._config.norm_class(name='norm_{}'.format(i)))
stem_layers.append(tf.keras.layers.Activation(
self._config.activation, name='act_{}'.format(i)))
# The name scope of tf.keras.Sequential is invalid, see error handling
# in the part of loading checkpoints in function get_model.
self._stem = tf.keras.Sequential(
layers=stem_layers,
name='stem')
def _build_block(self, local_block_config):
if local_block_config.block_type == 'mbconv':
block = MBConvBlock(**local_block_config)
elif local_block_config.block_type == 'moat':
block = MOATBlock(**local_block_config)
else:
raise ValueError('Unsupported block_type: {}'.format(
local_block_config.block_type))
return block
def _build_classification_head(self):
self._final_layer_norm = tf.keras.layers.LayerNormalization(
epsilon=self._config.ln_epsilon,
name='final_layer_norm')
self._logits_head = tf.keras.layers.Conv2D(
filters=self._config.build_classification_head_with_class_num,
kernel_size=1,
strides=1,
kernel_initializer=self._config.kernel_initializer,
bias_initializer=self._config.bias_initializer,
padding='same',
use_bias=True,
name='logits_head')
def _adjust_survival_rate(self, local_block_config,
block_id, total_num_blocks):
survival_prob = self._config.survival_prob
if survival_prob is not None:
drop_rate = 1.0 - survival_prob
survival_prob = 1.0 - drop_rate * block_id / total_num_blocks
local_block_config = local_block_config.replace(
survival_prob=survival_prob)
return local_block_config
def build(self, input_shape: list[int]) -> None:
norm_class = tf.keras.layers.experimental.SyncBatchNormalization
self._config.norm_class = norm_class
self._config.activation = tf.nn.gelu
self._build_stem()
self._blocks = []
total_num_blocks = sum(self._config.num_blocks)
for stage_id in range(len(self._config.block_type)):
stage_config = self._local_config(self._config, stage_id, '^stem.*')
stage_blocks = []
for local_block_id in range(stage_config.num_blocks):
local_block_config = copy.deepcopy(stage_config)
block_stride = 1
if local_block_id == 0:
block_stride = self._config.stage_stride[stage_id]
local_block_config = local_block_config.replace(
block_stride=block_stride)
block_id = sum(self._config.num_blocks[:stage_id]) + local_block_id
local_block_config = self._adjust_survival_rate(
local_block_config,
block_id, total_num_blocks)
block_name = 'block_{:0>2d}_{:0>2d}'.format(stage_id, local_block_id)
local_block_config.name = block_name
if (local_block_id == stage_config.num_blocks - 1 and
self._config.block_type[stage_id] == 'moat' and
self._config.global_attention_at_end_of_moat_stage):
local_block_config.window_size = None
block = self._build_block(local_block_config)
stage_blocks.append(block)
self._blocks.append(stage_blocks)
if self._config.build_classification_head_with_class_num is not None:
self._build_classification_head()
def call(self, inputs, training=False, mask=None):
endpoints = {}
output = self._stem(inputs, training=training)
endpoints['stage1'] = output
endpoints['res1'] = self._config.activation(output)
for stage_id, stage_blocks in enumerate(self._blocks):
for block in stage_blocks:
output = block(output, training=training)
endpoints['stage{}'.format(stage_id + 2)] = output
endpoints['res{}'.format(stage_id + 2)] = self._config.activation(output)
if self._config.build_classification_head_with_class_num is None:
return endpoints
else:
reduce_axes = list(range(1, output.shape.rank - 1))
output = tf.reduce_mean(output, axis=reduce_axes, keepdims=True)
output = self._final_layer_norm(output)
output = self._logits_head(output, training=training)
logits = tf.squeeze(output, axis=[1, 2])
return logits
moat0_config = Config(
stem_size=[64, 64],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 3, 7, 2],
hidden_size=[96, 192, 384, 768],
)
moat1_config = Config(
stem_size=[64, 64],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 6, 14, 2],
hidden_size=[96, 192, 384, 768],
)
moat2_config = Config(
stem_size=[128, 128],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 6, 14, 2],
hidden_size=[128, 256, 512, 1024],
)
moat3_config = Config(
stem_size=[160, 160],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 12, 28, 2],
hidden_size=[160, 320, 640, 1280],
)
moat4_config = Config(
stem_size=[256, 256],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 12, 28, 2],
hidden_size=[256, 512, 1024, 2048],
)
tiny_moat0_config = Config(
stem_size=[32, 32],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 3, 7, 2],
hidden_size=[32, 64, 128, 256],
)
tiny_moat1_config = Config(
stem_size=[40, 40],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 3, 7, 2],
hidden_size=[40, 80, 160, 320],
)
tiny_moat2_config = Config(
stem_size=[56, 56],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 3, 7, 2],
hidden_size=[56, 112, 224, 448],
)
tiny_moat3_config = Config(
stem_size=[80, 80],
block_type=['mbconv', 'mbconv', 'moat', 'moat'],
num_blocks=[2, 3, 7, 2],
hidden_size=[80, 160, 320, 640],
)
no_relative_pe = Config(
relative_position_embedding_type=None,
)
def get_model(
name: str,
input_shape: list[int],
window_size: Optional[list[list[int]]] = None,
survival_rate: Optional[float] = None,
pool_size: Optional[int] = 3,
override_config: Optional[dict[str, Any]] = None,
pretrained_weights_path: Optional[str] = None,
remove_position_embedding: Optional[bool] = None,
return_config: Optional[bool] = False,
strict_loading: Optional[bool] = False,
use_checkpointing_for_attention: Optional[bool] = False,
global_attention_at_end_of_moat_stage: Optional[bool] = False,
) -> ...:
"""Gets MOAT according to name.
Args:
name: A string, the model name. It must be the key of the global dictionary
_CHECKPOINTS_PATH.
input_shape: A list of integers with length 3, the input shape to
initialize the model.
window_size: A list of lists of integers, specifying the window size for
each stage. The length should be the number of stages. For example:
[None, None, [14, 16], [7, 8]] means the last two stages uses
14 by 16 and 7 by 8 windows, respectively. Global attention will be used
if it is None.
survival_rate: A float, this equals 1 - drop path rate.
pool_size: An integer, kernel size for pooling in shortcut branch. For
classification, pool size 2x2 saves model flops. For downstream tasks,
pool size 3x3 is preferred for better feature alignments.
override_config: A dictionary overriding the model config.
pretrained_weights_path: A string, specifying the path to load the
pretrained checkpoint. If None, no pretrained checkpoint will be loaded.
remove_position_embedding: A boolean, specifying whether to remove position
embedding. If None, the usage of position embedding will depend on the
model name. This flag can enable the model that is pretrained with
position embedding to be finetuned without position embedding in
downstream tasks.
return_config: A boolean, whether to return config or model.
strict_loading: A boolean, if True, all variables in the checkpoint must
be found in the model.
use_checkpointing_for_attention: A boolean, specifying whether to use
checkpointing for attention.
global_attention_at_end_of_moat_stage: A boolean, specifying whether to use
global attention for the last block if the stage consists of moat blocks.
Returns:
config: Config to build moat. This is returned when return_config is True.
moat: moat model. This is returned when return_config is False.
Raises:
ValueError: If the length of input_shape does not equal 3.
"""
if len(input_shape) != 3:
raise ValueError('The input shape should be a list of length 3.')
config = _get_moat_config_via_model_name(name)
config.window_size = window_size
config.pool_size = pool_size
config.use_checkpointing_for_attention = use_checkpointing_for_attention
config.global_attention_at_end_of_moat_stage = (
global_attention_at_end_of_moat_stage)
if survival_rate is not None:
config.survival_prob = survival_rate
if override_config is not None:
config.update(override_config)
if remove_position_embedding:
config.update(no_relative_pe)
if return_config:
return config
moat = MOAT(**config)
moat(tf.keras.Input(shape=input_shape))
if pretrained_weights_path:
moat = _load_moat_pretrained_checkpoint(
moat, pretrained_weights_path, strict_loading)
return moat
def _get_moat_config_via_model_name(name):
"""Gets the moat config according to name."""
if name in ['moat0_pretrain_224_1k', 'moat0_pretrain_224_no_pe_1k']:
config = copy.deepcopy(moat0_config)
config.survival_prob = 0.8
elif name in ['moat1_pretrain_224_1k', 'moat1_pretrain_224_no_pe_1k']:
config = copy.deepcopy(moat1_config)
config.survival_prob = 0.7
elif name in ['moat2_finetune_384_22k', 'moat2_finetune_384_no_pe_22k']:
config = copy.deepcopy(moat2_config)
config.survival_prob = 0.7
elif name in ['moat3_finetune_512_22k', 'moat3_finetune_512_no_pe_22k']:
config = copy.deepcopy(moat3_config)
config.survival_prob = 0.4
elif name in ['moat4_finetune_512_22k', 'moat4_finetune_512_no_pe_22k']:
config = copy.deepcopy(moat4_config)
config.survival_prob = 0.3
elif name in ['tiny_moat0_pretrain_256_1k',
'tiny_moat0_pretrain_256_no_pe_1k']:
config = copy.deepcopy(tiny_moat0_config)
config.survival_prob = 1.0
elif name in ['tiny_moat1_pretrain_256_1k',
'tiny_moat1_pretrain_256_no_pe_1k']:
config = copy.deepcopy(tiny_moat1_config)
config.survival_prob = 1.0
elif name in ['tiny_moat2_pretrain_256_1k',
'tiny_moat2_pretrain_256_no_pe_1k']:
config = copy.deepcopy(tiny_moat2_config)
config.survival_prob = 1.0
elif name in ['tiny_moat3_pretrain_256_1k',
'tiny_moat3_pretrain_256_no_pe_1k']:
config = copy.deepcopy(tiny_moat3_config)
config.survival_prob = 0.9
else:
raise ValueError('Not supported moat name %s' % name)
if 'no_pe' in name:
config.update(no_relative_pe)
return config
def _load_moat_pretrained_checkpoint(
moat, path, strict_loading=False):
"""Loads the TF1 pretrained weights for MOAT."""
checkpoint_reader = tf.train.load_checkpoint(path)
variable_to_shape_map = checkpoint_reader.get_variable_to_shape_map()
model_var_name = sorted([var.name for var in moat.trainable_variables])
ckpt_var_name = list(sorted(variable_to_shape_map.keys()))
# This for loop ensures all moat variables can be found in the checkpoint.
for var in moat.trainable_variables:
name_to_find = var.name
# We change the TF2 variable name for loading TF1 checkpoint.
name_to_find = name_to_find.replace(':0', '')
if name_to_find not in ckpt_var_name:
if _STEM_LAYER_NAME_SCOPE + name_to_find in ckpt_var_name:
# This handles the invalid name scope of tf.keras.sequential.
logging.info('Add name scope %s to the variable: %s',
_STEM_LAYER_NAME_SCOPE,
name_to_find)
name_to_find = _STEM_LAYER_NAME_SCOPE + name_to_find
else:
raise ValueError('Variable name %s is not found in the checkpoint'
% var.name)
if var.shape != variable_to_shape_map[name_to_find]:
raise ValueError('Inconsistent shape for var: %s ' % var.name,
'should be %s' % var.shape,
'but found %s' % variable_to_shape_map[name_to_find])
var_mean_before_loading = tf.reduce_mean(var)
var.assign(tf.Variable(checkpoint_reader.get_tensor(name_to_find)))
var_mean_after_loading = tf.reduce_mean(var)
if tf.math.equal(var_mean_before_loading,
var_mean_after_loading).numpy():
raise ValueError('Loading error for the variable: %s' % name_to_find)
logging.info('All variables in moat are found in the checkpoint.')
# This for loop finds all checkpoint variables that are not found in moat.
for var_name in variable_to_shape_map.keys():
name_in_ckpt = var_name.replace(_EMA_VARIABLE_NAME_POSTFIX, '')
name_in_ckpt = name_in_ckpt+':0'
if (name_in_ckpt not in model_var_name and
name_in_ckpt.replace(_STEM_LAYER_NAME_SCOPE, '')
not in model_var_name):
# This handles the invalid name scope of tf.keras.sequential.
if strict_loading:
raise ValueError('In ckpt but not in model_var_name', name_in_ckpt)
else:
logging.info('In ckpt but not in model_var_name: %s',
name_in_ckpt)
if strict_loading:
logging.info('All variables in checkpoint are found in moat.')
return moat