-
Notifications
You must be signed in to change notification settings - Fork 63
/
signals.lib
668 lines (619 loc) · 21.6 KB
/
signals.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
//#################################### signals.lib ########################################
// A library of basic elements to handle signals in Faust. Its official prefix is `si`.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/signals.lib>
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file, GRAME section
Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ba = library("basics.lib");
ro = library("routes.lib");
ma = library("maths.lib");
si = library("signals.lib");
declare name "Faust Signal Routing Library";
declare version "1.6.0";
//=============================Functions Reference========================================
//========================================================================================
//--------------------------------`(si.)bus`-------------------------------------
// Put N cables in parallel.
// `bus` is a standard Faust function.
//
// #### Usage
//
// ```
// bus(N)
// bus(4) : _,_,_,_
// ```
//
// Where:
//
// * `N`: is an integer known at compile time that indicates the number of parallel cables
//-----------------------------------------------------------------------------
bus(0) = 0:!;
bus(1) = _; // avoids a lot of "bus(1)" labels in block diagrams
bus(2) = _,_; // avoids a lot of "bus(2)" labels in block diagrams
bus(N) = par(i, N, _);
//--------------`(si.)block`--------------
// Block - terminate N signals.
// `block` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : block(N)
// ```
//
// Where:
//
// * `N`: the number of signals to be blocked known at compile time
//--------------------------------------
block(N) = par(i, N, !);
//-----------------------------`(si.)interpolate`-------------------------------
// Linear interpolation between two signals.
//
// #### Usage
//
// ```
// _,_ : interpolate(i) : _
// ```
//
// Where:
//
// * `i`: interpolation control between 0 and 1 (0: first input; 1: second input)
//-----------------------------------------------------------------------------
interpolate(i,x,y) = x + i*(y-x);
//---------------`(si.)repeat`----------------------------------------------
// Repeat an effect N time(s) and take the parallel sum of all
// intermediate buses.
//
// #### References
// * <https://github.com/orlarey/presentation-compilateur-faust/blob/master/slides.pdf>
//
// #### Usage
//
// ```
// si.bus(inputs(FX)) : repeat(N, FX) : si.bus(outputs(FX))
// ```
//
// Where:
//
// * `N`: Number of repetitions, minimum of 1, a constant numerical expression
// * `FX`: an arbitrary effect (N inputs and N outputs) that will be repeated
//
// Example 1:
// ```
// process = repeat(2, dm.zita_light) : _*.5,_*.5;
// ```
//
// Example 2:
// ```
// N = 4;
// C = 2;
// fx(i) = i+1, par(j, C, @(i*5000));
// process = 0, si.bus(C) : repeat(N, fx) : !, par(i, C, _*.2/N);
// ```
//---------------------------------------------------------------------------
declare repeat author "Yann Orlarey and Stéphane Letz, revised by David Braun";
repeat(1, FX) = FX;
repeat(n, FX) = FX <: si.bus(N), repeat(n-1, FX) :> si.bus(N)
with {
N = outputs(FX);
};
//------------------------`(si.)smoo`---------------------------------------
// Smoothing function based on `smooth` ideal to smooth UI signals
// (sliders, etc.) down. Approximately, this is a 7 Hz one-pole
// low-pass considering the coefficient calculation:
// exp(-2pi*CF/SR).
//
// `smoo` is a standard Faust function.
//
// #### Usage
//
// ```
// hslider(...) : smoo;
// ```
//---------------------------------------------------------------------
smoo = si.smooth(1 - 44.1/ma.SR);
//-----------------------`(si.)polySmooth`--------------------------------
// A smoothing function based on `smooth` that doesn't smooth when a
// trigger signal is given. This is very useful when making
// polyphonic synthesizer to make sure that the value of the parameter
// is the right one when the note is started.
//
// #### Usage
//
// ```
// hslider(...) : polySmooth(g,s,d) : _
// ```
//
// Where:
//
// * `g`: the gate/trigger signal used when making polyphonic synths
// * `s`: the smoothness (see `smooth`)
// * `d`: the number of samples to wait before the signal start being
// smoothed after `g` switched to 1
//-------------------------------------------------------------------
polySmooth(g,s,d) = si.smooth(s*((g==(g@d)) | (g == 0)));
//-----------------------`(si.)smoothAndH`--------------------------------
// A smoothing function based on `smooth` that holds its output
// signal when a trigger is sent to it. This feature is convenient
// when implementing polyphonic instruments to prevent some
// smoothed parameter to change when a note-off event is sent.
//
// #### Usage
//
// ```
// hslider(...) : smoothAndH(g,s) : _
// ```
//
// Where:
//
// * `g`: the hold signal (0 for hold, 1 for bypass)
// * `s`: the smoothness (see `smooth`)
//-------------------------------------------------------------------
smoothAndH(t,s) = si.smooth(s*t) : ba.sAndH(t);
//-----------------------------`(si.)bsmooth`------------------------------
// Block smooth linear interpolation during a block of samples (given by the `ma.BS` value).
//
// #### Usage
//
// ```
// hslider(...) : bsmooth : _
// ```
//-----------------------------------------------------------------------
bsmooth(c) = +(i) ~ _
with {
i = (c-c@n)/n;
n = min(4096, max(1, ma.BS));
};
//-------------------------------`(si.)dot`--------------------------------------
// Dot product for two vectors of size N.
//
// #### Usage
//
// ```
// si.bus(N), si.bus(N) : dot(N) : _
// ```
//
// Where:
//
// * `N`: size of the vectors (int, must be known at compile time)
//-----------------------------------------------------------------------------
dot(N) = ro.interleave(N,2) : par(i,N,*) :> _;
// end GRAME section
//########################################################################################
/************************************************************************
FAUST library file, jos section
Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2017 by Julius O. Smith III <jos@ccrma.stanford.edu>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.
All MarkDown comments in this section are Copyright 2016-2017 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees!)
************************************************************************/
//-------------------`(si.)smooth`-----------------------------------
// Exponential smoothing by a unity-dc-gain one-pole lowpass.
// `smooth` is a standard Faust function.
//
// #### Usage:
//
// ```
// _ : si.smooth(ba.tau2pole(tau)) : _
// ```
//
// Where:
//
// * `tau`: desired smoothing time constant in seconds, or
//
// ```
// hslider(...) : smooth(s) : _
// ```
//
// Where:
//
// * `s`: smoothness between 0 and 1. s=0 for no smoothing, s=0.999 is "very smooth",
// s>1 is unstable, and s=1 yields the zero signal for all inputs.
// The exponential time-constant is approximately 1/(1-s) samples, when s is close to
// (but less than) 1.
//
// #### References:
//
// * <https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html>
// * <https://ccrma.stanford.edu/~jos/aspf/Appendix_B_Inspecting_Assembly.html>
//-------------------------------------------------------------
// See [grame-cncm/faustlibraries]: Minor improvement to si.smoo. (Discussion #106)
smooth_imp = case {
// y[n] = (1 - s) * x[n] + s * y[n - 1]
(0,s) => \(x).(fb ~ _ with { fb(y) = (1.0 - s) * x + s * y; });
// y[n] = s * (y[n - 1] - x[n]) + x[n]
(1,s) => \(x).(fb ~ _ with { fb(y) = s * (y - x) + x; });
// y[n] = y[n - 1] + (1 - s) * (x[n] - y[n - 1])
(2,s) => \(x).(fb ~ _ with { fb(y) = y + (1.0 - s) * (x - y); });
};
// The best compromise on modern CPUs where two independent multiplications can be done in parallel.
// Other versions could possibly be faster on embedded devices.
smooth = smooth_imp(0);
//--------------------------------`(si.)smoothq`-------------------------------------
// Smoothing with continuously variable curves from Exponential to Linear, with a constant time.
//
// #### Usage
//
// ```
// _ : smoothq(time, q) : _;
// ```
//
// Where:
//
// * `time`: seconds to reach target
// * `q`: curve shape (between 0..1, 0 is Exponential, 1 is Linear)
//-----------------------------------------------------------------------------
declare smoothq author "Andrew John March";
declare smoothq licence "STK-4.3";
smoothq(time, q, tar) = envelope
with {
ratio = pow(q, 5) * 32 : max(0.001);
coef = (ratio / (1 + ratio))^(1 / (ma.SR * time));
fb(cBase, cTar, cSrc, cDistance, cDir, cY, cOut) = base, tar, src, distance, dir, y, out
with {
trig = cTar != tar;
src = select2(trig, cSrc, cOut);
dir = select2(trig, cDir, tar > src);
base = select2(trig, cBase, select2(dir,
(0.0 - ratio) * (1.0 - coef),
(1.0 + ratio) * (1.0 - coef)
));
distance = select2(trig, cDistance, abs(tar - src));
y = select2(dir,
select2(trig,
max( 0, base + cY * coef),
1
),
select2(trig,
min( 1, base + cY * coef),
0
)
);
out = select2(dir,
tar + y * distance,
src + y * distance
);
};
envelope = fb ~ (_,_,_,_,_,_,_) : !,!,!,!,!,!,_;
};
//--------------------------------`(si.)cbus`-------------------------------------
// N parallel cables for complex signals.
// `cbus` is a standard Faust function.
//
// #### Usage
//
// ```
// cbus(N)
// cbus(4) : (r0,i0), (r1,i1), (r2,i2), (r3,i3)
// ```
//
// Where:
//
// * `N`: is an integer known at compile time that indicates the number of parallel cables.
// * each complex number is represented by two real signals as (real,imag)
//-----------------------------------------------------------------------------
cbus(1) = (_,_);
cbus(N) = par(i, N, (_,_));
//--------------------------------`(si.)cmul`-------------------------------------
// Multiply two complex signals pointwise.
// `cmul` is a standard Faust function.
//
// #### Usage
//
// ```
// (r1,i1) : cmul(r2,i2) : (_,_)
// ```
//
// Where:
//
// * Each complex number is represented by two real signals as (real,imag), so
// - `(r1,i1)` = real and imaginary parts of signal 1
// - `(r2,i2)` = real and imaginary parts of signal 2
//-----------------------------------------------------------------------------
cmul(r1,i1,r2,i2) = (r1*r2 - i1*i2), (r1*i2 + r2*i1);
//--------------------------------`(si.)cconj`-------------------------------------
// Complex conjugation of a (complex) signal.
// `cconj` is a standard Faust function.
//
// #### Usage
//
// ```
// (r1,i1) : cconj : (_,_)
// ```
//
// Where:
//
// * Each complex number is represented by two real signals as (real,imag), so
// - `(r1,i1)` = real and imaginary parts of the input signal
// - `(r1,-i1)` = real and imaginary parts of the output signal
//-----------------------------------------------------------------------------
cconj = _, *(-1);
// end jos section
/************************************************************************
FAUST library file, further contributions section
All contributions below should indicate both the contributor and terms
of license. If no such indication is found, "git blame" will say who
last edited each line, and that person can be emailed to inquire about
license disposition, if their license choice is not already indicated
elsewhere among the libraries. It is expected that all software will be
released under LGPL, STK-4.3, MIT, BSD, or a similar FOSS license.
************************************************************************/
//-------------`(si.)onePoleSwitching`---------------
// One pole filter with independent attack and release times.
//
// #### Usage
//
// ```
// _ : onePoleSwitching(att,rel) : _
// ```
//
// Where:
//
// * `att`: the attack tau time constant in second
// * `rel`: the release tau time constant in second
//
//----------------------------------------------------
declare onePoleSwitching author "Jonatan Liljedahl, revised by Dario Sanfilippo";
declare onePoleSwitching licence "STK-4.3";
onePoleSwitching(att, rel, x) = loop ~ _
with {
loop(yState) = (1.0 - coeff) * x + coeff * yState
with {
coeff = ba.if(x > yState, ba.tau2pole(att), ba.tau2pole(rel));
};
};
// Kept for backward compatibility
lag_ud = onePoleSwitching;
// end further further contributions section
//-------------`(si.)rev`---------------
// Reverse the input signal by blocks of n>0 samples. `rev(1)` is the indentity
// function. `rev(n)` has a latency of `n-1` samples.
//
// #### Usage
//
// ```
// _ : rev(n) : _
// ```
//
// Where:
//
// * `n`: the block size in samples
//----------------------------------------------------
declare rev author "Yann Orlarey";
rev(n) = @(phase(n)*2)
with {
phase(n) = 1 : (+ : %(n)) ~ _ : max(0) : min(n-1);
};
//--------------------`(si.)vecOp`----------------------------------------------
//
// This function is a generalisation of Faust's iterators such as `prod` and
// `sum`, and it allows to perform operations on an arbitrary number of
// vectors, provided that they all have the same length. Unlike Faust's
// iterators `prod` and `sum` where the vector size is equal to one and the
// vector space dimension must be specified by the user, this function will
// infer the vector space dimension and vector size based on the vectors list
// that we provide.
//
// The outputs of the function are equal to the vector size, whereas the
// number of inputs is dependent on whether the elements of the vectors
// provided expect an incoming signal themselves or not. We will see a
// clarifying example later; in general, the number of total inputs will
// be the sum of the inputs in each input vector.
//
// Note that we must provide a list of at least two vectors, each with a size
// that is greater or equal to one.
//
// #### Usage
//
// ```
// si.bus(inputs(vectorsList)) : vecOp((vectorsList), op) : si.bus(outputs(ba.take(1, vectorsList)));
// ```
//
// #### Where
//
// * `vectorsList`: is a list of vectors
// * `op`: is a two-input, one-output operator
//
// For example, consider the following vectors lists:
//
// v0 = (0 , 1 , 2 , 3);
// v1 = (4 , 5 , 6 , 7);
// v2 = (8 , 9 , 10 , 11);
// v3 = (12 , 13 , 14 , 15);
// v4 = (+(16) , _ , 18 , *(19));
// vv = (v0 , v1 , v2 , v3);
//
// Although Faust has limitations for list processing, these vectors can be
// combined or processed individually.
//
// If we do:
//
// process = vecOp(v0, +);
//
// the function will deduce a vector space of dimension equal to four and
// a vector length equal to one. Note that this is equivalent to writing:
//
// process = v0 : sum(i, 4, _);
//
// Similarly, we can write:
//
// process = vecOp((v0 , v1), *) :> _;
//
// and we have a dimension-two space and length-four vectors. This is the dot
// product between vectors v0 and v1, which is equivalent to writing:
//
// process = v0 , v1 : dot(4);
//
// The examples above have no inputs, as none of the elements of the vectors
// expect inputs. On the other hand, we can write:
//
// process = vecOp((v4 , v4), +);
//
// and the function will have six inputs and four outputs, as each vector
// has three of the four elements expecting an input, times two, as the two
// input vectors are identical.
//
// Finally, we can write:
//
// process = vecOp(vv, &);
//
// to perform the bitwise AND on all the elements at the same position in
// each vector, having dimension equal to the vector length equal to four.
//
// Or even:
//
// process = vecOp((vv , vv), &);
//
// which gives us a dimension equal to two, and a vector size equal to sixteen.
//
// For a more practical use-case, this is how we can implement a time-invariant
// feedback delay network with Hadamard matrix:
//
// N = 4;
// normalisation = 1.0 / sqrt(N);
// coeffVec = par(i, N, .99 * normalisation);
// delVec = par(i, N, (i + 1) * 3);
// process = vecOp((si.bus(N) , si.bus(N)), +) ~
// vecOp((vecOp((ro.hadamard(N) , coeffVec), *) , delVec), @);
//
//------------------------------------------------------------------------------
declare vecOp author "Dario Sanfilippo";
declare vecOp copyright "Copyright (C) 2022 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare vecOp license "MIT License";
vecOp(vectorsList, op) =
vectorsList : seq(i, vecDim - 1, vecOp2D , vecBus(vecDim - 2 - i))
with {
vecBus(0) = par(i, vecLen, 0 : !);
vecBus(dim) = par(i, dim, si.bus(vecLen));
vecOp2D = ro.interleave(vecLen, 2) : par(i, vecLen, op);
vecDim = outputs(vectorsList) / vecLen;
vecLen = outputs(ba.take(1, vectorsList));
};
/*
Balanced par, sum, and prod, faster versions of built-in par, sum, prod
when the repeated expression doesn't depend on the variable.
*/
//-------------`(si.)bpar`---------------
// Balanced `par` where the repeated expression doesn't depend on a variable.
// The built-in `par` is implemented as an unbalanced tree, and also has
// to substitute the variable into the repeated expression, which is expensive
// even when the variable doesn't appear. This version is implemented as a
// balanced tree (which allows node reuse during tree traversal) and also
// doesn't search for the variable. This can be much faster than `par` to compile.
//
// #### Usage
//
// ```
// si.bus(N * inputs(f)) : bpar(N, f) : si.bus(N * outputs(f))
// ```
//
// Where:
//
// * `N`: number of repetitions, minimum 1, a constant numerical expression
// * `f`: an arbitrary expression
//
// Example:
// ```
// // square each of 4000 inputs
// process = si.bpar(4000, (_ <: _, _ : *));
// ```
//
//------------------------------------------
declare bpar author "Haggai Nuchi";
declare bpar copyright "Copyright (C) 2024 Haggai Nuchi <haggai@haggainuchi.com>";
declare bpar license "MIT License";
bpar(1, f) = f;
bpar(N, f) = bpar(left, f), bpar(right, f) with {
left = ma.np2(N) >> 1; // biggest power of 2 less than N
right = N - left;
};
//-------------`(si.)bsum`---------------
// Balanced `sum`, see `si.bpar`.
//
// #### Usage
//
// ```
// si.bus(N * inputs(f)) : bsum(N, f) : _
// ```
//
// Where:
//
// * `N`: number of repetitions, minimum 1, a constant numerical expression
// * `f`: an arbitrary expression with 1 output.
//
// Example:
// ```
// // square each of 1000 inputs and add the results
// process = si.bsum(1000, (_ <: _, _ : *));
// ```
//----------------------------------------------------
declare bsum author "Haggai Nuchi";
declare bsum copyright "Copyright (C) 2024 Haggai Nuchi <haggai@haggainuchi.com>";
declare bsum license "MIT License";
bsum(1, f) = f;
bsum(N, f) = bsum(left, f) + bsum(right, f) with {
left = ma.np2(N) >> 1; // biggest power of 2 less than N
right = N - left;
};
//-------------`(si.)bprod`---------------
// Balanced `prod`, see `si.bpar`.
//
// #### Usage
//
// ```
// si.bus(N * inputs(f)) : bprod(N, f) : _
// ```
//
// Where:
//
// * `N`: number of repetitions, minimum 1, a constant numerical expression
// * `f`: an arbitrary expression with 1 output.
//
// Example:
// ```
// // Add 8000 consecutive inputs (in pairs) and multiply the results
// process = si.bprod(4000, +);
// ```
//----------------------------------------------------
declare bprod author "Haggai Nuchi";
declare bprod copyright "Copyright (C) 2024 Haggai Nuchi <haggai@haggainuchi.com>";
declare bprod license "MIT License";
bprod(1, f) = f;
bprod(N, f) = bprod(left, f) * bprod(right, f) with {
left = ma.np2(N) >> 1; // biggest power of 2 less than N
right = N - left;
};