diff --git a/samples/test/clean.js b/samples/test/clean.js new file mode 100644 index 00000000..458d9895 --- /dev/null +++ b/samples/test/clean.js @@ -0,0 +1,212 @@ +// Copyright 2021 Google LLC +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +/** + * This module contains utility functions for removing unneeded, stale, or + * orphaned resources from test project. + * + * Removes: + * - Datasets + * - Training pipelines + * - Models + * - Endpoints + * - Batch prediction jobs + */ +const MAXIMUM_AGE = 3600000 * 24 * 2; // 2 days in milliseconds +const TEMP_RESOURCE_PREFIX = 'temp'; +const LOCATION = 'us-central1'; + +// All AI Platform resources need to specify a hostname. +const clientOptions = { + apiEndpoint: 'us-central1-aiplatform.googleapis.com', +}; + +/** + * Determines whether a resource should be deleted based upon its + * age and name. + * @param {string} displayName the display name of the resource + * @param {Timestamp} createTime when the resource is created + * @returns {bool} + */ +function checkDeletionStatus(displayName, createTime) { + const NOW = new Date(); + // Check whether this resources is a temporary resource + if (displayName.indexOf(TEMP_RESOURCE_PREFIX) === -1) { + return false; + } + + // Check how old the resource is + const ageOfResource = new Date(createTime.seconds * 1000); + if (NOW - ageOfResource < MAXIMUM_AGE) { + return false; + } + + return true; +} + +/** + * Removes all temporary datasets older than the maximum age. + * @param {string} projectId the project to remove datasets from + * @returns {Promise} + */ +async function cleanDatasets(projectId) { + const {DatasetServiceClient} = require('@google-cloud/aiplatform'); + const datasetServiceClient = new DatasetServiceClient(clientOptions); + + const [datasets] = await datasetServiceClient.listDatasets({ + parent: `projects/${projectId}/locations/${LOCATION}`, + }); + + for (const dataset of datasets) { + const {displayName, createTime, name} = dataset; + + if (checkDeletionStatus(displayName, createTime)) { + await datasetServiceClient.deleteDataset({ + name, + }); + } + } +} + +/** + * Removes all temporary training pipelines older than the maximum age. + * @param {string} projectId the project to remove pipelines from + * @returns {Promise} + */ +async function cleanTrainingPipelines(projectId) { + const {PipelineServiceClient} = require('@google-cloud/aiplatform'); + const pipelineServiceClient = new PipelineServiceClient(clientOptions); + + const [pipelines] = await pipelineServiceClient.listTrainingPipelines({ + parent: `projects/${projectId}/locations/${LOCATION}`, + }); + + for (const pipeline of pipelines) { + const {displayName, createTime, name} = pipeline; + + if (checkDeletionStatus(displayName, createTime)) { + await pipelineServiceClient.deleteTrainingPipeline({ + name, + }); + } + } +} + +/** + * Removes all temporary models older than the maximum age. + * @param {string} projectId the project to remove models from + * @returns {Promise} + */ +async function cleanModels(projectId) { + const { + ModelServiceClient, + EndpointServiceClient, + } = require('@google-cloud/aiplatform'); + const modelServiceClient = new ModelServiceClient(clientOptions); + + const [models] = await modelServiceClient.listModels({ + parent: `projects/${projectId}/locations/${LOCATION}`, + }); + + for (const model of models) { + const {displayName, createTime, deployedModels, name} = model; + + if (checkDeletionStatus(displayName, createTime)) { + // Need to check if model is deployed to an endpoint + // Undeploy the model everywhere it is deployed + for (const deployedModel of deployedModels) { + const {endpoint, deployedModelId} = deployedModel; + + const endpointServiceClient = new EndpointServiceClient(clientOptions); + await endpointServiceClient.undeployModel({ + endpoint, + deployedModelId, + }); + } + + await modelServiceClient.deleteModel({ + name, + }); + } + } +} + +/** + * Removes all temporary endpoints older than the maximum age. + * @param {string} projectId the project to remove endpoints from + * @returns {Promise} + */ +async function cleanEndpoints(projectId) { + const {EndpointServiceClient} = require('@google-cloud/aiplatform'); + const endpointServiceClient = new EndpointServiceClient(clientOptions); + + const [endpoints] = await endpointServiceClient.listEndpoints({ + parent: `projects/${projectId}/locations/${LOCATION}`, + }); + + for (const endpoint of endpoints) { + const {displayName, createTime, name} = endpoint; + + if (checkDeletionStatus(displayName, createTime)) { + await endpointServiceClient.deleteEndpoint({ + name, + }); + } + } +} + +/** + * Removes all temporary batch prediction jobs + * @param {string} projectId the project to remove prediction jobs from + * @returns {Promise} + */ +async function cleanBatchPredictionJobs(projectId) { + const {JobServiceClient} = require('@google-cloud/aiplatform'); + const jobServiceClient = new JobServiceClient(clientOptions); + + const [batchPredictionJobs] = await jobServiceClient.listBatchPredictionJobs({ + parent: `projects/${projectId}/locations/${LOCATION}`, + }); + + for (const job of batchPredictionJobs) { + const {displayName, createTime, name} = job; + if (checkDeletionStatus(displayName, createTime)) { + await jobServiceClient.deleteBatchPredictionJob({ + name, + }); + } + } +} + +/** + * Removes all of the temporary resources older than the maximum age. + * @param {string} projectId the project to remove resources from + * @returns {Promise} + */ +async function cleanAll(projectId) { + await cleanDatasets(projectId); + await cleanTrainingPipelines(projectId); + await cleanModels(projectId); + await cleanEndpoints(projectId); + await cleanBatchPredictionJobs(projectId); +} + +module.exports = { + cleanAll: cleanAll, + cleanDatasets: cleanDatasets, + cleanTrainingPipelines: cleanTrainingPipelines, + cleanModels: cleanModels, + cleanEndpoints: cleanEndpoints, + cleanBatchPredictionJobs: cleanBatchPredictionJobs, +}; diff --git a/samples/test/create-training-pipeline-image-classification.test.js b/samples/test/create-training-pipeline-image-classification.test.js index c6c506e0..2eff3c33 100644 --- a/samples/test/create-training-pipeline-image-classification.test.js +++ b/samples/test/create-training-pipeline-image-classification.test.js @@ -17,7 +17,8 @@ 'use strict'; const {assert} = require('chai'); -const {after, describe, it} = require('mocha'); +const {after, before, describe, it} = require('mocha'); +const clean = require('./clean'); const uuid = require('uuid').v4; const cp = require('child_process'); @@ -41,6 +42,10 @@ const location = process.env.LOCATION; let trainingPipelineId; describe('AI platform create training pipeline image classification', () => { + before('should delete any old and/or orphaned resources', async () => { + await clean.cleanTrainingPipelines(project); + }); + it('should create a new image classification training pipeline', async () => { const stdout = execSync( `node ./create-training-pipeline-image-classification.js ${datasetId} ${modelDisplayName} ${trainingPipelineDisplayName} ${project} ${location}`