This repository has been archived by the owner on Sep 20, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 33
/
process_document_sample.py
70 lines (55 loc) · 2.62 KB
/
process_document_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# [START documentai_process_document]
from google.api_core.client_options import ClientOptions
from google.cloud import documentai
# TODO(developer): Uncomment these variables before running the sample.
# project_id = 'YOUR_PROJECT_ID'
# location = 'YOUR_PROCESSOR_LOCATION' # Format is 'us' or 'eu'
# processor_id = 'YOUR_PROCESSOR_ID' # Create processor before running sample
# file_path = '/path/to/local/pdf'
# mime_type = 'application/pdf' # Refer to https://cloud.google.com/document-ai/docs/file-types for supported file types
# field_mask = "text,entities,pages.pageNumber" # Optional. The fields to return in the Document object.
def process_document_sample(
project_id: str,
location: str,
processor_id: str,
file_path: str,
mime_type: str,
field_mask: str = None,
):
# You must set the api_endpoint if you use a location other than 'us', e.g.:
opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")
client = documentai.DocumentProcessorServiceClient(client_options=opts)
# The full resource name of the processor, e.g.:
# projects/{project_id}/locations/{location}/processors/{processor_id}
name = client.processor_path(project_id, location, processor_id)
# Read the file into memory
with open(file_path, "rb") as image:
image_content = image.read()
# Load Binary Data into Document AI RawDocument Object
raw_document = documentai.RawDocument(content=image_content, mime_type=mime_type)
# Configure the process request
request = documentai.ProcessRequest(
name=name, raw_document=raw_document, field_mask=field_mask
)
result = client.process_document(request=request)
# For a full list of Document object attributes, please reference this page:
# https://cloud.google.com/python/docs/reference/documentai/latest/google.cloud.documentai_v1.types.Document
document = result.document
# Read the text recognition output from the processor
print("The document contains the following text:")
print(document.text)
# [END documentai_process_document]